JP3735101B2 - Magnesium-based alloy pipe manufacturing method - Google Patents

Magnesium-based alloy pipe manufacturing method Download PDF

Info

Publication number
JP3735101B2
JP3735101B2 JP2003328774A JP2003328774A JP3735101B2 JP 3735101 B2 JP3735101 B2 JP 3735101B2 JP 2003328774 A JP2003328774 A JP 2003328774A JP 2003328774 A JP2003328774 A JP 2003328774A JP 3735101 B2 JP3735101 B2 JP 3735101B2
Authority
JP
Japan
Prior art keywords
magnesium
based alloy
heat treatment
base material
heating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003328774A
Other languages
Japanese (ja)
Other versions
JP2005089855A (en
Inventor
幸広 大石
克己 若松
望 河部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo SEI Steel Wire Corp
Original Assignee
Sumitomo SEI Steel Wire Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo SEI Steel Wire Corp filed Critical Sumitomo SEI Steel Wire Corp
Priority to JP2003328774A priority Critical patent/JP3735101B2/en
Publication of JP2005089855A publication Critical patent/JP2005089855A/en
Application granted granted Critical
Publication of JP3735101B2 publication Critical patent/JP3735101B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

本発明は、マグネシウム基合金からなるパイプの製造方法に関するものである。特に、強度及び延性に優れたマグネシウム基合金パイプを生産性よく製造することができる製造方法に関するものである。   The present invention relates to a method for manufacturing a pipe made of a magnesium-based alloy. In particular, the present invention relates to a production method capable of producing a magnesium-based alloy pipe excellent in strength and ductility with high productivity.

マグネシウム基合金は、アルミニウムよりも軽く、比強度、比剛性が鋼やアルミニウムよりも優れており、航空機部品、自動車部品などの他、各種電気製品のボディなどにも広く利用されている。特に、従来は、プレス成形品によく用いられており、このプレス用板材の製造方法として、圧延によるものが知られている(例えば、特許文献1、特許文献2参照)。   Magnesium-based alloys are lighter than aluminum and have a higher specific strength and specific rigidity than steel and aluminum, and are widely used in the body of various electrical products as well as aircraft parts and automobile parts. In particular, conventionally, it is often used for a press-formed product, and as a method for producing the plate material for press, a method by rolling is known (for example, see Patent Document 1 and Patent Document 2).

特開2001−200349号公報(特許請求の範囲参照)JP 2001-200349 A (refer to claims) 特開平6-293944号公報(特許請求の範囲参照)Japanese Unexamined Patent Publication No. Hei 6-93944 (see claims)

マグネシウム基合金は、上記のように様々な特性に優れており、板材だけでなくパイプ材として利用することが望まれている。しかし、Mg及びその合金は、最密六方格子構造であるため、延性に乏しく、塑性加工性が極めて悪い。そのため、高強度かつ靭性に優れたMg及びその合金のパイプを得ることは困難であり、最適な方法が知られていなかった。特に、生産性よく製造することは、非常に困難であった。   Magnesium-based alloys are excellent in various properties as described above, and are desired to be used not only as plate materials but also as pipe materials. However, since Mg and its alloys have a close-packed hexagonal lattice structure, ductility is poor and plastic workability is extremely poor. Therefore, it is difficult to obtain a pipe of Mg and its alloy having high strength and excellent toughness, and an optimum method has not been known. In particular, it was very difficult to manufacture with high productivity.

熱間押出しにより、マグネシウム基合金パイプを得ることができるものの強度が低く、得られたパイプを構造材として用いることは難しかった。例えば、この熱間押出しによって得られたパイプは、アルミニウム合金からなるパイプと比較しても優れた強度のものではない。そのため、高強度のマグネシウム基合金パイプを得ることができる製造方法が求められていた。   Although the magnesium-based alloy pipe can be obtained by hot extrusion, the strength is low, and it is difficult to use the obtained pipe as a structural material. For example, a pipe obtained by this hot extrusion does not have an excellent strength as compared with a pipe made of an aluminum alloy. Therefore, a production method capable of obtaining a high-strength magnesium-based alloy pipe has been demanded.

従って、本発明の主目的は、強度及び延性に優れるマグネシウム基合金パイプを生産性よく得ることができるマグネシウム基合金パイプの製造方法を提供することにある。   Accordingly, a main object of the present invention is to provide a method for producing a magnesium-based alloy pipe, which can obtain a magnesium-based alloy pipe excellent in strength and ductility with high productivity.

本発明は、室温において引き抜き加工を行うことで生産性の向上を図る。そして、室温での引き抜き加工を実現するべく、第一の方法として、本発明は、製造工程中に熱処理を行うことを規定する。   The present invention aims to improve productivity by performing drawing at room temperature. And as a 1st method, in order to implement | achieve drawing processing at room temperature, this invention prescribes | regulates performing heat processing during a manufacturing process.

具体的には、口付け加工後で引き抜き加工前に熱処理を行う。即ち、本発明マグネシウム基合金パイプの製造方法は、マグネシウム基合金からなる母材管の先端部に口付け加工を行う口付工程と、前記口付けされた母材管に熱処理を施す熱処理工程と、前記熱処理が施された母材管に引き抜き加工を施す引抜工程とを具える。前記熱処理工程は、少なくとも母材管の先端部を200℃以上450℃未満に加熱する工程と、加熱後に冷却する工程とを具える。そして、前記引き抜き加工は、前記熱処理工程後、加熱することなく行う。   Specifically, the heat treatment is performed after the staking process and before the drawing process. That is, the manufacturing method of the magnesium-based alloy pipe of the present invention includes a mouth-forming step of performing a mouth-forming process on a tip portion of a base material pipe made of a magnesium-based alloy, a heat treatment step of performing a heat treatment on the mouthed base-material pipe, A drawing step of drawing a base material pipe that has been heat-treated. The heat treatment step includes a step of heating at least a tip portion of the base material tube to 200 ° C. or higher and lower than 450 ° C., and a step of cooling after the heating. The drawing process is performed without heating after the heat treatment step.

或いは、1パス目の引き抜き後に熱処理を行い、続いて2パス目の引き抜きを行う。即ち、本発明マグネシウム基合金パイプの製造方法は、マグネシウム基合金からなる押出材を室温にて断面減少率15%以下で引き抜く第一引抜工程と、前記第一引抜工程に続いて、引き抜かれた第一引抜管に熱処理を施す中間熱処理工程と、前記中間熱処理工程に続いて、得られた引抜管を室温で引き抜く第二引抜工程とを具えることを特徴とする。   Alternatively, heat treatment is performed after the first pass, and then the second pass is performed. That is, in the manufacturing method of the magnesium-based alloy pipe of the present invention, the extruded material made of the magnesium-based alloy is drawn at a room temperature with a cross-section reduction rate of 15% or less, and the drawing is performed following the first drawing step. It is characterized by comprising an intermediate heat treatment step for heat-treating the first drawn tube and a second drawing step for drawing the obtained drawn tube at room temperature following the intermediate heat treatment step.

第二の方法として、本発明は、引き抜き加工前に表面処理を行うことを規定する。即ち、本発明マグネシウム基合金パイプの製造方法は、マグネシウム基合金からなる母材管の表面を粗くする表面処理工程と、前記表面処理が施された母材管に引き抜き加工を施す引抜工程とを具えることを特徴とする。   As a second method, the present invention provides that surface treatment is performed before drawing. That is, the method for producing a magnesium-based alloy pipe according to the present invention includes a surface treatment process for roughening a surface of a base material pipe made of a magnesium-based alloy, and a drawing process for performing a drawing process on the base material pipe subjected to the surface treatment. It is characterized by comprising.

また、本発明は、大きな加工度で引き抜き加工を行うことで生産性の向上を図る。そして、大きな加工度での引き抜き加工を実現するべく、本発明は、温間で引き抜くことを規定する。   Moreover, this invention aims at the improvement of productivity by performing a drawing process with a big processing degree. And this invention prescribes | regulates drawing | extracting warmly, in order to implement | achieve the drawing process with a big processing degree.

即ち、本発明マグネシウム基合金パイプの製造方法は、マグネシウム基合金からなる母材管に引き抜き加工を施す引抜工程を具える。そして、前記引き抜き加工は、温間にて複数パスを多段階で行い、2パス毎に引き抜かれた引抜管に熱処理を施す中間熱処理工程を具える。   That is, the manufacturing method of the magnesium-based alloy pipe of the present invention includes a drawing step of drawing a base material pipe made of a magnesium-based alloy. The drawing process includes an intermediate heat treatment step in which a plurality of passes are performed in a warm stage in multiple stages and heat treatment is performed on a drawn tube drawn every two passes.

本発明者らが種々検討した結果、より長尺で、強度及び延性(伸び)の双方に優れたマグネシウム基合金パイプを得るには、押出材や鋳造材を引き抜くことが好ましいとの知見を得た。このとき、引き抜きの際に母材管を加熱することで塑性加工性が向上され、引き抜き加工を容易に行うことができるが、より生産性をよくするには、引き抜きの際の加熱回数を低減する、或いは全くなくして室温で加工することが望まれる。このような要求を実現するには、以下の手法の少なくとも一つを適用することが好ましいとの知見を得た。本発明は、これらの知見に基づき規定するものである。   As a result of various studies by the present inventors, it was found that it is preferable to draw out an extruded material or a cast material in order to obtain a magnesium-based alloy pipe that is longer and excellent in both strength and ductility (elongation). It was. At this time, plastic workability is improved by heating the base material tube during drawing, and drawing can be performed easily. However, in order to improve productivity, the number of times of heating during drawing is reduced. It is desirable to process at room temperature without or at all. In order to realize such a requirement, it was found that it is preferable to apply at least one of the following methods. The present invention is defined based on these findings.

手法1.口付け加工後に熱処理を施してから引き抜きを行う。   Method 1. After heat treatment, heat treatment is performed and then drawing is performed.

マグネシウム基合金からなる母材管において、口付け加工によって塑性変形された部分、具体的には、引き抜きの際に引抜加工機のチャックに把持される部分や、プラグ(マンドレル)などの引抜加工材と接触する部分は、引き抜き加工の際に最も割れなどが生じ易い部分である。そのため、口付け加工後、この塑性変形された部分に特定の熱処理を施すと、塑性加工に伴う歪み(加工硬化)が除去され、金属組織を均一的で微細な結晶粒に制御することができる。そして、このような金属組織の制御により、冷間(室温)での引き抜きを実現できる。   In a base tube made of a magnesium-based alloy, a part plastically deformed by mouth-opening processing, specifically, a part gripped by a chuck of a drawing machine during drawing, and a drawn material such as a plug (mandrel) The contacted portion is the portion where cracking or the like is most likely to occur during the drawing process. Therefore, when a specific heat treatment is performed on the plastically deformed portion after the lip processing, distortion (work hardening) associated with the plastic processing is removed, and the metal structure can be controlled to be uniform and fine crystal grains. And by such control of the metal structure, it is possible to realize cold drawing (room temperature).

手法2.マグネシウム基合金からなる押出材を特定の条件で引き抜いた後、熱処理を施してから2パス目の引き抜きを行う。   Method 2. After pulling out the extruded material made of magnesium-based alloy under specific conditions, heat treatment is performed and then the second pass is pulled out.

マグネシウム基合金からなる押出材は、金属組織が不安定であり、結晶粒径が100μmを超えるような粒子が含まれる場合や、結晶粒径のバラツキが大きい場合などがある。このような押出材を室温で引き抜く場合、加工度(断面減少率)が大き過ぎると、割れなどが生じて引き抜くことができないことがある。そこで、マグネシウム基合金からなる押出材を室温で引き抜く際、特定の加工度で行うことが好ましい。また、この引き抜き後、中間熱処理を施すことで、引き抜き加工により導入された歪みを除去して均一的な結晶粒を有する組織とすることができる。従って、1パス目の引き抜き後、中間熱処理を行って金属組織を調整してから、2パス目の引き抜きを行う。このとき、中間熱処理により、金属組織を安定させることができるため、室温での引き抜きを実現できる。   An extruded material made of a magnesium-based alloy has an unstable metal structure and may include particles whose crystal particle size exceeds 100 μm, or there may be large variations in crystal particle size. When such an extruded material is pulled out at room temperature, if the degree of processing (cross-sectional reduction rate) is too large, it may not be pulled out due to cracks and the like. Therefore, when the extruded material made of a magnesium-based alloy is drawn at room temperature, it is preferably performed at a specific degree of processing. Further, by performing an intermediate heat treatment after the drawing, the strain introduced by the drawing process can be removed and a structure having uniform crystal grains can be obtained. Therefore, after drawing the first pass, intermediate heat treatment is performed to adjust the metal structure, and then the second pass is drawn. At this time, since the metal structure can be stabilized by the intermediate heat treatment, the drawing at room temperature can be realized.

手法3.マグネシウム基合金からなる母材管に表面処理を施してから引き抜き加工を行う。   Method 3. The base pipe made of magnesium alloy is subjected to surface treatment and then drawn.

引き抜きによりパイプを作製する場合、金属接触による焼付きが発生するという問題がある。特に、室温にて引き抜きを行う場合、塑性加工性が低いことから引き抜き力が大きく、焼付きが発生し易い。そこで、焼付きを防止するために潤滑剤の利用が考えられる。このとき、母材管の表面をある程度粗い状態にして、潤滑剤の引き込みを促進すると、室温であっても、より安定した引き抜きを行うことができる。   When producing a pipe by drawing, there is a problem that seizure occurs due to metal contact. In particular, when drawing is performed at room temperature, the pulling force is large because of low plastic workability, and seizure is likely to occur. Therefore, it is conceivable to use a lubricant to prevent seizure. At this time, if the surface of the base material pipe is roughened to some extent to facilitate the drawing of the lubricant, the drawing can be performed more stably even at room temperature.

また、生産性を向上するための別の方法として、一回の引き抜き加工において加工度を大きくとることが考えられる。そこで、手法4として、複数パスの引き抜き加工を多段階で行う場合、温間で引き抜く加工を行うと共に、2パス毎に中間熱処理を施すことを提案する。   As another method for improving productivity, it is conceivable to increase the degree of processing in one drawing process. Therefore, as Method 4, when performing multi-pass drawing in multiple stages, it is proposed to perform hot drawing and perform intermediate heat treatment every two passes.

上記のようにマグネシウム基合金は、塑性加工性が小さいため、加工度をより大きくとると割れなどが生じ易くなる。しかし、加熱により塑性加工性を向上させることができるため、温間にて引き抜き加工を行う場合、加工度を大きくすることができる。また、温間で引き抜くことで、冷間での引き抜き加工の場合よりも、導入される歪みが低減される。そのため、複数パスの引き抜き加工を冷間で行う場合と比べて、中間熱処理の回数を少なくすることができる。   As described above, since the magnesium-based alloy has low plastic workability, cracks and the like are likely to occur when the degree of work is increased. However, since the plastic workability can be improved by heating, the degree of work can be increased when the drawing process is performed warm. Moreover, the distortion | strain introduce | transduced is reduced by drawing | extracting warm compared with the case of the drawing process by cold. Therefore, the number of intermediate heat treatments can be reduced as compared with the case where a plurality of passes of drawing are performed cold.

上記知見に基づき規定される本発明マグネシウム基合金パイプの製造方法によれば、母材管を加熱することなく室温での引き抜き加工を行っても、割れなどが生じることなく、パイプを作製することができる。そのため、引き抜きの際の加熱手段を削減してコストの低減を図り、生産性の向上を実現できる。また、温間にて引き抜き加工を行う場合、加工度を大きくとることができるため、冷間での加工と比較して引き抜きパス数を少なくすることができると共に、中間熱処理の回数も低減することができるため、生産性の向上を図ることができる。   According to the manufacturing method of the magnesium-based alloy pipe of the present invention defined on the basis of the above knowledge, a pipe can be produced without causing cracks even if the base metal pipe is drawn at room temperature. Can do. Therefore, it is possible to reduce the cost by reducing the heating means at the time of drawing, and to improve the productivity. In addition, when drawing is performed warmly, the degree of processing can be increased, so that the number of drawing passes can be reduced as compared with cold processing, and the number of intermediate heat treatments can be reduced. Therefore, productivity can be improved.

特に、本発明では、引き抜き加工を採用することで、高強度で延性に優れたマグネシウム基合金パイプを得ることができる。そのため、得られたパイプを構造材に適用することが可能である。   In particular, in the present invention, a magnesium-based alloy pipe having high strength and excellent ductility can be obtained by employing a drawing process. Therefore, it is possible to apply the obtained pipe to a structural material.

以下、本発明を詳細に説明する。   The present invention will be described in detail below.

マグネシウム基合金からなる母材管は、例えば、押出し又は鋳造などにより得られた管を利用することができる。また、上記手法1により口付け後に熱処理を施してから引き抜かれた引抜管に、上記手法2にあるように中間熱処理を施し、更に引き抜き加工を施してもよいし、上記手法1により口付け後に熱処理を施してから引き抜かれた引抜管に、上記手法3にあるように表面処理を施して更に引き抜いてもよい。また、上記手法3にあるように表面処理したものを上記手法2、4にあるように引き抜き加工及び中間熱処理を施してもよい。その他、上記手法1により口付け後に熱処理を施してから引き抜かれた引抜管に、上記手法4にあるように温間で引き抜き、中間熱処理を施してもよい。   As the base material pipe made of the magnesium-based alloy, for example, a pipe obtained by extrusion or casting can be used. In addition, the drawn tube that has been drawn after the heat treatment by the method 1 and subjected to heat treatment may be subjected to an intermediate heat treatment as described in the method 2, and further subjected to a drawing process. The drawn tube that has been drawn and then drawn may be subjected to a surface treatment as in the above method 3 and further drawn. Further, the surface treatment as in the above method 3 may be subjected to drawing and intermediate heat treatment as in the above methods 2 and 4. Alternatively, an intermediate heat treatment may be performed on the drawn tube that has been heat-treated after mouth-attaching by the method 1 and then withdrawn warmly as in the method 4 described above.

口付け加工は、母材管の先端部を縮径して、後工程の引き抜き加工の際、母材管の先端部を引き抜き用のダイスに挿入できるようにするために行う。このような口付け加工は、スウェージングマシンなどの口付け加工機により行うとよい。   The staking process is performed in order to reduce the diameter of the tip of the base material pipe so that the tip of the base material pipe can be inserted into a drawing die during the drawing process in a subsequent process. Such a splicing process may be performed by a splicing machine such as a swaging machine.

口付け加工によって塑性変形された部分は、塑性加工に伴う歪みが生じている。この塑性変形された部分は、引き抜きの際、引抜加工機のチャックに把持されたり、引き抜きに用いられるダイス及びプラグ(マンドレル)などと接触して初期加工を受ける部分となるため、最も割れや破断が生じ易い。そこで、本発明では、口付け加工された母材管の先端部に特定の熱処理を行って、上記歪みを除去し、塑性加工により不安定になった金属組織を調整する。より具体的には、本発明は、均一的な微細結晶粒を有する組織とすることで、冷間での引き抜き、即ち、室温での引き抜きを実現するものである。   In the portion plastically deformed by the squeezing process, distortion associated with the plastic process occurs. This plastically deformed part is the part that is gripped by the chuck of the drawing machine at the time of drawing or is in contact with the die and plug (mandrel) used for drawing and undergoes initial machining, so it is the most cracked or broken Is likely to occur. Therefore, in the present invention, a specific heat treatment is performed on the tip portion of the base metal pipe that has been subjected to the crimping process to remove the strain, and the metal structure that has become unstable due to plastic working is adjusted. More specifically, the present invention realizes cold drawing, that is, drawing at room temperature, by forming a structure having uniform fine crystal grains.

口付け加工後に行う熱処理は、加熱工程と冷却工程とを具えるものとする。加熱工程において、加熱温度が高いほど、塑性加工に伴う歪みを除去し易い、或いは確実に除去することができるが、結晶粒径が大きくなり易い。一方、加熱温度が低いほど、結晶粒径が小さくなり微細な結晶粒を得易いが、上記歪みの除去が不十分となる恐れがある。これらの事情を考慮して、本発明では、加熱温度を200℃以上450℃未満とする。より好ましくは、250℃以上400℃以下である。   The heat treatment performed after the lip processing includes a heating step and a cooling step. In the heating step, the higher the heating temperature, the easier it is to remove the strain associated with plastic working or it can be removed reliably, but the crystal grain size tends to increase. On the other hand, the lower the heating temperature, the smaller the crystal grain size and the easier to obtain fine crystal grains, but there is a risk that the removal of the strain will be insufficient. Considering these circumstances, in the present invention, the heating temperature is set to 200 ° C. or higher and lower than 450 ° C. More preferably, it is 250 ° C. or higher and 400 ° C. or lower.

上記加熱工程における加熱は、母材管全体に行ってもよいが、生産性を考慮すると、母材管において少なくとも口付け加工が施された部分、具体的には母材管の先端部を加熱すればよい。加熱時間は、加熱する母材管のパイプ径や肉厚、加熱温度に応じて適宜選択するとよく、15〜60分程度が挙げられる。   The heating in the heating step may be performed on the entire base material pipe. However, in consideration of productivity, at least a portion of the base material pipe that has been subjected to the mouth-opening process, specifically, the tip of the base material pipe is heated. That's fine. The heating time may be appropriately selected according to the pipe diameter and thickness of the base material pipe to be heated, and the heating temperature, and may be about 15 to 60 minutes.

冷却手段は、空冷などの自然冷却のほか、衝風などの強制冷却が挙げられ、冷却速度の調整は、風量や風速などにより行うことができる。そして、この冷却工程では、母材管の温度を加熱温度から室温程度にまで下げる。   Examples of the cooling means include natural cooling such as air cooling, and forced cooling such as blast. The adjustment of the cooling rate can be performed by the air volume or the wind speed. In this cooling step, the temperature of the base material tube is lowered from the heating temperature to about room temperature.

本発明では、上記冷却工程により室温に冷却された母材管を引き抜く。上記のように口付け加工後に熱処理による金属組織の制御を行うことで、引き抜き加工の際、別途加熱することなく室温で引き抜くことができる。具体的には、一回の引き抜き加工における断面減少率が6%以上という高加工度での引き抜き加工が可能である。本発明は、このように一回の引き抜き加工における断面減少率を大きくとることができるが、割れなどの発生を考慮して、断面減少率の上限は、20%とすることが好ましい。また、引き抜き加工後のパイプの機械的特性を考慮すると、一回の引き抜き加工における断面減少率は、8%以上15%以下が好ましい。   In the present invention, the base material pipe cooled to room temperature by the cooling step is drawn out. As described above, by controlling the metal structure by heat treatment after the lip processing, the metal structure can be extracted at room temperature without additional heating during the drawing process. Specifically, it is possible to perform a drawing process with a high degree of processing such that the cross-sectional reduction rate in one drawing process is 6% or more. In the present invention, the cross-section reduction rate in one drawing process can be increased as described above, but the upper limit of the cross-section reduction rate is preferably 20% in consideration of the occurrence of cracks and the like. In consideration of the mechanical properties of the pipe after the drawing, the cross-sectional reduction rate in one drawing is preferably 8% or more and 15% or less.

更に、口付け加工の際、少なくとも口付け加工が施される母材管の先端部を加熱して、塑性加工性を高めた状態で口付け加工を行うと、割れなどの発生を抑制して、口付け加工を容易に行うことができる。加熱温度は、高いほど加工性を高めて口付け加工が行い易いが、高過ぎると、表面が酸化するなどの不具合が生じる。従って、加熱温度の上限は、450℃が好ましい。一方、加熱による効果を考慮すると、下限は200℃が好ましい。特に好ましい加熱温度は、250〜350℃である。   Furthermore, at the time of scouring, at least the tip of the base material pipe to be scoured is heated to perform the scouring with improved plastic workability, thereby suppressing the occurrence of cracks and the like. Can be easily performed. The higher the heating temperature is, the easier it is to perform the squeezing process by increasing the workability. However, if the heating temperature is too high, problems such as oxidation of the surface occur. Therefore, the upper limit of the heating temperature is preferably 450 ° C. On the other hand, considering the effect of heating, the lower limit is preferably 200 ° C. A particularly preferable heating temperature is 250 to 350 ° C.

上記加熱は、所望の縮径状態が得られるまでの口付け加工中において連続して行い、加工中に亘って加熱温度が保持されるように行ってもよいが、一旦加熱した後、室温程度に冷却されるまでの間は加熱を行わずに口付け加工を行い、室温になったら再度加熱を行って、再び口付け加工を施してもよい。   The heating may be continuously performed during the mouth-opening process until a desired reduced diameter state is obtained, and may be performed so that the heating temperature is maintained throughout the process. Until it is cooled, the mouth-opening process may be performed without heating, and when it reaches room temperature, it may be heated again and the mouth-opening process may be performed again.

また、上記口付け加工の際の加熱は、母材管全体に行ってもよいが、生産性を考慮すると、加熱を行うのは、母材管の先端部だけでもよい。加熱手段は、特に限定されない。一般的なヒータなどを用いてもよい。温度の調整は、予めヒータなどで母材管の先端部を加熱し、スウェージングマシンなどの口付け加工機に導入するまでの時間を変化させることで行ってもよい。効率よく口付け加工を行うためには、母材管を加熱後、口付け加工機に母材管を導入するまでの温度の低下が少ないことが望ましい。   In addition, the heating in the above-mentioned splicing process may be performed on the entire base material pipe, but in consideration of productivity, the heating may be performed only on the tip portion of the base material pipe. The heating means is not particularly limited. A general heater or the like may be used. The temperature may be adjusted by previously heating the tip of the base material tube with a heater or the like, and changing the time taken to introduce it into a mouth-forming machine such as a swaging machine. In order to efficiently perform the splicing process, it is desirable that the temperature decrease from when the base material pipe is heated to when the base material pipe is introduced into the splicing machine is small.

引き抜き加工は、所望の寸法のパイプが得られるまで複数パスを多段階に行ってもよい。引き抜き加工を室温で行う場合、1パス毎に中間熱処理を行うことが好ましい。引き抜き加工を一回施すことで、引き抜かれたパイプには歪み及び双晶変形が生じる。特に、室温にて引き抜く場合、より多くの歪み及び双晶変形が導入される。そのため、複数パスの引き抜き加工を冷間にて行う場合、引き抜き加工に伴って導入された歪みの除去、及び金属組織の再結晶の促進を図るべく、1パス毎に中間熱処理を施すことが好ましい。このような中間熱処理により、均一的な微細結晶粒からなる金属組織となるため、再び、室温での引き抜き加工が可能となる。   The drawing process may be performed in multiple stages until a pipe having a desired size is obtained. When the drawing process is performed at room temperature, it is preferable to perform an intermediate heat treatment for each pass. By performing the drawing process once, strain and twin deformation occur in the drawn pipe. Especially when drawing at room temperature, more strain and twin deformation are introduced. Therefore, when performing a plurality of passes of drawing in a cold state, it is preferable to perform an intermediate heat treatment for each pass in order to remove distortion introduced along with the drawing and promote recrystallization of the metal structure. . By such an intermediate heat treatment, a metal structure consisting of uniform fine crystal grains is formed, so that drawing at room temperature becomes possible again.

上記のような歪みの除去、及び金属組織の再結晶化を効果的に行うのに最適な中間熱処理としては、引き抜かれた引抜管を加熱温度200℃以上450℃未満に加熱する工程と、加熱後に冷却する工程とを具える処理が好ましい。加熱後の冷却は、室温程度まで冷却することが好ましい。加熱条件、冷却条件は、上記口付け加工後に行う熱処理と同様としてもよい。   As an optimal intermediate heat treatment for effectively removing the strain as described above and recrystallizing the metal structure, a process of heating the drawn pipe to a heating temperature of 200 ° C. or higher and lower than 450 ° C., heating A treatment comprising a step of cooling later is preferred. The cooling after heating is preferably performed to about room temperature. The heating condition and the cooling condition may be the same as those in the heat treatment performed after the mouth-opening process.

一回の引き抜き加工における断面減少率をより大きくとる場合には、塑性加工性を向上するために、引き抜き加工は、温間で行うことが好ましい。具体的には、100℃以上300℃以下、特に好ましくは120℃以上200℃以下に母材管を加熱して引き抜くことが好ましい。引き抜き温度への加熱方法としては、予熱した潤滑油に母材管を浸漬したり、雰囲気炉での加熱、高周波加熱炉での加熱又は引き抜き用のダイスの加熱により行うことが好ましい。引き抜き温度は、加熱後、母材管を引き抜き用のダイスに導入するまでの放冷時間を変えることで調整できる。上記引き抜き温度への昇温速度は、1℃/sec〜100℃/secとすることが好ましい。また、引き抜き加工の引抜速度は1m/min以上が好適である。引き抜き加工後の冷却速度は0.1℃/sec以上が好ましい。引き抜き後の冷却手段は、空冷のほか、衝風などが挙げられ、速度の調整は、風速、風量などにより行うことができる。   When the cross-sectional reduction rate in one drawing process is increased, the drawing process is preferably performed warm in order to improve plastic workability. Specifically, it is preferable to heat the base material tube to 100 ° C. to 300 ° C., particularly preferably 120 ° C. to 200 ° C., and pull it out. The heating method to the drawing temperature is preferably performed by immersing the base material tube in preheated lubricating oil, heating in an atmospheric furnace, heating in a high-frequency heating furnace, or heating a drawing die. The drawing temperature can be adjusted by changing the cooling time until the base material tube is introduced into the drawing die after heating. The rate of temperature increase to the drawing temperature is preferably 1 ° C./sec to 100 ° C./sec. Further, the drawing speed of the drawing process is preferably 1 m / min or more. The cooling rate after drawing is preferably 0.1 ° C./sec or more. The cooling means after the drawing includes air cooling, blast, etc., and the speed can be adjusted by the wind speed, the air volume, and the like.

上記のような温間で引き抜き加工を行う場合、一回の引き抜き加工における断面減少率を26%以下とすることができる。特に、好ましくは、10〜20%である。   When the drawing process is performed in the warm condition as described above, the cross-sectional reduction rate in one drawing process can be set to 26% or less. Particularly, it is preferably 10 to 20%.

そして、上記温間での引き抜き加工を複数パスで多段階に行う場合、2パス毎に引抜管に中間熱処理を施すと、歪みの除去、及び金属組織の再結晶化を効果的に行うことができて好ましい。中間熱処理は、上記冷間での引き抜き加工を複数パス行う場合と同様の条件としてもよい。   And, when performing the warm drawing in multiple stages in multiple passes, if an intermediate heat treatment is performed on the drawn tube every two passes, it is possible to effectively remove strain and recrystallize the metal structure. This is preferable. The intermediate heat treatment may be performed under the same conditions as in the case where a plurality of cold drawing processes are performed.

上記のように繰り返し複数パスの引き抜き加工を行うことで、より細径のパイプを得ることができる。このとき、引き抜き加工におけるトータルの断面減少率は25%以上であることが好適である。より好ましいトータル断面減少率は40%以上である。このようなトータル断面減少率25%以上の引き抜き加工により、強度と靭性を兼ね備えたパイプを得ることが可能になる。   By repeatedly drawing a plurality of passes as described above, a thinner pipe can be obtained. At this time, the total cross-sectional reduction rate in the drawing process is preferably 25% or more. A more preferable total cross-section reduction rate is 40% or more. By drawing such a total cross-section reduction rate of 25% or more, it becomes possible to obtain a pipe having both strength and toughness.

押出しにより得られたマグネシウム基合金からなる母材管を用いる場合、1パス目の引き抜き加工を室温で断面減少率15%以下として行い、この引き抜き加工に続いて引抜管に中間熱処理を施し、中間熱処理に続いて2パス目の引き抜き加工を室温で行ってもよい。1パス目の引き抜き加工後に中間熱処理を施すことで、1パス目の引き抜き加工により導入された歪みを除去すると共に、再結晶化を促進し、2パス目の引き抜き加工も、室温にて行うことができる。特に、中間熱処理により、2パス目の引き抜き加工は、20%以下という高い加工度での加工が可能である。中間熱処理は、上記と同様としてもよい。   When using a base metal tube made of a magnesium-based alloy obtained by extrusion, the first pass drawing process is performed at room temperature with a cross-section reduction rate of 15% or less, and this drawing process is followed by an intermediate heat treatment, Following the heat treatment, the second pass drawing may be performed at room temperature. By applying an intermediate heat treatment after the first pass drawing process, the distortion introduced by the first pass drawing process is removed, recrystallization is promoted, and the second pass drawing process is also performed at room temperature. Can do. In particular, by the intermediate heat treatment, the second pass drawing can be performed with a high degree of processing of 20% or less. The intermediate heat treatment may be the same as described above.

引き抜き加工の際、摩擦熱による焼付きを防止するためには、潤滑剤を用いることが好ましい。そして、マグネシウム基合金からなる母材管がこの潤滑剤を引き込み易いように、引き抜き前に母材管の表面を粗くする処理を施すことが好ましい。このような表面処理を施すことで、室温にて引き抜き加工を行っても、焼付きが生じにくく、安定した引き抜き加工を行うことができる。   In the drawing process, it is preferable to use a lubricant in order to prevent seizure due to frictional heat. And it is preferable to perform the process which roughens the surface of a preform | base_material pipe | tube before drawing | extracting so that the preform | base_material pipe | tube consisting of a magnesium base alloy may pull in this lubricant easily. By performing such a surface treatment, seizure hardly occurs even when the drawing process is performed at room temperature, and a stable drawing process can be performed.

上記表面処理は、サンドペーパーなどを用いて行うことが挙げられる。また、表面処理は、処理後の母材管の表面粗さが10点平均粗さで5μm以上となるように施すと、潤滑剤の引き込みを行い易い。しかし、粗すぎると、製品精度が低下するため、上限は、15μm以下が好ましい。潤滑剤としては、パウダーや潤滑油が利用される。潤滑剤は、引き抜き加工の際、引き抜き用のダイスと母材管との間に加圧して強制的に供給することが好ましい。   The surface treatment may be performed using sandpaper or the like. In addition, when the surface treatment is performed so that the surface roughness of the base material tube after the treatment is 10 μm or more, the lubricant is easily drawn. However, if it is too coarse, the product accuracy is lowered, so the upper limit is preferably 15 μm or less. As the lubricant, powder or lubricating oil is used. It is preferable that the lubricant is forcibly supplied by applying a pressure between the drawing die and the base material pipe during the drawing process.

本発明において引き抜き加工は、母材管を引き抜き用のダイスなどに通すことで行う。その際、銅合金やアルミニウム合金などの管引き抜きで実績のある方法を用いればよい。例えば、(1)被加工材の内部にプラグを配置するプラグ引き、(2)ダイスを貫通するマンドレルを用いるマンドレル引きなどが挙げられる。プラグ引きには、固定プラグ引き、フローティングプラグ引きや、セミフローティングプラグ引きなどが挙げられる。マンドレル引きは、ダイスを貫通するマンドレルを被加工材全長に配置して引き抜きを行うとよい。   In the present invention, the drawing process is performed by passing the base material tube through a drawing die or the like. At that time, a method having a proven track record in pipe drawing of copper alloy or aluminum alloy may be used. For example, (1) plug pulling in which a plug is arranged inside the workpiece, (2) mandrel pulling using a mandrel penetrating a die, and the like can be mentioned. Examples of plug pulling include fixed plug pulling, floating plug pulling, and semi-floating plug pulling. The mandrel pulling may be performed by placing a mandrel penetrating the die over the entire length of the workpiece.

本発明は、合金組成によらず、室温程度での加工性に乏しいhcp構造を有するマグネシウム基合金において有効である。例えば、鋳造用マグネシウム基合金や展伸用マグネシウム基合金を利用することができる。具体的には、Alを0.1質量%以上12質量%以下含有するものや、Zn:0.1質量%以上10質量%以下及びZr:0.1質量%以上2.0質量%を含有するもの、その他、耐熱性に優れる希土類元素を5.0質量%以下含有するものが挙げられる。Alを含有する場合、更に、Mn:0.1質量%以上2.0質量%以下、Zn:0.1質量%以上5.0質量%以下、Si:0.1質量%以上5.0質量%以下より選択された1種以上を含有するものが挙げられる。上記合金組成として代表的なASTM記号におけるAZ系、AS系、AM系、ZK系、EZ系などが利用できる。Alの含有量として、質量%で0.1〜2.0%未満のものと、2.0〜12.0%のものとを区別してもよい。上記化学成分の他にはMg及び不純物が含まれる合金として利用されることが一般的である。不純物には、Fe、Si、Cu、Ni、Caなどが挙げられる。   The present invention is effective for a magnesium-based alloy having an hcp structure with poor workability at about room temperature regardless of the alloy composition. For example, a magnesium base alloy for casting or a magnesium base alloy for drawing can be used. Specifically, Al containing 0.1% by mass to 12% by mass, Zn: 0.1% by mass to 10% by mass and Zr: 0.1% by mass to 2.0% by mass, etc. The thing containing 5.0 mass% or less of the outstanding rare earth elements is mentioned. When Al is contained, it further contains one or more selected from Mn: 0.1 mass% to 2.0 mass%, Zn: 0.1 mass% to 5.0 mass%, Si: 0.1 mass% to 5.0 mass% Things. As the above alloy composition, AST, AS, AM, ZK, EZ and the like in typical ASTM symbols can be used. The content of Al may be distinguished from 0.1 to less than 2.0% by mass and 2.0 to 12.0%. In general, it is used as an alloy containing Mg and impurities in addition to the above chemical components. Impurities include Fe, Si, Cu, Ni, Ca and the like.

AZ系においてAlの含有量が2.0〜12.0質量%となるものとして、例えば、AZ31、AZ61、AZ91などが挙げられる。AZ31は、例えば、質量%でAl:2.5〜3.5%、Zn:0.5〜1.5%、Mn:0.15〜0.5%、Cu:0.05%以下、Si:0.1%以下、Ca:0.04%以下を含有するマグネシウム基合金である。AZ61は、例えば、質量%でAl:5.5〜7.2%、Zn:0.4〜1.5%、Mn:0.15〜0.35%、Ni:0.05%以下、Si:0.1%以下を含有するマグネシウム基合金である。AZ91は例えば、質量%でAl:8.1〜9.7%、Zn:0.35〜1.0%、Mn:0.13%以上、Cu:0.1%以下、Ni:0.03%以下、Si:0.5%以下を含有するマグネシウム基合金である。AZ系においてAlの含有量が0.1〜2.0質量%未満となるものとして、例えば、AZ10、AZ21などが挙げられる。AZ10は、例えば、質量%でAl:1.0〜1.5%、Zn:0.2〜0.6%、Mn:0.2%以上、Cu:0.1%以下、Si:0.1%以下、Ca:0.4%以下を含有するマグネシウム基合金である。AZ21は、例えば、質量%でAl:1.4〜2.6%、Zn:0.5〜1.5%、Mn:0.15〜0.35%、Ni:0.03%以下、Si:0.1%以下を含有するマグネシウム基合金である。   Examples of the AZ-based Al content of 2.0 to 12.0% by mass include AZ31, AZ61, and AZ91. AZ31 is magnesium containing, for example, Al: 2.5 to 3.5%, Zn: 0.5 to 1.5%, Mn: 0.15 to 0.5%, Cu: 0.05% or less, Si: 0.1% or less, and Ca: 0.04% or less in mass%. It is a base alloy. AZ61 is, for example, a magnesium-based alloy containing Al: 5.5 to 7.2%, Zn: 0.4 to 1.5%, Mn: 0.15 to 0.35%, Ni: 0.05% or less, and Si: 0.1% or less in mass%. AZ91 is, for example, a magnesium-based alloy containing Al: 8.1-9.7%, Zn: 0.35-1.0%, Mn: 0.13% or more, Cu: 0.1% or less, Ni: 0.03% or less, Si: 0.5% or less in mass% It is. Examples of the AZ-based Al content of 0.1 to less than 2.0% by mass include AZ10 and AZ21. AZ10 is, for example, a magnesium group containing Al: 1.0 to 1.5%, Zn: 0.2 to 0.6%, Mn: 0.2% or more, Cu: 0.1% or less, Si: 0.1% or less, Ca: 0.4% or less in mass% It is an alloy. AZ21 is, for example, a magnesium-based alloy containing Al: 1.4 to 2.6%, Zn: 0.5 to 1.5%, Mn: 0.15 to 0.35%, Ni: 0.03% or less, and Si: 0.1% or less in mass%.

AS系においてAlの含有量が2.0〜12.0質量%となるものとして、例えば、AS41などが挙げられる。AS41は、例えば、質量%でAl:3.7〜4.8%、Zn:0.1%以下、Cu:0.15%以下、Mn:0.35〜0.60%、Ni:0.001%以下、Si:0.6〜1.4%を含有するマグネシウム基合金である。AS系においてAlの含有量が0.1〜2.0質量%未満となるものとしてAS21などが挙げられる。AS21は、例えば、質量%でAl:1.4〜2.6%、Zn:0.1%以下、Cu:0.15%以下、Mn:0.35〜0.60%、Ni:0.001%、Si:0.6〜1.4%を含有するマグネシウム基合金である。   As an example in which the content of Al in the AS system is 2.0 to 12.0% by mass, AS41 and the like can be mentioned. AS41 is magnesium containing, for example, Al: 3.7 to 4.8%, Zn: 0.1% or less, Cu: 0.15% or less, Mn: 0.35 to 0.60%, Ni: 0.001% or less, Si: 0.6 to 1.4% by mass It is a base alloy. AS21 etc. are mentioned as the content of Al in the AS system being less than 0.1 to 2.0% by mass. AS21 is a magnesium group containing, for example, Al: 1.4 to 2.6% by mass, Zn: 0.1% or less, Cu: 0.15% or less, Mn: 0.35 to 0.60%, Ni: 0.001%, Si: 0.6 to 1.4% It is an alloy.

AM系では、例えば、AM60、AM100などが挙げられる。AM60は、例えば、質量%でAl:5.5〜6.5%、Zn:0.22%以下、Cu:0.35%以下、Mn:0.13%以上、Ni:0.03%以下、Si:0.5%以下を含有するマグネシウム基合金である。AM100は、例えば、質量%でAl:9.3〜10.7%、Zn:0.3%以下、Cu:0.1%以下、Mn:0.1〜0.35%、Ni:0.01%以下、Si:0.3%以下を含有するマグネシウム基合金である。   Examples of AM systems include AM60 and AM100. AM60 is a magnesium-based alloy containing, for example, Al: 5.5-6.5% by mass, Zn: 0.22% or less, Cu: 0.35% or less, Mn: 0.13% or more, Ni: 0.03% or less, Si: 0.5% or less It is. AM100 is, for example, magnesium group containing Al: 9.3 to 10.7%, Zn: 0.3% or less, Cu: 0.1% or less, Mn: 0.1 to 0.35%, Ni: 0.01% or less, Si: 0.3% or less in mass% It is an alloy.

ZK系では、例えば、ZK40、ZK60などが挙げられる。ZK40は、例えば、質量%でZn:3.5〜4.5%、Zr:0.45%以上を含有するマグネシウム基合金である。ZK60は、例えば、質量%でZn:4.8〜6.2%、Zr:0.45%以上を含有するマグネシウム基合金である。   In the ZK system, for example, ZK40, ZK60 and the like can be mentioned. ZK40 is, for example, a magnesium-based alloy containing Zn: 3.5 to 4.5% by mass% and Zr: 0.45% or more. ZK60 is, for example, a magnesium-based alloy containing Zn: 4.8 to 6.2% and Zr: 0.45% or more by mass.

マグネシウム単体では十分な強度を得ることが難しいが、上記の化学成分を含むことで好ましい強度が得られる。   Although it is difficult to obtain sufficient strength with magnesium alone, preferable strength can be obtained by including the above chemical components.

上記製造方法により得られたマグネシウム基合金パイプは、引張強度が280MPa以上、伸びが5%以上という高強度のパイプである。また、得られたパイプに加熱温度200〜300℃の熱処理を別途施すことで、引張強度250MPa以上、伸び10%以上という延性により優れたパイプが得られ、構造材として十分利用することができる。   The magnesium-based alloy pipe obtained by the above production method is a high-strength pipe having a tensile strength of 280 MPa or more and an elongation of 5% or more. Further, by subjecting the obtained pipe to a heat treatment at a heating temperature of 200 to 300 ° C., a pipe excellent in ductility with a tensile strength of 250 MPa or more and an elongation of 10% or more can be obtained, and can be sufficiently used as a structural material.

以下、本発明の実施の形態を説明する。   Embodiments of the present invention will be described below.

(試験例1-1)
ASTM記号でAM60合金、AZ31合金、AZ61合金及びZK60合金相当の押出材(母材管;外径φ26.0mm、厚さ1.5mm、長さ2000mm)を準備し、スウェージングマシンにより口付け加工を行った後、母材管に熱処理を施してから、以下の条件にて引き抜き加工を行った。
(Test Example 1-1)
Prepare an extruded material (base material pipe: outer diameter φ26.0mm, thickness 1.5mm, length 2000mm) equivalent to AM60 alloy, AZ31 alloy, AZ61 alloy and ZK60 alloy with ASTM symbol, and perform scouring with a swaging machine After that, the base material pipe was subjected to a heat treatment and then drawn under the following conditions.

(合金組成)
AM60合金:質量%でAl:6.1%、Mn:0.44%を含み、残部がMgと不純物からなるマグネシウム基合金
AZ31合金:質量%で、Al:3.0%、Zn:1.0%、Mn:0.15%を含み、残部がMg及び不純物からなるマグネシウム基合金
AZ61合金:質量%でAl:6.4%、Zn:1.0%、Mn:0.28%を含み、残部がMgおよび不純物からなるマグネシウム基合金
ZK60合金:質量%でZn:5.5%、Zr:0.45%を含み、残部がMgおよび不純物からなるマグネシウム基合金。
(Alloy composition)
AM60 alloy: Mag-based alloy containing Al: 6.1% and Mn: 0.44% by mass, with the balance being Mg and impurities
AZ31 alloy: Mass%, Al: 3.0%, Zn: 1.0%, Mn: 0.15% Magnesium-based alloy with Mg and impurities remaining
AZ61 alloy: Magnesium-based alloy containing Al: 6.4% by mass, Zn: 1.0%, Mn: 0.28%, with the balance being Mg and impurities
ZK60 alloy: Magnesium-based alloy containing, by mass, Zn: 5.5% and Zr: 0.45%, with the balance being Mg and impurities.

(口付け加工)
本例において口付け加工は、母材管の先端部を350℃に加熱して行った。
(Kiping)
In this example, the splicing process was performed by heating the tip of the base tube to 350 ° C.

(熱処理)
本例において、熱処理は、口付けされた母材管の先端部を350℃の温度にて1時間加熱した後、室温(20℃)まで冷却する、という手順で行った。
(Heat treatment)
In this example, the heat treatment was performed by a procedure in which the tip end portion of the spliced base metal tube was heated at a temperature of 350 ° C. for 1 hour and then cooled to room temperature (20 ° C.).

(引き抜き加工)
引き抜き加工は、プラグを用いたプラグ引きとし、プラグ径を異ならせることで断面減少率の異なる4種類の加工(条件1-A〜1-D)を行った。本試験には、ダイス径:φ24.5mmのダイス、プラグ径:φ21.6mm(断面減少率:9.1%)、φ21.7mm(同:12.0%)、φ21.9mm(同:17.9%)、φ22.0mm(同:20.9%)の4種類のプラグを用いた。また、引き抜き加工は、加熱を行わず、母材管の温度を室温(20℃)程度として行った。更に、引き抜き加工は、引き抜き用のダイスと母材管との間に潤滑剤を供給しながら行った。以下の試験についても、同様に潤滑剤を供給しながら引き抜き加工を行った。
(Drawing)
The drawing process was a plug drawing using a plug, and four types of processes (conditions 1-A to 1-D) having different cross-sectional reduction rates were performed by changing the plug diameter. In this test, a die diameter: φ24.5mm, plug diameter: φ21.6mm (cross-sectional reduction rate: 9.1%), φ21.7mm (same: 12.0%), φ21.9mm (same: 17.9%), φ22 Four types of plugs of 0.0 mm (20.9%) were used. In addition, the drawing process was performed without heating, and the temperature of the base material tube was about room temperature (20 ° C.). Further, the drawing process was performed while supplying a lubricant between the drawing die and the base material pipe. In the following tests, the drawing process was performed while supplying the lubricant in the same manner.

本試験では、各条件に対して、上記各成分の母材管を10本ずつ用意して、プラグ引きを行った。各条件において、割れなどが生じることなく引き抜き加工が行えた本数を表1に示す。   In this test, 10 base metal tubes of each component were prepared for each condition, and plugging was performed. Table 1 shows the number of wires that could be drawn without cracking under each condition.

Figure 0003735101
Figure 0003735101

表1に示すように、合金種によらずいずれの試料も、室温での引き抜き加工が可能であることがわかる。特に、断面減少率が9.1%という高い加工度であっても、室温で引き抜くことができることがわかる。しかし、加工度(断面減少率)が17.9%となると、10本中2〜4本に割れなどが生じ、加工度が20%を超えると、10本全てに割れなどが生じた。このことから、断面減少率は、20%以下、特に、15%以下が好ましいことが確認された。   As shown in Table 1, it can be seen that any sample can be drawn at room temperature regardless of the alloy type. In particular, it can be seen that even when the degree of cross-section reduction is as high as 9.1%, it can be drawn at room temperature. However, when the workability (cross-sectional reduction rate) was 17.9%, 2 to 4 of 10 cracks occurred, and when the workability exceeded 20%, all 10 cracks occurred. From this, it was confirmed that the cross-sectional reduction rate is preferably 20% or less, particularly preferably 15% or less.

また、断面減少率の下限を調べたところ、パイプの機械的特性、及び生産性を考慮すると、6%以上、特に8%以上が好ましいことがわかった。   Further, when the lower limit of the cross-section reduction rate was examined, it was found that 6% or more, particularly 8% or more is preferable in consideration of the mechanical characteristics and productivity of the pipe.

更に、条件1-Bの引き抜き加工により得られた各合金種のパイプの引張強度、及び伸びを調べてみたところ、いずれも引張強度が280MPa以上で、伸びが5%以上であった。また、これらのパイプに200〜300℃×30分の熱処理を別途行ったところ、引張強度250MPa以上、伸び10%以上の高強度で延性に優れたパイプが得られた。   Further, when the tensile strength and elongation of each alloy type pipe obtained by the drawing process under Condition 1-B were examined, the tensile strength was 280 MPa or more and the elongation was 5% or more. When these pipes were separately heat-treated at 200 to 300 ° C. for 30 minutes, pipes having a high strength with a tensile strength of 250 MPa or more and an elongation of 10% or more and excellent ductility were obtained.

(試験例1-2)
上記試験例1-1において、口付け加工を行った後に行う熱処理の加熱温度を150〜450℃の範囲で変化させて、試験例1-1と同様にしてプラグ引きを行ってみた。本試験では、断面減少率12.0%、17.9%の2種類の加工を行った(条件2-B、2-C)。加熱時間は、いずれの加熱温度においても30分間とした。表2にAZ31合金からなる押出材を用いた際の結果を示す。
(Test Example 1-2)
In Test Example 1-1, plugging was performed in the same manner as in Test Example 1-1 by changing the heating temperature of the heat treatment to be performed after the mouth-opening process in the range of 150 to 450 ° C. In this test, two types of processing with a cross-section reduction rate of 12.0% and 17.9% were performed (Conditions 2-B and 2-C). The heating time was 30 minutes at any heating temperature. Table 2 shows the results when using an extruded material made of AZ31 alloy.

Figure 0003735101
Figure 0003735101

表2に示すように、口付け加工後において熱処理を行うことで、室温であっても引き抜き加工を行うことができることがわかる。特に、熱処理の加熱温度を200℃以上とすると、断面減少率が17.9%と高加工度であっても、10本中6割以上において割れなどが生じることがなく、引き抜き加工が可能であった。また、加熱温度が250℃以上400℃以下の場合は、10本中8割以上において割れなどが生じることがなく、引き抜き加工を行うことができた。一方、加熱温度が450℃の場合も10本中6割に割れなどが生じた。このことから、口付け加工後に施す熱処理の加熱温度は、200℃以上450℃未満、特に、250℃以上400℃以下が好ましいことが確認された。AZ31合金以外のAM60合金、AZ61合金、及びZK60合金についても同様の結果が得られた。   As shown in Table 2, it can be seen that the drawing process can be performed even at room temperature by performing the heat treatment after the staking process. In particular, when the heating temperature of the heat treatment is 200 ° C. or higher, even when the cross-section reduction rate is 17.9% and the degree of processing is high, cracking or the like does not occur in 60% or more of 10 pieces, and drawing processing is possible. . Further, when the heating temperature was 250 ° C. or higher and 400 ° C. or lower, cracking or the like did not occur in 80% or more of 10 pieces, and the drawing process could be performed. On the other hand, when the heating temperature was 450 ° C., cracks occurred in 60% of the 10 pieces. From this, it was confirmed that the heating temperature of the heat treatment applied after the lip processing is preferably 200 ° C. or higher and lower than 450 ° C., particularly preferably 250 ° C. or higher and 400 ° C. or lower. Similar results were obtained for AM60 alloy, AZ61 alloy, and ZK60 alloy other than AZ31 alloy.

(試験例1-3)
上記試験例1-1において、口付け加工を行う際の加熱温度を100〜500℃の範囲で変化させて、口付け加工を行ってみた。その結果、いずれの合金種においても、加熱温度が200℃以上の場合、割れなどが生じることなく、口付け加工を行うことができた。また、いずれの合金種においても、温度が高いほど、口付け加工を行い易かったが、450℃を超えると、表面に酸化が認められた。このことから、口付け加工を行う際の加熱温度は、200℃以上450℃以下が好ましいことが確認された。
(Test Example 1-3)
In the above test example 1-1, the heating process at the time of performing the staking process was changed in the range of 100 to 500 ° C., and the staking process was performed. As a result, in any of the alloy types, when the heating temperature was 200 ° C. or higher, it was possible to perform the sticking process without causing cracks. Further, in any alloy type, the higher the temperature, the easier it was to carry out the sticking process, but when the temperature exceeded 450 ° C., oxidation was observed on the surface. From this, it was confirmed that the heating temperature at the time of scouring is preferably 200 ° C. or higher and 450 ° C. or lower.

(試験例1-4)
ダイス径φ24.5mm、プラグ径φ21.6mmを用いた表1条件1-Aに示す引き抜き加工を行った各合金種のパイプに、それぞれ熱処理を施してから、以下の条件にて引き抜き加工を行った。
(Test Example 1-4)
The pipes of each alloy type that were subjected to the drawing process shown in Table 1 Condition 1-A using a die diameter of φ24.5mm and a plug diameter of φ21.6mm were each heat treated and then drawn under the following conditions. It was.

(熱処理)
本例において、熱処理は、引き抜かれたパイプ全体を350℃の温度にて1時間加熱した後、室温(20℃)まで冷却する、という手順で行った。
(Heat treatment)
In this example, the heat treatment was performed by a procedure in which the entire drawn pipe was heated at a temperature of 350 ° C. for 1 hour and then cooled to room temperature (20 ° C.).

(引き抜き加工)
引き抜き加工は、プラグを用いたプラグ引きとし、プラグ径を異ならせることで断面減少率の異なる4種類の加工(条件3-E〜3-H)を行った。本試験には、ダイス径:φ23.0mmのダイス、プラグ径:φ20.2mm(断面減少率:9.5%)、φ20.4mm(同:15.6%)、φ20.5mm(同:18.7%)、φ20.6mm(同:21.7%)の4種類のプラグを用いた。また、引き抜き加工は、加熱を行わず、母材管の温度を室温(20℃)として行った。本試験でも、試験例1-1と同様に、各条件に対して、試験例1-1と同様の各成分の母材管を10本ずつ用意して、プラグ引きを行った。各条件において、割れなどが生じることなく引き抜き加工が行えた本数を表3に示す。
(Drawing)
The drawing process was a plug drawing using a plug, and four types of processes (conditions 3-E to 3-H) with different cross-section reduction rates were performed by changing the plug diameter. In this test, the die diameter: φ23.0mm, plug diameter: φ20.2mm (cross-section reduction rate: 9.5%), φ20.4mm (same: 15.6%), φ20.5mm (same: 18.7%), φ20 Four types of plugs of .6 mm (21.7%) were used. The drawing process was performed without heating, and the temperature of the base material tube was room temperature (20 ° C.). In this test, similarly to Test Example 1-1, 10 base metal tubes of the same components as in Test Example 1-1 were prepared for each condition, and plugging was performed. Table 3 shows the number of pipes that could be drawn without cracking under each condition.

Figure 0003735101
Figure 0003735101

表3に示すように、一旦引き抜き加工が施されたパイプであっても、引き抜き後に熱処理を施すことで、合金種によらずいずれの試料も、室温での引き抜き加工が可能であることがわかる。特に、断面減少率9.5%という高い加工度であっても、室温で引き抜けることがわかる。しかし、加工度(断面減少率)が20%を超えると、10本全てに割れなどが生じた。このことから、断面減少率は、20%以下が好ましいことが確認された。   As shown in Table 3, even if the pipe has been once drawn, it can be understood that any sample can be drawn at room temperature regardless of the alloy type by performing heat treatment after drawing. . In particular, it can be seen that even when the degree of cross-section reduction is as high as 9.5%, it can be pulled out at room temperature. However, when the degree of processing (cross-sectional reduction rate) exceeded 20%, all 10 pieces were cracked. From this, it was confirmed that the cross-sectional reduction rate is preferably 20% or less.

更に、条件3-Fの引き抜き加工により得られた各合金種のパイプの引張強度、及び伸びを調べてみたところ、いずれも引張強度が280MPa以上で、伸びが5%以上であった。また、これらのパイプに200〜300℃×30分の熱処理を別途行ったところ、引張強度250MPa以上、伸び10%以上の高強度で延性に優れたパイプが得られた。   Further, when the tensile strength and elongation of the pipes of each alloy type obtained by the drawing process under Condition 3-F were examined, the tensile strength was 280 MPa or more and the elongation was 5% or more. When these pipes were separately heat-treated at 200 to 300 ° C. for 30 minutes, pipes having a high strength with a tensile strength of 250 MPa or more and an elongation of 10% or more and excellent ductility were obtained.

(試験例1-5)
試験例1-1で用いた押出材と同様の押出材を用意し、試験例1-1と同様に口付け加工を行った後、同様の熱処理を施してから、以下の条件にて引き抜き加工を行った。
(Test Example 1-5)
Prepare an extruded material similar to the extruded material used in Test Example 1-1, and after performing the same mouth heat treatment as in Test Example 1-1, perform the same heat treatment, and then perform the drawing process under the following conditions: went.

引き抜き加工は、プラグを用いたプラグ引きとし、表4に示すダイス径のダイス及びプラグ径のプラグを用いて、複数パスのプラグ引きを多段階に行った。また、引き抜き加工は、母材管の温度を室温(20℃)とした冷間加工と、加工温度(ここでは引き抜き用のダイスに挿入する直前の母材管の温度)を140℃とした温間加工とを行った。温間加工における母材管の加熱は、180℃に加熱した潤滑油中に浸漬することで行った。   The drawing process was a plug drawing using a plug, and a multi-pass plug drawing was performed in multiple stages using a die having a die diameter shown in Table 4 and a plug having a plug diameter. In addition, the drawing process includes a cold working with the temperature of the base material pipe set to room temperature (20 ° C) and a temperature at which the processing temperature (the temperature of the base material pipe immediately before being inserted into the drawing die) is 140 ° C. And inter-working. The base material tube in the warm working was heated by being immersed in a lubricating oil heated to 180 ° C.

冷間加工では、1パス毎に300℃×30分の中間熱処理を行った工程、中間熱処理を行わない工程の2種類の引き抜きを行った。温間加工では、1パス毎に300℃×30分の中間熱処理を行った工程、2パス毎に300℃×30分の中間熱処理を行った工程、中間熱処理を行わない工程の3種類の引き抜きを行った。表4にAZ31合金からなる押出材を用いた際の結果を示す。表4において、○は割れなどが生じることなく引き抜き加工ができたもの、×は割れなどが生じて引き抜き加工ができなかったもの、−は引き抜き加工を実施していないことを示す。   In cold working, two types of drawing were performed for each pass, a process in which an intermediate heat treatment was performed at 300 ° C. for 30 minutes and a process in which no intermediate heat treatment was performed. In warm processing, there are three types of drawing: a process where an intermediate heat treatment is performed at 300 ° C for 30 minutes every pass, a process where an intermediate heat treatment is performed at 300 ° C for 30 minutes every two passes, and a process where no intermediate heat treatment is performed Went. Table 4 shows the results when using an extruded material made of AZ31 alloy. In Table 4, “◯” indicates that the drawing process was performed without causing cracks, “×” indicates that the drawing process was not possible due to cracks, and “−” indicates that the drawing process was not performed.

Figure 0003735101
Figure 0003735101

表4サンプル1に示すように1パス毎に中間熱処理を施すことで、室温であっても、複数パスの引き抜き加工を多段階に行うことが可能であることがわかる。特に、10%以上という高い加工度での引き抜き加工が可能であることがわかる。一方、表4サンプル4に示すように温間において引き抜き加工を行う場合、2パス毎に熱処理を施すことで、複数パスを多段階に行うことが可能であることがわかる。特に、10%以上の高加工度であっても、引き抜き加工が行えることがわかる。一方、パス間において中間熱処理を施さない場合、表4サンプル2に示すように1パス目は室温でも引き抜けたが、2パス目の途中で割れが生じた。このことから、1パス毎に熱処理を施すことで、室温であっても、複数パスの引き抜き加工を多段階で行うことができることが確認された。AZ31合金以外のAM60合金、AZ61合金、及びZK60合金についても同様の結果が得られた。   As shown in Table 4 Sample 1, it can be seen that by performing an intermediate heat treatment for each pass, it is possible to perform a multi-pass drawing process in multiple stages even at room temperature. In particular, it can be seen that a drawing process with a high degree of processing of 10% or more is possible. On the other hand, as shown in Sample 4 in Table 4, it can be seen that when drawing is performed warm, a plurality of passes can be performed in multiple stages by performing heat treatment every two passes. In particular, it can be seen that the drawing can be performed even at a high degree of processing of 10% or more. On the other hand, when no intermediate heat treatment was performed between the passes, the first pass was pulled out even at room temperature as shown in Table 4 Sample 2, but cracking occurred in the middle of the second pass. From this, it was confirmed that by performing heat treatment for each pass, a plurality of passes can be drawn in multiple stages even at room temperature. Similar results were obtained for AM60 alloy, AZ61 alloy, and ZK60 alloy other than AZ31 alloy.

更に、サンプル1に示す条件の引き抜き加工により得られた各合金種のパイプの引張強度、及び伸びを調べてみたところ、いずれも引張強度が280MPa以上で、伸びが5%以上であった。また、これらのパイプに250℃×30分の熱処理を別途行ったところ、引張強度250MPa以上、伸び10%以上の高強度で延性に優れたパイプが得られた。   Further, when the tensile strength and elongation of the pipes of the respective alloy types obtained by the drawing process under the conditions shown in Sample 1 were examined, the tensile strength was 280 MPa or more and the elongation was 5% or more. Further, when these pipes were separately heat-treated at 250 ° C. for 30 minutes, pipes having a tensile strength of 250 MPa or more and an elongation of 10% or more and excellent ductility were obtained.

(試験例1-6)
試験例1-1で用いた押出材と同様の押出材を用意し、試験例1-1と同様に口付け加工を行った後、熱処理を施すことなく、以下の条件にて引き抜き加工を行った。
(Test Example 1-6)
Prepare an extruded material similar to the extruded material used in Test Example 1-1, and after performing the mouth-opening process in the same manner as in Test Example 1-1, without subjecting to heat treatment, a drawing process was performed under the following conditions: .

引き抜き加工は、プラグを用いたプラグ引きとし、ダイス径φ24mm及びプラグ径φ21.1mmのプラグを用いて、1パスのプラグ引きを行った。また、引き抜き加工は、母材管の温度を室温(20℃)とした冷間加工と、加工温度(ここでは引き抜き用のダイスに挿入する直前の母材管の温度)を140℃とした温間加工とを行った。温間加工における母材管の加熱は、200℃に加熱した潤滑油中に浸漬することで行った。   The drawing process was a plug drawing using a plug, and a one-pass plug drawing was performed using a plug having a die diameter of φ24 mm and a plug diameter of φ21.1 mm. In addition, the drawing process includes a cold working with the temperature of the base material pipe set to room temperature (20 ° C) and a temperature at which the processing temperature (the temperature of the base material pipe immediately before being inserted into the drawing die) is 140 ° C. And inter-working. The base material tube was heated in the warm working by immersing in a lubricating oil heated to 200 ° C.

その結果、冷間加工では、引き抜き途中においてすべて断管してしまい引き抜くことができなかった。これに対し、温間加工では、断管することなく引き抜くことができた。また、上記試験例1-5と同様に複数パスのプラグ引きを多段階に行ったところ、上記と同様に2パス毎に熱処理を施すことで、多段階に亘る引き抜き加工が可能であった。   As a result, in cold working, all the tubes were disconnected in the middle of drawing and could not be drawn. On the other hand, in the warm working, it could be pulled out without disconnection. Further, when plug drawing of a plurality of passes was performed in multiple stages in the same manner as in Test Example 1-5, it was possible to perform drawing in multiple stages by performing heat treatment every two passes in the same manner as described above.

(試験例2)
試験例1-4条件3-Gの引き抜き加工により得られたAZ61合金のパイプ10本において、表面を調べたところ、10本中2本に焼付き現象が認められた。また、試験例1-4条件3-Gの加工前、即ち試験例1-1条件1-Aの引き抜き加工により得られたAZ61合金のパイプ10本において、表面粗さを調べたところ、10点平均粗さで1.2〜1.5μmであった。
(Test Example 2)
Test Example 1-4 When ten AZ61 alloy pipes obtained by drawing under Condition 3-G were examined for the surface, seizure was observed in two of the ten pipes. In addition, when the surface roughness of 10 pipes of AZ61 alloy obtained by the drawing process of Test Example 1-4 Condition 3-G, that is, the drawing process of Test Example 1-1 Condition 1-A was examined, 10 points were obtained. The average roughness was 1.2 to 1.5 μm.

そこで、試験例1-1と同様のAZ61合金の押出材10本に、試験例1-1と同様に口付け加工を行った後、同様の熱処理を施し、表1条件1-Aの引き抜き加工を行い、10本のパイプを作製した。そして、得られた10本のパイプをサンドペーパーにて表面を粗くした(10点平均粗さで5.2〜8.2μm)。これら表面処理を施した10本のパイプを表3条件3-Gの引き抜き加工を行い、得られたパイプの表面を調べたところ、焼付き現象が全く認められなかった。このことから、引き抜き前に母材管の表面を10点平均粗さで5μm以上と粗くしておくことで、引き抜きによる焼付きを効果的に防止可能なことが確認された。   Therefore, ten AZ61 alloy extruded materials similar to those in Test Example 1-1 were subjected to the same heat treatment as in Test Example 1-1, and then subjected to the same heat treatment as shown in Table 1 Condition 1-A. 10 pipes were produced. Then, the obtained 10 pipes were roughened with sandpaper (10-point average roughness: 5.2 to 8.2 μm). Ten pipes subjected to these surface treatments were subjected to a drawing process under Condition 3-G in Table 3, and the surface of the obtained pipe was examined. As a result, no seizure phenomenon was observed. From this, it was confirmed that seizure due to drawing can be effectively prevented by roughening the surface of the base material tube with a 10-point average roughness of 5 μm or more before drawing.

また、表3条件3-Gのように2パスの引き抜き加工を室温ではなく温間(140℃に加熱)にて行った際も、同様に引き抜き前に母材管の表面を10点平均粗さで5μm以上と粗くしておくことで、引き抜きによる焼付きを防止できることがわかった。このことから、この表面処理の効果は、冷間、温間に係わらず得られることが確認された。   Similarly, when 2-pass drawing is performed at room temperature (heated to 140 ° C) instead of room temperature as shown in Table 3, Condition 3-G, the surface of the base material tube is also subjected to 10-point average roughening before drawing. Now, it was found that seizure due to drawing can be prevented by roughening to 5 μm or more. From this, it was confirmed that the effect of this surface treatment can be obtained regardless of whether it is cold or warm.

本発明は、高強度で延性に優れるマグネシウム基合金パイプを生産性よく製造する際に最適である。   The present invention is optimal when producing a magnesium-based alloy pipe having high strength and excellent ductility with high productivity.

Claims (12)

マグネシウム基合金からなる母材管の先端部に口付け加工を行う口付工程と、
前記口付けされた母材管に熱処理を施す熱処理工程と、
前記熱処理が施された母材管に引き抜き加工を施す引抜工程とを具え、
前記熱処理工程は、
少なくとも母材管の先端部を200℃以上450℃未満に加熱する工程と、
加熱後に冷却する工程とを具え、
前記引き抜き加工は、前記熱処理工程後、母材管を加熱することなく室温にて行うことを特徴とするマグネシウム基合金パイプの製造方法。
A mouth opening process for performing mouth attaching to the tip of a base material pipe made of a magnesium-based alloy;
A heat treatment step of performing a heat treatment on the spliced base metal pipe;
A drawing step of drawing the base material pipe subjected to the heat treatment,
The heat treatment step includes
Heating at least the tip of the base tube to 200 ° C. or higher and lower than 450 ° C .;
A process of cooling after heating,
The method for producing a magnesium-based alloy pipe, wherein the drawing process is performed at room temperature without heating the base material pipe after the heat treatment step.
一回の引き抜き加工における断面減少率が6%以上20%以下であることを特徴とする請求項1に記載のマグネシウム基合金パイプの製造方法。   2. The method for producing a magnesium-based alloy pipe according to claim 1, wherein a cross-sectional reduction rate in one drawing is 6% or more and 20% or less. 口付け加工は、少なくとも母材管の先端部を200℃以上450℃以下に加熱して行うことを特徴とする請求項1に記載のマグネシウム基合金パイプの製造方法。   2. The method for producing a magnesium-based alloy pipe according to claim 1, wherein the staking process is performed by heating at least a tip portion of the base material pipe to 200 ° C. or higher and 450 ° C. or lower. 引き抜き加工は、室温にて複数パスを多段階で行い、1パス毎に引き抜かれた引抜管に熱処理を施す中間熱処理工程を具えることを特徴とする請求項1に記載のマグネシウム基合金パイプの製造方法。   The drawing of the magnesium-based alloy pipe according to claim 1, wherein the drawing process includes an intermediate heat treatment process in which a plurality of passes are performed at room temperature in multiple stages, and heat treatment is performed on the drawn tube drawn for each pass. Production method. マグネシウム基合金からなる母材管は、押出しにより得られたものであり、
口付け加工後に熱処理が施された母材管を熱処理工程後、母材管を加熱することなく室温にて断面減少率15%以下で引き抜く第一引抜工程と、
前記第一引抜工程に続いて、引き抜かれた引抜管に熱処理を施す中間熱処理工程と、
前記中間熱処理工程に続いて、得られた引抜管を加熱することなく室温で引き抜く第二引抜工程とを具えることを特徴とする請求項1に記載のマグネシウム基合金パイプの製造方法。
The base material pipe made of a magnesium-based alloy is obtained by extrusion,
A first drawing step of drawing the base material tube that has been heat-treated after the lip processing, after the heat treatment step, without heating the base material tube at a room temperature reduction rate of 15% or less at room temperature;
Subsequent to the first drawing step, an intermediate heat treatment step for performing a heat treatment on the drawn drawing tube,
2. The method for producing a magnesium-based alloy pipe according to claim 1, further comprising a second drawing step of drawing the drawn tube obtained at room temperature without heating the intermediate heat treatment step.
中間熱処理工程は、
引抜管を200℃以上450℃未満に加熱する工程と、
加熱後に冷却する工程とを具えることを特徴とする請求項4又は5に記載のマグネシウム基合金パイプの製造方法。
The intermediate heat treatment process
Heating the drawn tube to 200 ° C or higher and lower than 450 ° C;
6. The method for producing a magnesium-based alloy pipe according to claim 4, further comprising a step of cooling after heating.
更に、熱処理されてから引き抜かれた母材管の表面を粗くする表面処理工程と、
前記表面処理が施された母材管に潤滑剤を用いた引き抜き加工を施す第三引抜工程とを具えることを特徴とする請求項1に記載のマグネシウム基合金パイプの製造方法。
Furthermore, a surface treatment process for roughening the surface of the base material pipe drawn after the heat treatment ,
2. The method for producing a magnesium-based alloy pipe according to claim 1, further comprising a third drawing step in which the base material pipe subjected to the surface treatment is subjected to a drawing process using a lubricant.
表面処理後の母材管の表面粗さが10点平均粗さで5μm以上であることを特徴とする請求項7に記載のマグネシウム基合金パイプの製造方法。   8. The method for producing a magnesium-based alloy pipe according to claim 7, wherein the surface roughness of the base material pipe after the surface treatment is 5 μm or more in terms of a 10-point average roughness. 第三引抜工程の引き抜き加工は、室温にて行うことを特徴とする請求項7に記載のマグネシウム基合金パイプの製造方法。 8. The method for producing a magnesium-based alloy pipe according to claim 7, wherein the drawing process in the third drawing step is performed at room temperature. マグネシウム基合金は、Alを0.1〜12質量%含み、残部がMgと不純物からなることを特徴とする請求項1〜9のいずれかに記載のマグネシウム基合金パイプの製造方法。   10. The method for producing a magnesium-based alloy pipe according to claim 1, wherein the magnesium-based alloy contains 0.1 to 12% by mass of Al, and the balance is made of Mg and impurities. マグネシウム基合金は、更に、質量%でMn:0.1〜2.0%、Zn:0.1〜5.0%、Si:0.1〜5.0%より選択された1種以上を含有することを特徴とする請求項10に記載のマグネシウム基合金パイプの製造方法。   11. The magnesium-based alloy further contains at least one selected from Mn: 0.1 to 2.0%, Zn: 0.1 to 5.0%, and Si: 0.1 to 5.0% by mass%. Method for producing magnesium-based alloy pipes. マグネシウム基合金は、質量%でZn:0.1〜10%、Zr:0.1〜2.0%を含み、残部がMgと不純物からなることを特徴とする請求項1〜9のいずれかに記載のマグネシウム基合金パイプの製造方法。   The magnesium-based alloy according to any one of claims 1 to 9, wherein the magnesium-based alloy contains Zn: 0.1 to 10% and Zr: 0.1 to 2.0% by mass, with the balance being Mg and impurities. Pipe manufacturing method.
JP2003328774A 2003-09-19 2003-09-19 Magnesium-based alloy pipe manufacturing method Expired - Fee Related JP3735101B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003328774A JP3735101B2 (en) 2003-09-19 2003-09-19 Magnesium-based alloy pipe manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003328774A JP3735101B2 (en) 2003-09-19 2003-09-19 Magnesium-based alloy pipe manufacturing method

Publications (2)

Publication Number Publication Date
JP2005089855A JP2005089855A (en) 2005-04-07
JP3735101B2 true JP3735101B2 (en) 2006-01-18

Family

ID=34458247

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003328774A Expired - Fee Related JP3735101B2 (en) 2003-09-19 2003-09-19 Magnesium-based alloy pipe manufacturing method

Country Status (1)

Country Link
JP (1) JP3735101B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008093673A (en) * 2006-10-07 2008-04-24 Kinomoto Shinsen Kk Wire drawing method for magnesium based alloy
CN114318188B (en) * 2021-12-08 2023-03-24 中国科学院金属研究所 High-strength corrosion-resistant degradable high-purity magnesium wire and preparation method thereof

Also Published As

Publication number Publication date
JP2005089855A (en) 2005-04-07

Similar Documents

Publication Publication Date Title
JP3597186B2 (en) Magnesium-based alloy tube and method of manufacturing the same
TWI422691B (en) High strength and high conductivity copper alloy tube, rod, wire
JP4189687B2 (en) Magnesium alloy material
JP4332889B2 (en) Method for producing magnesium-based alloy compact
JP2540183B2 (en) Tube manufacturing method
JP2009107019A (en) Twist forward extruding method and twist forward extruding apparatus
JP2006016655A (en) Magnesium alloy wrought material
JP4782987B2 (en) Magnesium-based alloy screw manufacturing method
JP4306547B2 (en) Magnesium alloy plate and manufacturing method thereof
JP3735101B2 (en) Magnesium-based alloy pipe manufacturing method
JP5125995B2 (en) Magnesium alloy wrought material
JP4150585B2 (en) Copper tube manufacturing method
WO2009102233A1 (en) Method for pressing blanks made of nanostructural titanium alloys
JP2004124152A (en) Rolled wire rod of magnesium based alloy, and its production method
JP3568945B1 (en) Magnesium-based alloy pipe and method of manufacturing the same
JP5249367B2 (en) Magnesium-based alloy screw
JP2004124154A (en) Rolled wire rod of magnesium based alloy, and production method therefor
JP4253846B2 (en) Magnesium alloy wire, method for producing the same, and magnesium alloy molded body
JP4160922B2 (en) Magnesium wire
JPH05253613A (en) Mandrel for hot extrusion
JP2022025817A (en) Copper alloy tube and manufacturing method thereof
JP4253845B2 (en) Magnesium alloy wire, method for producing the same, and magnesium alloy molded body
JPH0751733A (en) Manufacture of mo or mo alloy seamless capillary tube
JP2004217951A (en) Magnesium based alloy wire, and production method therefor

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20050627

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050729

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20050824

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20051018

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20051020

R150 Certificate of patent or registration of utility model

Ref document number: 3735101

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091028

Year of fee payment: 4

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313114

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313114

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091028

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101028

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111028

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121028

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131028

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees