JP6452042B2 - Method for producing magnesium alloy - Google Patents

Method for producing magnesium alloy Download PDF

Info

Publication number
JP6452042B2
JP6452042B2 JP2015051435A JP2015051435A JP6452042B2 JP 6452042 B2 JP6452042 B2 JP 6452042B2 JP 2015051435 A JP2015051435 A JP 2015051435A JP 2015051435 A JP2015051435 A JP 2015051435A JP 6452042 B2 JP6452042 B2 JP 6452042B2
Authority
JP
Japan
Prior art keywords
extrusion
homogenization treatment
magnesium alloy
billet
speed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015051435A
Other languages
Japanese (ja)
Other versions
JP2016169431A5 (en
JP2016169431A (en
Inventor
清水 和紀
和紀 清水
泰誠 松本
泰誠 松本
博昭 岩川
博昭 岩川
悟 花木
悟 花木
重晴 鎌土
重晴 鎌土
大貴 中田
大貴 中田
泰祐 佐々木
泰祐 佐々木
和博 宝野
和博 宝野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute for Materials Science
Nagaoka University of Technology
Sankyo Tateyama Inc
Original Assignee
National Institute for Materials Science
Nagaoka University of Technology
Sankyo Tateyama Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute for Materials Science, Nagaoka University of Technology, Sankyo Tateyama Inc filed Critical National Institute for Materials Science
Priority to JP2015051435A priority Critical patent/JP6452042B2/en
Publication of JP2016169431A publication Critical patent/JP2016169431A/en
Publication of JP2016169431A5 publication Critical patent/JP2016169431A5/ja
Application granted granted Critical
Publication of JP6452042B2 publication Critical patent/JP6452042B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、高速押出が可能なマグネシウム合金の製造方法に関する。 The present invention relates to a method for producing a magnesium alloy capable of high-speed extrusion.

マグネシウム合金は軽量で比強度が高いことから、携帯機器や輸送機器等の様々な分野への適用が拡大している。しかし、マグネシウム合金は、例えばアルミサッシ等に使用される6000系アルミニウム合金と比較して塑性加工性が乏しいため、アルミニウム合金と同等の速度で押出加工ができなかった。6000系アルミニウム合金は、出口速度にして通常20〜30m/minで押出加工が可能であるが、最も汎用的なマグネシウム合金であるAZ31合金は、通常、それよりも遅い5m/min程度の出口速度でしか押出加工が出来ず、難燃合金としてCaを添加したAZX611合金にいたっては、押出速度は1.5m/minとさらに押出速度が制限される。   Magnesium alloys are lightweight and have high specific strength, so their application to various fields such as portable equipment and transportation equipment is expanding. However, since the magnesium alloy has poor plastic workability as compared with, for example, a 6000 series aluminum alloy used for an aluminum sash or the like, it cannot be extruded at the same speed as the aluminum alloy. The 6000 series aluminum alloy can be extruded at an outlet speed of usually 20 to 30 m / min, but the most general-purpose magnesium alloy AZ31 alloy is usually an outlet speed of about 5 m / min, which is slower than that. Extrusion can only be performed at AZX611 alloy with Ca added as a flame retardant alloy, and the extrusion speed is further limited to 1.5 m / min.

本発明は以上に述べた実情に鑑み、押出速度の高速化が可能であると共に押出荷重を低減できる押出性の良好なマグネシウム合金の製造方法の提供を目的とする。 An object of the present invention is to provide a method for producing a magnesium alloy with good extrudability capable of increasing the extrusion speed and reducing the extrusion load in view of the circumstances described above.

本発明のマグネシウム合金の製造方法は、Alを0.1〜3.0wt%、Caを0.1〜0.43wt%、Mnを0.15〜1.2wt%含み、残部がMg及び不可避的不純物からなり、鋳造後のビレットに450〜500℃×1〜4時間の均質化処理を施すことを特徴とする。 The manufacturing method of the magnesium alloy of the present invention includes 0.1 to 3.0 wt% of Al, 0.1 to 0.43 wt% of Ca, 0.15 to 1.2 wt% of Mn, the balance being Mg and inevitable It consists of impurities, and the billet after casting is subjected to a homogenization treatment at 450 to 500 ° C. for 1 to 4 hours.

本発明のマグネシウム合金の製造方法は、Alを0.1〜0.34wt%、Caを0.1〜0.35wt%、Mnを0.15〜1.2wt%、Znを0.15wt%以下含み、残部がMg及び不可避的不純物からなり、鋳造後のビレットに450〜500℃×1〜4時間の均質化処理を施すことを特徴とする。 The manufacturing method of the magnesium alloy of the present invention includes 0.1 to 0.34 wt% Al, 0.1 to 0.35 wt% Ca, 0.15 to 1.2 wt% Mn, and 0.15 wt% or less Zn. And the balance is made of Mg and inevitable impurities, and the billet after casting is subjected to a homogenization treatment at 450 to 500 ° C. for 1 to 4 hours.

Alを0.1〜3.0wt%、Caを0.1〜0.43wt%、Mnを0.15〜1.2wt%含み、残部がMg及び不可避的不純物からなり、鋳造後のビレットに450〜500℃×1〜4時間の均質化処理を施した本発明のマグネシウム合金は、15m/min以上の押出速度の高速化が可能で、且つ押出荷重を低減できる。   It contains 0.1 to 3.0 wt% Al, 0.1 to 0.43 wt% Ca, 0.15 to 1.2 wt% Mn, and the balance consists of Mg and inevitable impurities. The magnesium alloy of the present invention subjected to a homogenization treatment at ˜500 ° C. × 1 to 4 hours can increase the extrusion speed of 15 m / min or more and can reduce the extrusion load.

Alを0.1〜0.34wt%、Caを0.1〜0.35wt%、Mnを0.15〜1.2wt%、Znを0.15wt%以下含み、残部がMg及び不可避的不純物からなり、鋳造後のビレットに450〜500℃×1〜4時間の均質化処理を施した本発明のマグネシウム合金は、15m/min以上の押出速度の高速化が可能で、且つ押出荷重を低減できる。   0.1 to 0.34 wt% of Al, 0.1 to 0.35 wt% of Ca, 0.15 to 1.2 wt% of Mn, 0.15 wt% or less of Zn, and the balance from Mg and inevitable impurities The magnesium alloy of the present invention in which the billet after casting is subjected to a homogenization treatment at 450 to 500 ° C. for 1 to 4 hours can increase the extrusion speed of 15 m / min or more and can reduce the extrusion load. .

実施例1〜9の押出した形材の外観写真である。It is an external appearance photograph of the extruded shape material of Examples 1-9. 比較例1〜4の押出した形材の外観写真である。It is an external appearance photograph of the extruded shape material of Comparative Examples 1-4. Mnの量を変化させた押出しまま材の外観写真である。It is an external appearance photograph of the extruded material which changed the quantity of Mn. Mnの量を変化させた押出しまま材のEBSD逆極点図マップである。It is an EBSD reverse pole figure map of the as-extruded material which changed the quantity of Mn. 鋳造ままの状態、および種々の条件で均質化処理を施した後に押出した形材の外観写真である。It is the external appearance photograph of the shape material extruded after giving the homogenization process in the state as cast, and various conditions. 押出荷重に及ぼす均質化処理条件の影響を示すグラフである。It is a graph which shows the influence of the homogenization process conditions on an extrusion load. AlとCaの含有量と押出達成速度及び押出荷重との関係を示す図である。It is a figure which shows the relationship between content of Al and Ca, extrusion achievement speed, and extrusion load. (a)は500℃×1時間の均質化処理を施したビレットのミクロ組織写真であり、(b)は500℃×64時間の均質化処理を施したビレットのミクロ組織写真であり、(c)は350℃×1時間の均質化処理を施したビレットのミクロ組織写真であり、(d)は鋳造まま材のビレットのミクロ組織写真である。(A) is a microstructure photograph of a billet subjected to a homogenization treatment at 500 ° C. × 1 hour, (b) is a microstructure photograph of a billet subjected to a homogenization treatment at 500 ° C. × 64 hours, (c ) Is a micrograph of a billet subjected to a homogenization treatment at 350 ° C. for 1 hour, and (d) is a micrograph of a billet of a billet as cast. 均質化処理の温度及び時間と押出材の結晶粒度との関係を示すグラフである。It is a graph which shows the relationship between the temperature and time of a homogenization process, and the crystal grain size of an extruded material.

以下、本発明の実施の形態を説明する。本発明に係るマグネシウム合金は、Alを0.1〜3.0wt%、Caを0.1〜0.43wt%、Mnを0.15〜1.2wt%含み、残部がMg及び不可避的不純物からなることを特徴とする。
Alは、合金の引張強度等の機械的性質を向上させる効果があるが、過剰に添加すると押出性が低下する。よって、良好な機械的性質が得られ且つ押出性が良好となるように、Alを0.1〜3.0wt%とした。
Caは、溶解・鋳造の際にマグネシウムの発火を抑制する働きがあるが、過剰に添加すると押出性が低下する。よって、難燃性が得られ且つ押出性が良好となるように、Caを0.1〜0.43wt%とした。
Mnは、再結晶粒の粗大化を抑制し、押出性を向上させる働きがある。Mnが0.15wt%より少ないとこの効果が発揮されないため、Mnを0.15〜1.2wt%とした。なお、上限値の1.2wt%は、操業上、これ以上添加できないという値である。
Embodiments of the present invention will be described below. The magnesium alloy according to the present invention contains 0.1 to 3.0 wt% of Al, 0.1 to 0.43 wt% of Ca, 0.15 to 1.2 wt% of Mn, and the balance is composed of Mg and inevitable impurities. It is characterized by becoming.
Al has the effect of improving mechanical properties such as the tensile strength of the alloy, but if added in excess, the extrudability decreases. Therefore, Al was made 0.1 to 3.0 wt% so that good mechanical properties were obtained and extrudability was good.
Ca has a function of suppressing the ignition of magnesium during melting and casting, but if added in excess, the extrudability deteriorates. Therefore, Ca is made 0.1 to 0.43 wt% so that flame retardancy is obtained and extrudability is good.
Mn functions to suppress the coarsening of recrystallized grains and improve extrudability. If Mn is less than 0.15 wt%, this effect is not exhibited, so Mn is set to 0.15 to 1.2 wt%. In addition, 1.2 wt% of an upper limit is a value which cannot be added any more on operation.

本発明に係るマグネシウム合金は、Znを0.15wt%以下含むものとすることもできる。この場合、Alを0.1〜0.34wt%、Caを0.1〜0.35wt%、Mnを0.15〜1.2wt%とすることで、Znを含まない場合と同様に、10m/min以上の高速押出が可能となる。   The magnesium alloy according to the present invention may contain 0.15 wt% or less of Zn. In this case, the Al content is 0.1 to 0.34 wt%, the Ca content is 0.1 to 0.35 wt%, and the Mn content is 0.15 to 1.2 wt%. High-speed extrusion at / min or higher becomes possible.

本発明に係るマグネシウム合金は、所定の組成となるように配合された原料を熔解し、鋳造することにより得られる。鋳造方法は、特に限定されるものではないが、金型鋳造法や連続鋳造法を用いることができる。   The magnesium alloy according to the present invention is obtained by melting and casting raw materials blended so as to have a predetermined composition. The casting method is not particularly limited, but a die casting method or a continuous casting method can be used.

本発明に係るマグネシウム合金は、鋳造後のビレットに450〜500℃×1〜4時間の均質化処理を施すことを特徴とする。これにより押出性がさらに向上し、15m/min以上の押出速度の高速化が可能となる。また、押出荷重を低減することができる。
Mg−Al系マグネシウム合金を押出加工に供すると、押出加工時のビレット加熱や加工発熱によって低融点化合物(Mg−Al系金属間化合物)が溶融し、押出し材表面に割れ等の欠陥が発生することがある。また、パイプ形状のような中空形材を押出す際には、押出し材に溶着不良が発生し、健全な押出し材を得ることが困難な場合がある。そのため、押出加工時における上述の不良を防止する目的で、従来、押出加工前のビレットに対して当該低融点化合物をマグネシウム母相中に固溶させる均質化処理を行っており、その条件は約410℃×24時間が一般的となっている。
本発明においては、均質化処理を高温短時間で行う点に特徴があり、この条件で均質化処理を行うことで、マグネシウム母相中に固溶しているAl,MnがAl−Mn系金属間化合物として析出し、マグネシウム母相中のAlやMnの固溶量が減少するため、加工時の変形抵抗が低下し、押出荷重が低減するものである。析出する化合物の量が多いほど、押出性が向上する。
また、450〜500℃×1〜4時間の均質化処理を施すことで、Al−Mn系金属間化合物が微細且つ高密度に分散するため、押出材の再結晶粒界をピン止めし、結晶粒の粗大化を抑制することができる。そのため、押出材の強度特性が向上する。
均質化処理の時間は1時間で押出性向上に十分効果があり、それ以上行っても効果にあまり差がないため、約1時間行うのが好ましい。なお、均質化処理の時間が4時間以上であると、350℃で均質化処理した場合と効果が変わらない。また、均質化処理を4時間より長い時間行うと、押出材の再結晶粒が粗大化し、強度特性が低下するから、均質化処理の時間は最長で4時間とした。
均質化処理後の冷却は、炉冷、空冷、水冷等、いかなる条件であってもよいが、冷却速度が遅いと粗大な化合物が析出し、冷却速度が速いと細かい化合物が析出する。
The magnesium alloy according to the present invention is characterized by subjecting a billet after casting to a homogenization treatment at 450 to 500 ° C. for 1 to 4 hours. As a result, the extrudability is further improved, and an extrusion speed of 15 m / min or more can be increased. Also, the extrusion load can be reduced.
When an Mg-Al-based magnesium alloy is subjected to extrusion processing, a low melting point compound (Mg-Al-based intermetallic compound) is melted by billet heating or processing heat generation during extrusion processing, and defects such as cracks are generated on the surface of the extruded material. Sometimes. In addition, when extruding a hollow shape such as a pipe shape, poor welding may occur in the extruded material, and it may be difficult to obtain a sound extruded material. Therefore, for the purpose of preventing the above-mentioned defects during the extrusion process, conventionally, a homogenization treatment in which the low melting point compound is solid-dissolved in the magnesium matrix is performed on the billet before the extrusion process. 410 ° C. × 24 hours is common.
The present invention is characterized in that the homogenization treatment is performed at a high temperature in a short time, and by performing the homogenization treatment under these conditions, Al and Mn dissolved in the magnesium matrix are Al—Mn-based metals. Since it precipitates as an intermetallic compound and the amount of Al and Mn in the magnesium matrix decreases, the deformation resistance during processing decreases, and the extrusion load decreases. As the amount of the precipitated compound increases, the extrudability improves.
Moreover, since the Al-Mn intermetallic compound is finely and densely dispersed by applying a homogenization treatment at 450 to 500 ° C. for 1 to 4 hours, the recrystallized grain boundary of the extruded material is pinned and crystallized. Grain coarsening can be suppressed. Therefore, the strength characteristics of the extruded material are improved.
The homogenization treatment time is 1 hour, which is sufficiently effective for improving the extrudability. Even if the time is longer, the effect is not so different. When the homogenization time is 4 hours or longer, the effect is the same as when the homogenization is performed at 350 ° C. Further, if the homogenization treatment is performed for longer than 4 hours, the recrystallized grains of the extruded material are coarsened and the strength characteristics are deteriorated. Therefore, the time for the homogenization treatment is 4 hours at the longest.
Cooling after the homogenization treatment may be under any conditions such as furnace cooling, air cooling, water cooling, etc., but a coarse compound precipitates when the cooling rate is slow, and a fine compound precipitates when the cooling rate is fast.

均質化処理を施したビレットは、押出加工を行って種々の断面形状の形材に加工することができる。押出方法は、特に限定されるものではなく、例えば直接押出法、間接押出法を用いることができる。   The billet subjected to the homogenization treatment can be processed into shapes having various cross-sectional shapes by extrusion. The extrusion method is not particularly limited, and for example, a direct extrusion method or an indirect extrusion method can be used.

表1に示す組成のマグネシウム合金のビレットを鋳造し、鋳造まま材と均質化処理を施したビレットについて、割れ等の欠陥を生じることなく押出せる最も速い押出速度(押出達成速度)を求める実験を行った。実施例1〜7及び9は、Al、Ca、Mnの含有量が請求項1の範囲内のものであり、実施例8は、Al、Ca、Mn,Znの含有量が請求項2の範囲内のものである。比較例1,4は、Al、Zn及びCaの含有量が請求項2の範囲を超えるものであり、比較例2,3は、Caの含有量が請求項1の範囲を超えるものである。表中に示した主要成分以外の成分は、Mg及び不可避的不純物である。ビレットは、断熱鋳型を用いた連続鋳造法にて鋳造した。ビレットの直径は76mmであった。均質化処理は、500℃で1時間行った。均質化処理後の冷却は、ビレットを炉から出してファン空冷にて行った。このときの冷却速度は、300℃/hであった。押出しは、直接押出法にて行い、ビレット温度350℃、金型温度350℃、押出形状は幅30mm、厚さ2mmの板状であり、押出比は47である。
表1には、各ビレットの組成、および、押出達成速度と押出荷重(最大荷重)を示した。図1は、実施例1〜9の押出した形材の外観写真であり、図2は、比較例1〜4の押出した形材の外観写真である。
An experiment to find the fastest extrusion speed (extrusion achievement speed) that can be extruded without causing defects such as cracks for billets cast from magnesium alloy billets with the composition shown in Table 1 and homogenized with the cast material. went. In Examples 1 to 7 and 9, the contents of Al, Ca, and Mn are within the scope of claim 1, and in Example 8, the contents of Al, Ca, Mn, and Zn are in the scope of Claim 2. It is in. In Comparative Examples 1 and 4, the contents of Al, Zn and Ca exceed the range of Claim 2, and in Comparative Examples 2 and 3, the content of Ca exceeds the range of Claim 1. Components other than the main components shown in the table are Mg and inevitable impurities. The billet was cast by a continuous casting method using a heat insulating mold. The diameter of the billet was 76 mm. The homogenization treatment was performed at 500 ° C. for 1 hour. Cooling after the homogenization treatment was performed by cooling the fan with the billet out of the furnace. The cooling rate at this time was 300 ° C./h. Extrusion is performed by a direct extrusion method. The billet temperature is 350 ° C., the mold temperature is 350 ° C., the extrusion shape is a plate shape with a width of 30 mm and a thickness of 2 mm, and the extrusion ratio is 47.
Table 1 shows the composition of each billet, the speed at which extrusion was achieved, and the extrusion load (maximum load). FIG. 1 is an appearance photograph of the extruded shapes of Examples 1 to 9, and FIG. 2 is an appearance photograph of the extruded shapes of Comparative Examples 1 to 4.

表1と図1,2より明らかなように、実施例1〜9は鋳造ままの状態で押出加工を行っても10m/min以上で押出しが可能であり、均質化処理を施したものについては、実施例5,6,9を除いて、28m/minの高速での押出しが可能であった。また均質化処理を施すと、押出速度をより速くできると同時に、押出荷重が低減することを確認した。均質化処理を施すことで、押出荷重は概ね10〜20%低減し、Alの含有量が2.69wt%と多い実施例7は、荷重低減割合が23%と大きくなった。
Alの含有量が0.4wt%以下で且つMnの含有量が0.4wt%以上の実施例2,3は、鋳造ままでも28m/minで押出すことができた。
一方、Znを0.15wt%より多く含有する比較例1、Caを0.43wt%より多く含有する比較例2〜4は、いずれも15m/min以上の押出速度の高速化は不可能であった。
As is clear from Table 1 and FIGS. 1 and 2, Examples 1 to 9 can be extruded at 10 m / min or more even if extrusion is performed in the as-cast state. Except for Examples 5, 6, and 9, extrusion at a high speed of 28 m / min was possible. Further, it was confirmed that when the homogenization treatment was performed, the extrusion speed could be increased and the extrusion load was reduced. By performing the homogenization treatment, the extrusion load was reduced by approximately 10 to 20%, and in Example 7, where the Al content was as high as 2.69 wt%, the load reduction ratio was increased to 23%.
Examples 2 and 3 having an Al content of 0.4 wt% or less and an Mn content of 0.4 wt% or more could be extruded at 28 m / min even when cast.
On the other hand, in Comparative Example 1 containing more than 0.15 wt% of Zn and Comparative Examples 2 to 4 containing more than 0.43 wt% of Ca, it was impossible to increase the extrusion speed of 15 m / min or more. It was.

図7は、AlとCaの含有量と押出達成速度及び押出荷重との関係を示す図である。同図より明らかなように、Caが0.4wt%以上では明らかに押出性が低下する。Caが0.35wt%以下で且つAlが0.35wt%以下の領域では、鋳造ままでも20m/min以上の押出速度の高速化が可能である。Caが0.35wt%以下で且つAlが0.35〜0.63wt%の領域では、均質化処理を施すことで20m/min以上の押出速度の高速化が可能である。Caが0.35wt%以下で且つAlが0.63〜2.6wt%の領域では、均質化処理を施すことで15m/min以上の押出速度の高速化が可能である。   FIG. 7 is a diagram showing the relationship between the content of Al and Ca, the speed of achieving extrusion, and the extrusion load. As is clear from the figure, extrudability is clearly lowered when Ca is 0.4 wt% or more. In the region where Ca is 0.35 wt% or less and Al is 0.35 wt% or less, it is possible to increase the extrusion speed of 20 m / min or more even when cast. In the region where Ca is 0.35 wt% or less and Al is 0.35 to 0.63 wt%, it is possible to increase the extrusion speed of 20 m / min or more by performing a homogenization treatment. In the region where Ca is 0.35 wt% or less and Al is 0.63 to 2.6 wt%, it is possible to increase the extrusion speed by 15 m / min or more by applying a homogenization treatment.

実施例1,2,3,4,6,7の押出した形材をT5処理したものについて引張試験を行い、機械的性質を測定した。また、それらの形材のミクロ組織を観察し、結晶粒度を測定した。測定結果を表2に示す。   A tensile test was performed on the extruded shapes of Examples 1, 2, 3, 4, 6, and 7 treated with T5, and mechanical properties were measured. In addition, the microstructure of these shapes was observed and the crystal grain size was measured. The measurement results are shown in Table 2.

Mnの含有量が0.2wt%と少ない実施例1は、結晶粒度が50μm程度と粗大であるが、Mnを0.4wt%以上含有する実施例2,3,4,6,7は、結晶粒の粗大化が抑制され、且つ機械的性質も向上している。Alの含有量が増加するにつれて、引張強さは向上する。   In Example 1, where the Mn content is as low as 0.2 wt%, the crystal grain size is as coarse as about 50 μm, but Examples 2, 3, 4, 6, and 7 containing Mn in an amount of 0.4 wt% or more are crystals. Grain coarsening is suppressed, and mechanical properties are also improved. As the Al content increases, the tensile strength improves.

表3に示すように、Mnの含有量の異なる3種類のマグネシウム合金ビレットを鋳造し、各ビレットに450℃×1時間の均質化処理を施し、そのビレットを押出加工し、押出し材の外観及びミクロ組織を観察した。押出しは、間接押出法にて行い、押出温度は400℃、押出速度は60m/minとした。   As shown in Table 3, three types of magnesium alloy billets with different Mn contents were cast, each billet was subjected to a homogenization treatment at 450 ° C. for 1 hour, the billet was extruded, and the appearance of the extruded material and The microstructure was observed. Extrusion was performed by the indirect extrusion method, the extrusion temperature was 400 ° C., and the extrusion speed was 60 m / min.

図3は、上記の各マグネシウム合金の押出しまま材の外観写真である。同図より明らかなように、Mnの含有量が増加するにつれて、押出し材の表面性状が改善する。
図4は、各押出し材のミクロ組織の写真である。同図より明らかなように、Mnの含有量が増加するにつれて、結晶粒径は微細化し集合組織も強くなる傾向がある。
FIG. 3 is an appearance photograph of the extruded material of each of the above magnesium alloys. As is clear from the figure, as the Mn content increases, the surface properties of the extruded material improve.
FIG. 4 is a photograph of the microstructure of each extruded material. As is clear from the figure, as the Mn content increases, the crystal grain size tends to become finer and the texture becomes stronger.

表3中の0.4Mnマグネシウム合金について、鋳造ままのビレット、および、500℃×1時間、450℃×1時間、400℃×1時間の各条件で均質化処理を施したものについて、間接押出による押出加工を行い、各材の押出性の評価を行った。押出速度は、60m/minとした。   About 0.4Mn magnesium alloy in Table 3, indirect extrusion of billet as cast and homogenized under conditions of 500 ° C. × 1 hour, 450 ° C. × 1 hour, 400 ° C. × 1 hour Extrusion processing was carried out, and the extrudability of each material was evaluated. The extrusion speed was 60 m / min.

図5は、押出し材の外観の写真である。同図に示すとおり、鋳造まま材の場合は表面に割れが大きく発生し、400℃×1時間の均質化処理を施した場合は、鋳造まま材ほどではないが表面に割れが発生した。500℃×1時間、450℃×1時間の均質化処理を施した場合では、表面に割れ等の欠陥のまったくない、良好な外観の押出し材を得た。   FIG. 5 is a photograph of the appearance of the extruded material. As shown in the figure, in the case of the as-cast material, a large crack was generated on the surface, and when the homogenization treatment was performed at 400 ° C. × 1 hour, the crack was generated on the surface although not as much as the as-cast material. When the homogenization treatment was performed at 500 ° C. × 1 hour and 450 ° C. × 1 hour, an extruded material having a good appearance with no defects such as cracks on the surface was obtained.

下記表4に示す組成のマグネシウム合金ビレットを鋳造し、鋳造まま材、および、350℃,400℃,450℃,500℃で1,4,16,64時間それぞれ均質化処理したビレットについて押出加工を行い、均質化処理条件の押出性に及ぼす影響を調べた。均質化処理後の冷却は水冷で行った。押出加工は、間接押出にて行い、押出温度は350℃、押出速度は60m/min、押出比は20とした。   A magnesium alloy billet having the composition shown in Table 4 below is cast, and extrusion processing is performed on the as-cast material and billets homogenized at 350 ° C, 400 ° C, 450 ° C, and 500 ° C for 1, 4, 16, and 64 hours, respectively. The effect of the homogenization treatment conditions on the extrudability was investigated. Cooling after the homogenization treatment was performed by water cooling. Extrusion was performed by indirect extrusion, the extrusion temperature was 350 ° C., the extrusion speed was 60 m / min, and the extrusion ratio was 20.

図6は、この実験の結果をグラフ化したものである。同図より明らかなように、450℃×1時間、500℃×1時間の均質化処理を施すことで、押出荷重が大きく低減すると共に、押出性も飛躍的に向上する。   FIG. 6 is a graph of the results of this experiment. As is clear from the figure, by performing the homogenization treatment at 450 ° C. × 1 hour and 500 ° C. × 1 hour, the extrusion load is greatly reduced and the extrudability is also dramatically improved.

図8は、500℃×1時間の均質化処理をしたもの、500℃×64時間の均質化処理をしたもの、350℃×1時間の均質化処理をしたもの、鋳造ままの各ビレットのミクロ組織写真である。図8(a)に示す500℃×1時間の均質化処理をしたものの写真(下の写真)に見られる約60nm以下の白色を呈した球状化合物は、Al−Mn系金属間化合物が析出したものであり、この金属間化合物が1%以上の体積率で高密度に分散して析出していることが分かる。この特徴は、500℃×1時間の均質化処理をしたものだけに見られ、他の条件で均質化処理をしたものや、鋳造ままのものには見られない。このようにAl−Mn系金属間化合物が高密度に析出したことで、マグネシウム母相中のAlやMnの固溶量が減少するため、加工時の変形抵抗が低下し、押出荷重が低減するものと考えられる。   Fig. 8 shows a homogenized treatment at 500 ° C for 1 hour, a homogenized treatment at 500 ° C for 64 hours, a homogenized treatment at 350 ° C for 1 hour, and a micro of each billet as cast. It is an organization photograph. In the spherical compound having a white color of about 60 nm or less as seen in the photograph (lower photograph) of the homogenized treatment at 500 ° C. × 1 hour shown in FIG. 8A, an Al—Mn intermetallic compound was precipitated. It can be seen that this intermetallic compound is dispersed and deposited in a high density at a volume ratio of 1% or more. This feature can be seen only in the case of homogenization treatment at 500 ° C. × 1 hour, and not in the case of homogenization treatment under other conditions or as-cast. As the Al-Mn intermetallic compound is precipitated at a high density in this way, the solid solution amount of Al and Mn in the magnesium matrix decreases, so the deformation resistance during processing decreases and the extrusion load decreases. It is considered a thing.

図9は、均質化処理の温度及び時間と押出材の結晶粒度との関係を示すグラフである。同図より明らかなように、450℃や500℃で均質化処理すると、処理時間が長くなるにつれて押出材の結晶粒が大きくなるが、短時間であれば、Al−Mn系金属間化合物のピン止め効果によって、結晶粒の粗大化が抑制されており、4時間以内なら鋳造まま材を押出した押出材の結晶粒の150%以内に抑えられる。   FIG. 9 is a graph showing the relationship between the temperature and time of the homogenization treatment and the crystal grain size of the extruded material. As is clear from the figure, when the homogenization treatment is performed at 450 ° C. or 500 ° C., the crystal grains of the extruded material increase as the treatment time increases. Due to the stopping effect, coarsening of crystal grains is suppressed, and within 4 hours, the crystal grains can be suppressed to 150% or less of the crystal grains of the extruded material obtained by extruding the material as cast.

以上に述べたように、Alを0.1〜3.0wt%、Caを0.1〜0.43wt%、Mnを0.15〜1.2wt%含むマグネシウム合金は、10m/min以上の押出速度の高速化が可能である。また、Alを0.1〜0.34wt%、Caを0.1〜0.35wt%、Mnを0.15〜1.2wt%、Znを0.15wt%以下含有するマグネシウム合金も、10m/min以上の押出速度の高速化が可能である。鋳造したビレットに450〜500℃×1〜4時間の均質化処理を施すことで、さらに高速(15m/min以上)での押出しが可能となり、且つ押出荷重を低減することができる。Alを所定量含有することで、一般的な展伸用アルミニウム合金6063合金と同等以上の機械的性質を得ることができる。また、Caを所定量含有することで、難燃性を付与できる。   As described above, a magnesium alloy containing 0.1 to 3.0 wt% Al, 0.1 to 0.43 wt% Ca, and 0.15 to 1.2 wt% Mn is extruded at 10 m / min or more. The speed can be increased. A magnesium alloy containing 0.1 to 0.34 wt% of Al, 0.1 to 0.35 wt% of Ca, 0.15 to 1.2 wt% of Mn, and 0.15 wt% or less of Zn is also 10 m / It is possible to increase the extrusion speed at least min. By subjecting the cast billet to a homogenization treatment at 450 to 500 ° C. for 1 to 4 hours, extrusion at a higher speed (15 m / min or more) becomes possible, and the extrusion load can be reduced. By containing a predetermined amount of Al, mechanical properties equivalent to or higher than those of a general aluminum alloy 6063 for stretching can be obtained. Moreover, flame retardance can be provided by containing a predetermined amount of Ca.

本発明は以上に述べた実施形態に限定されない。本発明のマグネシウム合金は、押出加工用のものに限定されるものではなく、圧延、プレス成型、鍛造に用いることもできる。   The present invention is not limited to the embodiments described above. The magnesium alloy of the present invention is not limited to the one for extrusion, and can also be used for rolling, press molding, and forging.

Claims (2)

Alを0.1〜3.0wt%、Caを0.1〜0.43wt%、Mnを0.15〜1.2wt%含み、残部がMg及び不可避的不純物からなり、鋳造後のビレットに450〜500℃×1〜4時間の均質化処理を施すことを特徴とするマグネシウム合金の製造方法It contains 0.1 to 3.0 wt% Al, 0.1 to 0.43 wt% Ca, 0.15 to 1.2 wt% Mn, and the balance consists of Mg and inevitable impurities. A method for producing a magnesium alloy , characterized by performing a homogenization treatment at ˜500 ° C. × 1 to 4 hours. Alを0.1〜0.34wt%、Caを0.1〜0.35wt%、Mnを0.15〜1.2wt%、Znを0.15wt%以下含み、残部がMg及び不可避的不純物からなり、鋳造後のビレットに450〜500℃×1〜4時間の均質化処理を施すことを特徴とするマグネシウム合金の製造方法0.1 to 0.34 wt% of Al, 0.1 to 0.35 wt% of Ca, 0.15 to 1.2 wt% of Mn, 0.15 wt% or less of Zn, and the balance from Mg and inevitable impurities It becomes method for producing a magnesium alloy, characterized in that performing a homogenization treatment of 450 to 500 ° C. × 1 to 4 hours billet after casting.
JP2015051435A 2015-03-13 2015-03-13 Method for producing magnesium alloy Active JP6452042B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015051435A JP6452042B2 (en) 2015-03-13 2015-03-13 Method for producing magnesium alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015051435A JP6452042B2 (en) 2015-03-13 2015-03-13 Method for producing magnesium alloy

Publications (3)

Publication Number Publication Date
JP2016169431A JP2016169431A (en) 2016-09-23
JP2016169431A5 JP2016169431A5 (en) 2018-05-17
JP6452042B2 true JP6452042B2 (en) 2019-01-16

Family

ID=56983236

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015051435A Active JP6452042B2 (en) 2015-03-13 2015-03-13 Method for producing magnesium alloy

Country Status (1)

Country Link
JP (1) JP6452042B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7002711B2 (en) * 2016-09-13 2022-02-04 三協立山株式会社 Magnesium alloy
KR102043774B1 (en) * 2016-10-21 2019-11-12 주식회사 포스코 High formability magnesium alloy sheet and method for manufacturing the same
JP7356116B2 (en) 2021-04-09 2023-10-04 三菱重工業株式会社 Method of manufacturing aircraft parts

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006225750A (en) * 2005-02-21 2006-08-31 Ryobi Ltd Magnesium alloy for die casting
JP2012097309A (en) * 2010-10-29 2012-05-24 Sanden Corp Magnesium alloy member, compressor for air conditioner, and method for manufacturing magnesium alloy member

Also Published As

Publication number Publication date
JP2016169431A (en) 2016-09-23

Similar Documents

Publication Publication Date Title
JP6955483B2 (en) High-strength aluminum alloy extruded material with excellent corrosion resistance and good hardenability and its manufacturing method
JP4189687B2 (en) Magnesium alloy material
JP6420553B2 (en) Aluminum alloy, aluminum alloy wire, aluminum alloy wire manufacturing method, aluminum alloy member manufacturing method, and aluminum alloy member
JP6119937B1 (en) Aluminum alloy extruded material having anodized film with excellent appearance quality and method for producing the same
EP2716780A1 (en) Aluminum alloy and method of manufacturing extrusion using same
JP7018274B2 (en) Aluminum alloy for extrusion molding and method for manufacturing extruded material using it
JP6406971B2 (en) Method for producing aluminum alloy member
WO2015182748A1 (en) Method for manufacturing aluminum alloy member and aluminum alloy member using same
JP6452042B2 (en) Method for producing magnesium alloy
JP2016169431A5 (en)
JP7002711B2 (en) Magnesium alloy
JP6638192B2 (en) Aluminum alloy processing material and method of manufacturing the same
WO2018088351A1 (en) Aluminum alloy extruded material
WO2016017046A1 (en) Aluminium alloy extruded material with superior machinability and production method therefor
KR101680046B1 (en) Method for manufacturing high-strength wrought magnesium alloy by conducting aging treatment prior to plastic working and high-strength wrought magnesium alloy manufactured thereby
WO2017006816A1 (en) Aluminum alloy extruded material having positive electrode oxide film and excellent external appearance quality and production method therefor
KR101700419B1 (en) Method for preparing high-strength magnesium alloy extruded material using low temperature and slow speed extrusion process and magnesium alloy extruded material manufactured thereby
JP5777782B2 (en) Manufacturing method of extruded aluminum alloy with excellent machinability
JP2007113037A (en) High strength magnesium alloy extruded material
JP2016108654A (en) Magnesium alloy extrusion material and method for producing the same
JP2007119823A (en) High-strength magnesium alloy extruded material
KR101732595B1 (en) Mg alloy having high thermal conductivity and extrusion method using the same
JP7073068B2 (en) Al-Cu-Mg-based aluminum alloy and Al-Cu-Mg-based aluminum alloy material
JP2021055168A (en) Magnesium alloy sheet
JP2016151044A (en) Aluminum alloy extruded material excellent in machinability and production method therefor

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180306

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180306

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20180306

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20181113

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20181129

R150 Certificate of patent or registration of utility model

Ref document number: 6452042

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250