JP4849377B2 - Magnesium alloy screw manufacturing method and magnesium alloy screw - Google Patents

Magnesium alloy screw manufacturing method and magnesium alloy screw Download PDF

Info

Publication number
JP4849377B2
JP4849377B2 JP2006006747A JP2006006747A JP4849377B2 JP 4849377 B2 JP4849377 B2 JP 4849377B2 JP 2006006747 A JP2006006747 A JP 2006006747A JP 2006006747 A JP2006006747 A JP 2006006747A JP 4849377 B2 JP4849377 B2 JP 4849377B2
Authority
JP
Japan
Prior art keywords
magnesium alloy
screw
heat treatment
less
mass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006006747A
Other languages
Japanese (ja)
Other versions
JP2007186766A (en
Inventor
幸広 大石
望 河部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP2006006747A priority Critical patent/JP4849377B2/en
Publication of JP2007186766A publication Critical patent/JP2007186766A/en
Application granted granted Critical
Publication of JP4849377B2 publication Critical patent/JP4849377B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Extrusion Of Metal (AREA)

Description

本発明は、マグネシウム合金からなるねじ、及びマグネシウム合金ねじの製造方法に関するものである。特に、耐熱性に優れるマグネシウム合金ねじに関するものである。   The present invention relates to a screw made of a magnesium alloy and a method for producing a magnesium alloy screw. In particular, it relates to a magnesium alloy screw excellent in heat resistance.

マグネシウム合金は、比強度に優れ、比重が小さいことから軽量材料として注目されており、航空機部品、自動車部品、各種電気製品のボディなどに広く利用されている。上記部品などの他にも、ねじといった結合部材にマグネシウム合金を利用することが検討されている(特許文献1,2参照)。   Magnesium alloys are attracting attention as lightweight materials because of their excellent specific strength and low specific gravity, and are widely used in aircraft parts, automobile parts, bodies of various electrical products, and the like. In addition to the above components, it has been studied to use a magnesium alloy for a connecting member such as a screw (see Patent Documents 1 and 2).

上述のように高強度で軽量なマグネシウム合金は、室温環境での利用だけでなく、より高温な環境での利用が望まれている。そこで、マグネシウム合金の耐熱性を向上するために、希土類元素(RE),Si,Caを添加したマグネシウム合金が検討されている。REなどの元素を含有するマグネシウム合金を鋳造することで、耐熱性を有するマグネシウム合金製品(鋳造材)が得られる。   As described above, a high-strength and lightweight magnesium alloy is desired to be used not only in a room temperature environment but also in a higher temperature environment. Therefore, in order to improve the heat resistance of magnesium alloys, magnesium alloys to which rare earth elements (RE), Si, and Ca are added have been studied. A magnesium alloy product (casting material) having heat resistance can be obtained by casting a magnesium alloy containing an element such as RE.

特開2001−269746号公報JP 2001-269746 A 特開2005−48278号公報JP-A-2005-48278

しかし、上記RE,Si,Caといった元素は、マグネシウム合金の塑性加工性を低下させ易い。そのため、上記元素を含有するマグネシウム合金は、鋳造材料に好ましく、塑性加工が施される材料、特に、ヘッド加工や転造加工といった強加工の塑性加工が施されるねじ材料に好ましくない。また、REなどの元素は、一般に高価であることから、このような元素を含有するマグネシウム合金を用いてねじを製造すると、製造コストの上昇を招く。   However, the elements such as RE, Si, and Ca tend to lower the plastic workability of the magnesium alloy. Therefore, a magnesium alloy containing the above element is preferable for a casting material, and is not preferable for a material to be subjected to plastic working, particularly a screw material to be subjected to strong plastic processing such as head processing or rolling processing. In addition, since elements such as RE are generally expensive, when a screw is manufactured using a magnesium alloy containing such an element, the manufacturing cost increases.

本発明は、上記事情を鑑みて成されたものであり、その主目的は、塑性加工性を阻害するような元素の添加を極力低減して、耐熱性に優れるマグネシウム合金ねじを製造することができるマグネシウム合金ねじの製造方法を提供することにある。また、本発明の他の目的は、耐熱性に優れるマグネシウム合金ねじを提供することにある。   The present invention has been made in view of the above circumstances, and its main purpose is to produce a magnesium alloy screw excellent in heat resistance by reducing the addition of an element that inhibits plastic workability as much as possible. An object of the present invention is to provide a method for manufacturing a magnesium alloy screw that can be used. Another object of the present invention is to provide a magnesium alloy screw having excellent heat resistance.

本発明者らは、塑性加工性を低下させるような元素を添加させずに、耐熱性に優れるマグネシウム合金ねじを製造するために種々検討した結果、ねじ加工(ヘッド加工及び転造加工)が施されたねじ成形体に所定の温度の熱処理を施すことが好ましいとの知見を得た。また、マグネシウム合金の組成を検討した結果、特定量のAlを含有することが好ましいとの知見を得た。これらの知見に基づき、本発明マグネシウム合金ねじの製造方法を規定する。
本発明マグネシウム合金ねじの製造方法は、ねじ山が形成された軸部と、軸部に連なるヘッド部とを有するねじ成形体に第一熱処理を施す工程を具える。ねじ成形体は、質量%でAlを4.0〜10.0%含むマグネシウム合金からなるものを用いる。そして、第一熱処理は、加熱温度を350℃以上とする。
As a result of various studies to produce a magnesium alloy screw having excellent heat resistance without adding an element that reduces plastic workability, the present inventors have performed screw processing (head processing and rolling processing). It was found that it is preferable to heat-treat the formed threaded body at a predetermined temperature. Moreover, as a result of examining the composition of the magnesium alloy, it was found that it is preferable to contain a specific amount of Al. Based on these findings, the manufacturing method of the magnesium alloy screw of the present invention is defined.
The manufacturing method of the magnesium alloy screw of the present invention includes a step of performing a first heat treatment on a screw molded body having a shaft portion on which a screw thread is formed and a head portion connected to the shaft portion. The screw molded body is made of a magnesium alloy containing 4.0 to 10.0% Al by mass%. In the first heat treatment, the heating temperature is set to 350 ° C. or higher.

上記本発明製造方法により得られたマグネシウム合金ねじは、X線回折のピーク強度比が特定の値を満たす。具体的には、本発明マグネシウム合金ねじは、質量%でAlを4.0〜10.0%含み、残部がMg及び不純物からなるマグネシウム合金からなり、ねじ軸方向に平行な断面におけるX線回折のピーク強度比Xが以下の式を満たす。 In the magnesium alloy screw obtained by the above production method of the present invention, the peak intensity ratio of X-ray diffraction satisfies a specific value. Specifically, the magnesium alloy screw of the present invention is made of a magnesium alloy containing 4.0 to 10.0% Al by mass and the balance being Mg and impurities, and X-ray diffraction in a cross section parallel to the screw axis direction. the peak intensity ratio X p satisfies the following equation.

Figure 0004849377
Figure 0004849377

また、上記本発明製造方法により得られたマグネシウム合金ねじは、平均結晶粒径が特定の大きさを満たす。具体的には、本発明マグネシウム合金ねじは、質量%でAlを4.0〜10.0%含み、残部がMg及び不純物からなるマグネシウム合金からなり、平均結晶粒径が10μm以上40μm以下である。   Further, the magnesium alloy screw obtained by the above production method of the present invention has an average crystal grain size satisfying a specific size. Specifically, the magnesium alloy screw of the present invention is composed of a magnesium alloy containing 4.0 to 10.0% Al by mass and the balance being Mg and impurities, and the average crystal grain size is 10 μm or more and 40 μm or less. .

本発明製造方法に従って、ねじ成形体に特定の熱処理を施すことで、ねじ成形体を構成するマグネシウム合金の結晶組織の配向性や、マグネシウム合金組織の結晶粒を特定の範囲に制御することができる。そして、特定の配向性や平均結晶粒径を有するマグネシウム合金ねじは、高温クリープ特性が向上され、耐熱性に優れる。以下、本発明をより詳しく説明する。   According to the manufacturing method of the present invention, the orientation of the crystal structure of the magnesium alloy constituting the screw formed body and the crystal grains of the magnesium alloy structure can be controlled within a specific range by performing a specific heat treatment on the thread formed body. . And the magnesium alloy screw which has a specific orientation and an average crystal grain diameter has improved high temperature creep characteristics and is excellent in heat resistance. Hereinafter, the present invention will be described in more detail.

本発明製造方法は、マグネシウム合金からなるねじ成形体、特に、添加元素としてAlを含有するマグネシウム合金からなるねじ成形体を用いる。具体的には、Alを4.0質量%以上含有するマグネシウム合金からなるねじ成形体を用いる。より具体的なマグネシウム合金の組成は、質量%でAlを4.0〜10.0%含み、残部がMg及び不純物とする。また、Alに加えてZn,Mn,Siから選択される1種以上の元素を添加元素とするマグネシウム合金からなるねじ成形体でもよい。具体的なマグネシウム合金の組成は、質量%でAlを4.0〜10.0%と、Zn:2%以下、Mn:2%以下、Si:5%以下より選択される1種以上の元素とを含有し、残部がMg及び不純物とする。特に、Al及びMnを含有するマグネシウム合金、つまり、質量%でAlを4.0〜10.0%と、Mnを2%以下とを含み、残部がMg及び不純物であるマグネシウム合金であることが好ましい。   The manufacturing method of the present invention uses a screw molded body made of a magnesium alloy, particularly a screw molded body made of a magnesium alloy containing Al as an additive element. Specifically, a screw molded body made of a magnesium alloy containing 4.0% by mass or more of Al is used. A more specific composition of the magnesium alloy includes 4.0 to 10.0% by mass of Al, with the balance being Mg and impurities. Further, a thread molded body made of a magnesium alloy containing one or more elements selected from Zn, Mn, and Si in addition to Al as an additive element may be used. Specifically, the composition of the magnesium alloy is 4.0% to 10.0% Al by mass%, one or more elements selected from Zn: 2% or less, Mn: 2% or less, Si: 5% or less And the balance is Mg and impurities. In particular, a magnesium alloy containing Al and Mn, that is, a magnesium alloy containing 4.0 to 10.0% Al and 2% or less Mn by mass%, with the balance being Mg and impurities. preferable.

Alは、マグネシウム合金を強化し、機械的性質を向上させる作用を有する。しかし、Alの含有量が4.0質量%未満のマグネシウム合金からなるねじ成形体では、特定の熱処理を施しても、十分な耐熱性を有するねじが得られない。具体的には、上記低Al含有マグネシウム合金からなるねじ成形体に特定の熱処理を施してなるねじでは、100℃以上といった高温環境で変形し易い。一方、耐熱性の向上を考慮すれば、Alの含有量は、4.0質量%以上であればよいが、Alの含有量が10.0質量%超のマグネシウム合金は、塑性加工性が低く、ねじ加工といった強加工を行いにくいことから、ねじ材料に好ましくない。従って、耐熱性及び塑性加工性の双方を考慮して、Alの含有量は、4.0質量%以上10.0質量%以下とする。   Al has the effect of strengthening the magnesium alloy and improving the mechanical properties. However, in a screw molded body made of a magnesium alloy having an Al content of less than 4.0% by mass, a screw having sufficient heat resistance cannot be obtained even if a specific heat treatment is performed. Specifically, a screw formed by subjecting a screw molded body made of the low Al-containing magnesium alloy to a specific heat treatment is easily deformed in a high temperature environment of 100 ° C. or higher. On the other hand, considering the improvement in heat resistance, the Al content may be 4.0% by mass or more, but a magnesium alloy having an Al content exceeding 10.0% by mass has low plastic workability. Since it is difficult to perform strong processing such as screw processing, it is not preferable for screw materials. Therefore, considering both heat resistance and plastic workability, the Al content is 4.0 mass% or more and 10.0 mass% or less.

上記Alに加えてZn,Mn,Siから選択される1種以上の元素を特定の範囲で含有することでマグネシウム合金の強度を更に高めることができる。具体的な含有量としては、質量%でZn:0.1〜2%、Mn:0.1〜2%、Si:0.1〜5%が挙げられる。このような元素を含有する公知のマグネシウム合金をねじ成形体に用いてもよい。公知のマグネシウム合金としては、例えば、ASTM規格におけるAM系合金(例えば、AM60,AM100)、AZ系合金(例えば、AZ61,AZ80,AZ91)、AS系合金(例えば、AS41)が挙げられる。Siは、耐熱性の向上に寄与するが、過剰に添加すると、塑性加工性(変形能)を阻害する。従って、Siを有意的に添加する場合、その含有量は、5質量%以下、好ましくは2質量%以下、より好ましくは1質量%以下とする。塑性加工性を考慮すると、Al、Zn、Mnを主たる添加元素とするAZ系合金が好ましい。AZ61は、例えば、質量%でAl:5.5〜7.2%、Zn:0.4〜1.5%、Mn:0.15〜0.35%、Ni:0.05%以下、Si:0.1%以下を含有するマグネシウム合金である。AZ91は、例えば、質量%でAl:8.1〜9.7%、Zn:0.35〜1.0%、Mn:0.13%以上、Cu:0.1%以下、Ni:0.03%以下、Si:0.5%以下を含有するマグネシウム合金である。AZ系合金に上記範囲でSiを添加したマグネシウム合金をねじ成形体に用いてもよい。   The strength of the magnesium alloy can be further increased by containing at least one element selected from Zn, Mn, and Si in a specific range in addition to Al. As specific content, Zn: 0.1-2%, Mn: 0.1-2%, Si: 0.1-5% is mentioned by the mass%. You may use the well-known magnesium alloy containing such an element for a screw molded object. Examples of known magnesium alloys include AM alloys (for example, AM60, AM100), AZ alloys (for example, AZ61, AZ80, AZ91), and AS alloys (for example, AS41) in the ASTM standard. Si contributes to the improvement of heat resistance, but if added excessively, it inhibits plastic workability (deformability). Therefore, when Si is added significantly, its content is 5% by mass or less, preferably 2% by mass or less, more preferably 1% by mass or less. In consideration of plastic workability, an AZ-based alloy containing Al, Zn, and Mn as main additive elements is preferable. AZ61 is, for example, by mass: Al: 5.5-7.2%, Zn: 0.4-1.5%, Mn: 0.15-0.35%, Ni: 0.05% or less, Si : Magnesium alloy containing 0.1% or less. AZ91 is, for example, by mass%: Al: 8.1 to 9.7%, Zn: 0.35 to 1.0%, Mn: 0.13% or more, Cu: 0.1% or less, Ni: 0.00. It is a magnesium alloy containing 03% or less and Si: 0.5% or less. A magnesium alloy obtained by adding Si in the above range to an AZ-based alloy may be used for the screw formed body.

本発明製造方法は、上記組成のマグネシウム合金からなるねじ成形体を用意し、このねじ成形体に後述する特定の熱処理を施すことで、最終製品となるマグネシウム合金ねじを得る。ねじ成形体は、外周にねじ山が設けられた軸部と、この軸部に連なるヘッド部とを有する中間製品であり、以下のようにして得ることができる。上記組成のマグネシウム合金からなる長尺な線状材を用意し、この線状材を所定長に切断して、短尺材を作製する。或いは、押し出しなどにより、所定長の短尺材を作製してもよい。このような短尺材にヘッド鍛造加工を施してねじブランク(所望の形状のヘッド部が成形されており、軸部にねじ山が設けられていない状態の中間製品)を作製する。ねじブランクは、短尺材を保持するダイスと、ヘッド部を成形するパンチとを用いて形成することができる。得られたねじブランクの軸部に転造加工を施してねじ山を形成することで、ねじ成形体が得られる。ねじ山は、転造ダイスを用いて形成することができる。ねじブランクの形成、ねじ山の形成は、温間又は熱間にて行うと、短尺材やねじブランクの塑性加工性を高めて、生産性よくねじ成形体を製造することができる。ねじ成形体は、公知の製造装置、例えば、特許文献2に記載されるようなヘッド鍛造装置や転造装置を用いて製造してもよい。   In the production method of the present invention, a thread molded body made of a magnesium alloy having the above composition is prepared, and a specific heat treatment described later is performed on the thread molded body, thereby obtaining a magnesium alloy screw as a final product. The screw molded body is an intermediate product having a shaft portion having a thread on the outer periphery and a head portion connected to the shaft portion, and can be obtained as follows. A long linear material made of a magnesium alloy having the above composition is prepared, and the linear material is cut into a predetermined length to produce a short material. Or you may produce the short material of predetermined length by extrusion etc. Such a short material is subjected to a head forging process to produce a screw blank (an intermediate product in which a head portion having a desired shape is formed and a screw thread is not provided on a shaft portion). The screw blank can be formed by using a die for holding a short material and a punch for forming a head portion. A thread formed body is obtained by forming a screw thread by rolling the shaft portion of the obtained screw blank. The thread can be formed using a rolling die. When the screw blank and the thread are formed warm or hot, the plastic workability of the short material or the screw blank can be improved, and a screw molded body can be produced with high productivity. You may manufacture a screw molded object using a well-known manufacturing apparatus, for example, a head forging apparatus and a rolling apparatus as described in patent document 2. FIG.

上記長尺な線状材は、例えば、押出、圧延、引抜にて作製したものが挙げられる。引抜材は、押出材や圧延材を引き抜いて得ることができる。引抜材は、押出材と比較して、微細な結晶組織を有することから塑性加工性に優れると共に、寸法精度にも優れる。従って、引抜材を用いてねじ成形体を作製する場合、ねじ加工を安定して行うことができ、ねじ成形体を量産することができる。押出材を用いてねじ成形体を作製する場合、短尺材やねじブランクを250℃以上に加熱することで、ねじ加工を十分に行うことができる。引抜材を用いてねじ成形体を作製する場合、短尺材やねじブランクの加熱温度が250℃未満であっても、ねじ加工を行うことができる。ただし、短尺材は140℃以上、ねじブランクは100℃以上に加熱して、ヘッド鍛造加工、転造加工を行うことが好ましい。   Examples of the long linear material include those produced by extrusion, rolling, and drawing. The drawn material can be obtained by drawing out an extruded material or a rolled material. Since the drawn material has a fine crystal structure as compared with the extruded material, it is excellent in plastic workability and also in dimensional accuracy. Therefore, when producing a screw molded object using a drawing material, a screw process can be performed stably and a screw molded object can be mass-produced. In the case of producing a screw molded body using an extruded material, the threading can be sufficiently performed by heating the short material or the screw blank to 250 ° C. or higher. When producing a screw molded body using a drawn material, even if the heating temperature of a short material or a screw blank is less than 250 ° C., screwing can be performed. However, it is preferable to heat the short material to 140 ° C. or higher and the screw blank to 100 ° C. or higher to perform head forging and rolling.

上記ねじ成形体に第一熱処理を施す。第一熱処理は、ねじ加工に伴う歪みを除去すると共に、ねじ成形体を構成するマグネシウム合金の再結晶化を促進する熱処理、いわゆる焼鈍に相当する熱処理である。特許文献2には、転造加工後のねじ成形体に100℃以上350℃未満の熱処理を施して、上記歪みの除去や再結晶化を行うと共に、結晶組織を微細にして強度を向上することが開示されている。これに対し、本発明者らは、特定量のAlを含有したねじ成形体に対して第一熱処理の加熱温度を350℃以上とすることで、上記歪みの除去や再結晶化だけなく、後述するようにマグネシウム合金の組織が特定の配向性を有するねじや特定の平均結晶粒径を有するねじが得られ、このようなねじは、耐熱性に優れるとの知見を得た。そこで、本発明製造方法では、第一熱処理の加熱温度を350℃以上とする。加熱温度を350℃未満とすると、熱処理後のねじが特定のピーク強度比を満たさなかったり、熱処理後のねじの平均結晶粒径が特定の範囲を満たさず、耐熱性を向上することができない。好ましい加熱温度は、350〜400℃である。加熱温度の上限は、マグネシウム合金が溶解又は燃焼する温度未満とする。溶解又は燃焼する温度は、マグネシウム合金の組成により異なる。加熱時間(保持時間)は、再結晶化及び歪みの除去が十分に行われる時間であればよく、10分以上2時間ぐらいまでが適切である。特に好ましい保持時間は、30〜60分程度である。   A first heat treatment is applied to the thread compact. The first heat treatment is a heat treatment corresponding to so-called annealing, which removes strain associated with screw machining and promotes recrystallization of the magnesium alloy constituting the screw molded body. In Patent Document 2, heat treatment at 100 ° C. or higher and lower than 350 ° C. is performed on a thread-formed product after the rolling process to remove the strain and recrystallize, and to refine the crystal structure and improve the strength. Is disclosed. On the other hand, the present inventors set the heating temperature of the first heat treatment to 350 ° C. or higher with respect to the screw molded body containing a specific amount of Al. Thus, a screw having a specific orientation in a magnesium alloy structure or a screw having a specific average crystal grain size was obtained, and it was found that such a screw was excellent in heat resistance. Therefore, in the manufacturing method of the present invention, the heating temperature of the first heat treatment is set to 350 ° C. or higher. If the heating temperature is less than 350 ° C., the screw after heat treatment does not satisfy a specific peak intensity ratio, or the average crystal grain size of the screw after heat treatment does not satisfy a specific range, and heat resistance cannot be improved. A preferable heating temperature is 350 to 400 ° C. The upper limit of the heating temperature is less than the temperature at which the magnesium alloy melts or burns. The melting or burning temperature varies depending on the composition of the magnesium alloy. The heating time (holding time) may be a time sufficient for recrystallization and distortion removal to be performed, and is suitably from 10 minutes to 2 hours. A particularly preferable holding time is about 30 to 60 minutes.

上記第一熱処理後に更にねじ成形体に第二熱処理を施してもよい。第二熱処理は、MgとAlとからなる析出物(例えば、Mg17Al12)を析出させる熱処理、いわゆる人工時効に相当する熱処理である。高温環境でマグネシウム合金ねじを使用している際に析出物が生じると、ねじは、変形し易くなる。そこで、第二熱処理を行って予め析出物を析出させておき、使用時に析出物が析出することを低減することで、変形を抑制することができる。つまり、ねじの耐熱性を向上させることができる。このような効果を得るために、第二熱処理の加熱温度は、150℃以上250℃以下が好ましい。より好ましい加熱温度は、マグネシウム合金の組成によって異なるが、200℃ぐらいが適切である。加熱温度が低いほど、析出が遅くなるが、より微細な析出物が合金組織中に分散して析出し易い。加熱時間(保持時間)は、析出物の析出が十分に行われる時間であればよく、1時間以上が好ましく、24時間以下程度が適切である。Alの含有量が多いほど、第二熱処理を十分に行って析出物を十分に析出させることが好ましい。 After the first heat treatment, the screw molded body may be further subjected to a second heat treatment. The second heat treatment is a heat treatment corresponding to so-called artificial aging, in which a precipitate composed of Mg and Al (for example, Mg 17 Al 12 ) is precipitated. If precipitates are generated when using a magnesium alloy screw in a high temperature environment, the screw is likely to be deformed. Therefore, the deformation can be suppressed by performing the second heat treatment to precipitate the precipitate in advance and reducing the precipitation of the precipitate during use. That is, the heat resistance of the screw can be improved. In order to obtain such an effect, the heating temperature of the second heat treatment is preferably 150 ° C. or higher and 250 ° C. or lower. A more preferable heating temperature varies depending on the composition of the magnesium alloy, but about 200 ° C. is appropriate. The lower the heating temperature, the slower the precipitation, but finer precipitates are easily dispersed and precipitated in the alloy structure. The heating time (holding time) may be a time during which the precipitation of the precipitate is sufficiently performed, and is preferably 1 hour or longer, and appropriately about 24 hours or shorter. As the Al content increases, it is preferable to sufficiently perform the second heat treatment to sufficiently precipitate the precipitate.

上記本発明製造方法により得られたマグネシウム合金ねじは、その軸方向に平行な断面におけるX線回折のピーク強度を測定し、以下の数式1で表わされるピーク強度比Xが0.55以下を満たす。そして、このピーク強度比X≦0.55を満たすマグネシウム合金ねじは、耐熱性に優れる。上記第一熱処理の加熱温度が350℃未満の場合、熱処理後のねじは、ピーク強度比X>0.55となり、十分な耐熱性を有さない。ピーク強度比は、第一熱処理の加熱温度が高くなるほど、小さくなる傾向にあり、ピーク強度比が小さいほど耐熱性に優れる傾向にある。従って、ピーク強度比Xの下限値は、特に規定しない。 Magnesium alloy screw obtained by the present invention production process, the peak intensity of X-ray diffraction was measured in a cross section parallel to the axial direction, the following peak intensity ratio represented by Equation 1 X p is 0.55 or less Fulfill. The magnesium alloy screws meet the peak intensity ratio X p ≦ 0.55 is excellent in heat resistance. When the heating temperature of the first heat treatment is lower than 350 ° C., the screw after the heat treatment has a peak intensity ratio X p > 0.55 and does not have sufficient heat resistance. The peak intensity ratio tends to decrease as the heating temperature of the first heat treatment increases, and the peak intensity ratio tends to be superior in heat resistance as the peak intensity ratio decreases. Therefore, the lower limit of the peak intensity ratio X p is not particularly specified.

Figure 0004849377
Figure 0004849377

上記ピーク強度比Xは、以下のように求める。マグネシウム合金ねじをその軸方向に平行に切断して、縦断面の試料を作製し、この断面において、ねじの軸方向(長手方向)におけるX線回折を実施する。そして、上記4つの面のピーク強度を測定し、4つの面に対する(0002)面の比率を求める。引抜材や押出材などを用いてねじを製造する場合、引抜材などの軸方向とねじの軸方向とが同じ方向となるように製造する。従って、得られたねじは、hcp構造の(0002)面が引抜材などの軸方向、つまりねじの軸方向に平行に整列した集合組織を形成する。そのため、上記ピーク強度比Xを求めるに当たり、ねじの軸方向に平行な断面においてピーク強度を測定する。 The peak intensity ratio Xp is determined as follows. A magnesium alloy screw is cut in parallel to the axial direction to prepare a sample having a longitudinal section, and X-ray diffraction in the axial direction (longitudinal direction) of the screw is performed on this section. Then, the peak intensity of the four surfaces is measured, and the ratio of the (0002) surface to the four surfaces is obtained. When a screw is manufactured using a drawn material or an extruded material, the axial direction of the drawn material and the axial direction of the screw are manufactured in the same direction. Therefore, the obtained screw forms a texture in which the (0002) plane of the hcp structure is aligned in parallel to the axial direction of the drawn material, that is, the axial direction of the screw. Therefore, when finding the peak intensity ratio X p, it measures the peak intensity in a cross section parallel to the axial direction of the screw.

上記本発明製造方法により得られたマグネシウム合金ねじは、第一熱処理の加熱温度を350℃以上といった比較的高めにすることで、マグネシウム合金の再結晶粒が成長し、結晶粒径が比較的大きくなる。具体的には、平均結晶粒径が10μm〜40μmとなる。ここで、高温環境では、粒界すべりが変形(クリープ)を生じる大きな要因となるため、粒界を少なくすることで、粒界すべりを防止する、つまり耐熱性を向上することができる。従って、平均結晶粒径が10μm以上40μm以下といった比較的粗大な結晶組織からなる本発明マグネシウム合金ねじは、粒界が少なく、耐熱性に優れる。上記第一熱処理の加熱温度が350℃未満の場合、熱処理後のねじは、平均結晶粒径が10μm未満の微粒組織となり、十分な耐熱性を有さない。平均結晶粒径は、第一熱処理の加熱温度が高くなるほど、大きくなる傾向にあり、平均結晶粒径が大きいほど耐熱性に優れる傾向にある。また、平均結晶粒径は、Alの含有量や第二熱処理の加熱温度と基本的に無関係である。   The magnesium alloy screw obtained by the above-described production method of the present invention has a relatively high crystal grain size by growing the recrystallized grains of the magnesium alloy by relatively increasing the heating temperature of the first heat treatment to 350 ° C. or higher. Become. Specifically, the average crystal grain size is 10 μm to 40 μm. Here, in a high-temperature environment, grain boundary sliding becomes a major factor causing deformation (creep), and therefore, grain boundary sliding can be prevented, that is, heat resistance can be improved by reducing the number of grain boundaries. Therefore, the magnesium alloy screw of the present invention having a relatively coarse crystal structure with an average crystal grain size of 10 μm to 40 μm has few grain boundaries and is excellent in heat resistance. When the heating temperature of the first heat treatment is less than 350 ° C., the screw after the heat treatment has a fine grain structure with an average crystal grain size of less than 10 μm and does not have sufficient heat resistance. The average crystal grain size tends to increase as the heating temperature of the first heat treatment increases, and the average crystal grain size tends to be excellent in heat resistance as the average crystal grain size increases. The average crystal grain size is basically independent of the Al content and the heating temperature of the second heat treatment.

上記平均結晶粒径は、以下のように測定する。マグネシウム合金ねじの断面(縦断面でも横断面(軸方向に直交する面)でもよい)において、表面から中心に向かって100μmの深さの領域を表層部、表面から中心までの距離をrとしたときr/2の位置の領域を中央部、そして、中心の近傍を中心部とし、各部において任意の一箇所以上で光学顕微鏡などを用いて組織観察を行い(倍率:200〜1000倍)、特定面積(例えば、100〜300μm×100〜300μmなど)内に存在する結晶粒の粒径を測定する。粒径の測定は、切断法(JIS H 0501参照)に準じて行うことが挙げられる。このような測定を2断面以上で行う。そして、得られた全結晶粒の粒径の平均を平均結晶粒径とする。結晶粒径の測定は、透過電子顕微鏡(TEM)や後方散乱電子回折法(EBSP)を用いて行ってもよい。   The average crystal grain size is measured as follows. In the cross section of the magnesium alloy screw (longitudinal section or transverse section (plane orthogonal to the axial direction)), a region having a depth of 100 μm from the surface toward the center is the surface layer portion, and the distance from the surface to the center is r. When the region at the position of r / 2 is the central part and the vicinity of the center is the central part, the structure is observed using an optical microscope or the like at any one or more positions in each part (magnification: 200 to 1000 times) and specified. The grain size of crystal grains existing within an area (for example, 100 to 300 μm × 100 to 300 μm) is measured. Measurement of the particle size may be performed according to a cutting method (see JIS H 0501). Such measurement is performed on two or more cross sections. And let the average of the particle diameter of all the obtained crystal grains be an average crystal grain diameter. The crystal grain size may be measured using a transmission electron microscope (TEM) or a backscattered electron diffraction method (EBSP).

本発明製造方法によれば、特定量のAlを含有するマグネシウム合金からなり、ねじ加工が施されたねじ成形体に、特定の加熱温度で熱処理を施すことで、特定の配向性を満たし、平均結晶粒径が比較的大きい粗大な結晶組織を有するマグネシウム合金ねじを製造することができる。特に、本発明製造方法では、マグネシウム合金の添加元素として、塑性加工性の低下を招くような元素を極力添加していないことから、ねじ成形体を容易に製造することができ、耐熱性に優れるマグネシウム合金ねじを生産性よく得ることができる。また、本発明マグネシウム合金ねじは、耐熱性に優れることから、室温環境だけでなく、100℃以上といった高温環境においても十分に利用することができ、種々の高温環境での利用が期待される。   According to the production method of the present invention, a screw molded body made of a magnesium alloy containing a specific amount of Al and subjected to threading is subjected to a heat treatment at a specific heating temperature, thereby satisfying a specific orientation and an average. A magnesium alloy screw having a coarse crystal structure with a relatively large crystal grain size can be produced. In particular, in the manufacturing method of the present invention, as an additive element of the magnesium alloy, an element that causes a decrease in plastic workability is not added as much as possible. Therefore, a screw molded body can be easily manufactured and excellent in heat resistance. A magnesium alloy screw can be obtained with high productivity. Further, since the magnesium alloy screw of the present invention is excellent in heat resistance, it can be sufficiently used not only in a room temperature environment but also in a high temperature environment of 100 ° C. or higher, and is expected to be used in various high temperature environments.

以下、本発明の実施の形態を説明する。
(試験例1)
表1に示す組成(添加元素の含有量の単位は、質量%)のマグネシウム合金からなる引抜材(φ7.1mm,平均結晶粒径4〜6μm)を準備した。各組成の引抜材を所定長に切断した後、得られた短尺材に+頭ねじのヘッド加工を施してねじブランクを作製した。続いて、ねじブランクに転造加工を施して、ねじ山が形成された軸部と、軸部に連なるヘッド部とを有するねじ成形体(M8相当材)を作製した。ヘッド加工及び転造加工は、短尺材及びねじブランクをそれぞれ250℃に加熱して行った。得られたねじ成形体のうち一部のねじ成形体には、250〜400℃×30minの条件で熱処理A(焼鈍)を施した。熱処理Aの加熱温度(焼鈍温度)は、250〜400℃から適宜選択した。また、熱処理Aを施したねじ成形体のうち一部のねじ成形体には、更に、170℃×16時間、又は200℃×16時間の条件で熱処理B(時効)を施した。なお、組成I〜IVのSiは、不可避的元素である。
Embodiments of the present invention will be described below.
(Test Example 1)
A drawn material (φ 7.1 mm, average crystal grain size 4 to 6 μm) made of a magnesium alloy having the composition shown in Table 1 (unit of content of additive element is mass%) was prepared. After the drawn material of each composition was cut into a predetermined length, the obtained short material was subjected to + head screw head processing to produce a screw blank. Subsequently, the thread blank was subjected to a rolling process to produce a thread molded body (M8 equivalent material) having a shaft portion in which a thread was formed and a head portion connected to the shaft portion. The head processing and rolling processing were performed by heating the short material and the screw blank to 250 ° C., respectively. Among the obtained thread molded bodies, some of the thread molded bodies were subjected to heat treatment A (annealing) under the conditions of 250 to 400 ° C. × 30 min. The heating temperature (annealing temperature) of the heat treatment A was appropriately selected from 250 to 400 ° C. In addition, some of the thread molded bodies subjected to the heat treatment A were further subjected to heat treatment B (aging) under the conditions of 170 ° C. × 16 hours or 200 ° C. × 16 hours. Si of compositions I to IV is an inevitable element.

Figure 0004849377
Figure 0004849377

熱処理Aを施したねじ、熱処理A及びBを施したねじについて、X線回折のピーク強度比X、及び平均結晶粒径を測定した。また、これらのねじにクリープ試験を行い、最小クリープ速度を測定した。その結果を表2に示す。 The X-ray diffraction peak intensity ratio X p and the average crystal grain size of the screw subjected to the heat treatment A and the screws subjected to the heat treatments A and B were measured. Moreover, the creep test was done to these screws and the minimum creep speed was measured. The results are shown in Table 2.

ピーク強度比Xは、以下のように求めた。熱処理後のねじをその軸方向に平行に切断し、その断面(縦断面)においてねじの軸方向(長手方向)にX線回折を実施し、各面のピーク強度を求めた。得られたピーク強度を用いて、上記数式1に示すピーク強度比Xを算出した。 Peak intensity ratio X p was determined as follows. The screw after the heat treatment was cut in parallel to the axial direction, and X-ray diffraction was performed in the axial direction (longitudinal direction) of the screw in the cross section (longitudinal section) to determine the peak intensity of each surface. The resulting peak intensity was used to calculate the peak intensity ratio X p shown in the equation (1).

平均結晶粒径は、以下のように求めた。熱処理後のねじを切断し、その断面を光学顕微鏡(倍率:400倍)で観察し、同断面における特定面積(200μm×150μm)内に存在する結晶粒を切断法(JIS H 0501参照)に準じて測定する。この測定を3断面について行って、得られた全結晶粒の粒径の平均を算出した。   The average crystal grain size was determined as follows. The heat-treated screw is cut and the cross section thereof is observed with an optical microscope (magnification: 400 times). Crystal grains existing in a specific area (200 μm × 150 μm) in the same cross section are in accordance with the cutting method (see JIS H 0501). To measure. This measurement was performed on three cross sections, and the average of the particle diameters of all the obtained crystal grains was calculated.

クリープ試験は、熱処理を施したねじを切削して、鍔付き円形断面試験片(平行部直径3.0mm、平行部長さ15mm)に加工し、応力50MPa、温度100℃、125℃、150℃の条件で行った。最小クリープ速度は、試験から得られたクリープ歪−時間関係データを用いて求めた。   In the creep test, a heat-treated screw is cut and processed into a rounded cross-section test piece (parallel part diameter: 3.0 mm, parallel part length: 15 mm), stress 50 MPa, temperature 100 ° C., 125 ° C., 150 ° C. Performed under conditions. The minimum creep rate was determined using the creep strain-time relationship data obtained from the test.

Figure 0004849377
Figure 0004849377

表2に示すように、Alを4.0〜10.0質量%含有したマグネシウム合金からなるねじ成形体に350℃以上の熱処理Aを施すことで、最小クリープ速度をより小さくできることがわかる。即ち、マグネシウム合金ねじの耐熱性を向上できることがわかる。また、表2からAlを4.0〜10.0質量%含有したマグネシウム合金からなり、X線回折のピーク強度比Xが0.55以下を満たすねじは、最小クリープ速度がより小さいことがわかる。更に、表2からAlを4.0〜10.0質量%含有したマグネシウム合金からなり、平均結晶粒径が10〜40μmのねじは、最小クリープ速度がより小さいことがわかる。また、表2から、X線回折のピーク強度比Xが小さくなるほど、或いは平均結晶粒径が大きくなるほど、耐熱性が向上する傾向が読み取れる。 As shown in Table 2, it can be seen that the minimum creep rate can be further reduced by performing heat treatment A at 350 ° C. or higher on a screw molded body made of a magnesium alloy containing 4.0 to 10.0% by mass of Al. That is, it can be seen that the heat resistance of the magnesium alloy screw can be improved. Further, since the Al from Table 2 from 4.0-10.0 wt% containing the magnesium alloy, screws peak intensity ratio X p of X-ray diffraction satisfies 0.55 or less, that the minimum creep rate is smaller Recognize. Furthermore, it can be seen from Table 2 that a screw made of a magnesium alloy containing 4.0 to 10.0% by mass of Al and having an average crystal grain size of 10 to 40 μm has a smaller minimum creep rate. Further, from Table 2, as the peak intensity ratio X p of X-ray diffraction is small, or the average grain size becomes larger, read tends to improve heat resistance.

加えて、熱処理Aに加えて熱処理Bを施すことで、耐熱性を更に向上できることが表2からわかる。これは、結晶粒がより大きくなったことに加えて、析出物が析出されたためであると考えられる。   In addition, it can be seen from Table 2 that the heat resistance can be further improved by performing the heat treatment B in addition to the heat treatment A. This is considered to be due to the fact that precipitates were deposited in addition to the larger crystal grains.

また、引抜材を用いることで、連続的にねじを製造することができた。従って、マグネシウム合金ねじの量産には、引抜材を用いることが適する。   Moreover, the screw was able to be manufactured continuously by using the drawn material. Therefore, it is suitable to use a drawn material for mass production of magnesium alloy screws.

(試験例2)
表1に示す組成II,IIIのマグネシウム合金からなる押出材(φ7.1mm,平均結晶粒径20〜30μm)を準備し、この押出材を所定長に切断したものにヘッド加工及び転造加工を施して(いずれも加工温度290℃)、M8相当のねじ成形体を作製した。組成IIからなるねじ成形体には、試験例1の試料No.3と同様の条件で熱処理A,Bを施した(試料No.3’)。組成IIIからなるねじ成形体には、試験例1の試料No.6と同様の条件で熱処理A,Bを施した(試料No.6’)。熱処理を施したねじ(試料No.3’,6’)について、試験例1と同様にして、X線回折のピーク強度比X、平均結晶粒径、最小クリープ速度を測定した。その結果を表3に示す。
(Test Example 2)
An extrusion material (φ7.1 mm, average crystal grain size 20 to 30 μm) made of a magnesium alloy having compositions II and III shown in Table 1 was prepared, and this extrusion material was cut into a predetermined length for head processing and rolling processing. (A processing temperature of 290 ° C. was applied), and a screw molded body corresponding to M8 was produced. For the screw molded body having the composition II, the sample No. Heat treatments A and B were performed under the same conditions as in Sample 3 (Sample No. 3 ′). For the screw molded body having the composition III, the sample No. Heat treatments A and B were performed under the same conditions as in Sample 6 (Sample No. 6 ′). For the heat-treated screws (Sample Nos. 3 ′ and 6 ′), the X-ray diffraction peak intensity ratio X p , the average crystal grain size, and the minimum creep rate were measured in the same manner as in Test Example 1. The results are shown in Table 3.

Figure 0004849377
Figure 0004849377

表3に示すように、Alを4.0〜10.0質量%含有したマグネシウム合金からなるねじ成形体に350℃以上の熱処理を施すことで、最小クリープ速度をより小さくして、マグネシウム合金ねじの耐熱性を向上できることがわかる。   As shown in Table 3, the minimum creep rate is further reduced by heat treatment at 350 ° C. or higher on a screw molded body made of a magnesium alloy containing 4.0 to 10.0% by mass of Al, thereby reducing the magnesium alloy screw. It can be seen that the heat resistance of can be improved.

本発明マグネシウム合金ねじの製造方法は、耐熱性に優れるマグネシウム合金ねじを得るのに最適である。特に、本発明製造方法は、ねじ加工といった塑性加工を阻害するような元素を極力添加しないことから、ねじ成形体を生産性よく製造することができ、マグネシウム合金ねじを生産性よく製造できる。また、得られたマグネシウム合金ねじは、自動車部品などと言った耐熱性が求められるような高温環境で利用することができる。   The manufacturing method of the magnesium alloy screw of the present invention is optimal for obtaining a magnesium alloy screw having excellent heat resistance. In particular, since the manufacturing method of the present invention does not add as much an element as possible that hinders plastic processing such as screw processing, a screw molded body can be manufactured with high productivity and a magnesium alloy screw can be manufactured with high productivity. Further, the obtained magnesium alloy screw can be used in a high-temperature environment where heat resistance such as automobile parts is required.

Claims (5)

ねじ山が形成された軸部と、軸部に連なるヘッド部とを有するねじ成形体に第一熱処理を施す工程を具え、
前記ねじ成形体は、質量%でAlを4.0〜10.0%と、Mn:2%以下とを含み、残部がMg及び不可避的不純物からなるマグネシウム合金からなり、
前記第一熱処理は、加熱温度を350℃以上とすることを特徴とするマグネシウム合金ねじの製造方法。
A step of performing a first heat treatment on a screw molded body having a shaft portion on which a thread is formed and a head portion connected to the shaft portion;
The screw molded body is made of a magnesium alloy containing 4.0 to 10.0% Al by mass% and Mn: 2% or less, with the balance being Mg and inevitable impurities ,
The method of manufacturing a magnesium alloy screw, wherein the first heat treatment is performed at a heating temperature of 350 ° C. or higher.
更に、第一熱処理が施されたねじ成形体に第二熱処理を施す工程を具え、
前記第二熱処理は、加熱温度を150℃以上250℃以下とすることを特徴とする請求項1に記載のマグネシウム合金ねじの製造方法。
Furthermore, the method includes a step of performing a second heat treatment on the thread formed body subjected to the first heat treatment,
The method for producing a magnesium alloy screw according to claim 1, wherein the second heat treatment is performed at a heating temperature of 150 ° C. or more and 250 ° C. or less.
ねじ成形体は、更に、質量%でZn:2%以下Si:5%以下より選択される1種以上の元素を含有することを特徴とする請求項1又は2に記載のマグネシウム合金ねじの製造方法。 3. The magnesium alloy screw according to claim 1, wherein the screw molded body further contains at least one element selected from Zn: 2% or less and Si: 5% or less by mass%. Production method. 質量%でAlを4.0〜10.0%と、Mn:2%以下とを含み、残部がMg及び不可避的不純物からなるマグネシウム合金からなり、
前記マグネシウム合金の平均結晶粒径が10μm以上40μm以下であり、
ねじ軸方向に平行な断面におけるX線回折のピーク強度比Xが以下の式を満たすことを特徴とするマグネシウム合金ねじ。
Figure 0004849377
It is composed of a magnesium alloy containing 4.0 to 10.0% Al by mass% and Mn: 2% or less, with the balance being Mg and inevitable impurities,
The magnesium alloy has an average crystal grain size of 10 μm or more and 40 μm or less,
Magnesium alloy screws peak intensity ratio X p of X-ray diffraction at a cross section parallel to the screw axis direction and satisfies the following expression.
Figure 0004849377
更に、質量%でZn:2%以下Si:5%以下より選択される1種以上の元素を含有することを特徴とする請求項に記載のマグネシウム合金ねじ。 The magnesium alloy screw according to claim 4 , further comprising at least one element selected from Zn: 2% or less and Si: 5% or less in mass%.
JP2006006747A 2006-01-13 2006-01-13 Magnesium alloy screw manufacturing method and magnesium alloy screw Expired - Fee Related JP4849377B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006006747A JP4849377B2 (en) 2006-01-13 2006-01-13 Magnesium alloy screw manufacturing method and magnesium alloy screw

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006006747A JP4849377B2 (en) 2006-01-13 2006-01-13 Magnesium alloy screw manufacturing method and magnesium alloy screw

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2011011987A Division JP5348624B2 (en) 2011-01-24 2011-01-24 Magnesium alloy screw

Publications (2)

Publication Number Publication Date
JP2007186766A JP2007186766A (en) 2007-07-26
JP4849377B2 true JP4849377B2 (en) 2012-01-11

Family

ID=38342130

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006006747A Expired - Fee Related JP4849377B2 (en) 2006-01-13 2006-01-13 Magnesium alloy screw manufacturing method and magnesium alloy screw

Country Status (1)

Country Link
JP (1) JP4849377B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI422443B (en) * 2010-02-03 2014-01-11 Kuo Chen Hung Magnesium fastener manufacturing method and magnesium fastener member thereof

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3525486B2 (en) * 1993-12-17 2004-05-10 マツダ株式会社 Magnesium alloy casting material for plastic working, magnesium alloy member using the same, and methods for producing them
JP3597747B2 (en) * 1999-03-29 2004-12-08 株式会社栗本鐵工所 Manufacturing method of screw parts
JP3592310B2 (en) * 2001-06-05 2004-11-24 住友電工スチールワイヤー株式会社 Magnesium-based alloy wire and method of manufacturing the same
JP2004124152A (en) * 2002-10-01 2004-04-22 Sumitomo Denko Steel Wire Kk Rolled wire rod of magnesium based alloy, and its production method
JP4332889B2 (en) * 2003-05-30 2009-09-16 住友電気工業株式会社 Method for producing magnesium-based alloy compact
JP4782987B2 (en) * 2003-06-19 2011-09-28 住友電気工業株式会社 Magnesium-based alloy screw manufacturing method
JP4322733B2 (en) * 2004-03-02 2009-09-02 東洋鋼鈑株式会社 Magnesium sheet for extending excellent in formability and manufacturing method thereof
WO2006003833A1 (en) * 2004-06-30 2006-01-12 Sumitomo Electric Industries, Ltd. Method for producing magnesium alloy product

Also Published As

Publication number Publication date
JP2007186766A (en) 2007-07-26

Similar Documents

Publication Publication Date Title
JP4189687B2 (en) Magnesium alloy material
Mostaed et al. Microstructure, mechanical behavior and low temperature superplasticity of ECAP processed ZM21 Mg alloy
JP4118832B2 (en) Copper alloy and manufacturing method thereof
WO2014042160A1 (en) Cu-al-mn based alloy material exhibiting stable superelasticity and manufacturing process therefor
KR20160030518A (en) Expanded member comprising cu-al-mn alloy material and exhibiting superior anti-stress corrosion properties, and use therefor
CN105316545B (en) Aluminum alloy rolling prepared material
EP2811043A1 (en) High-strength aluminum alloy extrudate with excellent corrosion resistance, ductility, and hardenability and process for producing same
JP4332889B2 (en) Method for producing magnesium-based alloy compact
WO2020261611A1 (en) Free-cutting copper alloy, and manufacturing method of free-cutting copper alloy
US10752981B2 (en) Magnesium-lithium alloy, method of manufacturing magnesium-lithium alloy, aircraft part, and method of manufacturing aircraft part
JP4253847B2 (en) Magnesium alloy wire, method for producing the same, and magnesium alloy molded body
JP5348624B2 (en) Magnesium alloy screw
JP6385683B2 (en) Al alloy casting and manufacturing method thereof
JP4828206B2 (en) High strength magnesium alloy extruded material
JP4864413B2 (en) High strength magnesium alloy extruded material
JP4849377B2 (en) Magnesium alloy screw manufacturing method and magnesium alloy screw
JP2011127163A (en) Magnesium alloy sheet material having excellent formability, and method for production thereof
JP6452042B2 (en) Method for producing magnesium alloy
JP2016169431A5 (en)
JP7410542B2 (en) magnesium alloy plate
JP2013221161A (en) Aluminum alloy material
JP6843353B2 (en) Mg alloy and its manufacturing method
JP5419071B2 (en) Mg alloy forged product and its manufacturing method
JP7468931B2 (en) Magnesium alloy, magnesium alloy plate, magnesium alloy rod, and methods for producing the same, and magnesium alloy member
JP4253846B2 (en) Magnesium alloy wire, method for producing the same, and magnesium alloy molded body

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080825

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101109

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101126

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110124

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110926

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

R150 Certificate of patent or registration of utility model

Ref document number: 4849377

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111009

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141028

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees