JP2004217951A - Magnesium based alloy wire, and production method therefor - Google Patents
Magnesium based alloy wire, and production method therefor Download PDFInfo
- Publication number
- JP2004217951A JP2004217951A JP2003003155A JP2003003155A JP2004217951A JP 2004217951 A JP2004217951 A JP 2004217951A JP 2003003155 A JP2003003155 A JP 2003003155A JP 2003003155 A JP2003003155 A JP 2003003155A JP 2004217951 A JP2004217951 A JP 2004217951A
- Authority
- JP
- Japan
- Prior art keywords
- based alloy
- magnesium
- alloy wire
- wire
- rolling
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Landscapes
- Metal Rolling (AREA)
Abstract
Description
【0001】
【発明の属する技術分野】
本発明は、マグネシウム基合金線およびその製造方法に関するものである。特に、靭性または強度に優れるマグネシウム基合金線及びその製造方法に関するものである。
【0002】
【従来の技術】
マグネシウム基合金は、アルミニウムよりも軽く、比強度、比剛性が鋼やアルミニウムよりも優れており、航空機部品、自動車部品などの他、各種電気製品のボディーなどにも広く利用されている。特に、従来は、プレス成形品によく用いられており、このプレス用板材の製造方法として、圧延によるものが知られている(例えば、特許文献1、特許文献2参照)。
【0003】
【特許文献1】
特開2001−200349号公報(特許請求の範囲参照)
【0004】
【特許文献2】
特開平6−293944号公報(特許請求の範囲参照)
【0005】
【発明が解決しようとする課題】
マグネシウム基合金は、上記のように様々な特性に優れており、板材だけでなく線材として利用することが望まれている。しかし、Mg及びその合金は、最密六方格子構造であるため、延性に乏しく、塑性加工性が極めて悪い。そのため、Mg及びその合金の線を得ることは極めて困難であった。
【0006】
通常、断面が円形の線材を得るにはダイスによる引き抜き加工が利用される。
断面が円形でない異形線も引き抜き加工を利用して得ることが考えられる。引き抜き加工により線材を得る場合、線材を加熱したりダイスを加熱することで減面率を大きくとることができるが、線材温度が300℃程度を超えると強度が落ちて断線が生じる。
【0007】
また、300℃以下での引き抜き加工では、断線を抑制できるものの、約30〜40%の減面率で加工硬化により加工限界に達し、引き抜き加工2回ごとに1回程度は350℃以上の温度により溶体化処理を行う必要がある。そのため、溶体化処理用の加熱設備が必要で、設備コスト、加熱コストの点からも長尺の異形マグネシウム基合金線を得ることは難しかった。
【0008】
従って、本発明の主目的は、靭性に優れた異形マグネシウム基合金線及びその製造方法を提供することにある。
【0009】
【課題を解決するための手段】
本発明は、引き抜きではなくローラーダイスを用いることで上記の目的を達成する。
【0010】
すなわち、本発明マグネシウム基合金線は、質量%で、Al:0.1〜12.0%を含むマグネシウム基合金線であって、ロール圧延により成形され、断面形状が非円形であることを特徴とする。
【0011】
また、本発明マグネシウム基合金線の製造方法は、質量%でAl:0.1〜12.0%を含むマグネシウム基合金からなる被加工材をロール圧延により異形断面に加工することを特徴とする。
【0012】
異形加工をダイス引き抜きではなく、ロール圧延により行うことで、マグネシウム基合金線を加工する際の断線を抑制する。特に、線材を300℃以上に加熱しても断線を抑制することができる。図1に示すように、ダイス1による引き抜き加工は、線材3を引っ張ることにより加工を行う。これに対し、ロール圧延は、図2に示すように、ローラー2で線材3を挟み込んで送り出すことにより加工を行うため、線材加工時に張力がほとんど作用せず、断線を抑制することができる。
【0013】
本発明合金線の断面形状は、圧延ロールで加工可能な円形以外のものが全て含まれる。一般に、圧延ロールで加工すると、扁平に成形されるため、断面が矩形状のものが多い。より詳しくは、上下面が平面で、両側面が側方に突出した円弧状面であるものや、上下面・両側面が平面であるものが挙げられる。
【0014】
また、本発明合金線に用いられるマグネシウム基合金には、鋳造用マグネシウム基合金と展伸用マグネシウム基合金のいずれも利用することができる。上記Alに加えて、質量%でMn:0.1〜1.0%、Zn:0.1〜2.0%およびSi:0.3〜2.0%から選択される元素を1種以上含むマグネシウム基合金を用いてもよい。上記Al、Mn、Zn、Siの他にはMgおよび不純物が含まれる合金として利用されることが一般的である。不純物には、Fe、Cu、Ni、Caなどが挙げられる。
【0015】
より具体的なマグネシウム基合金としては、例えば、ASTM記号におけるAM系、AZ系、AS系などが利用できる。
【0016】
AM系におけるAM60は、質量%でAl:5.5〜6.5%、Zn:0.22%以下、Cu:0.35%以下、Mn:0.13%以上、Ni:0.03%以下、Si:0.5%以下を含有するマグネシウム基合金である。AM100は、質量%でAl:9.3〜10.7%、Zn:0.3%以下、Cu:0.1%以下、Mn:0.1〜0.35%、Ni:0.01%以下、Si:0.3%以下を含有するマグネシウム基合金である。
【0017】
AZ系におけるAZ10は質量%でAl:1.0〜1.5%、Zn:0.2〜0.6%、Mn:0.2%以上、Cu:0.1%以下、Si:0.1%以下、Ca:0.4%以下を含有するマグネシウム基合金である。AZ21は質量%でAl:1.4〜2.6%、Zn:0.5〜1.5%、Mn:0.15〜0.35%、Ni:0.03%以下、Si:0.1%以下を含有するマグネシウム基合金である。AZ31は、質量%でAl:2.5〜3.5%、Zn:0.5〜1.5%、Mn:0.15%〜0.5%、Cu:0.05%以下、Si:0.1%以下、Ca:0.04%以下を含有するマグネシウム基合金である。AZ61は、質量%でAl:5.5〜7.2%、Zn:0.4〜1.5%、Mn:0.15〜0.35%、Ni:0.05%以下、Si:0.1%以下を含有するマグネシウム基合金である。AZ91は、質量%でAl:8.1〜9.7%、Zn:0.35〜1.0%、Mn:0.13%以上、Cu:0.1%以下、Ni:0.03%以下、Si:0.5%以下を含有するマグネシウム基合金である。
【0018】
AS系におけるAS21は、質量%でAl:1.4〜2.6%、Zn:0.1%以下、Cu:0.15%以下、Mn:0.35〜0.60%、Ni:0.001%、Si:0.6〜1.4%を含有するマグネシウム基合金である。AS41は、質量%でAl:3.7〜4.8%、Zn:0.1%以下、Cu:0.15%以下、Mn:0.35〜0.60%、Ni:0.001%以下、Si:0.6〜1.4%を含有するマグネシウム基合金である。
【0019】
本発明合金線は、室温での180°曲げ試験において、最小曲げ半径Rminとマグネシウム基合金線の厚みtがRmin≦tであることが好適である。圧延ロールを用いた加工により、靭性に優れた合金線を得ることができる。
【0020】
ロール圧延を行うことで、ダイスによる引き抜きに比べて1回での加工度を高めることができる。一回の圧下率は20%以上40%以下であることが好適である。
この圧下率が20%未満では、効率的な加工を行うことが難しく、40%を超えると割れを生じやすくなる。
【0021】
ロールを加熱したり、ロール圧延前にマグネシウム基合金の被加工材を加熱しておくことで、一回での圧下率をより大きくとることができる。ロールを加熱する場合は150℃以上450℃以下、被加工材を加熱する場合は250℃以上450℃以下の温度とすることが好適である。150℃(250℃)未満では亀裂が発生しやすい上、大きな圧下率をとることが難しい。逆に450℃を超えると被加工材の表面が酸化したり、加熱に要する時間やエネルギーが大きくなる。より好ましい加熱温度は、ロールを加熱する場合は180℃以上400℃未満、被加工材を加熱する場合は300℃以上400℃未満である。ロールの加熱や被加工材の加熱を行わない場合、一回の圧下率は10%以下とすることが好ましい。
【0022】
このように、300℃以上でも加工が可能になり、ダイス引き抜き加工時に行っていた加工2回つきに1回の溶体化処理を被加工材の加熱で代用することができる。これにより、オフラインでの溶体化処理を省略し、加工設備の簡略化、加工工数の減少が可能になる。
【0023】
特に、溶体化処理を省略できるため、ロール圧延による圧延加工を多段に連続で実施することができる。これにより、効率的なマグネシウム基合金線の加工が可能になる。
【0024】
その場合、最終パスを被加工材および圧延ロール共に加熱することなく加工することが好ましい。これにより、最終パスにおいて加熱するための設備を省略することができる。
【0025】
【発明の実施の形態】
以下、本発明の実施の形態を説明する。
(試験例1)
まず、AZ31からなるφ3.0mmのマグネシウム基合金押出材を準備し、この押出材を6枚の異形ダイスに通して、厚さ1.0mm×幅2.0mm、コーナー半径0.2mmのワイヤーを作製した。この引き抜き加工におけるダイス直後における被加工材の温度は150℃である。このワイヤーをワイヤーaとする。
【0026】
また、前記φ3.0mmの丸線を一旦φ1.8mmの丸線まで温間(150℃)にて線引き加工した後、3パスのロール圧延加工により、厚さ1.0mm×幅2.0mm、コーナー半径0.2mmのワイヤーとした。ここでのロール圧延は、4方向からの圧延が可能なタークスヘッドロールを用い、ロールの加熱を行わずに被加工材を加熱したワイヤーbおよび被加工材は加熱せずロールの加熱を行ったワイヤーcを作製した。ロール圧延における圧下率は、加工前の厚さをt0、加工後の厚さをt1としたとき、(t0−t1)/t0とする。ワイヤーbおよびワイヤーcの各パスにおける減面条件を下記に示す。
【0027】
ワイヤーb
3.0mmφ→1.8mmφ(ダイス引き)
1.8mmφ→1.4mm厚(ロール圧延:圧下率22.2%、被加工材を300℃に加熱)
1.4mm厚→1.1mm厚(ロール圧延:圧下率21.4%、被加工材を300℃に加熱)
1.1mm厚→1.0mm厚(ロール圧延:圧下率9.1%、冷間)
【0028】
ワイヤーc
3.0mmφ→1.8mmφ(ダイス引き)
1.8mmφ→1.4mm厚(ロール圧延:圧下率22.2%、ロールを180℃に加熱)
1.4mm厚→1.1mm厚(ロール圧延:圧下率21.4%、ロールを180℃に加熱)
1.1mm厚→1.0mm厚(ロール圧延:圧下率9.1%、ロール加熱なし)
【0029】
得られた各ワイヤーを、250℃にて15分焼鈍し、曲げ加工試験を行った。この試験は、曲げ半径Rを変化させてワイヤーを、上下面が曲げの内側と外側になるように180°まで曲げ、破断又は亀裂の有無により評価した。その結果を表1に示す。
【0030】
【表1】
【0031】
表1に示すように、ワイヤーaはR=1.0mm以下では破断もしくは亀裂が認められたのに対して、ワイヤーbはR=1.0mmまで亀裂の発生はなかった。更にワイヤーcではR=0.8mmまで亀裂の発生はなかった。従って、ロール圧延加工によって異形ワイヤーを製造することにより、曲げ加工性に優れた異形ワイヤーを製造できることがわかる。
【0032】
同様の試験をAZ61、AS41、AM60からなるマグネシウム基合金においても実施したが、いずれもワイヤーc、ワイヤーb、ワイヤーaの順に曲げ特性が良好であった。
【0033】
(試験例2)
AZ31からなるマグネシウム基合金において、試験例1におけるワイヤーbと同様の工程を、加熱温度を変化させて行った。その結果、圧下率21〜23%とした時、200℃未満の温度の加工では、被加工材に亀裂が発生して加工できなかった。250℃以上450℃以下では問題なく加工できたが、400℃を超えると線材の表面に酸化が認められた。
【0034】
同様の試験をAZ61、AS41、AM60からなるマグネシウム基合金においても実施した。その結果、200℃未満の温度の加工では、亀裂が発生して加工できず、250℃以上450℃以下では問題なく加工ができた。
【0035】
(試験例3)
AZ31からなるマグネシウム基合金において、試験例1におけるワイヤーcと同様の工程を、ロールの加熱温度を変化させて行った。その結果、圧下率を21〜23%とした時、150℃未満の温度の加工では被加工材に亀裂が発生し、150℃以上450℃以下では問題なく加工できたが、400℃を超えると線材の表面に酸化が認められた。
【0036】
同様の試験をAZ61、AS41、AM60からなるマグネシウム基合金においても実施した。その結果、150℃未満の温度の加工では亀裂が発生し、150℃以上450℃以下では問題なく加工ができた。
【0037】
(試験例4)
AZ31からなるマグネシウム基合金において試験例1におけるワイヤーbと同様の工程を、加熱温度を300℃とし、圧下率を変化させて行った。各圧下率は次の通りである。
【0038】
1.8mmφ→1.4mm厚(ロール圧延:圧下率22.2%)
1.8mmφ→1.3mm厚(ロール圧延:圧下率27.8%)
1.8mmφ→1.2mm厚(ロール圧延:圧下率33.3%)
1.8mmφ→1.1mm厚(ロール圧延:圧下率38.9%)
1.8mmφ→1.0mm厚(ロール圧延:圧下率44.4%)
【0039】
各試料のうち、1パス当りの圧下率が40%を超えると亀裂が生じて加工できなかった。従って、1パスの加工は圧下率40%以下が好ましい。但し、生産性を考慮すれば20%以上が好ましい。
【0040】
同様の試験をAZ61、AS41、AM60からなるマグネシウム基合金においても実施したが、1パス当りの圧下率が40%超では亀裂が生じ加工できなかった。
【0041】
【発明の効果】
以上説明したように、本発明マグネシウム基合金線は、靭性に優れた合金線である。また、本発明マグネシウム基合金の製造方法は、被加工材の断線を効果的に抑制し、効率的な異形合金線の製造を行うことができる。
【図面の簡単な説明】
【図1】引き抜き加工の説明図である。
【図2】圧延ロール加工の説明図である。
【符号の説明】
1 ダイス
2 ローラー
3 線材[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a magnesium-based alloy wire and a method for manufacturing the same. In particular, the present invention relates to a magnesium-based alloy wire having excellent toughness or strength and a method for producing the same.
[0002]
[Prior art]
Magnesium-based alloys are lighter than aluminum, have higher specific strength and specific rigidity than steel and aluminum, and are widely used for bodies of various electric products in addition to aircraft parts and automobile parts. In particular, conventionally, it is often used for a press-formed product, and a method of manufacturing this press plate material by rolling is known (for example, see
[0003]
[Patent Document 1]
JP 2001-200349 A (see claims)
[0004]
[Patent Document 2]
JP-A-6-293944 (refer to claims)
[0005]
[Problems to be solved by the invention]
Magnesium-based alloys are excellent in various properties as described above, and are desired to be used not only as plates but also as wires. However, since Mg and its alloys have a close-packed hexagonal lattice structure, they have poor ductility and extremely poor plastic workability. Therefore, it has been extremely difficult to obtain wires of Mg and its alloys.
[0006]
Usually, in order to obtain a wire having a circular cross section, drawing by a die is used.
It is conceivable that a deformed line whose cross section is not circular can also be obtained by drawing. When a wire is obtained by drawing, a reduction in area can be obtained by heating the wire or heating the die, but when the wire temperature exceeds about 300 ° C., the strength is reduced and disconnection occurs.
[0007]
Further, in the drawing at a temperature of 300 ° C. or less, although the disconnection can be suppressed, the working limit is reached by work hardening at a reduction rate of about 30 to 40%, and about once every two times of the drawing, the temperature is 350 ° C. or more. It is necessary to perform a solution treatment. Therefore, heating equipment for solution treatment is required, and it is difficult to obtain a long deformed magnesium-based alloy wire from the viewpoint of equipment cost and heating cost.
[0008]
Accordingly, a main object of the present invention is to provide a deformed magnesium-based alloy wire having excellent toughness and a method for producing the same.
[0009]
[Means for Solving the Problems]
The present invention achieves the above object by using a roller die instead of drawing.
[0010]
That is, the magnesium-based alloy wire of the present invention is a magnesium-based alloy wire containing Al: 0.1 to 12.0% by mass%, is formed by roll rolling, and has a non-circular cross-sectional shape. And
[0011]
In addition, the method for producing a magnesium-based alloy wire of the present invention is characterized in that a workpiece made of a magnesium-based alloy containing Al: 0.1 to 12.0% by mass is processed into an irregular cross section by roll rolling. .
[0012]
By performing the deforming by roll rolling instead of die drawing, disconnection during processing of the magnesium-based alloy wire is suppressed. In particular, disconnection can be suppressed even when the wire is heated to 300 ° C. or higher. As shown in FIG. 1, the drawing by the
[0013]
The cross-sectional shape of the alloy wire of the present invention includes all shapes other than a circle that can be processed by a rolling roll. In general, when processed by a rolling roll, it is formed into a flat shape, so that the cross section is often rectangular. More specifically, the upper and lower surfaces are flat, and both side surfaces are arc-shaped surfaces protruding laterally, and the upper and lower surfaces and both side surfaces are flat surfaces.
[0014]
Further, as the magnesium-based alloy used for the alloy wire of the present invention, any of a magnesium-based alloy for casting and a magnesium-based alloy for wrought can be used. In addition to the Al, one or more elements selected from mass% of Mn: 0.1 to 1.0%, Zn: 0.1 to 2.0%, and Si: 0.3 to 2.0% May be used. It is generally used as an alloy containing Mg and impurities in addition to Al, Mn, Zn, and Si. The impurities include Fe, Cu, Ni, Ca and the like.
[0015]
As a more specific magnesium-based alloy, for example, an AM-based, AZ-based, or AS-based ASTM symbol can be used.
[0016]
AM60 in the AM system is, by mass%, Al: 5.5 to 6.5%, Zn: 0.22% or less, Cu: 0.35% or less, Mn: 0.13% or more, Ni: 0.03%. Hereinafter, it is a magnesium-based alloy containing 0.5% or less of Si. AM100 is Al: 9.3 to 10.7%, Zn: 0.3% or less, Cu: 0.1% or less, Mn: 0.1 to 0.35%, Ni: 0.01% by mass%. Hereinafter, it is a magnesium-based alloy containing 0.3% or less of Si.
[0017]
AZ10 in the AZ system is, by mass%, Al: 1.0 to 1.5%, Zn: 0.2 to 0.6%, Mn: 0.2% or more, Cu: 0.1% or less, Si: 0. It is a magnesium-based alloy containing 1% or less and Ca: 0.4% or less. AZ21 is in mass% Al: 1.4 to 2.6%, Zn: 0.5 to 1.5%, Mn: 0.15 to 0.35%, Ni: 0.03% or less, and Si: 0. It is a magnesium-based alloy containing 1% or less. AZ31 is Al: 2.5 to 3.5%, Zn: 0.5 to 1.5%, Mn: 0.15% to 0.5%, Cu: 0.05% or less, Si: It is a magnesium-based alloy containing 0.1% or less and Ca: 0.04% or less. AZ61 is, by mass%, Al: 5.5 to 7.2%, Zn: 0.4 to 1.5%, Mn: 0.15 to 0.35%, Ni: 0.05% or less, and Si: 0 It is a magnesium-based alloy containing 0.1% or less. AZ91 is Al: 8.1 to 9.7%, Zn: 0.35 to 1.0%, Mn: 0.13% or more, Cu: 0.1% or less, Ni: 0.03% by mass%. Hereinafter, it is a magnesium-based alloy containing 0.5% or less of Si.
[0018]
AS21 in the AS system is, by mass%, Al: 1.4 to 2.6%, Zn: 0.1% or less, Cu: 0.15% or less, Mn: 0.35 to 0.60%, Ni: 0 It is a magnesium-based alloy containing 0.001% and Si: 0.6 to 1.4%. AS41 is, by mass%, Al: 3.7 to 4.8%, Zn: 0.1% or less, Cu: 0.15% or less, Mn: 0.35 to 0.60%, Ni: 0.001% Hereinafter, a magnesium-based alloy containing 0.6 to 1.4% of Si.
[0019]
In the alloy wire of the present invention, it is preferable that the minimum bending radius Rmin and the thickness t of the magnesium-based alloy wire satisfy Rmin ≦ t in a 180 ° bending test at room temperature. An alloy wire having excellent toughness can be obtained by processing using a rolling roll.
[0020]
By performing roll rolling, it is possible to increase the degree of processing at one time as compared with drawing by a die. It is preferable that the rolling reduction at one time is 20% or more and 40% or less.
If the rolling reduction is less than 20%, it is difficult to perform efficient processing, and if it exceeds 40%, cracks are likely to occur.
[0021]
By heating the roll or heating the workpiece of the magnesium-based alloy before the roll rolling, it is possible to increase the rolling reduction at one time. When the roll is heated, the temperature is preferably 150 ° C. to 450 ° C., and when the workpiece is heated, the temperature is preferably 250 ° C. to 450 ° C. If the temperature is lower than 150 ° C. (250 ° C.), cracks are easily generated, and it is difficult to obtain a large rolling reduction. Conversely, if the temperature exceeds 450 ° C., the surface of the workpiece is oxidized, and the time and energy required for heating are increased. More preferable heating temperature is 180 ° C or more and less than 400 ° C when the roll is heated, and 300 ° C or more and less than 400 ° C when the workpiece is heated. When the heating of the roll or the heating of the workpiece is not performed, it is preferable that the rolling reduction at one time is 10% or less.
[0022]
As described above, processing can be performed even at 300 ° C. or more, and the solution treatment once performed every two times during the die drawing can be substituted by heating the workpiece. This makes it possible to omit the off-line solution treatment, simplify the processing equipment, and reduce the number of processing steps.
[0023]
In particular, since the solution treatment can be omitted, rolling by roll rolling can be continuously performed in multiple stages. This enables efficient processing of the magnesium-based alloy wire.
[0024]
In this case, it is preferable to process the final pass without heating both the workpiece and the rolling roll. Thus, equipment for heating in the final pass can be omitted.
[0025]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described.
(Test Example 1)
First, a magnesium-based alloy extruded material having a diameter of 3.0 mm made of AZ31 is prepared, and the extruded material is passed through six deformed dies to form a wire having a thickness of 1.0 mm, a width of 2.0 mm, and a corner radius of 0.2 mm. Produced. The temperature of the workpiece immediately after the die in this drawing is 150 ° C. This wire is referred to as wire a.
[0026]
Also, the above-mentioned φ3.0 mm round wire was once drawn to a φ1.8 mm round wire at a warm temperature (150 ° C.), and then rolled by three passes to obtain a 1.0 mm thick × 2.0 mm wide sheet. The wire had a corner radius of 0.2 mm. The roll rolling here used a turks head roll capable of rolling from four directions, and heated the roll without heating the wire b and the workpiece without heating the roll. Wire c was produced. Rolling reduction in rolling is the thickness before processing t 0, when the thickness after machining was t 1, and (t 0 -t 1) / t 0. The surface reduction conditions in each pass of the wire b and the wire c are shown below.
[0027]
Wire b
3.0mmφ → 1.8mmφ (Die pull)
1.8mmφ → 1.4mm thickness (roll rolling: reduction of 22.2%, work material heated to 300 ° C)
1.4mm thickness → 1.1mm thickness (roll rolling: reduction rate 21.4%, work material heated to 300 ° C)
1.1mm thickness → 1.0mm thickness (roll rolling: reduction rate 9.1%, cold)
[0028]
Wire c
3.0mmφ → 1.8mmφ (Die pull)
1.8mmφ → 1.4mm thickness (roll rolling: reduction of 22.2%, roll heated to 180 ° C)
1.4mm thickness → 1.1mm thickness (roll rolling: reduction ratio 21.4%, heating the roll to 180 ° C)
1.1mm thickness → 1.0mm thickness (roll rolling: reduction rate 9.1%, no roll heating)
[0029]
Each of the obtained wires was annealed at 250 ° C. for 15 minutes, and a bending test was performed. In this test, the wire was bent by changing the bending radius R to 180 ° so that the upper and lower surfaces were inside and outside the bend, and evaluated by the presence or absence of breakage or cracking. Table 1 shows the results.
[0030]
[Table 1]
[0031]
As shown in Table 1, the wire a was broken or cracked when R = 1.0 mm or less, whereas the wire b did not crack until R = 1.0 mm. Further, in the wire c, no crack was generated up to R = 0.8 mm. Therefore, it can be seen that by manufacturing a deformed wire by roll rolling, a deformed wire excellent in bending workability can be manufactured.
[0032]
A similar test was also performed on a magnesium-based alloy consisting of AZ61, AS41, and AM60, and all had good bending characteristics in the order of wire c, wire b, and wire a.
[0033]
(Test Example 2)
In a magnesium-based alloy made of AZ31, the same process as that of wire b in Test Example 1 was performed by changing the heating temperature. As a result, when the rolling reduction was set to 21 to 23%, in the processing at a temperature lower than 200 ° C., a crack was generated in the material to be processed, and the processing could not be performed. Although processing was possible without any problem at a temperature of 250 ° C. or more and 450 ° C. or less, oxidation was observed on the surface of the wire rod at a temperature exceeding 400 ° C.
[0034]
A similar test was performed on a magnesium-based alloy consisting of AZ61, AS41, and AM60. As a result, in the processing at a temperature of less than 200 ° C., cracks were generated and processing could not be performed, and at 250 ° C. or more and 450 ° C. or less, processing could be performed without any problem.
[0035]
(Test Example 3)
In a magnesium-based alloy made of AZ31, the same process as that of wire c in Test Example 1 was performed by changing the heating temperature of the roll. As a result, when the rolling reduction is set to 21 to 23%, a crack occurs in the workpiece at a temperature of less than 150 ° C., and the workpiece can be processed without any problem at a temperature of 150 ° C. or more and 450 ° C. or less. Oxidation was observed on the surface of the wire.
[0036]
A similar test was performed on a magnesium-based alloy consisting of AZ61, AS41, and AM60. As a result, cracks were generated in processing at a temperature lower than 150 ° C., and processing was possible without any problem at a temperature of 150 ° C. or more and 450 ° C. or less.
[0037]
(Test Example 4)
In the magnesium-based alloy made of AZ31, the same process as that of wire b in Test Example 1 was performed with the heating temperature set to 300 ° C. and the rolling reduction changed. Each reduction ratio is as follows.
[0038]
1.8mmφ → 1.4mm thickness (roll rolling: rolling reduction 22.2%)
1.8mmφ → 1.3mm thickness (roll rolling: reduction ratio 27.8%)
1.8mmφ → 1.2mm thickness (roll rolling: reduction rate 33.3%)
1.8mmφ → 1.1mm thickness (roll rolling: rolling reduction 38.9%)
1.8mmφ → 1.0mm thickness (roll rolling: reduction ratio 44.4%)
[0039]
If the rolling reduction per pass of each sample exceeded 40%, cracks occurred and processing could not be performed. Therefore, it is preferable that the reduction rate in the one-pass processing is 40% or less. However, considering productivity, 20% or more is preferable.
[0040]
A similar test was performed on a magnesium-based alloy consisting of AZ61, AS41, and AM60. However, when the rolling reduction per pass exceeded 40%, cracks occurred and processing was not possible.
[0041]
【The invention's effect】
As described above, the magnesium-based alloy wire of the present invention is an alloy wire having excellent toughness. In addition, the method for producing a magnesium-based alloy of the present invention can effectively suppress disconnection of a workpiece and efficiently produce an irregularly shaped alloy wire.
[Brief description of the drawings]
FIG. 1 is an explanatory diagram of a drawing process.
FIG. 2 is an explanatory diagram of a roll processing.
[Explanation of symbols]
1
Claims (12)
ロール圧延により成形され、断面形状が非円形であることを特徴とするマグネシウム基合金線。A magnesium-based alloy wire containing Al: 0.1 to 12.0% by mass%,
A magnesium-based alloy wire formed by roll rolling and having a non-circular cross-sectional shape.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003003155A JP2004217951A (en) | 2003-01-09 | 2003-01-09 | Magnesium based alloy wire, and production method therefor |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003003155A JP2004217951A (en) | 2003-01-09 | 2003-01-09 | Magnesium based alloy wire, and production method therefor |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2004217951A true JP2004217951A (en) | 2004-08-05 |
Family
ID=32894502
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2003003155A Pending JP2004217951A (en) | 2003-01-09 | 2003-01-09 | Magnesium based alloy wire, and production method therefor |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2004217951A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005002378A (en) * | 2003-06-10 | 2005-01-06 | Sumitomo Metal Ind Ltd | Method of producing magnesium alloy sheet |
WO2006003833A1 (en) * | 2004-06-30 | 2006-01-12 | Sumitomo Electric Industries, Ltd. | Method for producing magnesium alloy product |
-
2003
- 2003-01-09 JP JP2003003155A patent/JP2004217951A/en active Pending
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005002378A (en) * | 2003-06-10 | 2005-01-06 | Sumitomo Metal Ind Ltd | Method of producing magnesium alloy sheet |
WO2006003833A1 (en) * | 2004-06-30 | 2006-01-12 | Sumitomo Electric Industries, Ltd. | Method for producing magnesium alloy product |
JPWO2006003833A1 (en) * | 2004-06-30 | 2008-04-17 | 住友電気工業株式会社 | Method for producing magnesium alloy material |
US7666351B2 (en) | 2004-06-30 | 2010-02-23 | Sumitomo Electric Industries, Ltd. | Method of producing a magnesium-alloy material |
JP4735986B2 (en) * | 2004-06-30 | 2011-07-27 | 住友電気工業株式会社 | Method for producing magnesium alloy material |
KR101230668B1 (en) * | 2004-06-30 | 2013-02-08 | 스미토모덴키고교가부시키가이샤 | Method of producing a magnesium-alloy material |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4189687B2 (en) | Magnesium alloy material | |
JP4332889B2 (en) | Method for producing magnesium-based alloy compact | |
CA2563515A1 (en) | Highly ductile aluminum alloy with high mechanical strength which can be decoratively anodized, method for producing it, and aluminum product made of this alloy | |
JP2013533375A (en) | Magnesium alloy for extension applications | |
JP5648885B2 (en) | Magnesium alloy plate, magnesium alloy member, and method for producing magnesium alloy plate | |
CN102321836A (en) | Method for preparing high-strength heat-resistant magnesium alloy sheet | |
EP2447381A1 (en) | Magnesium alloy plate | |
CN101809179A (en) | Formation has the magnesium alloy of the ductility of improvement | |
JP4782987B2 (en) | Magnesium-based alloy screw manufacturing method | |
JP2004183062A (en) | Magnesium-based alloy wire and manufacturing method therefor | |
CN112337972A (en) | Method for preparing high-performance magnesium alloy through secondary deformation | |
JP2005281848A (en) | Magnesium thin sheet for flattening having excellent formability, and its production method | |
JP2002266057A (en) | Method for producing magnesium alloy sheet having excellent press formability | |
JP2004217951A (en) | Magnesium based alloy wire, and production method therefor | |
WO2003095691A1 (en) | Malleable thin magnesium sheet excellent in workability and method for production thereof | |
JP5688674B2 (en) | Magnesium alloy coil material, magnesium alloy plate, and method for producing magnesium alloy coil material | |
JP2004124152A (en) | Rolled wire rod of magnesium based alloy, and its production method | |
JP7410542B2 (en) | magnesium alloy plate | |
JP2004010959A (en) | Property improving method of magnesium sheet and plate,and magnesium alloy sheet and plate | |
JP2004124154A (en) | Rolled wire rod of magnesium based alloy, and production method therefor | |
JP2017078220A (en) | Magnesium alloy rolled material and production method therefor, and press-formed article | |
JP3568942B2 (en) | Magnesium-based alloy wire and method of manufacturing the same | |
CN110177633B (en) | Component of surface-treated steel sheet having cut end faces and method for producing same | |
JP5249367B2 (en) | Magnesium-based alloy screw | |
JP3735101B2 (en) | Magnesium-based alloy pipe manufacturing method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A625 | Written request for application examination (by other person) |
Effective date: 20050622 Free format text: JAPANESE INTERMEDIATE CODE: A625 |
|
A977 | Report on retrieval |
Effective date: 20070228 Free format text: JAPANESE INTERMEDIATE CODE: A971007 |
|
A131 | Notification of reasons for refusal |
Effective date: 20070326 Free format text: JAPANESE INTERMEDIATE CODE: A131 |
|
A521 | Written amendment |
Effective date: 20070525 Free format text: JAPANESE INTERMEDIATE CODE: A523 |
|
A02 | Decision of refusal |
Effective date: 20070904 Free format text: JAPANESE INTERMEDIATE CODE: A02 |