JP4189687B2 - Magnesium alloy material - Google Patents

Magnesium alloy material Download PDF

Info

Publication number
JP4189687B2
JP4189687B2 JP2005331835A JP2005331835A JP4189687B2 JP 4189687 B2 JP4189687 B2 JP 4189687B2 JP 2005331835 A JP2005331835 A JP 2005331835A JP 2005331835 A JP2005331835 A JP 2005331835A JP 4189687 B2 JP4189687 B2 JP 4189687B2
Authority
JP
Japan
Prior art keywords
mass
magnesium alloy
alloy material
less
alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005331835A
Other languages
Japanese (ja)
Other versions
JP2007138227A (en
Inventor
幸広 大石
望 河部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP2005331835A priority Critical patent/JP4189687B2/en
Publication of JP2007138227A publication Critical patent/JP2007138227A/en
Application granted granted Critical
Publication of JP4189687B2 publication Critical patent/JP4189687B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Forging (AREA)

Description

本発明は、マグネシウム合金からなるマグネシウム合金材に関するものである。特に、高強度で耐食性に優れたマグネシウム合金材に関するものである。   The present invention relates to a magnesium alloy material made of a magnesium alloy. In particular, it relates to a magnesium alloy material having high strength and excellent corrosion resistance.

マグネシウム合金は、比重が小さく、軽量材料として注目されている。しかし、一般に、マグネシウムやマグネシウム合金は耐食性が低いため、マグネシウム合金により種々の構造材を形成する場合、腐食対策が必要である。この対策の一つとして、合金組成の調整がある。例えば、近年、耐食性を低下させる金属であるFe、Ni、Cuなどを低減させることが検討されている。また、Alを9質量%程度含むAZ91などの高Alマグネシウム合金では、Al添加による耐食性向上効果がある。従って、このような高Alマグネシウム合金からなる構造材は、自動車のエンジンルーム内などといった特定の環境下であれば、そのまま使用することができる。   Magnesium alloys have a small specific gravity and are attracting attention as lightweight materials. However, in general, magnesium and magnesium alloys have low corrosion resistance. Therefore, when various structural materials are formed from magnesium alloys, countermeasures against corrosion are necessary. One countermeasure is to adjust the alloy composition. For example, in recent years, it has been studied to reduce Fe, Ni, Cu, and the like, which are metals that lower corrosion resistance. Further, a high Al magnesium alloy such as AZ91 containing about 9% by mass of Al has an effect of improving the corrosion resistance by adding Al. Therefore, such a structural material made of a high Al magnesium alloy can be used as it is under a specific environment such as in the engine room of an automobile.

しかし、エンジンルーム内といった特殊な環境ではなく、通常の大気や風雨に曝されるような環境下や人体に直接接する状態で使用される構造材、例えば、自動車や自転車などの輸送・移動手段の外装部材やパソコンなどの家電製品の外装部材では、上記合金組成を調整したマグネシウム合金を用いて形成しても、使用に耐え得ることが難しい。そこで、従来は、皮膜の形成などといった表面処理を施して耐食性を向上させることがなされている(特許文献1従来の技術参照)。しかしながら、表面処理された構造材が落下して疵が発生しり、同構造材の使用中に何らかの原因により皮膜が剥がれたりして、マグネシウム合金母材が露出されると、その露出部分から腐食が進行してしまう。従って、マグネシウム合金自体の耐食性を向上させることが望まれる。   However, it is not a special environment such as in the engine room, but is used for transportation / movement means such as automobiles and bicycles that are used in environments that are exposed to the normal atmosphere, wind and rain, or in direct contact with the human body. Even in the case of forming an exterior member or an exterior member of a home appliance such as a personal computer using a magnesium alloy with the above alloy composition adjusted, it is difficult to withstand use. Therefore, conventionally, surface treatment such as formation of a film has been performed to improve the corrosion resistance (refer to the conventional technology in Patent Document 1). However, if the surface-treated structural material falls and wrinkles occur, and the film is peeled off for some reason during use of the structural material, and the magnesium alloy base material is exposed, corrosion will occur from the exposed portion. It will progress. Therefore, it is desired to improve the corrosion resistance of the magnesium alloy itself.

特許文献1,2には、YやCeなどの希土類元素(RE)を含有させて耐食性を向上させることが開示されている。特許文献3には、マグネシウム合金の組織をアモルファス相を有する組織として、耐食性を向上させることが開示されている。一方、特許文献4には、Ca及び希土類元素とSnとを含有させて耐熱性を向上させることが開示されている。   Patent Documents 1 and 2 disclose that corrosion resistance is improved by containing rare earth elements (RE) such as Y and Ce. Patent Document 3 discloses that the corrosion resistance is improved by using a structure of a magnesium alloy as a structure having an amorphous phase. On the other hand, Patent Document 4 discloses that Ca, a rare earth element, and Sn are contained to improve heat resistance.

特開平5−117798号公報JP-A-5-117798 特開2003−64438号公報JP 2003-64438 A 特開2002−249801号公報JP 2002-249801 A 特開2005−68550号公報JP 2005-68550 A

しかし、特許文献1,2,4に記載されるマグネシウム合金材は、ダイカスト鋳造や射出鋳造などで得られた鋳造材であり、強度が低いことから極めて限定された領域でしか使用できない。また、これらの特許文献には、強度を高めることについて何ら検討されていない。ここで、鋳造材に押出、圧延、引抜などといった塑性加工を施した場合、得られた塑性加工材は、一般に、鋳造材と比較して強度が向上する傾向にある。従って、上記特許文献1,2,4に記載される鋳造材についても、強度を高めるために塑性加工を施すことが考えられる。しかし、これらの鋳造材は、耐食性向上のために希土類元素を含有していることで、塑性加工に適さない。   However, the magnesium alloy materials described in Patent Documents 1, 2, and 4 are cast materials obtained by die casting or injection casting, and can be used only in a very limited region because of low strength. Further, these patent documents do not discuss anything about increasing the strength. Here, when the cast material is subjected to plastic working such as extrusion, rolling, and drawing, the obtained plastic work material generally tends to have higher strength than the cast material. Therefore, it is conceivable that the casting materials described in Patent Documents 1, 2, and 4 are subjected to plastic working in order to increase the strength. However, these cast materials contain a rare earth element for improving corrosion resistance, and are not suitable for plastic working.

また、ダイカスト鋳造や射出鋳造などの鋳造では、長尺な板状材や線状材、パイプなどを得ることが難しい。更に、Ceといった希土類元素を含有する特許文献1,2,4に記載される鋳造材は、軽量性を損ねるだけでなく、希土類元素が一般に高価であることから、製造コストが高くなる。   Further, in casting such as die casting or injection casting, it is difficult to obtain a long plate-like material, linear material, pipe, or the like. Furthermore, the casting materials described in Patent Documents 1, 2, and 4 containing rare earth elements such as Ce not only impair the lightness, but the rare earth elements are generally expensive, resulting in an increase in manufacturing cost.

一方、特許文献3に記載されるマグネシウム合金材は、アモルファス相を有する粉末を焼結するといった特殊な製造方法により得られるものであり、鋳造などの汎用的な製造方法で得られるものと比較して、生産性の点で劣る。また、焼結の場合も、上記ダイカスト鋳造などと同様に長尺な板状材や線状材、パイプなどを得ることが難しい。   On the other hand, the magnesium alloy material described in Patent Document 3 is obtained by a special production method such as sintering powder having an amorphous phase, and compared with that obtained by a general production method such as casting. Inferior in productivity. Also in the case of sintering, it is difficult to obtain a long plate-like material, a linear material, a pipe, and the like as in the above-described die casting.

本発明は、上記事情に鑑みてなされたものであり、その主目的は、高強度で耐食性に優れるマグネシウム合金材を提供することにある。また、本発明の他の目的は、安価で簡単に製造することができるマグネシウム合金材を提供することにある。   The present invention has been made in view of the above circumstances, and a main object thereof is to provide a magnesium alloy material having high strength and excellent corrosion resistance. Another object of the present invention is to provide a magnesium alloy material that is inexpensive and can be easily manufactured.

本発明マグネシウム合金材は、特定量のSnを添加すると共に、塑性加工を施すことで耐食性と強度との双方の向上を図る。具体的な構成としては、本発明マグネシウム合金材は、Snを0.1〜10.0質量%含み、残部がMg及び不可避的不純物からなり、塑性加工が施されていることを特徴とする。   The magnesium alloy material of the present invention aims to improve both corrosion resistance and strength by adding a specific amount of Sn and performing plastic working. As a specific configuration, the magnesium alloy material of the present invention is characterized in that it contains 0.1 to 10.0% by mass of Sn, the balance is made of Mg and inevitable impurities, and is subjected to plastic working.

従来、マグネシウム合金自体の耐食性を向上させる元素として、Snが検討されていなかったが、本発明者らが検討した結果、Snは、マグネシウム合金自体の耐食性の向上に寄与するとの知見を得た。特に、Snを含有したマグネシウム合金からなる塑性加工材は、耐食性により優れるとの知見も得た。そこで、本発明では、Snを含有する。上述のように本発明合金材は、鋳造材に塑性加工を施した塑性加工材とする。鋳造材のままとするのではなく塑性加工材とすることで本発明合金材は、第一に、強度を飛躍的に向上することができる。具体的には、例えば、引張強さを270MPa以上とすることができる。また、本発明合金材は、塑性加工が施されることで、合金組織が鋳造材と比較してより微細になっており、この微細化により耐食性をも向上することができる。特に、本発明合金材は、塑性加工性を低下させず耐食性の向上に寄与する元素としてSnを含有する。このように本発明合金材は、塑性加工とSnの添加とにより、強度の向上と耐食性の向上とを実現する。そのため、本発明合金材は、大気中や風雨に曝される環境下、人体と接触するような環境下であっても優れた耐食性を発揮し、また構造材に求められる程度の機械的特性を十分に具えることから、種々の分野の構造材に利用することができる。以下、本発明の構成をより詳しく説明する。   Conventionally, Sn has not been studied as an element for improving the corrosion resistance of the magnesium alloy itself, but as a result of the study by the present inventors, it has been found that Sn contributes to the improvement of the corrosion resistance of the magnesium alloy itself. In particular, it has also been found that a plastic work material made of a magnesium alloy containing Sn is superior in corrosion resistance. Therefore, in the present invention, Sn is contained. As described above, the alloy material of the present invention is a plastic working material obtained by subjecting a cast material to plastic working. First, the alloy material of the present invention can drastically improve the strength by using a plastic working material instead of a cast material. Specifically, for example, the tensile strength can be set to 270 MPa or more. In addition, the alloy material of the present invention is subjected to plastic working, so that the alloy structure becomes finer than that of the cast material, and the corrosion resistance can be improved by this refinement. In particular, the alloy material of the present invention contains Sn as an element that contributes to the improvement of corrosion resistance without reducing the plastic workability. As described above, the alloy material of the present invention realizes improvement in strength and improvement in corrosion resistance by plastic working and addition of Sn. Therefore, the alloy material of the present invention exhibits excellent corrosion resistance even in an environment where it is in contact with the human body, in an environment exposed to the atmosphere or wind and rain, and has mechanical properties as required for structural materials. Since it is sufficiently prepared, it can be used for structural materials in various fields. Hereinafter, the configuration of the present invention will be described in more detail.

本発明合金材は、添加元素とMg及び不可避的不純物とからなるマグネシウム合金にて構成される。上記添加元素は、Snを必須とする。Snの他に更に、Al、Si、Ca、Zn、Mnからなる群から選択される少なくとも1種の元素を添加元素としてもよい。好ましくは、Sn及びAlを添加元素とし、より好ましくは、Sn、Al、Zn、Mnを添加元素とする。これら添加元素の含有量は、合計で20質量%以下とすることが好ましい。添加元素が20質量%超となると、鋳造時に割れなどが生じる原因となる。本発明合金材の具体的な組成としては、例えば、以下のI〜Xの組成が挙げられる。   The alloy material of the present invention is composed of a magnesium alloy composed of an additive element, Mg, and inevitable impurities. The additive element requires Sn. In addition to Sn, at least one element selected from the group consisting of Al, Si, Ca, Zn, and Mn may be used as the additive element. Preferably, Sn and Al are added elements, and more preferably, Sn, Al, Zn, and Mn are added elements. The total content of these additive elements is preferably 20% by mass or less. If the additive element exceeds 20% by mass, it may cause cracks during casting. Specific examples of the composition of the alloy material of the present invention include the following compositions I to X.

I. Sn:0.1質量%以上10.0質量%以下含み、残部がMg及び不可避的不純物
II. Sn:0.1質量%以上10.0質量%以下と、Al:0質量%超5質量%未満とを含み、残部がMg及び不可避的不純物
III. Sn:0.1質量%以上10.0質量%以下と、Al:5質量%以上12質量%以下とを含み、残部がMg及び不可避的不純物
IV. Sn:0.1質量%以上10.0質量%以下と、Al:1質量%以上12質量%以下、Si:0.1質量%以上2質量%以下、Ca:0.01質量%以上3質量%以下、Zn:0.1質量%以上2質量%以下、Mn:0.1質量%以上2質量%以下からなる群から選択される1種以上の元素とを含み、残部がMg及び不可避的不純物
V. Sn:0.1質量%以上10.0質量%以下と、Al:0質量%超5質量%未満と、Si:0.1質量%以上2質量%以下、Ca:0.01質量%以上3質量%以下、Zn:0.1質量%以上2質量%以下、Mn:0.1質量%以上2質量%以下からなる群から選択される1種以上の元素とを含み、残部がMg及び不可避的不純物
VI. Sn:0.1質量%以上10.0質量%以下と、Al:5質量%以上12質量%以下と、Si:0.1質量%以上2質量%以下、Ca:0.01質量%以上3質量%以下、Zn:0.1質量%以上2質量%以下、Mn:0.1質量%以上2質量%以下からなる群から選択される1種以上の元素とを含み、残部がMg及び不可避的不純物
VII. Sn:0.1質量%以上10.0質量%以下と、Al:0質量%超5質量%未満と、Zn:0.1質量%以上2質量%以下と、Mn:0.1質量%以上2質量%以下とを含み、残部がMg及び不可避的不純物
VIII. Sn:0.1質量%以上10.0質量%以下と、Al:0質量%超5質量%未満と、Zn:0.1質量%以上2質量%以下と、Mn:0.1質量%以上2質量%以下と、Si:0.1質量%以上2質量%以下及びCa:0.01質量%以上3質量%以下の少なくとも一方の元素とを含み、残部がMg及び不可避的不純物
IX. Sn:0.1質量%以上10.0質量%以下と、Al:5質量%以上12質量%以下と、Zn:0.1質量%以上2質量%以下と、Mn:0.1質量%以上2質量%以下とを含み、残部がMg及び不可避的不純物
X. Sn:0.1質量%以上10.0質量%以下と、Al:5質量%以上12質量%以下と、Zn:0.1質量%以上2質量%以下と、Mn:0.1質量%以上2質量%以下と、Si:0.1質量%以上2質量%以下及びCa:0.01質量%以上3質量%以下の少なくとも一方の元素とを含み、残部がMg及び不可避的不純物
I. Sn: 0.1% by mass or more and 10.0% by mass or less, with the balance being Mg and inevitable impurities II. Sn: 0.1% by mass or more and 10.0% by mass or less, Al: more than 0% by mass and less than 5% by mass, with the balance being Mg and inevitable impurities III. Sn: 0.1% by mass or more and 10.0% by mass or less and Al: 5% by mass or more and 12% by mass or less, with the balance being Mg and inevitable impurities IV. Sn: 0.1% by mass to 10.0% by mass, Al: 1% by mass to 12% by mass, Si: 0.1% by mass to 2% by mass, Ca: 0.01% by mass to 3% by mass % Or less, Zn: 0.1 mass% or more and 2 mass% or less, Mn: One or more elements selected from the group consisting of 0.1 mass% or more and 2 mass% or less, with the balance being Mg and inevitable Impurities V. Sn: 0.1% by mass or more and 10.0% by mass or less, Al: more than 0% by mass and less than 5% by mass, Si: 0.1% by mass or more and 2% by mass or less, Ca: 0.01% by mass or more 3 1 mass% or less, Zn: 0.1 mass% or more and 2 mass% or less, Mn: One or more elements selected from the group consisting of 0.1 mass% or more and 2 mass% or less, with the balance being Mg and inevitable Impurities VI. Sn: 0.1% by mass to 10.0% by mass, Al: 5% by mass to 12% by mass, Si: 0.1% by mass to 2% by mass, Ca: 0.01% by mass to 3% 1 mass% or less, Zn: 0.1 mass% or more and 2 mass% or less, Mn: One or more elements selected from the group consisting of 0.1 mass% or more and 2 mass% or less, with the balance being Mg and inevitable Impurities VII. Sn: 0.1% by mass or more and 10.0% by mass or less, Al: more than 0% by mass and less than 5% by mass, Zn: 0.1% by mass or more and 2% by mass or less, Mn: 0.1% by mass or more 2 mass% or less, with the balance being Mg and inevitable impurities VIII. Sn: 0.1% by mass or more and 10.0% by mass or less, Al: more than 0% by mass and less than 5% by mass, Zn: 0.1% by mass or more and 2% by mass or less, Mn: 0.1% by mass or more 2 mass% or less, Si: 0.1 mass% or more and 2 mass% or less, and Ca: 0.01 mass% or more and 3 mass% or less of the elements, with the balance being Mg and inevitable impurities IX. Sn: 0.1% by mass or more and 10.0% by mass or less, Al: 5% by mass or more and 12% by mass or less, Zn: 0.1% by mass or more and 2% by mass or less, Mn: 0.1% by mass or more 2% by mass or less, with the balance being Mg and inevitable impurities X. Sn: 0.1% by mass or more and 10.0% by mass or less, Al: 5% by mass or more and 12% by mass or less, Zn: 0.1% by mass or more and 2% by mass or less, Mn: 0.1% by mass or more 2% by mass or less, Si: 0.1% by mass or more and 2% by mass or less and Ca: 0.01% by mass or more and 3% by mass or less, with the balance being Mg and inevitable impurities

Snは、耐食性の向上に必要な元素であり、含有量が0.1質量%未満の場合、その効果が得られない。Snの含有量が多いほど、耐食性が向上する傾向にあるが、多過ぎると軽量化を阻害するため、Snの含有量の上限は、10.0質量%とする。Snのより好ましい含有量は、0.5質量%以上6質量%以下である。なお、添加元素をSnのみとする場合、含有量の上限は、14質量%とすることができる。   Sn is an element necessary for improving the corrosion resistance. If the content is less than 0.1% by mass, the effect cannot be obtained. As the Sn content increases, the corrosion resistance tends to be improved. However, if the Sn content is too large, weight reduction is inhibited, so the upper limit of the Sn content is 10.0% by mass. A more preferable content of Sn is 0.5% by mass or more and 6% by mass or less. In addition, when making an additive element only Sn, the upper limit of content can be 14 mass%.

Alは、マグネシウム合金を強化し、機械的性質を向上させると共に、耐食性にも寄与する。従って、マグネシウム合金には、上記Snに加えてAlを添加することが好ましい。上記効果を得るには、Alの含有量を0超〜12質量%とすることが好ましく、特に、1〜12質量%とすることが好ましい。しかし、Alは、過剰に添加すると靭性を低下させる傾向にある。従って、靭性よりも高強度化を望む場合、Alの含有量は、5質量%以上12質量%以下とすることが好ましく、強度よりも高靭性化を望む場合、Alの含有量は、5質量%未満とすることが好ましい。   Al strengthens the magnesium alloy, improves the mechanical properties, and contributes to corrosion resistance. Therefore, it is preferable to add Al to the magnesium alloy in addition to Sn. In order to acquire the said effect, it is preferable to make content of Al more than 0-12 mass%, and it is preferable to set it as 1-12 mass% especially. However, Al tends to reduce toughness when added in excess. Therefore, when higher strength than toughness is desired, the Al content is preferably 5% by mass or more and 12% by mass or less. When higher toughness than strength is desired, the Al content is 5% by mass. It is preferable to make it less than%.

Alに加えて更に、質量%でMn:0.1〜2%、Zn:0.1〜2%、Si:0.1〜2%から選択される1種以上の元素を含むマグネシウム合金を本発明合金材に利用してもよい。つまり、本発明合金材の形成には、ダイカスト用や鋳造用、展伸用として用いられているマグネシウム合金、具体的には、ASTM規格におけるAM系合金、AZ系合金、AS系合金のいずれも利用することができる。これらの合金のうち、いずれか一つの合金を主成分とし、上記特定範囲のSnを添加したマグネシウム合金を用いてもよい。例えば、Al、Zn、Mnが含有されるAZ系合金を主成分とするマグネシウム合金、具体的には、AZ31,AZ61,AZ91などの合金を主成分に用いてもよい。なお、これらの合金を用いる場合、特に、Siを含有するマグネシウム合金を用いる場合、鋳造時の冷却を自然冷却といった冷却速度が遅い冷却とすると、得られた鋳造材には、粗大な晶出物(例えば、MgSi)が晶出される。このような粗大な晶出物は、塑性加工性を阻害する。従って、上記合金を用いて本発明合金材を製造する場合、鋳造時の冷却は、できるだけ急冷して晶出物を微細にしておくことが好ましい。更に、添加元素としてCaを含むと、塑性加工による再結晶時や、後述する塑性加工後の熱処理による再結晶時に結晶粒の成長を抑制する効果がある。この粒成長抑制効果を得るには、Caの含有量を0.01質量%以上とすることが好ましい。Caの含有量が多いほど上記効果が大きくなるが、含有量の増加に従って粗大な金属間化合物、例えば、Mg−Ca金属間化合物やAl−Ca金属間化合物(添加元素にAlを含む場合)が合金中に生成され易い。この粗大な金属間化合物の存在することで、合金の延性の低下を引き起こして、合金の塑性加工性が低下する。従って、Caの含有量の上限は、3質量%とする。これら添加元素及び主体となるMg以外に不可避的に含まれる不純物としては、例えば、Fe、Cu、Niなどが挙げられる。 In addition to Al, a magnesium alloy containing one or more elements selected from Mn: 0.1 to 2%, Zn: 0.1 to 2%, and Si: 0.1 to 2% by mass% You may utilize for an invention alloy material. That is, for the formation of the alloy material of the present invention, magnesium alloys used for die casting, casting, and extension, specifically, any of AM-based alloys, AZ-based alloys, and AS-based alloys in the ASTM standard are used. Can be used. Among these alloys, a magnesium alloy containing any one of the alloys as a main component and added with Sn in the specific range may be used. For example, a magnesium alloy containing an AZ alloy containing Al, Zn, or Mn as a main component, specifically, an alloy such as AZ31, AZ61, or AZ91 may be used as a main component. When these alloys are used, particularly when a magnesium alloy containing Si is used, if the cooling at the time of casting is cooling with a slow cooling rate such as natural cooling, the obtained cast material has a coarse crystallized product. (For example, Mg 2 Si) is crystallized. Such coarse crystallized products hinder plastic workability. Therefore, when manufacturing this invention alloy material using the said alloy, it is preferable that the cooling at the time of casting cools as rapidly as possible and makes a crystallized substance fine. Further, when Ca is added as an additive element, there is an effect of suppressing the growth of crystal grains at the time of recrystallization by plastic working or at the time of recrystallization by heat treatment after plastic working described later. In order to obtain this grain growth inhibiting effect, the Ca content is preferably 0.01% by mass or more. The above effect increases as the content of Ca increases. However, as the content increases, coarse intermetallic compounds such as Mg-Ca intermetallic compounds and Al-Ca intermetallic compounds (when the additive element contains Al) are used. Easily produced in alloys. The presence of this coarse intermetallic compound causes a decrease in the ductility of the alloy, thereby reducing the plastic workability of the alloy. Therefore, the upper limit of the Ca content is 3% by mass. Examples of impurities inevitably contained in addition to these additive elements and Mg as a main component include Fe, Cu, and Ni.

本発明合金材は、まず、上記組成を有する合金を用意し、この合金を溶解、鋳造し、得られた鋳造材に塑性加工を施して製造される。この塑性加工は、そのままの鋳造材に施すよりも、熱処理(溶体化処理)を施してから行うことが好ましい。この熱処理条件としては、例えば、温度:380〜420℃、保持時間:2〜20時間が挙げられる。   The alloy material of the present invention is manufactured by first preparing an alloy having the above composition, melting and casting the alloy, and subjecting the obtained cast material to plastic working. This plastic working is preferably performed after a heat treatment (solution treatment) rather than the cast material as it is. Examples of the heat treatment conditions include a temperature: 380 to 420 ° C. and a holding time: 2 to 20 hours.

塑性加工としては、押出加工、圧延加工、引抜加工(伸線加工)、鍛造加工、プレス加工、曲げ加工、スウェージング加工などの種々の加工が適用でき、特に制限されない。従って、本発明合金材は、押出材、圧延材、中実又は中空の引抜材、鍛造材などの種々の塑性加工材となり得る。塑性加工は、所望の形状、形態となるように適宜選択するとよい。例えば、本発明合金材を板状材とする場合、圧延加工や押出加工を行うとよく、本発明合金材を線状材やパイプとする場合、引抜加工を行うとよい。圧延加工や引抜加工は、長尺材を得るのに適している。   Various processes such as extrusion, rolling, drawing (drawing), forging, pressing, bending, and swaging can be applied as the plastic working, and there is no particular limitation. Therefore, the alloy material of the present invention can be various plastic working materials such as extruded materials, rolled materials, solid or hollow drawn materials, and forged materials. The plastic working may be appropriately selected so as to have a desired shape and form. For example, when the alloy material of the present invention is a plate-like material, rolling or extrusion may be performed, and when the alloy material of the present invention is a linear material or pipe, a drawing process may be performed. Rolling and drawing are suitable for obtaining long materials.

上記各加工は、1回のみとしてもよいし、複数回(多パス)に亘って行ってもよいが、変形量がトータル断面減少率で10%以上となるように行う。好ましくは、30%以上となるように行う。また、鋳造材に最初に施す塑性加工は、鋳造材を所定の温度に加熱して行う熱間加工とすることが好ましく、以降の塑性加工は、被加工材を特に加熱することなく行う冷間加工としてもよいし、被加工材を所定の温度に加熱して行う熱間加工としてもよい。熱間加工とする場合、加熱温度は、200℃〜400℃が好ましい。複数回に亘って塑性加工を行う場合、1回ごと或いは複数回ごとに中間熱処理を行い、塑性加工に伴い導入された歪を回復させるようにしてもよい。中間熱処理条件としては、加熱温度:100℃以上(好ましくは150℃以上)400℃以下、保持時間:5〜20分程度が挙げられる。   Each of the above processes may be performed only once or may be performed a plurality of times (multi-pass), but the deformation is performed so that the total cross-section reduction rate is 10% or more. Preferably, it is performed so as to be 30% or more. Moreover, it is preferable that the plastic processing initially performed on the cast material is hot processing performed by heating the cast material to a predetermined temperature, and the subsequent plastic processing is cold performed without particularly heating the workpiece. It is good also as processing, and it is good also as hot processing performed by heating a workpiece to predetermined temperature. In the case of hot working, the heating temperature is preferably 200 ° C to 400 ° C. When the plastic working is performed a plurality of times, an intermediate heat treatment may be performed once or a plurality of times to recover the strain introduced with the plastic working. Examples of the intermediate heat treatment conditions include heating temperature: 100 ° C. or higher (preferably 150 ° C. or higher) 400 ° C. or lower, and holding time: about 5 to 20 minutes.

鋳造材に施す塑性加工は、2種以上の異なる加工としてもよい。即ち、鋳造材に1次加工を施し、得られた1次加工材に1次加工と異なる2次加工を施す、…(以下同様)としてもよい。このとき、1次加工を熱間加工とし、2次加工を冷間加工、熱間加工のいずれとしてもよい。1次加工と、2次加工、…とを分けて2次加工以下を熱間で行う場合、2次加工以降の加工の加熱温度は、200℃以下としてもよい。例えば、1次加工で熱間圧延を行い、2次加工で熱間引抜を行う場合、引抜加工時の被加工材の加熱温度は、50℃以上200℃以下としてもよい。引抜加工、鍛造加工、プレス加工、曲げ加工、スウェージング加工などといった塑性加工は、鋳造材を押出した押出材、或いは鋳造材を圧延した圧延材に施すと、加工し易く好ましい。これら引抜加工などの2次加工は、押出材や圧延材に熱処理(溶体化処理)を施してから行ってもよい。この熱処理条件としては、例えば、温度:380〜420℃、保持時間:1〜10時間が挙げられる。   The plastic processing applied to the cast material may be two or more different types of processing. That is, primary processing may be performed on the cast material, and secondary processing different from the primary processing may be performed on the obtained primary processing material. At this time, the primary processing may be hot processing, and the secondary processing may be either cold processing or hot processing. When the primary processing and the secondary processing are separately performed and the secondary processing or lower is performed hot, the heating temperature of the processing after the secondary processing may be 200 ° C. or lower. For example, when hot rolling is performed in the primary process and hot drawing is performed in the secondary process, the heating temperature of the workpiece during the drawing process may be 50 ° C. or more and 200 ° C. or less. Plastic processing such as drawing, forging, pressing, bending, swaging, and the like is preferable because it is easy to process when applied to an extruded material obtained by extruding a cast material or a rolled material obtained by rolling a cast material. The secondary processing such as drawing may be performed after heat treatment (solution treatment) is performed on the extruded material or the rolled material. Examples of the heat treatment conditions include a temperature: 380 to 420 ° C. and a holding time of 1 to 10 hours.

また、押出材や圧延材を引き抜いた引抜材に鍛造加工、プレス加工、曲げ加工、スウェージング加工を施すと、鍛造加工などの3次加工が行い易く好ましい。これら鍛造加工などの3次加工は、引抜材に適宜熱処理を施してから行ってもよい。熱処理条件としては、温度:100〜300℃、好ましくは150〜300℃、保持時間:5〜20分程度が挙げられる。この熱処理により、引抜加工に伴う歪みを除去したり、再結晶化を促進して結晶粒を微細にし、塑性加工性を高めることができる。   Further, forging, pressing, bending, and swaging are preferably performed on a drawn material from which an extruded material or a rolled material has been drawn, so that tertiary processing such as forging can be easily performed. The tertiary processing such as forging may be performed after appropriately performing heat treatment on the drawn material. As heat treatment conditions, temperature: 100 to 300 ° C., preferably 150 to 300 ° C., holding time: about 5 to 20 minutes can be mentioned. By this heat treatment, strain associated with the drawing process can be removed, recrystallization can be promoted to make the crystal grains fine, and plastic workability can be improved.

上記引抜加工は、伸線ダイスやローラダイスを用いて行うとよく、特に、伸線ダイスを用いると、偏径差(線材の同一横断面における径の最大値と径の最小値との差)が小さく、寸法精度に優れる中実又は中空の線状材を容易に製造することができる。ダイス孔の大きさ(径)が異なるダイスを多段に用いて複数パスに亘って引抜加工を行うことで、所望の大きさの線状材を得ることができる。引抜加工条件は、加工温度への昇温速度:1℃/sec〜100℃/sec、加工温度:50℃以上300℃以下(好ましくは100℃以上200℃以下)、加工度:10%以上/パス(中実)、5%以上/パス(中空)、線速:1m/min以上、引抜加工後の冷却速度:0.1℃/sec以上が挙げられる。加工温度が高いほど、被加工材の引抜加工性を高めることができ、例えば、大きな加工度での加工が可能となる。上記のような加熱を行わず室温にて引抜加工を行ってもよい。この場合、1パスあたりの加工度を小さくしたり(合金組成にもよるが概ね15%以下、好ましくは10%以下)、引抜前に事前熱処理を施してもよい。事前熱処理条件としては、加熱温度:200℃以上450℃以下(好ましくは250℃以上400℃以下)、保持時間:15〜60分程度が挙げられる。上記引抜加工は、潤滑剤を用いて行うことが好ましい。引抜加工条件は、特開2003−293069号公報、特開2004−232075号公報に記載される条件と同様にしてもよい。   The above drawing process is preferably performed using a wire drawing die or a roller die. In particular, when a wire drawing die is used, a difference in diameter difference (difference between the maximum value of the diameter and the minimum value of the diameter in the same cross section of the wire). A solid or hollow linear material that is small in size and excellent in dimensional accuracy can be easily manufactured. A linear material having a desired size can be obtained by performing drawing processing over a plurality of passes using dies having different sizes (diameters) of die holes in multiple stages. The drawing process conditions are as follows: temperature increase rate to the processing temperature: 1 ° C./sec to 100 ° C./sec, processing temperature: 50 ° C. to 300 ° C. (preferably 100 ° C. to 200 ° C.), processing degree: 10% / Examples include pass (solid), 5% or more / pass (hollow), linear speed: 1 m / min or more, and cooling rate after drawing: 0.1 ° C./sec or more. The higher the processing temperature, the higher the drawing workability of the workpiece, and for example, processing with a large processing degree becomes possible. The drawing process may be performed at room temperature without heating as described above. In this case, the degree of processing per pass may be reduced (although depending on the alloy composition, approximately 15% or less, preferably 10% or less), or pre-heat treatment may be performed before drawing. Examples of the pre-heat treatment condition include heating temperature: 200 ° C. or higher and 450 ° C. or lower (preferably 250 ° C. or higher and 400 ° C. or lower), and holding time: about 15 to 60 minutes. The drawing process is preferably performed using a lubricant. The drawing process conditions may be the same as the conditions described in Japanese Patent Application Laid-Open Nos. 2003-293069 and 2004-232075.

更に、最終の塑性加工後に以下の特定の熱処理を施してもよい。熱処理を施すことで、再結晶による更なる微細化、塑性加工に伴う歪みの除去を行うことができる。また、熱処理を施すことで析出による時効を促進することができる。上記塑性加工が施された本発明合金材は、結晶粒やSnを含む化合物(析出物)が微細化された微細組織を有するが、上述のように最終の塑性加工後に以下の特定の熱処理を施すことで、上記結晶粒の更なる微細化、上記析出物の更なる微細・分散化を図ることができる。この熱処理条件としては、温度:150〜350℃、好ましくは、200〜300℃、保持時間:15分〜20時間が挙げられる。上記温度で保持時間が15分〜60分程度の熱処理を行うことで、再結晶による微細化や歪みの除去に効果があるが、合金材に含有されるAl量やSn量によってはより長時間(1時間〜20時間程度)とすることが好ましく、Al量やSn量に応じて適宜調整するとよい。鋳造材では、平均結晶粒径が100μm以上と比較的大きいのに対し、上記塑性加工と適宜な熱処理とを組み合わせて行った本発明合金材は、平均結晶粒径が30μm以下といった微細な結晶組織を有する。また、鋳造材では、Snを含む析出物の平均径が20μm以上と比較的大きいのに対し、上記塑性加工と適宜な熱処理とを組み合わせて行った本発明合金材は、同析出物の平均径を5.0μm以下とし、これら微細粒が均一的に分散された合金組織となる。このような微細な結晶粒からなり、微細なSn含有析出物が分散した合金組織を有する本発明合金材は、合金組織全体として粒界の面積が増加することで、粒界単位面積あたりに存在する不純物(例えば、Fe、Ni、Cuなど)が少なく、かつSnが組織中に満遍なく存在するため、高い耐食性を有することができる。   Furthermore, the following specific heat treatment may be performed after the final plastic working. By performing the heat treatment, further refinement by recrystallization and removal of strain associated with plastic working can be performed. Moreover, the aging by precipitation can be accelerated | stimulated by heat-processing. The alloy material of the present invention that has been subjected to the above-described plastic working has a fine structure in which a compound (precipitate) containing crystal grains and Sn is refined, and the following specific heat treatment is performed after the final plastic working as described above. By applying, further refinement of the crystal grains and further refinement / dispersion of the precipitates can be achieved. Examples of the heat treatment conditions include temperature: 150 to 350 ° C., preferably 200 to 300 ° C., holding time: 15 minutes to 20 hours. Although heat treatment is performed at the above temperature for a holding time of about 15 minutes to about 60 minutes, it is effective in refining and removing strain, but depending on the amount of Al and Sn contained in the alloy material, it takes a longer time. (About 1 to 20 hours) is preferable, and may be appropriately adjusted according to the amount of Al or the amount of Sn. The cast material has a relatively large average crystal grain size of 100 μm or more, whereas the alloy material according to the present invention, which is a combination of the plastic processing and appropriate heat treatment, has a fine crystal structure with an average crystal grain size of 30 μm or less. Have In addition, in the cast material, the average diameter of the precipitate containing Sn is relatively large as 20 μm or more, whereas the alloy material of the present invention, which is obtained by combining the plastic working and the appropriate heat treatment, has the average diameter of the precipitate. Is an alloy structure in which these fine grains are uniformly dispersed. The alloy material of the present invention having an alloy structure composed of such fine crystal grains and dispersed with fine Sn-containing precipitates is present per grain boundary unit area by increasing the grain boundary area as the whole alloy structure. Since there are few impurities (for example, Fe, Ni, Cu, etc.) and Sn exists uniformly in the structure, it can have high corrosion resistance.

平均結晶粒径及びSnを含む析出物の平均径は、以下のように測定する。まず、合金の断面において、表面から中心に向かって100μmの深さの領域を表層部、表面から中心までの距離をrとしたときr/2の位置の領域を中央部、そして、中心の近傍を中心部とし、各部において任意の一箇所以上で光学顕微鏡などを用いて組織観察を行い(倍率:200〜1000倍)、特定面積(例えば、100〜300μm×100〜300μmなど)内に存在する結晶粒の粒径、析出物の大きさを測定する。粒径や大きさの測定は、切断法(JIS H 0501参照)により行うことが挙げられる。このような測定を2断面以上で行う。そして、得られた全結晶粒の粒径の平均を平均結晶粒径とし、得られた全析出物の大きさの平均を析出物の平均径とする。結晶粒径の測定は、透過電子顕微鏡(TEM)や後方散乱電子回折法(EBSP)を用いて行ってもよい。   The average crystal grain size and the average diameter of the precipitate containing Sn are measured as follows. First, in the cross section of the alloy, a region having a depth of 100 μm from the surface to the center is the surface layer portion, and when the distance from the surface to the center is r, the region at the position of r / 2 is the central portion, and the vicinity of the center Is observed in the center using an optical microscope or the like at any one or more locations (magnification: 200 to 1000 times) and exists in a specific area (for example, 100 to 300 μm × 100 to 300 μm). The crystal grain size and the size of the precipitate are measured. Measurement of the particle size and size may be performed by a cutting method (see JIS H 0501). Such measurement is performed on two or more cross sections. And let the average of the particle diameter of all the obtained crystal grains be an average crystal grain diameter, and let the average of the magnitude | size of all the obtained precipitates be the average diameter of a precipitate. The crystal grain size may be measured using a transmission electron microscope (TEM) or a backscattered electron diffraction method (EBSP).

上述のように塑性加工を施すことで、本発明合金材は、優れた強度を有する。特に、Alを適宜含有することで、引張強さ270MPa以上といった優れた強度を有する。また、Alを適宜含有することで、伸び7%以上といった優れた靭性を有する。より具体的には、Alを0超5質量%未満含有する本発明合金材は、引張強さ270MPa以上、伸び10%以上を有する。Alを5質量%以上12質量%以下含有する本発明合金材は、引張強さ300MPa以上、伸び7%以上を有する。なお、伸びの測定は、GL(標点距離)=25mmで行うものとする。   By applying plastic working as described above, the alloy material of the present invention has excellent strength. In particular, by appropriately containing Al, it has excellent strength such as a tensile strength of 270 MPa or more. Moreover, it has the outstanding toughness of elongation 7% or more by containing Al suitably. More specifically, the alloy material of the present invention containing Al more than 0 and less than 5% by mass has a tensile strength of 270 MPa or more and an elongation of 10% or more. The alloy material of the present invention containing 5% by mass to 12% by mass of Al has a tensile strength of 300 MPa or more and an elongation of 7% or more. In addition, the measurement of elongation shall be performed by GL (mark distance) = 25mm.

本発明合金材は、上述のように高強度で、耐食性に優れるため、エンジンルーム内といった特定の環境下はもちろん、大気や風雨に曝されたり、人体と直接接触するような通常の環境下で使用される構造材に適する。具体的には、携帯電話などの携帯用電気機器の筐体や部品、パソコンなどの家電製品の筐体や部品、自転車や自動車などの輸送・移動用手段におけるフレームなどの外装部材などに利用することができる。   Since the alloy material of the present invention has high strength and excellent corrosion resistance as described above, it is not only in a specific environment such as in an engine room, but also in a normal environment where it is exposed to the atmosphere, wind and rain, or in direct contact with the human body. Suitable for the structural material used. Specifically, it is used for casings and parts of portable electric devices such as mobile phones, casings and parts of home appliances such as personal computers, and exterior members such as frames in transportation and movement means such as bicycles and automobiles. be able to.

本発明合金材は、組成を調整して合金自体の耐食性を高めているため、表面処理を行うことなく、大気や風雨などに曝されるような環境下においても十分に使用することができる。また、本発明合金材は、表面処理を行った場合に表面処理層が脱落したり剥離したりしても、合金自体が耐食性に優れるため、腐食の進行を抑制することができる。特に、本発明合金材は、塑性加工を施していることで構造材として十分な強度を具えており、長期の使用に耐え得る。また、本発明合金材は、希土類元素を含有していないことから軽量であり、軽量化が望まれる種々の分野の構造材に利用できる。更に、希土類元素を含有していないことから、本発明合金材は、製造コストの低減も図ることができる。   Since the alloy material of the present invention adjusts the composition to enhance the corrosion resistance of the alloy itself, it can be used satisfactorily even in an environment where it is exposed to the atmosphere or wind and rain without performing surface treatment. Further, the alloy material of the present invention can suppress the progress of corrosion because the alloy itself is excellent in corrosion resistance even if the surface treatment layer is dropped or peeled off when the surface treatment is performed. In particular, the alloy material of the present invention has sufficient strength as a structural material by being subjected to plastic working, and can withstand long-term use. The alloy material of the present invention is lightweight because it does not contain a rare earth element, and can be used as a structural material in various fields where weight reduction is desired. Furthermore, since the rare earth element is not contained, the alloy material of the present invention can also reduce the manufacturing cost.

以下、本発明の実施の形態を説明する。
(試験例1)
表1に示す組成(添加元素の含有量の単位は、質量%)のマグネシウム合金を溶解して鋳造し、φ30mmの円柱状の鋳造材を得た。得られた鋳造材に以下の熱処理や塑性加工を施し、得られた各試料に引張試験、組織観察、耐食性試験を行った。
Embodiments of the present invention will be described below.
(Test Example 1)
A magnesium alloy having the composition shown in Table 1 (unit of content of additive element is mass%) was melted and cast to obtain a cylindrical cast material having a diameter of 30 mm. The obtained cast material was subjected to the following heat treatment and plastic working, and each of the obtained samples was subjected to a tensile test, a structure observation, and a corrosion resistance test.

Figure 0004189687
Figure 0004189687

表1の試料A〜Eは、AZ91相当合金を主体とする試料、試料F〜Jは、AZ61相当合金を主体とする試料、試料K〜Oは、AZ31相当合金を主体とする試料であり、試料A〜D,F〜I,K〜Nには、更にSnを添加し、試料E、J、Oには、Snを添加していない。また、試料D,I,Nには、更に、Si及びCaを添加している。表1の試料Pは、純マグネシウムに相当する試料、試料Qは、Snを添加した二元合金の試料、試料Rは、Alを添加した二元合金の試料、試料S,Tは、Sn及びAlを添加した三元合金の試料である。   Samples A to E in Table 1 are samples mainly composed of an AZ91 equivalent alloy, samples F to J are samples mainly composed of an AZ61 equivalent alloy, and samples K to O are samples mainly composed of an AZ31 equivalent alloy. Sn is further added to Samples A to D, F to I, and K to N, and Sn is not added to Samples E, J, and O. Further, Si and Ca are further added to the samples D, I, and N. Sample P in Table 1 is a sample corresponding to pure magnesium, Sample Q is a sample of a binary alloy to which Sn is added, Sample R is a sample of a binary alloy to which Al is added, Samples S and T are Sn and It is a sample of a ternary alloy to which Al is added.

試料C,H,Mは、鋳造後、400℃×10時間の溶体化処理を行い、更に、熱処理(温度:200℃、保持時間:表1に示す時間)を行った試料である。つまり、塑性加工を施していない試料である。
試料B,G,Lは、鋳造後、400℃×10時間の溶体化処理を行ってから表面研削を施してφ25mmの円柱状材とし、この円柱状材を400℃に加熱した状態でφ20mmまで熱間圧延を行い(トータル断面減少率:36%)、熱間圧延後、熱処理(温度:200℃、保持時間:表1に示す時間)を行った試料である。圧延加工は、断面減少率:約10%/パス、線速:1m/minとして行った。以下の試料についても圧延条件は、同様である。
試料A,D〜F,I〜K,N〜Tは、鋳造後、400℃×10時間の溶体化処理を行ってから表面研削を施してφ25mmの円柱状材とし、この円柱状材を400℃に加熱した状態でφ20mmまで熱間圧延を行い、得られた圧延材を180℃に加熱した状態でφ15mmまで引抜加工を行い(トータル断面減少率:64%)、引抜後、熱処理(温度:200℃、保持時間:表1に示す時間)を行った試料である。引抜加工は、180℃への昇温速度:20℃/sec、加工度:10〜15%/パス、線速:1m/minとして行った。
上記の試料に加えて表1に示していないが試料A’,F’,K’を用意した。これら試料A’,F’,K’は、試料A,F,Kと同様の組成で、上記引抜加工までの工程を試料A,F,Kと同様に行い、引抜加工後、熱処理を施していない試料である。
Samples C, H, and M are samples subjected to solution treatment at 400 ° C. × 10 hours after casting, and further subjected to heat treatment (temperature: 200 ° C., holding time: time shown in Table 1). That is, the sample is not subjected to plastic working.
Samples B, G, and L were subjected to a solution treatment at 400 ° C. for 10 hours after casting, and then subjected to surface grinding to form a cylindrical material having a diameter of 25 mm, and the cylindrical material was heated to 400 ° C. up to 20 mm. This sample was subjected to hot rolling (total cross-section reduction rate: 36%) and after heat rolling, heat treatment (temperature: 200 ° C., holding time: time shown in Table 1). The rolling process was performed at a cross-section reduction rate of about 10% / pass and a linear speed of 1 m / min. The rolling conditions are the same for the following samples.
Samples A, D to F, I to K, and N to T were subjected to solution treatment at 400 ° C. for 10 hours after casting, and then subjected to surface grinding to obtain a cylindrical material having a diameter of 25 mm. Hot rolled to φ20 mm in a state heated to ℃, and the obtained rolled material was drawn to φ15 mm in a state heated to 180 ° C. (total cross section reduction rate: 64%), and after drawing, heat treatment (temperature: 200 ° C., holding time: time shown in Table 1). Drawing was performed at a temperature increase rate to 180 ° C .: 20 ° C./sec, a processing degree: 10-15% / pass, and a linear speed: 1 m / min.
In addition to the above samples, samples A ′, F ′ and K ′ were prepared, which are not shown in Table 1. These samples A ′, F ′, and K ′ have the same composition as the samples A, F, and K, and the processes up to the drawing process are performed in the same manner as the samples A, F, and K. After the drawing process, heat treatment is performed. There is no sample.

引張試験は、JIS Z 2241に準じて室温にて実施し、引張強さ(TS)、0.2%耐力(0.2%PS)、伸び(EL)を測定した。伸びは、GL=25mmで実施した。
耐食性試験は、JIS Z 2371に準じて行い(塩水噴霧時間:1000時間)、塩水噴霧の前後における重量の変化量(腐食減量)を測定した。
組織観察は、試料の断面を光学顕微鏡(倍率:400倍)で観察した。合金の平均結晶粒径、Sn含有析出物の平均径は、同断面における特定面積(200μm×150μm)内に存在する結晶粒、析出物の大きさを切断法に準じて測定し、この測定を3個の断面について行って、得られた全結晶粒の粒径の平均及び全析出物の大きさの平均を算出することで求めた。
引張試験、耐食性試験、組織観察の結果を表2に示す。
The tensile test was performed at room temperature according to JIS Z 2241, and the tensile strength (TS), 0.2% proof stress (0.2% PS), and elongation (EL) were measured. The elongation was carried out with GL = 25 mm.
The corrosion resistance test was performed according to JIS Z 2371 (salt water spraying time: 1000 hours), and the amount of weight change (corrosion loss) before and after salt water spraying was measured.
In the tissue observation, the cross section of the sample was observed with an optical microscope (magnification: 400 times). The average crystal grain size of the alloy and the average diameter of the Sn-containing precipitates were determined by measuring the size of crystal grains and precipitates existing within a specific area (200 μm × 150 μm) in the same section according to the cutting method. The calculation was performed for three cross sections, and the average of the particle diameters of all the obtained crystal grains and the average of the size of all the precipitates were calculated.
Table 2 shows the results of the tensile test, the corrosion resistance test, and the structure observation.

Figure 0004189687
Figure 0004189687

表2に示すように、特定量のSnを添加した塑性加工材は、強度に優れると共に、耐食性が大幅に向上していることがわかる。このように耐食性の向上を図ることができたのは、特定量のSnを添加すると共に、塑性加工を施すことで、結晶粒径を小さく、かつSnを含む析出物径も小さくして、組織中に均一的に分散させることができたためであると考えられる。特に、塑性加工を行うことに加えて、適宜熱処理を組み合わせることで、得られたマグネシウム合金材は、より耐食性に優れる。また、表2から、特定量のSnを添加することで、Alの含有量によらず、マグネシウム合金材の耐食性を向上できることがわかる。更に、表2からAlの含有量が多いと、強度に優れ、Alの含有量が少ないと、靭性に優れることがわかる。加えて、Al,Zn,Mnなどの元素を添加すると、マグネシウム合金材の強度をより向上できることがわかる。   As shown in Table 2, it can be seen that the plastic working material to which a specific amount of Sn is added is excellent in strength and significantly improved in corrosion resistance. In this way, the corrosion resistance could be improved by adding a specific amount of Sn and applying plastic working to reduce the crystal grain size and the precipitate size containing Sn to reduce the structure. This is considered to be due to the fact that it could be uniformly dispersed therein. In particular, in addition to performing plastic working, the obtained magnesium alloy material is more excellent in corrosion resistance by appropriately combining heat treatment. Table 2 also shows that the corrosion resistance of the magnesium alloy material can be improved by adding a specific amount of Sn regardless of the Al content. Furthermore, it can be seen from Table 2 that when the Al content is high, the strength is excellent, and when the Al content is low, the toughness is excellent. In addition, it can be seen that the strength of the magnesium alloy material can be further improved by adding elements such as Al, Zn, and Mn.

(試験例2)
表3に示す組成(添加元素の含有量の単位は、質量%)のマグネシウム合金を溶解して鋳造した鋳造材に、以下の熱処理や塑性加工を施し、得られた各試料に試験例1と同様にして引張試験、組織観察、耐食性試験を行った。
(Test Example 2)
The cast material obtained by melting and casting the magnesium alloy having the composition shown in Table 3 (unit of content of additive element is mass%) was subjected to the following heat treatment and plastic working, and each of the obtained samples was subjected to Test Example 1 and Similarly, a tensile test, a structure observation, and a corrosion resistance test were performed.

Figure 0004189687
Figure 0004189687

表3の試料a〜cは、AZ91相当合金を主体とする試料であり、更にSnを添加している。
試料aは、厚さ10mmの板状の鋳造材を作製し、この鋳造材に400℃×10時間の溶体化処理を行い、得られた熱処理材を200〜400℃に加熱し、厚さ2.0mmまで熱間圧延を行った後(トータル圧下率:80%)、200℃×4時間の熱処理を施した試料である。
試料bは、φ30mmの円柱状の鋳造材を作製し、この鋳造材に400℃×10時間の溶体化処理を行ってから表面研削を施してφ25mmの円柱状材とし、この円柱状材を400℃に加熱し、φ10mmまで熱間鍛造を行った後(トータル断面減少率:84%)、200℃×4時間の熱処理を施した試料である。
試料cは、φ100mmの円柱状の鋳造材を作製し、この鋳造材に400℃×10時間の溶体化処理を行い、得られた熱処理材を400℃に加熱して押出し、厚さ5mmの板状とし、この板状材に200℃×4時間の熱処理を施した試料である。
引張試験、耐食性試験、組織観察の結果を表4に示す。
Samples a to c in Table 3 are samples mainly composed of an AZ91 equivalent alloy, and Sn is further added.
For sample a, a plate-shaped cast material having a thickness of 10 mm was prepared, and this cast material was subjected to a solution treatment at 400 ° C. for 10 hours, and the obtained heat-treated material was heated to 200 to 400 ° C. to obtain a thickness of 2 This sample was subjected to heat treatment at 200 ° C. for 4 hours after hot rolling to 0.0 mm (total rolling reduction: 80%).
For sample b, a cylindrical cast material having a diameter of 30 mm was prepared, and the cast material was subjected to a solution treatment at 400 ° C. for 10 hours, and then subjected to surface grinding to obtain a cylindrical material having a diameter of 25 mm. It is a sample that was heated to 200 ° C., subjected to hot forging to φ10 mm (total cross section reduction rate: 84%), and then subjected to heat treatment at 200 ° C. for 4 hours.
For sample c, a cylindrical cast material having a diameter of 100 mm was prepared, and this cast material was subjected to a solution treatment at 400 ° C. for 10 hours. The obtained heat-treated material was heated to 400 ° C. and extruded, and a 5 mm thick plate was obtained. It is a sample obtained by subjecting this plate-like material to heat treatment at 200 ° C. for 4 hours.
Table 4 shows the results of the tensile test, the corrosion resistance test, and the structure observation.

Figure 0004189687
Figure 0004189687

表4に示すように、特定量のSnを添加したマグネシウム合金からなる鋳造材に、鍛造加工や押出加工といった塑性加工を施した合金材は、高強度で、耐食性に優れることがわかる。また、この試験結果から、線状材だけでなく、高強度で耐食性に優れるマグネシウム合金板材が得られることがわかる。   As shown in Table 4, it can be seen that an alloy material obtained by subjecting a cast material made of a magnesium alloy to which a specific amount of Sn is added to plastic processing such as forging and extrusion to high strength and excellent corrosion resistance. In addition, it can be seen from this test result that not only a linear material but also a magnesium alloy plate material having high strength and excellent corrosion resistance can be obtained.

上述した試験例では、塑性加工として圧延加工、引抜加工、鍛造加工、押出加工を行ったが、その他、プレス加工、曲げ加工、スウェージング加工などを適用することも可能である。   In the test examples described above, rolling, drawing, forging, and extrusion are performed as plastic processing, but press processing, bending, swaging, and the like can also be applied.

本発明合金材は、構造材として好適に利用できる。具体的には、携帯電話などの携帯用電気機器の筐体や部品、パソコンなどの家電製品の筐体や部品、自転車や自動車などの輸送・移動用手段におけるフレームなどの外装部材などに利用することができる。   The alloy material of the present invention can be suitably used as a structural material. Specifically, it is used for casings and parts of portable electric devices such as mobile phones, casings and parts of home appliances such as personal computers, and exterior members such as frames in transportation and movement means such as bicycles and automobiles. be able to.

Claims (7)

Snを0.1〜10.0質量%含み、残部がMg及び不可避的不純物からなり、
塑性加工が施されていることを特徴とするマグネシウム合金材。
0.1 to 10.0% by mass of Sn, with the balance being Mg and inevitable impurities,
Magnesium alloy material characterized by being subjected to plastic working.
Snを0.1〜10.0質量%含み、残部がMg及び不可避的不純物からなり、
平均結晶粒径が30μm以下であることを特徴とするマグネシウム合金材。
0.1 to 10.0% by mass of Sn, with the balance being Mg and inevitable impurities,
A magnesium alloy material having an average crystal grain size of 30 μm or less.
Snを0.1〜10.0質量%含み、残部がMg及び不可避的不純物からなり、
任意の断面内に存在するSnを含む化合物の平均径が5.0μm以下であることを特徴とするマグネシウム合金材。
0.1 to 10.0% by mass of Sn, with the balance being Mg and inevitable impurities,
A magnesium alloy material characterized in that an average diameter of a compound containing Sn existing in an arbitrary cross section is 5.0 μm or less.
質量%でAlを0超5%未満、Snを0.1〜10.0%含み、残部がMg及び不可避的不純物からなり、
引張強さが270MPa以上、伸びが10%以上であることを特徴とするマグネシウム合金材。
ただし、伸びの測定は、GL=25mmとする。
In mass%, Al contains more than 0 and less than 5%, Sn contains 0.1 to 10.0%, and the balance consists of Mg and inevitable impurities,
A magnesium alloy material having a tensile strength of 270 MPa or more and an elongation of 10% or more.
However, the measurement of elongation shall be GL = 25 mm.
質量%でAlを5〜12%、Snを0.1〜10.0%含み、残部がMg及び不可避的不純物からなり、
引張強さが300MPa以上、伸びが7%以上であることを特徴とするマグネシウム合金材。
ただし、伸びの測定は、GL=25mmとする。
It contains 5 to 12% Al and 0.1 to 10.0% Sn in mass%, and the balance consists of Mg and inevitable impurities,
A magnesium alloy material having a tensile strength of 300 MPa or more and an elongation of 7% or more.
However, the measurement of elongation shall be GL = 25 mm.
更に、マグネシウム合金材は、質量%でAl:1〜12%、Si:0.1〜2%、Ca:0.01〜3%、Zn:0.1〜2%、Mn:0.1〜2%からなる群から選択される1種以上の元素を含むことを特徴とする請求項2又は3に記載のマグネシウム合金材。 Further, the magnesium alloy material is, in mass%, Al: 1 to 12%, Si: 0.1 to 2%, Ca: 0.01 to 3%, Zn: 0.1 to 2%, Mn: 0.1 to 0.1%. The magnesium alloy material according to claim 2 or 3 , comprising at least one element selected from the group consisting of 2%. 更に、マグネシウム合金材は、質量%で、Si:0.1〜2%、Ca:0.01〜3%、Zn:0.1〜2%、Mn:0.1〜2%からなる群から選択される1種以上の元素を含むことを特徴とする請求項4又は5に記載のマグネシウム合金材。   Further, the magnesium alloy material is in mass%, and Si: 0.1 to 2%, Ca: 0.01 to 3%, Zn: 0.1 to 2%, Mn: 0.1 to 2%. The magnesium alloy material according to claim 4 or 5, comprising at least one element selected.
JP2005331835A 2005-11-16 2005-11-16 Magnesium alloy material Expired - Fee Related JP4189687B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005331835A JP4189687B2 (en) 2005-11-16 2005-11-16 Magnesium alloy material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005331835A JP4189687B2 (en) 2005-11-16 2005-11-16 Magnesium alloy material

Publications (2)

Publication Number Publication Date
JP2007138227A JP2007138227A (en) 2007-06-07
JP4189687B2 true JP4189687B2 (en) 2008-12-03

Family

ID=38201464

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005331835A Expired - Fee Related JP4189687B2 (en) 2005-11-16 2005-11-16 Magnesium alloy material

Country Status (1)

Country Link
JP (1) JP4189687B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101573713B1 (en) * 2013-12-04 2015-12-03 한국생산기술연구원 Magnesium alloys having high thermal conductivity

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5383314B2 (en) * 2008-06-25 2014-01-08 リョービ株式会社 Creep-resistant magnesium alloy
JP6080067B2 (en) * 2010-03-31 2017-02-15 国立研究開発法人物質・材料研究機構 Magnesium alloy
KR100994812B1 (en) * 2010-04-05 2010-11-16 한국기계연구원 High-strength high-ductility magnesium alloy extrudate and manufacturing method thereof
KR101277297B1 (en) 2011-02-18 2013-06-20 한국기계연구원 High-strength high-ductility magnesium alloy extrusions with low anisotropy and manufacturing method thereof
KR101342582B1 (en) 2011-10-20 2013-12-17 포항공과대학교 산학협력단 Non heat treatable magnesium alloy sheet having less segregation and improved room temperature formability
KR101159790B1 (en) * 2012-01-30 2012-06-26 한국기계연구원 Magnesium alloy having high ductility and high toughness and process for preparing the same
KR101406111B1 (en) * 2013-05-08 2014-06-16 한국기계연구원 High speed extrusion method for magnesium alloy and magnesium alloy extruded material prepared thereby
JP6257030B2 (en) * 2013-10-05 2018-01-10 国立研究開発法人物質・材料研究機構 Mg alloy and manufacturing method thereof
KR101614004B1 (en) * 2013-11-06 2016-04-21 연세대학교 산학협력단 Magnesium alloy for precipition hardened extrusion and manufacturing method of the magnesium alloy
JP6893354B2 (en) * 2016-07-11 2021-06-23 国立研究開発法人物質・材料研究機構 Magnesium-based alloy extender
CN108070762A (en) * 2016-11-17 2018-05-25 比亚迪股份有限公司 A kind of wrought magnesium alloy and preparation method thereof
KR102622846B1 (en) * 2018-12-07 2024-01-10 현대자동차주식회사 Magnesium die casting alloy
CN114574741B (en) * 2022-03-07 2022-11-18 吉林大学 Magnesium alloy with excellent stress corrosion resistance and preparation method thereof
CN114703411A (en) * 2022-04-12 2022-07-05 中南大学 Mg-Sn series magnesium alloy and preparation method thereof
CN116043082B (en) * 2023-03-28 2023-06-06 有研工程技术研究院有限公司 High-plasticity heat-resistant soluble magnesium alloy and preparation method thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101573713B1 (en) * 2013-12-04 2015-12-03 한국생산기술연구원 Magnesium alloys having high thermal conductivity

Also Published As

Publication number Publication date
JP2007138227A (en) 2007-06-07

Similar Documents

Publication Publication Date Title
JP4189687B2 (en) Magnesium alloy material
JP6860235B2 (en) Magnesium-based alloy wrought material and its manufacturing method
JP6860236B2 (en) Magnesium-based alloy wrought material and its manufacturing method
JP5648885B2 (en) Magnesium alloy plate, magnesium alloy member, and method for producing magnesium alloy plate
KR20160125917A (en) Copper alloy and producing method thereof
JP5729081B2 (en) Magnesium alloy
JP6489576B2 (en) Method for producing a magnesium-based alloy extension material
JP2007070686A (en) Highly workable magnesium alloy, and method for producing the same
JP5059505B2 (en) Aluminum alloy cold-rolled sheet that can be formed with high strength
US10072321B2 (en) Copper nickel alloy
JP2009079271A (en) Ca-CONTAINING Mg ALLOY ROLLED MATERIAL
JP2005281848A (en) Magnesium thin sheet for flattening having excellent formability, and its production method
US11186899B2 (en) Magnesium-zinc-manganese-tin-yttrium alloy and method for making the same
JP2019060026A (en) Magnesium-based alloy extension material and manufacturing method therefor
JP7410542B2 (en) magnesium alloy plate
JP4257185B2 (en) Aluminum alloy plate for forming and method for producing the same
JP5688674B2 (en) Magnesium alloy coil material, magnesium alloy plate, and method for producing magnesium alloy coil material
KR101680041B1 (en) Wrought magnesium alloy having high ductility and high toughness and method for preparing the same
JP2005139495A (en) Aluminum alloy sheet for forming, and its production method
WO2021215241A1 (en) Magnesium alloy, magnesium alloy plate, magnesium alloy rod, methods for producing these, and magnesium alloy member
CN110785506A (en) Magnesium alloy sheet material and method for producing same
JPWO2011071023A1 (en) Magnesium alloy parts
JP4849377B2 (en) Magnesium alloy screw manufacturing method and magnesium alloy screw
WO2022264767A1 (en) Aluminum alloy, hot-worked aluminum alloy material and method for producing same

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080708

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080714

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080725

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080820

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080902

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110926

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4189687

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110926

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120926

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130926

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees