JP4332889B2 - Method for producing magnesium-based alloy compact - Google Patents

Method for producing magnesium-based alloy compact Download PDF

Info

Publication number
JP4332889B2
JP4332889B2 JP2003155476A JP2003155476A JP4332889B2 JP 4332889 B2 JP4332889 B2 JP 4332889B2 JP 2003155476 A JP2003155476 A JP 2003155476A JP 2003155476 A JP2003155476 A JP 2003155476A JP 4332889 B2 JP4332889 B2 JP 4332889B2
Authority
JP
Japan
Prior art keywords
magnesium
based alloy
less
temperature
processing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003155476A
Other languages
Japanese (ja)
Other versions
JP2004353067A (en
Inventor
幸広 大石
望 河部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP2003155476A priority Critical patent/JP4332889B2/en
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to US10/556,434 priority patent/US20070169858A1/en
Priority to KR1020057022136A priority patent/KR100727211B1/en
Priority to CNB2004800151311A priority patent/CN100476012C/en
Priority to DE602004021808T priority patent/DE602004021808D1/en
Priority to EP04726905A priority patent/EP1645651B1/en
Priority to PCT/JP2004/005226 priority patent/WO2004106576A1/en
Priority to TW093115213A priority patent/TWI279446B/en
Publication of JP2004353067A publication Critical patent/JP2004353067A/en
Application granted granted Critical
Publication of JP4332889B2 publication Critical patent/JP4332889B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/06Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of magnesium or alloys based thereon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21JFORGING; HAMMERING; PRESSING METAL; RIVETING; FORGE FURNACES
    • B21J1/00Preparing metal stock or similar ancillary operations prior, during or post forging, e.g. heating or cooling
    • B21J1/02Preliminary treatment of metal stock without particular shaping, e.g. salvaging segregated zones, forging or pressing in the rough
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21JFORGING; HAMMERING; PRESSING METAL; RIVETING; FORGE FURNACES
    • B21J5/00Methods for forging, hammering, or pressing; Special equipment or accessories therefor
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C23/00Alloys based on magnesium
    • C22C23/02Alloys based on magnesium with aluminium as the next major constituent

Description

【0001】
【発明の属する技術分野】
本発明は、塑性加工によりマグネシウム基合金からなる成形体を製造するための方法に関するものである。特に、塑性加工を行う際の加工温度をより低くして生産性がよいマグネシウム基合金成形体の製造方法に関する。
【0002】
【従来の技術】
マグネシウム基合金は、アルミニウムよりも軽く、比強度、比剛性が鋼やアルミニウムよりも優れており、航空機部品、自動車部品などの他、各種電気製品のボディなどにも広く利用されている。
【0003】
しかし、Mg及びその合金は、最密六方格子(hcp)構造であるため、延性に乏しく、塑性加工性が極めて悪いが、マグネシウム基合金は、加工の際、温度を上げることで加工性が良好となることが広く知られている。例えば、特許文献1、2には、マグネシウム基合金材を超塑性現象が発現する温度状態にしてネジ加工する技術が記載されている。
【0004】
【特許文献1】
特開2000−283134号公報
【特許文献2】
特開2000−343178号公報
【0005】
【発明が解決しようとする課題】
しかし、マグネシウム基合金材を塑性加工する場合、上記超塑性現象が生じる温度が250℃以上という高温であるため、従来の方法では、塑性加工による成形体を生産性よく製造することができないという問題がある。
【0006】
従来、マグネシウム基合金からなる成形体を得るべく塑性加工のような強加工を行う場合、加工度にもよるが概ね、被加工材であるマグネシウム基合金の押出材や圧延材を250℃以上に加熱して加工することが必要とされる。そのため、250℃以上といった高温用の加熱設備を必要とするだけでなく、塑性加工に用いられる金型、ロールなどの加工材も高温に曝されることで寿命が短くなって、コスト高をも招く。従って、250℃以上の加熱は、工業的生産において決して好ましくはない。
【0007】
そこで、本発明の主目的は、マグネシウム基合金からなる塑性加工成形体を生産性よく製造することができるマグネシウム基合金成形体の製造方法を提供することにある。
【0008】
【課題を解決するための手段】
本発明者らは、通常、塑性加工といった強加工が困難とされるマグネシウム基合金において、種々検討した結果、予め特定の引抜き加工を施したマグネシウム基合金材を用いることで、250℃未満の温度であっても、塑性加工が可能であることを見いだし、本発明を完成するに至った。
【0009】
即ち、本発明マグネシウム基合金成形体の製造方法は、引抜き加工により得られた、平均結晶粒径10μm以下のマグネシウム基合金からなる線条体を加工温度250℃未満で成形体に塑性加工することを特徴とする。
【0010】
従来、マグネシウム基合金材を塑性加工して成形体を得る場合、被加工材として、押出材や圧延材が用いられていた。しかし、押出材や圧延材では、塑性加工を行う際、250℃以上に加熱しなければならず、加工温度の低下が強く望まれていた。そこで、本発明は、押出材や圧延材ではなく、引抜き加工により得られた線条体を用いることで、加工温度の低下、即ち、250℃未満、特に200℃以下での塑性加工を実現する。このように本発明では、引抜き加工された線条体を用いることで、塑性加工を行う際の加工温度を250℃未満とすることができ、従来のような高温用の加熱手段が不要であり、塑性加工に用いられる金型やロールなどの加工材の寿命も長くすることができ、生産性を向上することができる。以下、本発明をより詳しく説明する。
【0011】
本発明において、マグネシウム基合金からなる線条体としては、ワイヤ(線状体)、棒状体、パイプなどが挙げられる。断面は、円形状でもよいし、矩形や楕円状などの非円形状、即ち異形でもよい。
【0012】
本発明において引抜き加工は、例えば、ワイヤや棒状体を得る場合、加工温度への昇温速度:1℃/sec〜100℃/sec、加工温度:50℃以上200℃以下(より好ましくは150℃以下)、加工度:引抜き加工1回(1パス)に対して10%以上、線速:1m/sec以上で押出材又は圧延材を引き抜くことが挙げられる。例えば、パイプを得る場合、引抜き温度:50℃以上300℃以下(より好ましくは100℃以上200℃以下、さらに好ましくは100℃以上150℃以下)、加工度:引抜き加工1回に対して5%以上(より好ましくは10%以上、特に好ましくは20%以上)、引抜き温度への昇温速度:1℃/sec〜100℃/sec、引抜速度:1m/sec以上で押出材又は圧延材を引き抜くことが挙げられる。このような特定の引抜き加工を行うことで、合金組織を微細化、具体的には、平均結晶粒径10μm以下とすることができる。そして、本発明は、上記合金組織の微細化により、加熱温度を250℃未満としても塑性加工性を向上させることができ、所望の成形体を得ることが可能である。また、引抜き加工後、得られた線条体100℃以上300℃以下、より好ましくは150℃以上300℃以下の温度に加熱してもよい。この加熱焼鈍は、引抜き加工で導入された歪みの回復、及び再結晶の促進による結晶粒の更なる微細化に有効である。この加熱温度の保持時間は5〜20分程度が好ましい。
【0013】
本発明において塑性加工としては、例えば、鍛造加工、スウェージング加工、曲げ加工などが挙げられる。塑性加工として鍛造加工を行う場合、次の温度条件が適する。即ち、圧下率をr%、加工温度をT℃とするとき、Tが、3r+150>T≧3r+10(但し、20%≦r<80%、T<250℃)を満たすものとする。例えば、圧下率r=20(%)の場合、加熱温度T(℃)は、250℃未満、特に70℃以上210℃未満とすることができる。引抜き加工を施していない押出材や圧延材に圧下率20%の鍛造加工を行う場合、210℃以上の高温に加熱しなければ、割れなどが生じて鍛造加工を行うことができず、その反面、上記のような高温にすると金型やロールなどの加工材の寿命が短くなる。これに対し、本発明は、引抜き材を用いることで、合金組織の微細効果により、圧下率20%の鍛造加工を行う際の加熱温度を210℃未満とすることができ、金型やロールなどの加工材の寿命をより長くすることができる。圧下率rが33%超の加工を行う場合、加熱温度の下限は、上記3r+10で求められる値とし、加熱温度の上限は、金型やロールなどの寿命を考慮して、250℃未満とする。従って、本発明では、工業的に有効な加工である圧下率が40%を超える塑性加工を行う場合において、加工温度が250℃未満であっても、十分に鍛造加工を行うことができる。圧下率が80%以上の強加工では、250℃以上の加熱が望まれる。
【0014】
塑性加工としてスウェージング加工を行う場合、次の温度条件が適する。即ち、断面減少率をr%、加工温度をT℃とするとき、Tが、3r+150>T≧3r−30(但し、20%≦r≦80%、T<250℃)を満たすものとする。例えば、断面減少率r=20%の場合、加熱温度T(℃)は、250℃未満、特に30℃以上210℃未満とすることができる。従って、断面減少率を20%とする場合、引抜き加工を施していない押出材や圧延材を用い、210℃以上の加熱が必要とされる従来の方法と比較して、合金組織が微細である引抜き材を用いる本発明は、金型などの加工材の寿命をより延長することができる。断面減少率rを33%超とする場合、加熱温度の下限は、上記3r−30で求められる値とし、加熱温度の上限は、金型などの寿命を考慮して、250℃未満とする。合金組織が微細である引抜き材を用いる本発明では、工業的に有効な加工とされる断面減少率40%超の加工において、250℃未満の加工温度でスウェージング加工が可能である。断面減少率が80%を超えるような強加工では、250℃以上の加熱が望まれる。
【0015】
塑性加工として、曲げ加工を行う場合、次の温度条件が適する。即ち、曲げる際の線条体の厚みをt mm、曲げ半径をR mm、加工温度をT℃とするとき、Tが、(1)0.1≦R/t≦1.0のとき、250>T≧250−250R/t、(2)1.0<R/t≦1.9のとき、500−250R/t≧T>0、(3)1.9<R/t≦2.0のとき、25≧T>0を満たすものとする。例えば、曲げ半径Rと線条体の厚みtとの比R/tが1.0〜1.9の場合、加熱温度T(℃)は、250℃未満、特に、上限を500−250R/t以下とすることができる。即ち、後述する試験結果からわかるように100℃未満、更に室温程度(例えば、20℃)とすることができる。また、R/tが1.9〜2.0の場合、加熱温度T(℃)を25℃以下とすることができる。引抜き加工が施されていない押出材や圧延材を用いる従来の方法では、R/tが1.0〜2.0の曲げ加工、特に、1.5〜1.0程度の曲げ加工を行う場合、加熱が必要である。これに対し、本発明は、引抜き材を用いることで微細な結晶粒の効果により、R/tが1.0〜2.0の曲げ加工において、加熱を行わなくても十分に曲げ加工を行うことができ、加熱用設備を不要とすることもできる。また、加熱を行わないことにより、金型などの加工材の寿命の延命化を図ることができる。一方、R/tが1.0未満の強加工の場合、加熱温度の下限は、上記250−250R/tで求められる値とし、加熱温度の上限は、金型などの寿命を考慮して、250℃未満とする。押出材を用いた従来の方法では、R/tが1.2以下の強加工では、200℃以上の加熱が必要であり、特に、R/tが1.0以下の強加工では、250℃以上の加熱が必要である。これに対し、本発明では、合金組織が微細である引抜き材を用いることで、R/tが0.1〜1.0といった強加工であっても、加工温度が250℃未満で十分に曲げ加工を行うことができる。
【0016】
上記線条体の厚みは、例えば、線条体がワイヤ(線状体)や、棒状体で断面形状が円形状である場合:直径、線条体がワイヤや、棒状体で断面形状が矩形状の場合:厚さ、線条体がパイプの場合:外径と内径との差が挙げられる。
【0017】
なお、R/tが2.0超では、曲げ加工の程度が低く、押出材や圧延材でも常温で加工を行うことができるため、本発明では規定していない。また、R/tが0.1未満の強加工では、225℃超の加熱が望まれるため、金型などの加工材の寿命を考慮して、本発明では規定しない。
【0018】
本発明は、合金組成によらず、室温程度(例えば、20℃)での加工性に乏しいhcp構造を有するマグネシウム基合金において有効である。例えば、鋳造用マグネシウム基合金や展伸用マグネシウム基合金を利用することができる。具体的には、Alを0.1質量%以上12質量%以下含有するものや、Zn:0.1質量%以上10質量%以下及びZr:0.1質量%以上2.0質量%を含有するものが挙げられる。Alを含有する場合、更に、Mn:0.1質量%以上2.0質量%以下、Zn:0.1質量%以上5.0質量%以下、Si:0.1質量%以上5.0質量%以下より選択された1種以上を含有するものが挙げられる。上記合金組成として代表的なASTM記号におけるAZ系、AS系、AM系、ZK系などが利用できる。Alの含有量として、質量%で0.1〜2.0%未満のものと、2.0超〜12.0%のものとを区別してもよい。上記化学成分の他にはMg及び不純物が含まれる合金として利用されることが一般的である。不純物には、Fe、Si、Cu、Ni、Caなどが挙げられる。
【0019】
AZ系においてAlの含有量が2.0〜12.0質量%となるものとして、例えば、AZ31、AZ61、AZ91などが挙げられる。AZ31は、例えば、質量%でAl:2.5〜3.5%、Zn:0.5〜1.5%、Mn:0.15〜0.5%、Cu:0.05%以下、Si:0.1%以下、Ca:0.04%以下を含有するマグネシウム基合金である。AZ61は、例えば、質量%でAl:5.5〜7.2%、Zn:0.4〜1.5%、Mn:0.15〜0.35%、Ni:0.05%以下、Si:0.1%以下を含有するマグネシウム基合金である。AZ91は例えば、質量%でAl:8.1〜9.7%、Zn:0.35〜1.0%、Mn:0.13%以上、Cu:0.1%以下、Ni:0.03%以下、Si:0.5%以下を含有するマグネシウム基合金である。AZ系においてAlの含有量が0.1〜2.0質量%未満となるものとして、例えば、AZ10、AZ21などが挙げられる。AZ10は、例えば、質量%でAl:1.0〜1.5%、Zn:0.2〜0.6%、Mn:0.2%以上、Cu:0.1%以下、Si:0.1%以下、Ca:0.4%以下を含有するマグネシウム基合金である。AZ21は、例えば、質量%でAl:1.4〜2.6%、Zn:0.5〜1.5%、Mn:0.15〜0.35%、Ni:0.03%以下、Si:0.1%以下を含有するマグネシウム基合金である。
【0020】
AS系においてAlの含有量が2.0〜12.0質量%となるものとして、例えば、AS41などが挙げられる。AS41は、例えば、質量%でAl:3.7〜4.8%、Zn:0.1%以下、Cu:0.15%以下、Mn:0.35〜0.60%、Ni:0.001%以下、Si:0.6〜1.4%を含有するマグネシウム基合金である。AS系においてAlの含有量が0.1〜2.0質量%未満となるものとしてAS21などが挙げられる。AS21は、例えば、質量%でAl:1.4〜2.6%、Zn:0.1%以下、Cu:0.15%以下、Mn:0.35〜0.60%、Ni:0.001%、Si:0.6〜1.4%を含有するマグネシウム基合金である。
【0021】
AM系では、例えば、AM60、AM100などが挙げられる。AM60は、例えば、質量%でAl:5.5〜6.5%、Zn:0.22%以下、Cu:0.35%以下、Mn:0.13%以上、Ni:0.03%以下、Si:0.5%以下を含有するマグネシウム基合金である。AM100は、例えば、質量%でAl:9.3〜10.7%、Zn:0.3%以下、Cu:0.1%以下、Mn:0.1〜0.35%、Ni:0.01%以下、Si:0.3%以下を含有するマグネシウム基合金である。
【0022】
ZK系では、例えば、ZK40、ZK60などが挙げられる。ZK40は、例えば、質量%でZn:3.5〜4.5%、Zr:0.45%以上を含有するマグネシウム基合金である。ZK60は、例えば、質量%でZn:4.8〜6.2%、Zr:0.45%以上を含有するマグネシウム基合金である。
【0023】
マグネシウム単体では十分な強度を得ることが難しいが、上記の化学成分を含むことで好ましい強度が得られる。
【0024】
本発明は、線条体を塑性加工することにより得られる成形体、例えば、眼鏡フレームや携帯電子機器などの補強用のフレーム、またネジなどの製造に適用することができる。
【0025】
【発明の実施の形態】
以下、本発明の実施の形態を説明する。
【0026】
(実施例1)
質量%で、Al:3.0%、Zn:1.0%、Mn:0.15%を含み、残部がMg及び不純物からなるマグネシウム基合金(ASTM記号AZ31相当材)の押出材(φ4.0mm、φ3.0mm)を準備した。φ4.0mmの押出材は、約160℃の温度、及び1パス当りの断面減少率:20%以下の加工度でφ3.0mmまで引抜き加工を施した(160℃への昇温速度:約10℃/sec、線速:16m/sec)。また、引抜き加工後350℃×15minの熱処理を施し、引抜き加工時の歪み除去、再結晶による組織の均一微細化を行った。
【0027】
得られたφ3.0mm引抜き材、及び引抜き加工を行っていないφ3.0mmの押出材を長さ3mmに切断し、試験片とした。これら試験片に種々の圧下率にて線軸方向に鍛造加工を施した。このとき、100℃〜250℃の範囲で種々の温度に各試験片を加熱して鍛造加工を行った。そして、鍛造加工が可能であるかを調べた。その結果を図1に示す。図1において、○は鍛造加工が可能であったもの、×は割れなどが生じて鍛造加工ができなかったもの、△は鍛造加工が可能であったが加熱温度が高く、金型の寿命の点で問題があるものを示す。また、図1において数式(1)はT=3r+150、数式(2)はT=3r+10を示す。数式(1)、(2)において、Tは加熱温度、rは圧下率である。
【0028】
図1(a)に示すように引抜き材に鍛造加工を行う場合は、圧下率r(%)に対し、T≧3r+10を満たす温度T℃に加熱することで鍛造加工が可能であった。即ち、引抜き材を用いた場合、250℃未満の加熱であっても、十分に鍛造加工を行うことができることがわかる。特に、圧下率が20〜30%程度のものは、T<3r+150を満たす温度においても十分に鍛造加工を行うことができた。なお、250℃に加熱した場合は、20〜80%のいずれの圧下率においても鍛造加工を行うことができたが、金型の寿命を考慮すると、250℃未満の加熱による加工が望まれる。
【0029】
これに対し、図1(b)に示すように引抜き加工を行っていない押出材に鍛造加工を行う場合は、圧下率r(%)に対し、T≧3r+150を満たす加熱を行わなければ、加工することができなかった。特に、工業的に有効な加工である圧下率40%超の鍛造加工の場合、250℃以上の加熱を行わなければならないことがわかる。
【0030】
組成の異なるマグネシウム基合金において同様の試験を行った。即ち、押出材に上記引抜き加工を施した後、熱処理を行った引抜き材に、種々の圧下率で、かつ100〜250℃の範囲の種々の温度で線軸方向に鍛造加工を行った。以下に、試験を行ったマグネシウム基合金の組成を示す。
【0031】
質量%でAl:1.2%、Zn:0.4%、Mn:0.3%を含み、残部がMgおよび不純物からなるマグネシウム基合金(ASTM記号AZ10相当材)
質量%でAl:6.4%、Zn:1.0%、Mn:0.28%を含み、残部がMgおよび不純物からなるマグネシウム基合金(ASTM記号AZ61相当材)
質量%でAl:9.0%、Zn:0.7%、Mn:0.1%を含み、残部がMgおよび不純物からなるマグネシウム基合金(ASTM記号AZ91相当材)
質量%でAl:1.9%、Mn:0.45%、Si:1.0%を含み、残部がMgと不純物からなるマグネシウム基合金(ASTM記号AS21相当材)
質量%でAl:4.2%、Mn:0.50%、Si:1.1%を含み、残部がMgと不純物からなるマグネシウム基合金(ASTM記号AS41相当材)
質量%でAl:6.1%、Mn:0.44%を含み、残部がMgと不純物からなるマグネシウム基合金(ASTM記号AM60相当材)
質量%でZn:5.5%、Zr:0.45%を含み、残部がMgおよび不純物からなるマグネシウム基合金(ASTM記号ZK60相当材)
【0032】
すると、いずれの試料も、圧下率r(%)に対し、T≧3r+10を満たす温度T℃に加熱することで鍛造加工を行うことができ、250℃未満の加熱であっても、十分に加工することができた。
【0033】
(実施例2)
実施例1と同様の引抜き条件にて作製したφ3.0mmの引抜き材(ASTM記号AZ31相当材)、及び引抜き加工を行っていないφ3.0mmの押出材(ASTM記号AZ31相当材)に対して、スウェージング加工を行った。スウェージング加工は、100℃〜250℃の範囲で種々の温度に各試験材を加熱し、φ2.7mm(断面減少率19%)、φ2.4mm(同36%)、φ2.3mm(同41.2%)、φ2.1mm(同51%)、φ1.9mm(同59.9%)、φ1.6mm(同71.6%)、φ1.4mm(同78.2%)の7種の径となるように断面減少率を変化させて行った。そして、スウェージング加工が可能であるかを調べた。その結果を図2に示す。図2において、○はスウェージング加工が可能であったもの、×は割れなどが生じてスウェージング加工できなかったもの、△はスウェージング加工が可能であったが加熱温度が高く、金型の寿命の点で問題があるものを示す。また、図2において数式(3)はT=3r+150、数式(4)はT=3r−30を示す。数式(3)、(4)において、Tは加熱温度、rは断面減少率である。
【0034】
図2(a)に示すように引抜き材にスウェージング加工を行う場合は、断面減少率r(%)に対し、T≧3r−30を満たす温度T℃に加熱することでスウェージング加工が可能であった。即ち、引抜き材を用いた場合、250℃未満の加熱であっても、十分にスウェージング加工を行うことができることがわかる。特に断面減少率が20〜30%程度のものは、T<3r+150を満たす温度においても十分に加工することができた。なお、250℃に加熱した場合は、20〜80%のいずれの断面減少率においてもスウェージング加工を行うことができたが、金型の寿命を考慮すると、250℃未満の加熱による加工が望まれる。
【0035】
これに対し、図2(b)に示すように引抜き加工を行っていない押出材にスウェージング加工を行う場合は、断面減少率rが20〜30%程度であっても、T≧3r+150を満たす温度T℃に加熱しなければ、加工することができなかった。特に、断面減少率40%以上では、250℃以上の加熱を行わなければスウェージング加工を行うことができなかった。
【0036】
組成の異なるマグネシウム基合金において同様の試験を行った。即ち、押出材に実施例1と同様の引抜き加工を施した後、熱処理を行った引抜き材に、上記7種の径となるように種々の断面減少率で、かつ100〜250℃の範囲の種々の温度でスウェージング加工を行った。マグネシウム基合金は、上記に示す成分と同様のAZ10相当材、AZ61相当材、AZ91相当材、AS21相当材、AS41相当材、AM60相当材、ZK60相当材を用いた。
【0037】
試験の結果、いずれの試料も、断面減少率r(%)に対し、T≧3r−30を満たす温度T℃に加熱することでスウェージング加工を行うことができ、250℃未満の加熱であっても、十分に加工することができた。
【0038】
(実施例3)
実施例1と同様の引抜き条件にて作製したφ3.0mmの引抜き材(ASTM記号AZ31相当材)に更に引抜き加工を行い(温度160℃、1パス当りの断面減少率:約15〜18%、160℃への昇温速度:約10℃/sec、線速:20m/sec)、断面形状が矩形(厚さt
1mm×幅3mm)の線材を得た。この線材に350℃×15minの熱処理を施し、試験片を得た。また、実施例1で用いたものと同様の成分(ASTM記号AZ31相当材)で厚さt 1mmの圧延材を用意し、幅3mmに切り出して試験片とした。
【0039】
得られた厚さt 1mm×幅3mmの引抜き材、及び厚さt 1mm×幅3mmの圧延材の各試験片に種々の曲げ半径Rで曲げ加工を行った。曲げ加工は、20〜250℃の範囲で種々の温度に各試験片を加熱して行った。そして、曲げ加工が可能であるかを調べた。その結果を図3に示す。図3において、○は曲げ加工が可能であったもの、×は割れなどが生じて曲げ加工できなかったもの、△は曲げ加工が可能であったが加熱温度が高く、金型の寿命の点で問題があるものを示す。また、図3において、数式(5)はT=−250R/t+250、数式(6)はT=−250R/t+500を示す。数式(5)、(6)においてTは加熱温度、Rは曲げ半径、tは試験片の厚さである。
【0040】
図3(a)に示すように引抜き材に曲げ加工を行う場合は、曲げ半径R(mm)と試験片の厚さt(mm)との比R/tが0.1≦R/t≦1.0を満たすとき、T≧−250R/t+250を満たす温度T℃に加熱することで曲げ加工が可能であった。特にR/tが1.0超2.0未満の場合、T<−250R/t+500の温度、具体的には、室温程度である20℃であっても、十分に曲げ加工を行うことができた。また、R/tが2.0のときも20℃において十分に曲げ加工を行うことができた。即ち、引抜き材を用いた場合、250℃未満の加熱であっても、十分に曲げ加工を行うことができることがわかる。なお、250℃に加熱した場合は、0.1〜2.0のいずれのR/tにおいても曲げ加工を行うことができたが、金型の寿命を考慮すると、250℃未満の加熱による加工が望まれる。
【0041】
これに対し、図3(b)に示すように引抜き加工を行っていない圧延材に曲げ加工を行う場合は、R/tが1.0以上であっても、T≧−250R/t+500を満たす温度T℃に加熱しなければ、加工することができなかった。また、R/tが0.5以下の強加工では、250℃の加熱を行っても曲げ加工を行うことができなかった。
【0042】
組成の異なるマグネシウム基合金において同様の試験を行った。即ち、押出材に実施例1と同様の引抜き加工を施し、更に断面矩形状に引抜き加工してから熱処理を行った引抜き材に、R/tが0.1〜2.0となる種々の曲げ半径で、かつ20〜250℃の範囲の種々の温度で曲げ加工を行った。マグネシウム基合金は、上記に示す成分と同様のAZ10相当材、AZ61相当材、AZ91相当材、AS21相当材、AS41相当材、AM60相当材、ZK60相当材を用いた。
【0043】
試験の結果、いずれの試料も、0.1≦R/t≦1.0のとき、T≧−250R/t+250を満たす温度T℃に加熱することで十分に曲げ加工を行うことができた。また、1.0<R/t≦1.9のときには、温度T(℃)が−250R/t+500よりも小さい温度、R/tが1.0以上のときには室温程度である20℃であっても、十分に曲げ加工を行うことができた。このようにいずれの試料も、250℃未満の加熱であっても、十分に曲げ加工することができた。
【0044】
【発明の効果】
以上、説明したように本発明マグネシウム基合金成形体の製造方法によれば、引抜き加工により得られた線条体を用いることで、250℃未満の加工温度で塑性加工することができるという優れた効果を奏し得る。従って、本発明は、押出材や圧延材にそのまま塑性加工を行う従来のように、塑性加工の際、250℃以上といった高温にする必要が無いので、金型やロールなどの加工材の寿命を長くすることができ、マグネシウム基合金の成形体を生産性よく得ることができる。
【図面の簡単な説明】
【図1】種々の温度において、圧下率を変化させて鍛造加工を行った際に鍛造加工が可能であるかを示すグラフであり、(a)は引抜き材、(b)は押出材を示す。
【図2】種々の温度において、断面減少率を変化させてスウェージング加工を行った際にスウェージング加工が可能であるかを示すグラフであり、(a)は引抜き材、(b)は押出材を示す。
【図3】種々の温度において、曲げ半径Rと被加工材の厚さtとの比R/tを変化させて曲げ加工を行った際に曲げ加工が可能であるかを示すグラフであり、(a)は引抜き材、(b)は圧延材を示す。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for producing a molded body made of a magnesium-based alloy by plastic working. In particular, the present invention relates to a method for producing a magnesium-based alloy compact having a high productivity by lowering the processing temperature during plastic processing.
[0002]
[Prior art]
Magnesium-based alloys are lighter than aluminum and have a higher specific strength and specific rigidity than steel and aluminum, and are widely used in the body of various electrical products as well as aircraft parts and automobile parts.
[0003]
However, since Mg and its alloys have a close-packed hexagonal lattice (hcp) structure, they have poor ductility and extremely poor plastic workability, but magnesium-based alloys have good workability by raising the temperature during processing. It is widely known that For example, Patent Documents 1 and 2 describe a technique for threading a magnesium-based alloy material to a temperature state in which a superplastic phenomenon appears.
[0004]
[Patent Document 1]
JP 2000-283134 A
[Patent Document 2]
JP 2000-343178 A
[0005]
[Problems to be solved by the invention]
However, when plastically processing a magnesium-based alloy material, the temperature at which the superplastic phenomenon occurs is a high temperature of 250 ° C. or higher, so that the conventional method cannot produce a molded body by plastic processing with high productivity. There is.
[0006]
Conventionally, when strong processing such as plastic processing is performed to obtain a compact made of a magnesium-based alloy, the extruded material or rolled material of the magnesium-based alloy, which is a workpiece, is generally raised to 250 ° C. or more, depending on the degree of processing. It is necessary to heat and process. Therefore, not only the heating equipment for high temperature such as 250 ° C. or more is required, but also the processing materials such as molds and rolls used for plastic working are exposed to high temperature, thereby shortening the life and increasing the cost. Invite. Therefore, heating above 250 ° C. is never preferable in industrial production.
[0007]
Then, the main objective of this invention is to provide the manufacturing method of the magnesium base alloy molded object which can manufacture the plastic-working molded object which consists of magnesium base alloys with sufficient productivity.
[0008]
[Means for Solving the Problems]
As a result of various investigations in a magnesium-based alloy that is usually difficult to perform a strong work such as plastic working, the present inventors have used a magnesium-based alloy material that has been subjected to a specific drawing process in advance. Even so, it has been found that plastic working is possible, and the present invention has been completed.
[0009]
That is, the manufacturing method of the magnesium-based alloy formed body of the present invention was obtained by drawing. An average crystal grain size of 10 μm or less A linear body made of a magnesium-based alloy is plastically processed into a molded body at a processing temperature of less than 250 ° C.
[0010]
Conventionally, when a magnesium-based alloy material is plastically processed to obtain a compact, an extruded material or a rolled material has been used as a workpiece. However, in the case of an extruded material or a rolled material, when plastic processing is performed, it must be heated to 250 ° C. or higher, and a reduction in processing temperature has been strongly desired. Therefore, the present invention achieves a reduction in processing temperature, that is, plastic processing at less than 250 ° C., particularly 200 ° C. or less, by using a linear body obtained by drawing rather than an extruded material or a rolled material. . As described above, in the present invention, by using the drawn wire, the processing temperature at the time of plastic processing can be made less than 250 ° C., and a conventional high-temperature heating means is unnecessary. In addition, the life of workpieces such as molds and rolls used for plastic working can be extended, and productivity can be improved. Hereinafter, the present invention will be described in more detail.
[0011]
In the present invention, examples of the linear body made of a magnesium-based alloy include a wire (linear body), a rod-shaped body, and a pipe. The cross section may be circular or non-circular such as a rectangle or an ellipse, that is, an irregular shape.
[0012]
In the present invention, for example, in the case of obtaining a wire or a rod-like body, the drawing rate is 1 ° C./sec to 100 ° C./sec, the processing temperature is 50 ° C. or more and 200 ° C. or less (more preferably 150 ° C.). In the following, the degree of processing: 10% or more with respect to one drawing process (one pass), and drawing the extruded material or rolled material at a linear speed of 1 m / sec or more. For example, when obtaining a pipe, the drawing temperature: 50 ° C. or more and 300 ° C. or less (more preferably 100 ° C. or more and 200 ° C. or less, more preferably 100 ° C. or more and 150 ° C. or less), the degree of processing: 5% for one drawing process Above (more preferably 10% or more, particularly preferably 20% or more), the temperature rise rate to the drawing temperature: 1 ° C./sec to 100 ° C./sec, the drawing rate: 1 m / sec or more, the extruded material or the rolled material is drawn. Can be mentioned. By performing such a specific drawing process, the alloy structure can be refined, specifically, the average crystal grain size can be 10 μm or less. And this invention is the above-mentioned alloy Organization By miniaturization, plastic workability can be improved even when the heating temperature is less than 250 ° C., and a desired molded body can be obtained. Also, after the drawing process, the obtained striatum The You may heat to the temperature of 100 to 300 degreeC, More preferably, it is 150 to 300 degreeC. This heat annealing is effective for recovery of strain introduced by drawing and further refinement of crystal grains by promoting recrystallization. The holding time of this heating temperature is preferably about 5 to 20 minutes.
[0013]
In the present invention, examples of the plastic working include forging, swaging, and bending. When forging is performed as plastic processing, the following temperature conditions are suitable. That is, the reduction rate is expressed as r. 1 %, When the processing temperature is T ° C., T is 3r 1 +150> T ≧ 3r 1 +10 (however, 20% ≦ r 1 <80%, T <250 ° C.). For example, reduction ratio r 1 In the case of = 20 (%), the heating temperature T (° C.) can be less than 250 ° C., particularly 70 ° C. or more and less than 210 ° C. When extruding or rolling material that has not been drawn is subjected to forging with a reduction ratio of 20%, cracking and the like cannot occur unless it is heated to a high temperature of 210 ° C. or higher. When the temperature is raised as described above, the life of the workpiece such as a mold or a roll is shortened. On the other hand, in the present invention, by using the drawn material, the heating temperature at the time of forging with a rolling reduction of 20% can be set to less than 210 ° C. due to the fine effect of the alloy structure. The life of the processed material can be made longer. Reduction ratio r 1 Is less than 33%, the lower limit of the heating temperature is 3r above. 1 The upper limit of the heating temperature is set to less than 250 ° C. in consideration of the service life of a mold or a roll. Therefore, in the present invention, when plastic working with a rolling reduction exceeding 40%, which is industrially effective processing, can be performed sufficiently even if the processing temperature is less than 250 ° C. In strong processing with a rolling reduction of 80% or more, heating at 250 ° C. or higher is desired.
[0014]
When performing swaging as plastic working, the following temperature conditions are suitable. That is, the cross-sectional reduction rate is set to r 2 %, When the processing temperature is T ° C., T is 3r 2 +150> T ≧ 3r 2 -30 (however, 20% ≦ r 2 ≦ 80%, T <250 ° C.). For example, the cross-sectional reduction rate r 2 In the case of 20%, the heating temperature T (° C.) can be less than 250 ° C., particularly 30 ° C. or more and less than 210 ° C. Therefore, when the cross-section reduction rate is 20%, the alloy structure is fine compared to the conventional method that requires heating at 210 ° C. or higher, using an extruded material or a rolled material that has not been drawn. The present invention using a drawing material can further extend the life of a workpiece such as a mold. Section reduction rate r 2 Is over 33%, the lower limit of the heating temperature is 3r above. 2 The upper limit of the heating temperature is set to less than 250 ° C. in consideration of the life of the mold and the like. In the present invention using a drawn material having a fine alloy structure, swaging can be performed at a processing temperature of less than 250 ° C. in processing with an area reduction ratio exceeding 40%, which is industrially effective processing. In strong processing where the cross-sectional reduction rate exceeds 80%, heating at 250 ° C or higher is desired.
[0015]
The following temperature conditions are suitable when bending as plastic working. That is, when the thickness of the linear body during bending is t mm, the bending radius is R mm, and the processing temperature is T ° C., when T is (1) 0.1 ≦ R / t ≦ 1.0, 250 > T ≧ 250−250 R / t, (2) When 1.0 <R / t ≦ 1.9, 500−250 R / t ≧ T> 0, (3) 1.9 <R / t ≦ 2.0 In this case, it is assumed that 25 ≧ T> 0. For example, when the ratio R / t between the bending radius R and the thickness t of the striate is 1.0 to 1.9, the heating temperature T (° C.) is less than 250 ° C., and particularly the upper limit is 500-250 R / t. It can be as follows. That is, as can be seen from the test results described later, the temperature can be set to less than 100 ° C. and further to about room temperature (for example, 20 ° C.). Moreover, when R / t is 1.9-2.0, heating temperature T (degreeC) can be 25 degrees C or less. In a conventional method using an extruded material or a rolled material that has not been subjected to drawing, a bending process with an R / t of 1.0 to 2.0, particularly a bending process of about 1.5 to 1.0 is performed. , Heating is required. On the other hand, according to the present invention, by using the drawing material, due to the effect of fine crystal grains, the bending process with a R / t of 1.0 to 2.0 is sufficiently performed without heating. It is possible to eliminate the need for heating equipment. Further, by not performing heating, it is possible to extend the life of a workpiece such as a mold. On the other hand, in the case of strong processing with R / t of less than 1.0, the lower limit of the heating temperature is the value determined by the above 250-250 R / t, and the upper limit of the heating temperature is in consideration of the life of the mold, The temperature is less than 250 ° C. In the conventional method using an extruded material, heating at 200 ° C. or higher is necessary for strong processing with R / t of 1.2 or less, and in particular, 250 ° C. with strong processing with R / t of 1.0 or less. The above heating is necessary. On the other hand, in the present invention, by using a drawing material having a fine alloy structure, even if the R / t is strong processing such as 0.1 to 1.0, the processing temperature is sufficiently less than 250 ° C. Processing can be performed.
[0016]
The thickness of the striated body is, for example, when the striated body is a wire (linear body) or a rod-shaped body and the cross-sectional shape is circular: the diameter, the striated body is a wire or rod-shaped body, and the cross-sectional shape is rectangular. In the case of shape: thickness, in the case where the filament is a pipe: the difference between the outer diameter and the inner diameter can be mentioned.
[0017]
In addition, when R / t is over 2.0, the degree of bending is low, and even extruded materials and rolled materials can be processed at normal temperature. Further, in strong working with R / t of less than 0.1, heating above 225 ° C. is desired. Therefore, in the present invention, it is not specified in consideration of the life of a workpiece such as a mold.
[0018]
The present invention , Go Regardless of the gold composition, it is effective in a magnesium-based alloy having an hcp structure with poor workability at about room temperature (for example, 20 ° C.). For example, a magnesium base alloy for casting or a magnesium base alloy for drawing can be used. Specifically, Al is 0.1 mass% 12 or more mass% What is contained below, Zn: 0.1 mass% 10 or more mass% The following and Zr: 0.1 mass% 2.0 mass% The thing containing is mentioned. When Al is contained, Mn: 0.1 mass% 2.0 mass% Hereinafter, Zn: 0.1 mass% More than 5.0 mass% Hereinafter, Si: 0.1 mass% More than 5.0 mass% What contains 1 or more types selected from the following is mentioned. As the alloy composition, AST, AS, AM, ZK and the like in typical ASTM symbols can be used. As the content of Al, mass% It may be distinguished between less than 0.1 to 2.0% and more than 2.0 to 12.0%. In general, it is used as an alloy containing Mg and impurities in addition to the above chemical components. Impurities include Fe, Si, Cu, Ni, Ca and the like.
[0019]
In the AZ system, the Al content is 2.0 to 12.0. mass% For example, AZ31, AZ61, AZ91, and the like can be given. AZ31 is, for example, mass% Al: 2.5-3.5%, Zn: 0.5-1.5%, Mn: 0.15-0.5%, Cu: 0.05% or less, Si: 0.1% or less, Ca: Magnesium-based alloy containing 0.04% or less. AZ61 is, for example, mass% Al: 5.5 to 7.2%, Zn: 0.4 to 1.5%, Mn: 0.15 to 0.35%, Ni: 0.05% or less, Si: 0.1% or less It is a magnesium-based alloy containing. AZ91 is for example mass% Al: 8.1 to 9.7%, Zn: 0.35 to 1.0%, Mn: 0.13% or more, Cu: 0.1% or less, Ni: 0.03% or less, Si: 0 A magnesium-based alloy containing up to 5%. In the AZ system, the Al content is 0.1 to 2.0. mass% As what becomes less than AZ10, AZ21 etc. are mentioned, for example. AZ10 is, for example, mass% Al: 1.0 to 1.5%, Zn: 0.2 to 0.6%, Mn: 0.2% or more, Cu: 0.1% or less, Si: 0.1% or less, Ca: 0 A magnesium-based alloy containing up to 4%. AZ21 is, for example, mass% Al: 1.4-2.6%, Zn: 0.5-1.5%, Mn: 0.15-0.35%, Ni: 0.03% or less, Si: 0.1% or less It is a magnesium-based alloy containing.
[0020]
In the AS system, the Al content is 2.0 to 12.0. mass% For example, AS41 and the like can be cited. AS41, for example, mass% Al: 3.7 to 4.8%, Zn: 0.1% or less, Cu: 0.15% or less, Mn: 0.35 to 0.60%, Ni: 0.001% or less, Si: 0 A magnesium-based alloy containing 6 to 1.4%. In the AS system, the Al content is 0.1 to 2.0. mass% AS21 etc. are mentioned as what becomes less than. AS21 is, for example, mass% Al: 1.4 to 2.6%, Zn: 0.1% or less, Cu: 0.15% or less, Mn: 0.35 to 0.60%, Ni: 0.001%, Si: 0.00. A magnesium-based alloy containing 6 to 1.4%.
[0021]
Examples of AM systems include AM60 and AM100. AM60 is, for example, mass% Al: 5.5 to 6.5%, Zn: 0.22% or less, Cu: 0.35% or less, Mn: 0.13% or more, Ni: 0.03% or less, Si: 0.5% A magnesium-based alloy containing: AM100 is, for example, mass% Al: 9.3 to 10.7%, Zn: 0.3% or less, Cu: 0.1% or less, Mn: 0.1 to 0.35%, Ni: 0.01% or less, Si: 0 A magnesium-based alloy containing 3% or less.
[0022]
In the ZK system, for example, ZK40, ZK60 and the like can be mentioned. ZK40 is, for example, mass% Zn: 3.5-4.5%, Zr: 0.45% or more magnesium-based alloy. ZK60 is, for example, mass% Zn: 4.8 to 6.2%, Zr: a magnesium-based alloy containing 0.45% or more.
[0023]
Although it is difficult to obtain sufficient strength with magnesium alone, preferable strength can be obtained by including the above chemical components.
[0024]
INDUSTRIAL APPLICABILITY The present invention can be applied to the manufacture of a molded body obtained by plastic processing of a linear body, for example, a reinforcing frame such as a spectacle frame or a portable electronic device, and a screw.
[0025]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described below.
[0026]
Example 1
mass% And an extruded material (φ4.0 mm, including magnesium-based alloy (ASTM symbol AZ31 equivalent material) containing Al: 3.0%, Zn: 1.0%, Mn: 0.15%, the balance being Mg and impurities. φ3.0 mm) was prepared. The extruded material of φ4.0 mm was drawn to φ3.0 mm at a temperature of about 160 ° C. and a cross-section reduction rate per pass: 20% or less (temperature increase rate to 160 ° C .: about 10 (C / sec, linear velocity: 16 m / sec). Further, after the drawing process, a heat treatment was performed at 350 ° C. for 15 minutes to remove strain during the drawing process and to make the structure uniform and fine by recrystallization.
[0027]
The obtained φ3.0 mm drawn material and a φ3.0 mm extruded material that had not been drawn were cut into a length of 3 mm to obtain test pieces. These test pieces were forged in the direction of the linear axis at various rolling reductions. At this time, each test piece was heated to various temperatures in the range of 100 ° C. to 250 ° C. to perform forging. And it was investigated whether forging was possible. The result is shown in FIG. In FIG. 1, ○ indicates that forging was possible, × indicates that forging was not possible due to cracks, etc., Δ indicates that forging was possible but the heating temperature was high and the life of the mold Indicates what is problematic in terms of dots. Further, in FIG. 1, Equation (1) is T = 3r. 1 +150, Equation (2) is T = 3r 1 +10 is shown. In Equations (1) and (2), T is the heating temperature, r 1 Is the rolling reduction.
[0028]
When the forging process is performed on the drawn material as shown in FIG. 1 (%), T ≧ 3r 1 Forging was possible by heating to a temperature T ° C. satisfying +10. That is, it can be seen that when a drawn material is used, forging can be sufficiently performed even with heating at less than 250 ° C. In particular, when the rolling reduction is about 20 to 30%, T <3r 1 Forging could be performed sufficiently even at a temperature satisfying +150. When heated to 250 ° C., forging could be performed at any reduction rate of 20 to 80%. However, considering the life of the mold, processing by heating below 250 ° C. is desired.
[0029]
On the other hand, as shown in FIG. 1B, when the forging process is performed on the extruded material that has not been drawn, the reduction ratio r 1 (%), T ≧ 3r 1 Processing could not be performed unless heating satisfying +150 was performed. In particular, in the case of forging with a rolling reduction exceeding 40%, which is an industrially effective process, it is understood that heating at 250 ° C. or higher must be performed.
[0030]
A similar test was conducted on magnesium-based alloys having different compositions. That is, after the above-described drawing process was performed on the extruded material, the heat-treated drawing material was subjected to forging in the linear axis direction at various reduction rates and at various temperatures in the range of 100 to 250 ° C. The composition of the magnesium-based alloy tested is shown below.
[0031]
mass% A magnesium-based alloy containing Al: 1.2%, Zn: 0.4%, Mn: 0.3%, with the balance being Mg and impurities (ASTM symbol AZ10 equivalent material)
mass% A magnesium-based alloy containing Al: 6.4%, Zn: 1.0%, Mn: 0.28%, the balance being Mg and impurities (ASTM symbol AZ61 equivalent material)
mass% A magnesium-based alloy containing Al: 9.0%, Zn: 0.7%, Mn: 0.1% with the balance being Mg and impurities (ASTM symbol AZ91 equivalent material)
mass% Al: 1.9%, Mn: 0.45%, Si: 1.0% Magnesium-based alloy consisting of Mg and impurities (ASTM symbol AS21 equivalent material)
mass% A magnesium-based alloy containing Al: 4.2%, Mn: 0.50%, Si: 1.1%, the balance being Mg and impurities (ASTM symbol AS41 equivalent material)
mass% And containing Al: 6.1%, Mn: 0.44%, the balance being a magnesium-based alloy consisting of Mg and impurities (ASTM symbol AM60 equivalent material)
mass% Zn: 5.5%, Zr: 0.45%, and the remaining magnesium-based alloy consisting of Mg and impurities (ASTM symbol ZK60 equivalent material)
[0032]
Then, each sample has a reduction ratio r 1 (%), T ≧ 3r 1 Forging could be carried out by heating to a temperature T ° C. satisfying +10, and even heating below 250 ° C. could be sufficiently processed.
[0033]
(Example 2)
For a φ3.0 mm drawn material (ASTM symbol AZ31 equivalent material) produced under the same drawing conditions as in Example 1, and a φ3.0 mm extruded material (ASTM symbol AZ31 equivalent material) that has not been drawn, Swaging processing was performed. In the swaging process, each test material was heated to various temperatures in the range of 100 ° C. to 250 ° C., and φ2.7 mm (cross-sectional reduction rate 19%), φ2.4 mm (36%), φ2.3 mm (41) .2%), φ2.1mm (51%), φ1.9mm (59.9%), φ1.6mm (71.6%), φ1.4mm (78.2%) The cross-section reduction rate was changed so as to obtain a diameter. And it was investigated whether swaging processing was possible. The result is shown in FIG. In FIG. 2, ○ indicates that swaging can be performed, × indicates that cracking or the like has occurred and swaging cannot be performed, and Δ indicates that swaging can be performed but the heating temperature is high. Indicates a problem in terms of life. Further, in FIG. 2, Equation (3) is T = 3r. 2 +150, Formula (4) is T = 3r 2 -30. In Equations (3) and (4), T is the heating temperature, r 2 Is the cross-sectional reduction rate.
[0034]
When swaging the drawn material as shown in FIG. 2 (%), T ≧ 3r 2 Swaging was possible by heating to a temperature T ° C. satisfying −30. That is, it can be seen that when the drawn material is used, sufficient swaging can be performed even with heating below 250 ° C. In particular, when the cross-section reduction rate is about 20 to 30%, T <3r 2 Even at a temperature satisfying +150, sufficient processing was possible. In addition, when heated to 250 ° C., the swaging process could be performed at any cross-section reduction rate of 20 to 80%. However, considering the life of the mold, processing by heating at less than 250 ° C. is desirable. It is.
[0035]
On the other hand, when the swaging process is performed on the extruded material that has not been drawn as shown in FIG. 2 Is about 20-30%, T ≧ 3r 2 If it was not heated to the temperature T ° C. satisfying +150, it could not be processed. In particular, when the cross-section reduction rate is 40% or more, swaging cannot be performed without heating at 250 ° C. or higher.
[0036]
A similar test was conducted on magnesium-based alloys having different compositions. That is, after subjecting the extruded material to the same drawing process as in Example 1, the drawn material subjected to the heat treatment was subjected to various cross-sectional reduction ratios in a range of 100 to 250 ° C. so as to have the above seven diameters. Swaging processing was performed at various temperatures. As the magnesium-based alloy, the same AZ10 equivalent material, AZ61 equivalent material, AZ91 equivalent material, AS21 equivalent material, AS41 equivalent material, AM60 equivalent material, and ZK60 equivalent material as the components shown above were used.
[0037]
As a result of the test, the cross-section reduction rate r of any sample 2 (%), T ≧ 3r 2 Swaging processing could be performed by heating to a temperature T ° C. satisfying −30, and sufficient processing was possible even with heating below 250 ° C.
[0038]
(Example 3)
The φ3.0 mm drawn material (ASTM symbol AZ31 equivalent material) produced under the same drawing conditions as in Example 1 was further drawn (temperature 160 ° C., cross-sectional reduction rate per pass: about 15-18%, Temperature rising rate to 160 ° C .: about 10 ° C./sec, linear velocity: 20 m / sec), rectangular cross section (thickness t
1 mm × width 3 mm) was obtained. This wire was heat-treated at 350 ° C. for 15 minutes to obtain a test piece. Further, a rolled material having a thickness t 1 mm was prepared using the same components (ASTM symbol AZ31 equivalent material) as used in Example 1, and cut into a width of 3 mm to obtain a test piece.
[0039]
Each test piece of the obtained drawn material having a thickness t 1 mm × width 3 mm and a rolled material having a thickness t 1 mm × width 3 mm was bent at various bending radii R. The bending process was performed by heating each test piece to various temperatures in the range of 20 to 250 ° C. And it was investigated whether the bending process was possible. The result is shown in FIG. In FIG. 3, ○ indicates that bending was possible, × indicates that cracking occurred and bending was not possible, and Δ indicates that bending was possible but the heating temperature was high, and the life of the mold Shows what is wrong. In FIG. 3, Equation (5) represents T = −250 R / t + 250, and Equation (6) represents T = −250 R / t + 500. In Equations (5) and (6), T is the heating temperature, R is the bending radius, and t is the thickness of the test piece.
[0040]
When bending the drawn material as shown in FIG. 3A, the ratio R / t between the bending radius R (mm) and the thickness t (mm) of the test piece is 0.1 ≦ R / t ≦. When 1.0 is satisfied, bending was possible by heating to a temperature T ° C. that satisfies T ≧ −250 R / t + 250. In particular, when R / t is more than 1.0 and less than 2.0, bending can be sufficiently performed even at a temperature of T <−250 R / t + 500, specifically, 20 ° C. which is about room temperature. It was. Further, even when R / t was 2.0, bending could be sufficiently performed at 20 ° C. That is, it can be seen that when the drawn material is used, sufficient bending can be performed even with heating below 250 ° C. In addition, when heated to 250 ° C., bending could be performed at any R / t of 0.1 to 2.0. However, considering the life of the mold, processing by heating below 250 ° C. Is desired.
[0041]
On the other hand, as shown in FIG. 3B, when bending a rolled material that has not been drawn, T ≧ −250 R / t + 500 is satisfied even if R / t is 1.0 or more. Processing could not be performed without heating to a temperature of T ° C. Further, in the strong working with R / t of 0.5 or less, the bending work could not be performed even if heating at 250 ° C. was performed.
[0042]
A similar test was conducted on magnesium-based alloys having different compositions. That is, the same drawing process as in Example 1 was performed on the extruded material, and then the drawn material was subjected to a heat treatment after being drawn into a rectangular cross section. R / t is 0.1-2.0 Become Bending was performed at various bending radii and at various temperatures ranging from 20 to 250 ° C. As the magnesium-based alloy, the same AZ10 equivalent material, AZ61 equivalent material, AZ91 equivalent material, AS21 equivalent material, AS41 equivalent material, AM60 equivalent material, and ZK60 equivalent material as the components shown above were used.
[0043]
As a result of the test, all samples could be sufficiently bent by heating to a temperature T ° C. satisfying T ≧ −250 R / t + 250 when 0.1 ≦ R / t ≦ 1.0. Further, when 1.0 <R / t ≦ 1.9, the temperature T (° C.) is lower than −250 R / t + 500, and when R / t is 1.0 or more, the temperature is about 20 ° C. Also, it was possible to bend sufficiently. As described above, all of the samples could be sufficiently bent even when heated at less than 250 ° C.
[0044]
【The invention's effect】
As described above, according to the method for producing a magnesium-based alloy molded body of the present invention, it is possible to perform plastic working at a processing temperature of less than 250 ° C. by using a linear body obtained by drawing. Can have an effect. Therefore, the present invention does not require a high temperature such as 250 ° C. or higher during plastic processing as in the conventional case where plastic processing is performed on an extruded material or rolled material as it is. The length can be increased, and a magnesium-based alloy compact can be obtained with high productivity.
[Brief description of the drawings]
BRIEF DESCRIPTION OF DRAWINGS FIG. 1 is a graph showing whether forging can be performed when forging is performed by changing the rolling reduction at various temperatures, (a) shows a drawn material, and (b) shows an extruded material. .
FIG. 2 is a graph showing whether swaging can be performed when swaging is performed by changing the cross-section reduction rate at various temperatures, (a) is a drawing material, and (b) is extrusion. Indicates the material.
FIG. 3 is a graph showing whether bending can be performed when bending is performed by changing the ratio R / t of the bending radius R and the thickness t of the workpiece at various temperatures; (A) shows a drawn material, and (b) shows a rolled material.

Claims (7)

引抜き加工により得られた、平均結晶粒径が10μm以下のマグネシウム基合金からなる線条体を準備する工程と、
前記線条体を250℃未満の加工温度で塑性加工することで成形体を得る工程とを備え、
前記塑性加工は、以下の条件を満たす加工温度T℃で行う、圧下率が20%以上の鍛造加工であることを特徴とするマグネシウム基合金成形体の製造方法。
圧下率をr %、加工温度をT℃とするとき、Tは、
3r +150>T≧3r +10
但し、20%≦r <80%、T<250℃
を満たす。
A step of preparing a linear body made of a magnesium-based alloy having an average crystal grain size of 10 μm or less, obtained by drawing;
A step of plastically processing the linear body at a processing temperature of less than 250 ° C. to obtain a molded body ,
The plastic working is performed at a satisfying working temperature T ° C. below, the manufacturing method of the magnesium-based alloy molded reduction ratio, characterized in that it is a forging of 20% or more.
When the rolling reduction is r 1 % and the processing temperature is T ° C., T is
3r 1 +150> T ≧ 3r 1 +10
However, 20% ≦ r 1 <80%, T <250 ° C.
Meet.
引抜き加工により得られた、平均結晶粒径が10μm以下のマグネシウム基合金からなる線条体を準備する工程と、A step of preparing a linear body made of a magnesium-based alloy having an average crystal grain size of 10 μm or less, obtained by drawing;
前記線条体を250℃未満の加工温度で塑性加工することで成形体を得る工程とを備え、A step of plastically processing the linear body at a processing temperature of less than 250 ° C. to obtain a molded body,
前記塑性加工は、以下の条件を満たす加工温度T℃で行う、断面減少率が20%以上のスウェージング加工であることを特徴とするマグネシウム基合金成形体の製造方法。The method for producing a magnesium-based alloy molded body, wherein the plastic working is a swaging process with a cross-sectional reduction rate of 20% or more, which is performed at a processing temperature T ° C. that satisfies the following conditions.
断面減少率をrSection reduction rate is r 2 %、加工温度をT℃としたとき、Tは、%, Where T is the processing temperature, T is
3r3r 2 +150>T≧3r+150> T ≧ 3r 2 −30-30
但し、20%≦rHowever, 20% ≦ r 2 ≦80%、T<250℃≦ 80%, T <250 ° C
を満たす。Meet.
引抜き加工により得られた、平均結晶粒径が10μm以下のマグネシウム基合金からなる線条体を準備する工程と、A step of preparing a linear body made of a magnesium-based alloy having an average crystal grain size of 10 μm or less, obtained by drawing;
前記線条体を250℃未満の加工温度で塑性加工することで成形体を得る工程とを備え、A step of plastically processing the linear body at a processing temperature of less than 250 ° C. to obtain a molded body,
前記塑性加工は、以下の条件を満たす加工温度T℃で行う、R/tが2.0以下の曲げ加工であることを特徴とするマグネシウム基合金成形体の製造方法。The method for producing a magnesium-based alloy molded body, wherein the plastic working is a bending work with an R / t of 2.0 or less performed at a working temperature T ° C. that satisfies the following conditions.
曲げる際の線条体の厚みをt mm、曲げ半径をR mm、加工温度をT℃としたとき、Tは、When the thickness of the linear body during bending is t mm, the bending radius is R mm, and the processing temperature is T ° C., T is:
0.1≦R/t≦1.0のとき、250>T≧250−250R/tWhen 0.1 ≦ R / t ≦ 1.0, 250> T ≧ 250−250 R / t
1.0<R/t≦1.9のとき、500−250R/t≧T>0When 1.0 <R / t ≦ 1.9, 500−250 R / t ≧ T> 0
1.9<R/t≦2.0のとき、25≧T>01.9 <R / t ≦ 2.0, 25 ≧ T> 0
を満たす。Meet.
前記線条体に100℃以上300℃以下で5〜20分の加熱焼鈍を行うことを特徴とする請求項1〜3のいずれかに記載のマグネシウム基合金成形体の製造方法。The method for producing a magnesium-based alloy molded body according to any one of claims 1 to 3, wherein the linear body is heat-annealed at 100 to 300 ° C for 5 to 20 minutes. 前記マグネシウム基合金は、Alを0.1〜12質量%含むことを特徴とする請求項1〜4のいずれかに記載のマグネシウム基合金成形体の製造方法。The said magnesium base alloy contains 0.1-12 mass% of Al, The manufacturing method of the magnesium base alloy molded object in any one of Claims 1-4 characterized by the above-mentioned. 前記マグネシウム基合金は、更に、質量%でMn:0.1〜2.0%、Zn:0.1〜5.0%、Si:0.1〜5.0%より選択された1種以上を含有することを特徴とする請求項5に記載のマグネシウム基合金成形体の製造方法。The magnesium-based alloy is further one or more selected from Mn: 0.1 to 2.0%, Zn: 0.1 to 5.0%, and Si: 0.1 to 5.0% by mass%. The manufacturing method of the magnesium-based alloy molded object of Claim 5 characterized by the above-mentioned. 前記マグネシウム基合金は、質量%でZn:0.1〜10%、Zr:0.1〜2.0%を含むことを特徴とする請求項1〜4のいずれかに記載のマグネシウム基合金成形体の製造方法。The magnesium-based alloy molding according to any one of claims 1 to 4 , wherein the magnesium-based alloy contains Zn: 0.1 to 10% and Zr: 0.1 to 2.0% by mass%. Body manufacturing method.
JP2003155476A 2003-05-30 2003-05-30 Method for producing magnesium-based alloy compact Expired - Fee Related JP4332889B2 (en)

Priority Applications (8)

Application Number Priority Date Filing Date Title
JP2003155476A JP4332889B2 (en) 2003-05-30 2003-05-30 Method for producing magnesium-based alloy compact
KR1020057022136A KR100727211B1 (en) 2003-05-30 2004-04-12 Method for producing magnesium base alloy formed article
CNB2004800151311A CN100476012C (en) 2003-05-30 2004-04-12 Method for producing magnesium base alloy formed article
DE602004021808T DE602004021808D1 (en) 2003-05-30 2004-04-12 METHOD FOR PRODUCING MOLDED BODIES FROM MAGNESIUM BASE ALLOY
US10/556,434 US20070169858A1 (en) 2003-05-30 2004-04-12 Producing method of magnesium-base alloy wrought product
EP04726905A EP1645651B1 (en) 2003-05-30 2004-04-12 Method for producing magnesium base alloy formed article
PCT/JP2004/005226 WO2004106576A1 (en) 2003-05-30 2004-04-12 Method for producing magnesium base alloy formed article
TW093115213A TWI279446B (en) 2003-05-30 2004-05-28 The method for producing magnesium alloy molding

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003155476A JP4332889B2 (en) 2003-05-30 2003-05-30 Method for producing magnesium-based alloy compact

Publications (2)

Publication Number Publication Date
JP2004353067A JP2004353067A (en) 2004-12-16
JP4332889B2 true JP4332889B2 (en) 2009-09-16

Family

ID=33487362

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003155476A Expired - Fee Related JP4332889B2 (en) 2003-05-30 2003-05-30 Method for producing magnesium-based alloy compact

Country Status (8)

Country Link
US (1) US20070169858A1 (en)
EP (1) EP1645651B1 (en)
JP (1) JP4332889B2 (en)
KR (1) KR100727211B1 (en)
CN (1) CN100476012C (en)
DE (1) DE602004021808D1 (en)
TW (1) TWI279446B (en)
WO (1) WO2004106576A1 (en)

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4782987B2 (en) * 2003-06-19 2011-09-28 住友電気工業株式会社 Magnesium-based alloy screw manufacturing method
JP4849377B2 (en) * 2006-01-13 2012-01-11 住友電気工業株式会社 Magnesium alloy screw manufacturing method and magnesium alloy screw
JP5224259B2 (en) * 2006-11-17 2013-07-03 新潟県 Plastic processing method of magnesium alloy sheet
JP2009280846A (en) * 2008-05-20 2009-12-03 Mitsui Mining & Smelting Co Ltd Magnesium alloy forged member, and producing method therefor
KR101561150B1 (en) * 2008-06-03 2015-10-16 코쿠리츠켄큐카이하츠호징 붓시쯔 자이료 켄큐키코 -base alloy
TWI391504B (en) * 2008-07-24 2013-04-01 Chung Shan Inst Of Science Grain - refined magnesium alloy sheet and its manufacturing method
JP2010147259A (en) * 2008-12-19 2010-07-01 Sumitomo Electric Ind Ltd Rolled plate shaped body of magnesium alloy and electrical apparatus using the same
JP2010157598A (en) * 2008-12-26 2010-07-15 Sumitomo Electric Ind Ltd Magnesium alloy member and method of manufacturing the same
JP5348624B2 (en) * 2011-01-24 2013-11-20 住友電気工業株式会社 Magnesium alloy screw
JP5741923B2 (en) * 2011-04-15 2015-07-01 住友電気工業株式会社 Cover member
JP6157484B2 (en) * 2011-10-06 2017-07-05 ユニバーシティ オブ ピッツバーグ オブ ザ コモンウェルス システム オブ ハイヤー エデュケーションUniversity Of Pittsburgh Of The Commonwealth System Of Higher Education Biodegradable metal alloy
CN103243282B (en) * 2013-05-07 2015-04-22 太原理工大学 Preparation method of magnesium alloy sheet
CN108728710A (en) * 2018-07-07 2018-11-02 中南大学 A kind of strong nanometer gradient magnesium alloy preparation method of VW93M superelevation
CN108754367A (en) * 2018-07-07 2018-11-06 中南大学 A kind of atom segregation and elementide strengthen Mg-Gd-Y-Zr magnesium alloy methods
CN108796329A (en) * 2018-07-07 2018-11-13 中南大学 A kind of high thermal stability Mg-Gd-Y-Zr nanometers of magnesium alloy preparation methods
EP3741880B1 (en) * 2019-05-20 2023-06-28 Volkswagen AG Sheet metal product with high bendability and manufacturing thereof
US20220370691A1 (en) 2021-05-10 2022-11-24 Cilag Gmbh International Bioabsorbable staple comprising mechanism for delaying the absorption of the staple

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1073629A (en) * 1964-08-07 1967-06-28 Magnesium Elektron Ltd Improvements in or relating to magnesium base alloys
EP0139168A1 (en) * 1983-09-20 1985-05-02 Alumax Inc. Fine grained metal composition
JPS63282232A (en) * 1987-05-15 1988-11-18 Showa Denko Kk High-strength magnesium alloy for plastic working and its production
DE69007920T2 (en) * 1989-08-24 1994-07-21 Pechiney Electrometallurgie High-strength magnesium alloys and processes for their production through rapid solidification.
US5316598A (en) * 1990-09-21 1994-05-31 Allied-Signal Inc. Superplastically formed product from rolled magnesium base metal alloy sheet
JP2001071037A (en) * 1999-09-03 2001-03-21 Matsushita Electric Ind Co Ltd Press working method for magnesium alloy and press working device
JP3592310B2 (en) * 2001-06-05 2004-11-24 住友電工スチールワイヤー株式会社 Magnesium-based alloy wire and method of manufacturing the same
JP2002371334A (en) * 2001-06-13 2002-12-26 Daido Steel Co Ltd Mg ALLOY MATERIAL CAPABLE OF COLD WORKING AND MANUFACTURING METHOD THEREFOR
JP2002373526A (en) * 2001-06-14 2002-12-26 Fujikura Ltd Overhead wire
JP2004017114A (en) * 2002-06-18 2004-01-22 Daido Steel Co Ltd Production method for magnesium alloy wire material
AU2003272276A1 (en) * 2002-09-13 2004-04-30 Olin Corporation Age-hardening copper-base alloy and processing

Also Published As

Publication number Publication date
CN100476012C (en) 2009-04-08
JP2004353067A (en) 2004-12-16
EP1645651A4 (en) 2007-05-09
US20070169858A1 (en) 2007-07-26
CN1798857A (en) 2006-07-05
EP1645651B1 (en) 2009-07-01
TW200500473A (en) 2005-01-01
KR20060003908A (en) 2006-01-11
DE602004021808D1 (en) 2009-08-13
EP1645651A1 (en) 2006-04-12
KR100727211B1 (en) 2007-06-13
WO2004106576A1 (en) 2004-12-09
TWI279446B (en) 2007-04-21

Similar Documents

Publication Publication Date Title
JP4332889B2 (en) Method for producing magnesium-based alloy compact
JP4189687B2 (en) Magnesium alloy material
JP3597186B2 (en) Magnesium-based alloy tube and method of manufacturing the same
JP5648885B2 (en) Magnesium alloy plate, magnesium alloy member, and method for producing magnesium alloy plate
JP2003293069A (en) Magnesium-base alloy wire and its manufacturing method
JP2013533375A (en) Magnesium alloy for extension applications
US5123973A (en) Aluminum alloy extrusion and method of producing
JP4782987B2 (en) Magnesium-based alloy screw manufacturing method
TWI383054B (en) Manufacturing method of lengthwise magnesium material
JP6329430B2 (en) High yield strength Al-Zn aluminum alloy extruded material with excellent bendability
JP2006152401A (en) Magnesium alloy raw material
JPH07180011A (en) Production of alpha+beta type titanium alloy extruded material
JP2004124152A (en) Rolled wire rod of magnesium based alloy, and its production method
JP2004124154A (en) Rolled wire rod of magnesium based alloy, and production method therefor
JP2004183062A (en) Magnesium-based alloy wire and manufacturing method therefor
JP2017078220A (en) Magnesium alloy rolled material and production method therefor, and press-formed article
JP4253846B2 (en) Magnesium alloy wire, method for producing the same, and magnesium alloy molded body
JP3735101B2 (en) Magnesium-based alloy pipe manufacturing method
JP3568942B2 (en) Magnesium-based alloy wire and method of manufacturing the same
JP2004052043A (en) METHOD OF PRODUCING Al-Si BASED ALLOY MATERIAL HAVING FINE STRUCTURE
JP4253845B2 (en) Magnesium alloy wire, method for producing the same, and magnesium alloy molded body
JP5249367B2 (en) Magnesium-based alloy screw
JP2004217951A (en) Magnesium based alloy wire, and production method therefor
JP6136037B2 (en) Magnesium alloy cast material, magnesium alloy cast coil material, magnesium alloy wrought material, magnesium alloy joint material, method for producing magnesium alloy cast material, method for producing magnesium alloy wrought material, and method for producing magnesium alloy member
CN117242198A (en) Aluminum alloy, aluminum alloy hot working material and method for producing same

Legal Events

Date Code Title Description
A625 Written request for application examination (by other person)

Free format text: JAPANESE INTERMEDIATE CODE: A625

Effective date: 20051122

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20080911

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20080911

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081205

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090130

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090327

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090421

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090601

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090614

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120703

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120703

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130703

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees