WO2016017046A1 - Aluminium alloy extruded material with superior machinability and production method therefor - Google Patents

Aluminium alloy extruded material with superior machinability and production method therefor Download PDF

Info

Publication number
WO2016017046A1
WO2016017046A1 PCT/JP2014/084569 JP2014084569W WO2016017046A1 WO 2016017046 A1 WO2016017046 A1 WO 2016017046A1 JP 2014084569 W JP2014084569 W JP 2014084569W WO 2016017046 A1 WO2016017046 A1 WO 2016017046A1
Authority
WO
WIPO (PCT)
Prior art keywords
mass
extruded material
aluminum alloy
extrusion
phase
Prior art date
Application number
PCT/JP2014/084569
Other languages
French (fr)
Japanese (ja)
Inventor
幸昌 宮田
吉原 伸二
隆広 志鎌
Original Assignee
株式会社神戸製鋼所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2014156634A external-priority patent/JP5777782B2/en
Application filed by 株式会社神戸製鋼所 filed Critical 株式会社神戸製鋼所
Priority to EP14898493.3A priority Critical patent/EP3176274B1/en
Priority to CN201480046489.4A priority patent/CN105473747B/en
Priority to KR1020157021657A priority patent/KR101688358B1/en
Priority to KR1020167027531A priority patent/KR102156008B1/en
Publication of WO2016017046A1 publication Critical patent/WO2016017046A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21CMANUFACTURE OF METAL SHEETS, WIRE, RODS, TUBES OR PROFILES, OTHERWISE THAN BY ROLLING; AUXILIARY OPERATIONS USED IN CONNECTION WITH METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL
    • B21C23/00Extruding metal; Impact extrusion
    • B21C23/002Extruding materials of special alloys so far as the composition of the alloy requires or permits special extruding methods of sequences
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21CMANUFACTURE OF METAL SHEETS, WIRE, RODS, TUBES OR PROFILES, OTHERWISE THAN BY ROLLING; AUXILIARY OPERATIONS USED IN CONNECTION WITH METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL
    • B21C31/00Control devices, e.g. for regulating the pressing speed or temperature of metal; Measuring devices, e.g. for temperature of metal, combined with or specially adapted for use in connection with extrusion presses
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • C22C21/02Alloys based on aluminium with silicon as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/04Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon
    • C22F1/043Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon of alloys with silicon as the next major constituent

Definitions

  • the present invention relates to an Al—Mg—Si-based aluminum alloy extruded material having high strength and excellent machinability suitable for machine parts and the like that frequently use cutting in the manufacturing process, and a method for producing the same.
  • Patent Documents 1 to 4 describe extruded Al—Mg—Si aluminum alloy extruded materials. These aluminum alloy extruded materials for cutting add 1.5% by mass or more of Si to improve machinability and distribute a large amount of Si-based crystallized material (Si phase), which is the second phase hard particles, in the matrix. I am letting.
  • JP-A-9-249931 Japanese Patent Laid-Open No. 10-8175 JP 2002-47525 A JP 2003-147468 A
  • FIG. 1 shows a micrograph of a billet before homogenization.
  • the band-like Si phase (gray) is connected in a net shape, and the Mg 2 Si phase (black) is distributed in the form of dots inside, and a needle-like ⁇ -AlFeSi phase (white) is formed along the Si phase.
  • seizure pickup
  • the reason why seizure occurs in the Al—Mg—Si-based aluminum alloy extruded material is as follows.
  • the band-like Si phase present in the billet before extrusion causes eutectic reaction with the Al phase and Mg 2 Si phase due to deformation of the material due to extrusion and processing heat generation due to friction between the material and the die bearing, thereby causing local melting. Will occur. Due to the shearing force received when the extruded material passes through the die bearing portion, the material on the surface of the extruded material (cell surrounded by the Si phase) drops off from the melting point, and seizure occurs.
  • the needle-like ⁇ -AlFeSi phase present in the billet before extrusion causes peritectic reaction with the Mg 2 Si phase due to processing heat generated by extrusion, and local melting occurs.
  • this local melting is continuously generated and connected, the material on the surface of the extruded material falls off due to the shearing force received when the extruded material passes through the die bearing portion, and seizure occurs.
  • the inner peripheral surface of the die is mirror-finished, if seizure occurs, the surface of the extruded material becomes rough and the smoothness is lost.
  • the billet before extrusion is homogenized for 4 hours or more at 500 to 550 ° C., and the Si phase crystallized in a band shape is divided (spherical) Can be reduced.
  • the seizure based on the peritectic reaction between the ⁇ -AlFeSi phase and the Mg 2 Si phase is performed at a temperature of 500 ° C. or more for a long time (about 50 hours when the amount of Si and Fe is large). It is possible to reduce the heat generation amount by spheroidizing (spheroidizing) or decreasing the extrusion rate to reduce the heat generation amount.
  • homogenization for a long time hinders productivity and is disadvantageous in terms of cost, and a decrease in extrusion speed also hinders productivity.
  • the present invention has been made in view of the above-mentioned problems associated with the production of Al-Mg-Si-based aluminum alloy extruded materials for cutting, and seizure can be achieved without a long-time homogenization treatment and a decrease in extrusion speed.
  • the objective is to obtain an Al—Mg—Si-based aluminum alloy extruded material having a smooth surface.
  • the Al—Mg—Si-based aluminum alloy extruded material according to the present invention has Si: 2.0 to 6.0% by mass, Mg: 0.3 to 1.2% by mass, Ti: 0.01 to 0.2% by mass. Mg, with a Fe content of 0.2% by mass or less, the balance being Al and inevitable impurities, 20 or less AlFeSi particles having a diameter of 5 ⁇ m or more per 50 ⁇ 50 ⁇ m area, and a diameter of 2 ⁇ m or more. 2 The number of Si particles is 20 or less per 50 ⁇ 50 ⁇ m area, and the ten-point average roughness Rz of the surface of the extruded material is 80 ⁇ m or less.
  • the aluminum alloy extruded material may further contain one or more of Mn: 0.1 to 1.0% by mass and Cu: 0.1 to 0.4% by mass as necessary.
  • the aluminum alloy extruded material may further contain one or more of Cr: 0.03-0.1% by mass and Zr: 0.03-0.1% by mass, if necessary.
  • an aluminum alloy billet having the above composition is subjected to a homogenization treatment of holding at 500 to 550 ° C. for 4 to 15 hours, and 50 ° C./hour. Forcibly cooled to a temperature of 250 ° C. or less at the above average cooling rate, heated to 450 to 500 ° C. and hot extruded at an extrusion rate of 3 to 10 m / min, and the extruded material was cooled at an average cooling of 50 ° C./second or more. It is characterized by forced cooling at a speed and aging treatment.
  • the Al—Mg—Si-based aluminum alloy extruded material according to the present invention can be obtained.
  • an Al—Si—Mg-based aluminum alloy extruded material having a relatively high Si content seizure is reduced without a long-time homogenization treatment and a decrease in extrusion speed. It is possible to obtain an Al—Si—Mg-based aluminum alloy extruded material excellent in machinability having a smooth surface with an average roughness Rz of 80 ⁇ m or less.
  • the Al—Si—Mg-based aluminum alloy extruded material according to the present invention has high strength and excellent machinability, and also has a good appearance due to its smooth surface, which reduces the amount of cutting and, in some cases, the extruded material. A part of the surface can be used as it is (without cutting) as the product surface.
  • Example No. 2 is a scanning electron micrograph of a billet before homogenization.
  • Example No. It is a scanning electron microscope structure photograph after the homogenization process of 1 billet.
  • Example No. 1 is a scanning electron microscopic photograph of an extruded material obtained from one billet.
  • Example No. It is a scanning electron microscope structure
  • Example No. It is a scanning electron microscope structure photograph of the extrusion material obtained from 12 billets.
  • Example No. It is a scanning electron microscopic structure photograph of the extrusion material obtained from 13 billets.
  • the aluminum alloy according to the present invention contains Si: 2.0 to 6.0% by mass, Mg: 0.3 to 1.2% by mass, Ti: 0.01 to 0.2% by mass, and the balance Al and Consists of inevitable impurities.
  • This aluminum alloy further contains one or more of Mn: 0.1 to 1.0 mass% and Cu: 0.1 to 0.4 mass% as required, and further Cr: 0.00% as necessary.
  • One or more of 03 to 0.1% by mass and Zr: 0.03 to 0.1% by mass are contained.
  • the composition of this aluminum alloy is known per se, but the present invention is characterized in that the content of Fe among inevitable impurities is regulated to 0.2% by mass or less.
  • each component of the aluminum alloy according to the present invention will be described.
  • Si forms Si-based crystallized substances (Si phase) which are second-phase hard particles in aluminum, improves chip breaking and improves machinability.
  • Si phase Si-based crystallized substances
  • Si needs to be added in an amount of 2% by mass or more exceeding the solid solution amount in aluminum.
  • Si is added in excess of 6% by mass, a coarse Si phase is formed, and the melting start point is lowered by the eutectic reaction of the Si phase, Al phase, and Mg 2 Si phase.
  • the Si content is set to 2.0 to 6.0% by mass.
  • the lower limit of the Si content is preferably 3.5% by mass, and the upper limit is preferably 4.5% by mass.
  • Mg 0.3 to 1.2% by mass Mg precipitates as fine Mg 2 Si by aging precipitation treatment, and improves the strength. For that purpose, it is desirable to add 0.3% by mass or more of Mg.
  • Mg 2 Si is also formed as a crystallized product at the time of solidification, and causes a peritectic reaction with ⁇ -AlFeSi at the time of extrusion to generate local melting, which causes seizure. If the Mg content exceeds 1.2% by mass, a large amount of Mg 2 Si crystallized matter is formed and seizure tends to occur. Therefore, the Mg content is set to 0.3 to 1.2% by mass.
  • the lower limit of the Mg content is preferably 0.5% by mass, and the upper limit is preferably 0.9% by mass.
  • Ti 0.01 to 0.2% by mass Ti is added to make the cast structure finer and stabilize the mechanical properties. However, if less than 0.01% by mass, the effect cannot be obtained. Further refinement effect is not improved. Therefore, the Ti content is set to 0.01 to 0.2% by mass.
  • the lower limit of the Ti content is preferably 0.01% by mass, and the upper limit is preferably 0.1% by mass.
  • Mn 0.1 to 1.0% by mass
  • Cu 0.1 to 0.4 mass% Mn precipitates as dispersed particles during the homogenization treatment, and has the effect of improving the strength by making the crystal grains of the extruded material fine, so it is added as necessary. If the Mn content is less than 0.1% by mass, a sufficient effect cannot be obtained. On the other hand, if the Mn content exceeds 1.0% by mass, the extrudability decreases. Therefore, the Mn content is 0.1 to 1.0% by mass. The lower limit of the Mn content is preferably 0.4% by mass, and the upper limit is preferably 0.8% by mass. Cu is added as needed instead of Mn or together with Mn to form a solid solution and increase the strength of the extruded material.
  • the Cu content is less than 0.1% by mass, a sufficient effect cannot be obtained.
  • the Cu content exceeds 0.4% by mass, the corrosion resistance and the extrudability are lowered. Therefore, the Cu content is 0.1 to 0.4 mass%.
  • the lower limit of the Cu content is preferably 0.2% by mass, and the upper limit is preferably 0.3% by mass.
  • Zr 0.03 to 0.1% by mass Cr is added as necessary in order to suppress recrystallization, refine crystal grains, and increase the strength of the extruded material.
  • the Cr content is less than 0.03% by mass, a sufficient effect cannot be obtained.
  • the Cr content exceeds 0.1% by mass, seizure tends to occur during extrusion. Therefore, the Cr content is set to 0.03 to 0.1% by mass.
  • Zr is added as necessary in place of Cr or together with Cr in order to suppress recrystallization and refine crystal grains and increase the strength of the extruded material. However, when the Zr content is less than 0.03% by mass, a sufficient effect cannot be obtained.
  • the Zr content exceeds 0.1% by mass, the compound with Al is coarsened during the homogenization treatment, thereby suppressing recrystallization. The effect to do is not obtained. Therefore, the Zr content is set to 0.03 to 0.1% by mass.
  • Fe 0.2% by mass or less Fe-present as an inevitable impurity in the aluminum alloy generates a ⁇ -AlFeSi phase that is a needle-like crystallized product in the cooling process after casting.
  • ⁇ -AlFeSi phase a needle-like crystallized product in the cooling process after casting.
  • a high-temperature and long-time homogenization treatment is necessary, and productivity is impaired.
  • the Fe content of the aluminum alloy is regulated to 0.2% by mass or less, the amount of ⁇ -AlFeSi phase generated decreases, and a homogenization treatment for a long time is performed by the manufacturing method described below. In addition, seizure during extrusion can be prevented.
  • the amount of Fe usually contained as an inevitable impurity in the aluminum alloy is about 0.3% by mass.
  • the homogenization treatment of the cast billet is performed under the holding conditions of 500 to 550 ° C. ⁇ 4 to 15 hours.
  • the reason why the holding temperature is 500 ° C. or more and the holding time is 4 hours or more is that the Si phase crystallized in a band shape is divided (spheroidized) and the crystallized Mg 2 Si is dissolved.
  • the higher the holding temperature and the longer the holding time the more the Si phase is divided and the Mg 2 Si solid solution is promoted, which is preferable for reducing seizure.
  • local melting may occur at a temperature exceeding 550 ° C. If the holding time is longer, the productivity is lowered. Therefore, the homogenization treatment is performed under holding conditions in the range of 500 to 550 ° C. ⁇ 4 to 15 hours. It should be noted that the ⁇ -AlFeSi phase is not sufficiently ⁇ -ized under this holding condition.
  • the billet After the homogenization treatment, the billet is forcibly cooled at an average cooling rate of 50 ° C./hour or more.
  • the billet after the homogenization treatment is taken out of the furnace and cooled by standing or air cooling. In actual operation, a large number of high-temperature billets are cooled in an accumulated state. Therefore, even when performing fan air cooling, the cooling rate is generally estimated to be less than 30 ° C./hour. Attention was not paid.
  • the precipitation of Mg 2 Si can be minimized (to the extent that seizure can be prevented during extrusion). it can.
  • a desirable average cooling rate is 80 ° C./hour or more, and can be achieved by forcibly performing fan air cooling without accumulating billets. More preferably, it is water cooling, in which case a cooling rate of about 100,000 ° C./hour is achieved.
  • the billet is reheated to 450 to 500 ° C., and hot extrusion is performed at an extrusion speed of 3 to 10 m / min.
  • the extrusion material according to the present invention is a solid material (solid material)
  • the extrusion ratio is relatively small and the processing heat generation is not so large. Therefore, when the extrusion temperature is less than 450 ° C., the outlet temperature of the extrusion material is necessary for solution treatment. The temperature does not exceed 500 ° C.
  • processing heat is added to increase the material temperature, and there is a risk that seizure occurs in the extruded material.
  • the extrusion temperature (heating temperature of the billet) is set to 450 to 500 ° C.
  • the productivity is low.
  • it exceeds 10 m / min there will be a risk that seizure will occur in the extruded material due to a large processing heat generation and an increase in material temperature.
  • the extrusion speed is 3 to 10 m / min.
  • the extrusion ratio cross-sectional area of the extrusion container / cross-sectional area of the extrusion outlet
  • Cooling conditions after extrusion The extruded material immediately after extrusion is forcibly cooled (die-quenched) online at an average cooling rate of 50 ° C./second or more from the extrusion outlet temperature to a temperature of 250 ° C. or lower. If it becomes 250 degrees C or less, it may cool to room temperature. By setting this average cooling rate to 50 ° C./second or more, precipitation of Mg 2 Si is prevented.
  • a preferred cooling means is water cooling.
  • Aging treatment conditions Die-quenched extruded material is subjected to aging treatment. The aging treatment condition may be 160 to 200 ° C. ⁇ 2 to 10 hours.
  • the distribution of coarse ⁇ -AlFeSi particles and Mg 2 Si particles in the Al—Mg—Si-based aluminum alloy extruded material according to the present invention is determined by the ⁇ -AlFeSi phase and Mg 2 Si in the billet after homogenization (after cooling). It reflects the distribution of phases. This point will be described with reference to the electron micrographs of FIGS. 2A to 4B. 2A, FIG. 3A, and FIG. It is an electron micrograph showing the distribution of ⁇ -AlFeSi phase and Mg 2 Si phase in billets of 1,12,13.
  • the ⁇ -AlFeSi phase is shown as white needle-like particles, and the Mg 2 Si phase is shown as black granular particles.
  • 2B, 3B and 4B are electron micrographs showing the distribution of AlFeSi particles and Mg 2 Si particles in the extruded materials obtained from these billets.
  • the original ⁇ -AlFeSi phase is divided during extrusion and becomes an aggregate of white granular particles.
  • the number of AlFeSi particles having a diameter of 5 ⁇ m or more and Mg 2 Si particles having a diameter of 2 ⁇ m or more per fixed area (50 ⁇ m ⁇ 50 ⁇ m) are both in the present invention.
  • the number of AlFeSi particles having a diameter of 5 ⁇ m or more is relatively large in FIG. 3B, which exceeds the prescribed range of the present invention, and in FIG. 4B, Mg having a diameter of 2 ⁇ m or more. 2
  • the number of Si particles is relatively large and exceeds the specified range of the present invention.
  • FIG. 2A has less ⁇ -AlFeSi phase and smaller Mg 2 Si phase, and FIG. -AlFeSi phase is relatively large, and in FIG. 4A, the size of the Mg 2 Si phase is relatively large.
  • the ⁇ -AlFeSi phase and Mg 2 Si in the billet before extrusion are determined. This indirectly defines the phase distribution.
  • the production amount of ⁇ -AlFeSi phase in the billet is small, Precipitation of Mg 2 Si particles is suppressed, and the size of the Mg 2 Si phase is small.
  • the number of AlFeSi particles having a diameter of 5 ⁇ m or more per unit area in the extruded material exceeds the specified range of the present invention, the amount of ⁇ -AlFeSi phase generated in the billet is large.
  • the number of Mg 2 Si particles having a diameter of 2 ⁇ m or more in the extruded material per certain area exceeds the specified range of the present invention, the precipitation of the Mg 2 Si phase in the billet is not sufficiently suppressed, and the Mg 2 Si phase The size is large.
  • the number density of AlFeSi particles and Mg 2 Si particles in the present invention is measured by the following procedure. 1) Observation area of 50 ⁇ m ⁇ 50 ⁇ m square (a pair of sides parallel to the extrusion direction) in which number density measurement is performed by scanning electron microscope (SEM) observation after polishing the cross section for measuring the number density of the extruded material Select two or more. 2) The number of AlFeSi particles having a diameter of 5 ⁇ m or more and Mg 2 Si particles having a diameter of 2 ⁇ m or more included in the observation region is measured (diameter is equivalent to a circle). When measuring the number of particles contained in the region, it is preferable to set the SEM magnification to 1000 times or more in order to measure with high accuracy. Particles that exist across the side of the observation area are counted as one. 3) The number of each particle is measured with respect to all the observation areas selected in the procedure of 2), and the average value of the number of each particle included in all the selected observation areas is obtained.
  • the production amount of ⁇ -AlFeSi phase is small and precipitation of Mg 2 Si phase is suppressed, so that the peritectic reaction between ⁇ -AlFeSi phase and Mg 2 Si phase is suppressed during extrusion, and Mg
  • the eutectic reaction of Si, Al and Mg 2 Si can also be suppressed.
  • seizure of the extruded material is reduced, and an Al—Mg—Si-based aluminum alloy extruded material (as-extruded material) having a small surface roughness can be produced.
  • the surface roughness of the Al—Mg—Si-based aluminum alloy extruded material can be 80 ⁇ m or less in terms of a ten-point average roughness Rz (JIS B0601: 1994).
  • the number density of coarse AlFeSi particles and Mg 2 Si particles, as well as machinability, hardness, surface roughness (10-point average roughness Rz), and extrudability were measured as follows. did. (Number density of AlFeSi particles and Mg 2 Si particles) After polishing the cross section for measuring the number density of each sample material, each sample material is subjected to SEM observation (Scanning Electron Microscope) to measure the number density of a 50 ⁇ m ⁇ 50 ⁇ m square (a pair of sides) Two observation regions were selected (in parallel to the extrusion direction).
  • SEM observation Sccanning Electron Microscope
  • production of a square crack was not confirmed it extruded at the extrusion speed larger than the extrusion speed shown in Table 1, and the presence or absence of generation
  • the extrusion speed at this time was either 3 m / min, 5 m / min, or 10 m / min, and the homogenization conditions and extrusion conditions (excluding the extrusion speed) were as shown in Table 1.
  • No. 1 has the composition defined in the present invention, and the number density of AlFeSi particles and Mg 2 Si particles satisfies the definition of the present invention.
  • the extruded materials 1 to 9 have a small surface roughness (10-point average roughness Rz ⁇ 80 ⁇ m) and excellent machinability. Further, the Rockwell hardness is 38 HRB or more, which is excellent in strength.
  • No. Extruded materials 1 to 9 are all manufactured by the manufacturing method defined in the present invention. In addition, No. An electron micrograph of the billet 1 (after homogenization) and the extruded material is shown in FIGS. 2A and 2B.
  • the extruded material of No. 10 has seizure due to excessive Si content and has a large surface roughness.
  • No. The extruded material of No. 11 is inferior in machinability due to its excessive Si content.
  • No. An electron micrograph of 12 billets (after homogenization) and the extruded material are shown in FIGS. 3A and 3B. As shown in FIG. 3A, there were many ⁇ -AlFeSi phases in the billet, seizure occurred during extrusion, and the surface roughness increased.
  • the extruded materials 16 and 17 both have an excessive Fe content, and the number density of AlFeSi particles exceeds the definition of the present invention, but the surface roughness is small (10-point average roughness Rz ⁇ 80 ⁇ m). This is no. In No. 16, the extrusion speed was considerably lowered from the prescribed lower limit of 3 m / min. This is because the time for the homogenization process is set to be considerably longer than 15 hours, which is the prescribed upper limit value. As a result, no. In 16 and 17, productivity decreases. No.
  • the number density of AlFeSi particles and Mg 2 Si particles both satisfy the provisions of the present invention, but the surface roughness is large (ten-point average roughness Rz> 80 ⁇ m). This is no. No. 18 has too high extrusion temperature. 19 is because the extrusion speed was too high, the material temperature rose due to processing heat generation, and seizure occurred in the extruded material.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Extrusion Of Metal (AREA)
  • Powder Metallurgy (AREA)

Abstract

Provided is an Al-Mg-Si based aluminium alloy extruded material with a smooth surface without hindering productivity and without seizing. In the present invention, an aluminium alloy billet comprising Si: 2.0 to 6.0 mass%, Mg: 0.3 to 1.2 mass%, Ti: 0.01 to 0.2 mass%, a Fe content limited to at most 0.2 mass% and the remainder comprising Al and inevitable impurities is subjected to homogenization maintained for 4 to 15 hours at 500 to 550 °C; forced to cool to a temperature of at most 250 °C at an average cooling rate of at least 50 °C/hour; heated to 450 to 500 °C; and subjected to hot extrusion at an extrusion rate of 3 to 10 m/min. The extruded material is forced to cool at an average cooling rate of at least 50 °C/second and subjected to an ageing treatment. This enables production of an extruded material with a surface having a ten-point average roughness Rz of at most 80 μm.

Description

切削性に優れたアルミニウム合金押出材及びその製造方法Aluminum alloy extruded material excellent in machinability and method for producing the same
 本発明は、製造の過程で切削加工を多用する機械部品等に適する高強度で切削性に優れたAl-Mg-Si系アルミニウム合金押出材及びその製造方法に関する。 The present invention relates to an Al—Mg—Si-based aluminum alloy extruded material having high strength and excellent machinability suitable for machine parts and the like that frequently use cutting in the manufacturing process, and a method for producing the same.
 特許文献1~4に、切削用Al-Mg-Si系アルミニウム合金押出材が記載されている。これらの切削用アルミニウム合金押出材は、切削性向上のため、1.5質量%以上のSiを添加し、第2相硬質粒子であるSi系晶出物(Si相)をマトリックス中に多く分布させている。 Patent Documents 1 to 4 describe extruded Al—Mg—Si aluminum alloy extruded materials. These aluminum alloy extruded materials for cutting add 1.5% by mass or more of Si to improve machinability and distribute a large amount of Si-based crystallized material (Si phase), which is the second phase hard particles, in the matrix. I am letting.
特開平9-249931号公報JP-A-9-249931 特開平10-8175号公報Japanese Patent Laid-Open No. 10-8175 特開2002-47525号公報JP 2002-47525 A 特開2003-147468号公報JP 2003-147468 A
 前記切削用Al-Mg-Si系アルミニウム合金は、凝固過程においてSi及びMgSiを晶出し、また、不可避不純物として含まれるFeとAl及びSiからなる針状のβ-AlFeSi系化合物(β-AlFeSi相)を晶出する。図1に、均質化処理前のビレットの顕微鏡組織写真を示す。帯状のSi相(灰色)がネット状に連なり、その内部にMgSi相(黒色)が点状に分布し、Si相に沿って針状のβ-AlFeSi相(白色)が形成されている。このAl-Mg-Si系アルミニウム合金ビレットを押し出すと、押出材に焼き付き(ピックアップ)が発生し、押出材表面の平滑性が損なわれるという問題がある。 The Al—Mg—Si based aluminum alloy for cutting crystallizes Si and Mg 2 Si in the solidification process, and acicular β-AlFeSi based compounds (β—) composed of Fe, Al and Si contained as inevitable impurities. AlFeSi phase) is crystallized. FIG. 1 shows a micrograph of a billet before homogenization. The band-like Si phase (gray) is connected in a net shape, and the Mg 2 Si phase (black) is distributed in the form of dots inside, and a needle-like β-AlFeSi phase (white) is formed along the Si phase. . When this Al—Mg—Si-based aluminum alloy billet is extruded, there is a problem that seizure (pickup) occurs on the extruded material and the smoothness of the surface of the extruded material is impaired.
 Al-Mg-Si系アルミニウム合金押出材に焼き付きが発生するのは、次のような理由による。
 押出前のビレットに存在する帯状のSi相が、押出による材料の変形及び材料とダイスベアリング部との摩擦による加工発熱で、Al相及びMgSi相と共晶反応を起こし、これにより局部溶融が発生する。押出材がダイスベアリング部を通過するとき受ける剪断力により、溶融点が起点となって押出材表面の材料(Si相に囲まれたセル)が脱落し、焼き付きが発生する。
 また、押出前のビレットに存在する針状のβ-AlFeSi相が、押出の加工発熱でMgSi相と包晶反応を起こし、これにより局部溶融が発生する。この局部溶融が連続的に発生して繋がると、押出材がダイスベアリング部を通過するとき受ける剪断力により、押出材表面の材料が脱落し、焼き付きが発生する。
 ダイスの内周面は鏡面仕上げされているが、焼き付きが生じると、押出材の表面が荒れて平滑性が失われる。
The reason why seizure occurs in the Al—Mg—Si-based aluminum alloy extruded material is as follows.
The band-like Si phase present in the billet before extrusion causes eutectic reaction with the Al phase and Mg 2 Si phase due to deformation of the material due to extrusion and processing heat generation due to friction between the material and the die bearing, thereby causing local melting. Will occur. Due to the shearing force received when the extruded material passes through the die bearing portion, the material on the surface of the extruded material (cell surrounded by the Si phase) drops off from the melting point, and seizure occurs.
Further, the needle-like β-AlFeSi phase present in the billet before extrusion causes peritectic reaction with the Mg 2 Si phase due to processing heat generated by extrusion, and local melting occurs. When this local melting is continuously generated and connected, the material on the surface of the extruded material falls off due to the shearing force received when the extruded material passes through the die bearing portion, and seizure occurs.
Although the inner peripheral surface of the die is mirror-finished, if seizure occurs, the surface of the extruded material becomes rough and the smoothness is lost.
 Si相、Al相及びMgSi相の共晶反応に基づく焼き付きは、押出前のビレットに500~550℃で4時間以上の均質化処理を行い、帯状に晶出したSi相を分断(球状化)することにより低減できる。
 一方、β-AlFeSi相とMgSi相の包晶反応に基づく焼き付きは、500℃以上で長時間(Si量及びFe量が多いとき50時間程度)の均質化処理を行い、β-AlFeSi相をα化(球状化)するか、押出速度を低下させて加工発熱量を低下させることにより低減できる。しかし、長時間の均質化処理は生産性を阻害し、コスト的にも不利であり、押出速度の低下も生産性を阻害する。
For seizure based on the eutectic reaction of the Si phase, Al phase and Mg 2 Si phase, the billet before extrusion is homogenized for 4 hours or more at 500 to 550 ° C., and the Si phase crystallized in a band shape is divided (spherical) Can be reduced.
On the other hand, the seizure based on the peritectic reaction between the β-AlFeSi phase and the Mg 2 Si phase is performed at a temperature of 500 ° C. or more for a long time (about 50 hours when the amount of Si and Fe is large). It is possible to reduce the heat generation amount by spheroidizing (spheroidizing) or decreasing the extrusion rate to reduce the heat generation amount. However, homogenization for a long time hinders productivity and is disadvantageous in terms of cost, and a decrease in extrusion speed also hinders productivity.
 本発明は、切削用Al-Mg-Si系アルミニウム合金押出材の製造に伴う上記の問題点に鑑みてなされたもので、長時間の均質化処理及び押出速度の低下を伴うことなく、焼き付きがなく表面が平滑なAl-Mg-Si系アルミニウム合金押出材を得ることを目的とする。 The present invention has been made in view of the above-mentioned problems associated with the production of Al-Mg-Si-based aluminum alloy extruded materials for cutting, and seizure can be achieved without a long-time homogenization treatment and a decrease in extrusion speed. The objective is to obtain an Al—Mg—Si-based aluminum alloy extruded material having a smooth surface.
 本発明に係るAl-Mg-Si系アルミニウム合金押出材は、Si:2.0~6.0質量%、Mg:0.3~1.2質量%、Ti:0.01~0.2質量%を含有し、Fe含有量が0.2質量%以下に規制され、残部Al及び不可避不純物からなり、直径5μm以上のAlFeSi粒子が50×50μmの面積当り20個以下、かつ直径2μm以上のMgSi粒子が50×50μmの面積当り20個以下であり、押出材表面の十点平均粗さRzが80μm以下であることを特徴とする。上記アルミニウム合金押出材は、必要に応じて、さらにMn:0.1~1.0質量%とCu:0.1~0.4質量%の1種以上を含有することができる。上記アルミニウム合金押出材は、必要に応じて、さらにCr:0.03~0.1質量%とZr:0.03~0.1質量%の1種以上を含有することができる。 The Al—Mg—Si-based aluminum alloy extruded material according to the present invention has Si: 2.0 to 6.0% by mass, Mg: 0.3 to 1.2% by mass, Ti: 0.01 to 0.2% by mass. Mg, with a Fe content of 0.2% by mass or less, the balance being Al and inevitable impurities, 20 or less AlFeSi particles having a diameter of 5 μm or more per 50 × 50 μm area, and a diameter of 2 μm or more. 2 The number of Si particles is 20 or less per 50 × 50 μm area, and the ten-point average roughness Rz of the surface of the extruded material is 80 μm or less. The aluminum alloy extruded material may further contain one or more of Mn: 0.1 to 1.0% by mass and Cu: 0.1 to 0.4% by mass as necessary. The aluminum alloy extruded material may further contain one or more of Cr: 0.03-0.1% by mass and Zr: 0.03-0.1% by mass, if necessary.
 本発明に係るAl-Mg-Si系アルミニウム合金押出材の製造方法は、上記組成を有するアルミニウム合金ビレットに対し、500~550℃で4~15時間保持する均質化処理を行い、50℃/時間以上の平均冷却速度で250℃以下の温度まで強制冷却し、450~500℃に加熱して3~10m/minの押出速度で熱間押出を行い、押出材を50℃/秒以上の平均冷却速度で強制冷却し、時効処理を行うことを特徴とする。この製造方法により、本発明に係る上記Al-Mg-Si系アルミニウム合金押出材を得ることができる。 In the method for producing an Al—Mg—Si-based aluminum alloy extruded material according to the present invention, an aluminum alloy billet having the above composition is subjected to a homogenization treatment of holding at 500 to 550 ° C. for 4 to 15 hours, and 50 ° C./hour. Forcibly cooled to a temperature of 250 ° C. or less at the above average cooling rate, heated to 450 to 500 ° C. and hot extruded at an extrusion rate of 3 to 10 m / min, and the extruded material was cooled at an average cooling of 50 ° C./second or more. It is characterized by forced cooling at a speed and aging treatment. By this production method, the Al—Mg—Si-based aluminum alloy extruded material according to the present invention can be obtained.
 本発明によれば、Si含有量が比較的多いAl-Si-Mg系アルミニウム合金押出材の製造において、長時間の均質化処理及び押出速度の低下を伴うことなく、焼き付きを低減し、十点平均粗さRzが80μm以下の平滑な表面を有する切削性に優れたAl-Si-Mg系アルミニウム合金押出材を得ることができる。
本発明に係るAl-Si-Mg系アルミニウム合金押出材は高強度で切削性に優れ、また、表面が平滑であるため見栄えがよく、このため切削の加工量を減らし、場合によっては押出材の表面の一部をそのまま(切削なしで)製品表面として用いることができる。
According to the present invention, in the production of an Al—Si—Mg-based aluminum alloy extruded material having a relatively high Si content, seizure is reduced without a long-time homogenization treatment and a decrease in extrusion speed. It is possible to obtain an Al—Si—Mg-based aluminum alloy extruded material excellent in machinability having a smooth surface with an average roughness Rz of 80 μm or less.
The Al—Si—Mg-based aluminum alloy extruded material according to the present invention has high strength and excellent machinability, and also has a good appearance due to its smooth surface, which reduces the amount of cutting and, in some cases, the extruded material. A part of the surface can be used as it is (without cutting) as the product surface.
均質化処理前のビレットの走査型電子顕微鏡組織写真である。2 is a scanning electron micrograph of a billet before homogenization. 実施例No.1のビレットの均質化処理後の走査型電子顕微鏡組織写真である。Example No. It is a scanning electron microscope structure photograph after the homogenization process of 1 billet. 実施例No.1のビレットから得られた押出材の走査型電子顕微鏡組織写真である。Example No. 1 is a scanning electron microscopic photograph of an extruded material obtained from one billet. 実施例No.12のビレットの均質化処理後の走査型電子顕微鏡組織写真である。Example No. It is a scanning electron microscope structure | tissue photograph after the homogenization process of 12 billets. 実施例No.12のビレットから得られた押出材の走査型電子顕微鏡組織写真である。Example No. It is a scanning electron microscope structure photograph of the extrusion material obtained from 12 billets. 実施例No.13のビレットの均質化処理後の走査型電子顕微鏡組織写真である。Example No. It is a scanning electron microscope structure | tissue photograph after the homogenization process of 13 billets. 実施例No.13のビレットから得られた押出材の走査型電子顕微鏡組織写真である。Example No. It is a scanning electron microscopic structure photograph of the extrusion material obtained from 13 billets.
 以下、本発明に係るAl-Si-Mg系アルミニウム合金押出材及びその製造方法について、より詳細に説明する。
(アルミニウム合金の組成)
 本発明に係るアルミニウム合金は、Si:2.0~6.0質量%、Mg:0.3~1.2質量%、Ti:0.01~0.2質量%を含有し、残部Al及び不可避不純物からなる。このアルミニウム合金は、必要に応じてさらにMn:0.1~1.0質量%とCu:0.1~0.4質量%の1種以上を含有し、必要に応じてさらにCr:0.03~0.1質量%とZr:0.03~0.1質量%の1種以上を含有する。このアルミニウム合金の組成自体は公知であるが、本発明では、不可避不純物のうちFeの含有量を0.2質量%以下に規制した点に特徴がある。以下、本発明に係るアルミニウム合金の各成分について説明する。
Hereinafter, the Al—Si—Mg-based aluminum alloy extruded material and the manufacturing method thereof according to the present invention will be described in more detail.
(Aluminum alloy composition)
The aluminum alloy according to the present invention contains Si: 2.0 to 6.0% by mass, Mg: 0.3 to 1.2% by mass, Ti: 0.01 to 0.2% by mass, and the balance Al and Consists of inevitable impurities. This aluminum alloy further contains one or more of Mn: 0.1 to 1.0 mass% and Cu: 0.1 to 0.4 mass% as required, and further Cr: 0.00% as necessary. One or more of 03 to 0.1% by mass and Zr: 0.03 to 0.1% by mass are contained. The composition of this aluminum alloy is known per se, but the present invention is characterized in that the content of Fe among inevitable impurities is regulated to 0.2% by mass or less. Hereinafter, each component of the aluminum alloy according to the present invention will be described.
Si:2.0~6.0質量%
 Siはアルミニウム中に第2相硬質粒子であるSi系晶出物(Si相)を形成し、切り屑の分断性をよくし、切削性を向上させる。そのためには、Siはアルミニウムへの固溶量を超える2質量%以上を添加する必要がある。一方、Siを6質量%を超えて添加すると、粗大なSi相が形成され、Si相、Al相及びMgSi相の共晶反応により溶融開始点が低下する。溶融開始点の低下に伴う局部溶融及び焼き付きの発生を防止するため、押出時の加工発熱量を抑える必要があり、そのため押出速度を低下させる必要が出てくる。従って、Si含有量は2.0~6.0質量%とする。Si含有量の下限は好ましくは3.5質量%、上限は好ましくは4.5質量%である。
Si: 2.0 to 6.0 mass%
Si forms Si-based crystallized substances (Si phase) which are second-phase hard particles in aluminum, improves chip breaking and improves machinability. For that purpose, Si needs to be added in an amount of 2% by mass or more exceeding the solid solution amount in aluminum. On the other hand, when Si is added in excess of 6% by mass, a coarse Si phase is formed, and the melting start point is lowered by the eutectic reaction of the Si phase, Al phase, and Mg 2 Si phase. In order to prevent the occurrence of local melting and seizure due to a decrease in the melting start point, it is necessary to suppress the processing heat generation amount at the time of extrusion, and therefore it is necessary to reduce the extrusion speed. Therefore, the Si content is set to 2.0 to 6.0% by mass. The lower limit of the Si content is preferably 3.5% by mass, and the upper limit is preferably 4.5% by mass.
Mg:0.3~1.2質量%
 Mgは時効析出処理により微細なMgSiとして析出し、強度を向上させる。そのためには、Mgは0.3質量%以上添加することが望ましい。一方、MgSiは凝固時に晶出物としても形成され、押出時にβ-AlFeSiと包晶反応を起こして局部溶融を発生させ、これが焼き付きの原因となる。Mg含有量が1.2質量%を超えるとMgSiの晶出物が多く形成され、焼き付きが発生しやすくなる。従って、Mg含有量は0.3~1.2質量%とする。Mg含有量の下限は好ましくは0.5質量%、上限は好ましくは0.9質量%である。
Mg: 0.3 to 1.2% by mass
Mg precipitates as fine Mg 2 Si by aging precipitation treatment, and improves the strength. For that purpose, it is desirable to add 0.3% by mass or more of Mg. On the other hand, Mg 2 Si is also formed as a crystallized product at the time of solidification, and causes a peritectic reaction with β-AlFeSi at the time of extrusion to generate local melting, which causes seizure. If the Mg content exceeds 1.2% by mass, a large amount of Mg 2 Si crystallized matter is formed and seizure tends to occur. Therefore, the Mg content is set to 0.3 to 1.2% by mass. The lower limit of the Mg content is preferably 0.5% by mass, and the upper limit is preferably 0.9% by mass.
Ti:0.01~0.2質量%
 Tiは鋳造組織を微細化して機械的性質を安定化するため、添加されるが、0.01質量%未満ではその効果が得られず、一方、0.2質量%を超えて添加してもそれ以上微細化効果が向上しない。従って、Ti含有量は0.01~0.2質量%とする。Ti含有量の下限は好ましくは0.01質量%、上限は好ましくは0.1質量%である。
Ti: 0.01 to 0.2% by mass
Ti is added to make the cast structure finer and stabilize the mechanical properties. However, if less than 0.01% by mass, the effect cannot be obtained. Further refinement effect is not improved. Therefore, the Ti content is set to 0.01 to 0.2% by mass. The lower limit of the Ti content is preferably 0.01% by mass, and the upper limit is preferably 0.1% by mass.
Mn:0.1~1.0質量%
Cu:0.1~0.4質量%
 Mnは均質化処理中に分散粒子として析出し、押出材の結晶粒を微細にして強度を向上させる効果があるため、必要に応じて添加される。Mn含有量が0.1質量%未満では十分な効果が得られず、一方、1.0質量%を超えて添加すると押出性が低下する。従って、Mn含有量は0.1~1.0質量%とする。Mn含有量の下限は好ましくは0.4質量%、上限は好ましくは0.8質量%である。
 Cuは、固溶体化して押出材の強度を高めるため、Mnに代えて又はMnと共に,必要に応じて添加される。しかし、Cu含有量が0.1質量%未満では十分な効果が得られず、一方、0.4質量%を超えて添加すると耐食性及び押出性が低下する。従って、Cu含有量は0.1~0.4質量%とする。Cu含有量の下限は好ましくは0.2質量%、上限は好ましくは0.3質量%である。
Mn: 0.1 to 1.0% by mass
Cu: 0.1 to 0.4 mass%
Mn precipitates as dispersed particles during the homogenization treatment, and has the effect of improving the strength by making the crystal grains of the extruded material fine, so it is added as necessary. If the Mn content is less than 0.1% by mass, a sufficient effect cannot be obtained. On the other hand, if the Mn content exceeds 1.0% by mass, the extrudability decreases. Therefore, the Mn content is 0.1 to 1.0% by mass. The lower limit of the Mn content is preferably 0.4% by mass, and the upper limit is preferably 0.8% by mass.
Cu is added as needed instead of Mn or together with Mn to form a solid solution and increase the strength of the extruded material. However, when the Cu content is less than 0.1% by mass, a sufficient effect cannot be obtained. On the other hand, when the Cu content exceeds 0.4% by mass, the corrosion resistance and the extrudability are lowered. Therefore, the Cu content is 0.1 to 0.4 mass%. The lower limit of the Cu content is preferably 0.2% by mass, and the upper limit is preferably 0.3% by mass.
Cr:0.03~0.1質量%
Zr:0.03~0.1質量%
 Crは再結晶を抑制して結晶粒を微細化し、押出材の強度を高めるため、必要に応じて添加される。しかし、Cr含有量が0.03質量%未満では十分な効果が得られず、一方、0.1質量%を超えて添加すると押出時に焼き付きを起こしやすい。従って、Cr含有量は0.03~0.1質量%とする。
 Zrは再結晶を抑制して結晶粒を微細化し、押出材の強度を高めるため、Crに代えて又はCrと共に,必要に応じて添加される。しかし、Zr含有量が0.03質量%未満では十分な効果が得られず、一方、0.1質量%を超えて添加すると、均質化処理時にAlとの化合物が粗大化し、再結晶を抑制する効果が得られなくなる。従って、Zr含有量は0.03~0.1質量%とする。
Cr: 0.03 to 0.1% by mass
Zr: 0.03 to 0.1% by mass
Cr is added as necessary in order to suppress recrystallization, refine crystal grains, and increase the strength of the extruded material. However, if the Cr content is less than 0.03% by mass, a sufficient effect cannot be obtained. On the other hand, if the Cr content exceeds 0.1% by mass, seizure tends to occur during extrusion. Therefore, the Cr content is set to 0.03 to 0.1% by mass.
Zr is added as necessary in place of Cr or together with Cr in order to suppress recrystallization and refine crystal grains and increase the strength of the extruded material. However, when the Zr content is less than 0.03% by mass, a sufficient effect cannot be obtained. On the other hand, when the Zr content exceeds 0.1% by mass, the compound with Al is coarsened during the homogenization treatment, thereby suppressing recrystallization. The effect to do is not obtained. Therefore, the Zr content is set to 0.03 to 0.1% by mass.
Fe:0.2質量%以下
 アルミニウム合金中に不可避不純物として存在するFeにより、鋳造後の冷却過程で、針状の晶出物であるβ-AlFeSi相が生成される。ビレット中のβ-AlFeSi量を減らし、押出時の焼き付きを防止するには、均質化処理を行ってβ-AlFeSi相をα化(球状化)するか、アルミニウム合金のFe含有量を減らす必要がある。
 しかし、β-AlFeSi相をα化するためには、高温長時間の均質化処理が必要であり、生産性が損なわれる。これに対し、アルミニウム合金のFe含有量を0.2質量%以下に規制した場合、β-AlFeSi相の生成量が減少し、次に説明する製造方法により、長時間の均質化処理を行うことなく、押出時の焼き付きを防止することができる。なお、アルミニウム合金中に不可避不純物として通常含まれているFeの量は、0.3質量%程度である。
Fe: 0.2% by mass or less Fe-present as an inevitable impurity in the aluminum alloy generates a β-AlFeSi phase that is a needle-like crystallized product in the cooling process after casting. In order to reduce the amount of β-AlFeSi in the billet and prevent seizure during extrusion, it is necessary to homogenize the β-AlFeSi phase to make the β-AlFeSi phase alpha (spheroidize) or to reduce the Fe content of the aluminum alloy. is there.
However, in order to α-form the β-AlFeSi phase, a high-temperature and long-time homogenization treatment is necessary, and productivity is impaired. On the other hand, when the Fe content of the aluminum alloy is regulated to 0.2% by mass or less, the amount of β-AlFeSi phase generated decreases, and a homogenization treatment for a long time is performed by the manufacturing method described below. In addition, seizure during extrusion can be prevented. The amount of Fe usually contained as an inevitable impurity in the aluminum alloy is about 0.3% by mass.
(アルミニウム合金押出材の製造方法)
均質化処理条件
 鋳造したビレットの均質化処理は、500~550℃×4~15時間の保持条件で行われる。保持温度を500℃以上とし保持時間を4時間以上とするのは、帯状に晶出したSi相を分断(球状化)し、かつ晶出したMgSiを固溶させるためである。保持温度が高くかつ保持時間が長いほどSi相の分断及びMgSiの固溶が促進され、焼き付き低減のために好ましいが、550℃を超える温度では局部溶解が生じるおそれがあり、15時間を超える保持時間では生産性が低下する。従って、均質化処理は500~550℃×4~15時間の範囲内の保持条件で行う。なお、この保持条件では、β-AlFeSi相のα化は十分達成されない。
(Method for producing aluminum alloy extruded material)
Homogenization treatment conditions The homogenization treatment of the cast billet is performed under the holding conditions of 500 to 550 ° C. × 4 to 15 hours. The reason why the holding temperature is 500 ° C. or more and the holding time is 4 hours or more is that the Si phase crystallized in a band shape is divided (spheroidized) and the crystallized Mg 2 Si is dissolved. The higher the holding temperature and the longer the holding time, the more the Si phase is divided and the Mg 2 Si solid solution is promoted, which is preferable for reducing seizure. However, there is a possibility that local melting may occur at a temperature exceeding 550 ° C. If the holding time is longer, the productivity is lowered. Therefore, the homogenization treatment is performed under holding conditions in the range of 500 to 550 ° C. × 4 to 15 hours. It should be noted that the β-AlFeSi phase is not sufficiently α-ized under this holding condition.
均質化処理後の冷却条件
 均質化処理後、ビレットを50℃/時間以上の平均冷却速度で強制冷却する。従来、均質化処理後のビレットは、炉外に取り出され、放冷又は空冷により冷却されている。実操業では高温のビレットが多数集積状態で冷却されるため、ファン空冷を行う場合でも、冷却速度は一般に30℃/時間未満と推測されるが、これまで均質化処理後の冷却速度には特に注意が払われていなかった。50℃/時間以上の平均冷却速度で、250℃以下の温度になるまで強制冷却することにより、MgSiの析出を最小限(押出時に焼き付きが発生するのを防止できる程度)に抑えることができる。250℃以下になれば室温まで放冷でもよい。望ましい平均冷却速度は80℃/時間以上であり、ビレットを集積せず強制的にファン空冷を行うことで達成し得る。さらに望ましくは水冷であり、その場合約100000℃/時間の冷却速度が達成される。
Cooling conditions after homogenization treatment After the homogenization treatment, the billet is forcibly cooled at an average cooling rate of 50 ° C./hour or more. Conventionally, the billet after the homogenization treatment is taken out of the furnace and cooled by standing or air cooling. In actual operation, a large number of high-temperature billets are cooled in an accumulated state. Therefore, even when performing fan air cooling, the cooling rate is generally estimated to be less than 30 ° C./hour. Attention was not paid. By forcibly cooling to a temperature of 250 ° C. or less at an average cooling rate of 50 ° C./hour or more, the precipitation of Mg 2 Si can be minimized (to the extent that seizure can be prevented during extrusion). it can. If it becomes 250 degrees C or less, it may cool to room temperature. A desirable average cooling rate is 80 ° C./hour or more, and can be achieved by forcibly performing fan air cooling without accumulating billets. More preferably, it is water cooling, in which case a cooling rate of about 100,000 ° C./hour is achieved.
押出条件
 均質化処理後、ビレットを450~500℃に再加熱し、3~10m/minの押出速度で熱間押出を行う。本発明に係る押出材は中実材(ソリッド材)であるため押出比が比較的小さく、加工発熱が余り大きくならないため、押出温度が450℃未満では、押出材の出口温度が溶体化に必要な500℃以上とならない。一方、押出温度が500℃を超えると、加工発熱が加わって材料温度が上がり、押出材に焼き付きが発生する危険性が出てくる。従って、押出温度(ビレットの加熱温度)は450~500℃とする。押出速度が3m/分未満では生産性が低い。一方、10m/分を超えると、加工発熱が大きく材料温度が上がり、押出材に焼き付きが発生する危険性が出てくる。また、押出材が断面に角部を有する場合、角部にメタルが行き渡らない角割れという現象が生じやすい。従って、押出速度は3~10m/分とする。本発明の製造方法において、押出比(押出コンテナの断面積/押出出口の断面積)は15~40であることが好ましい。
Extrusion conditions After the homogenization treatment, the billet is reheated to 450 to 500 ° C., and hot extrusion is performed at an extrusion speed of 3 to 10 m / min. Since the extrusion material according to the present invention is a solid material (solid material), the extrusion ratio is relatively small and the processing heat generation is not so large. Therefore, when the extrusion temperature is less than 450 ° C., the outlet temperature of the extrusion material is necessary for solution treatment. The temperature does not exceed 500 ° C. On the other hand, when the extrusion temperature exceeds 500 ° C., processing heat is added to increase the material temperature, and there is a risk that seizure occurs in the extruded material. Accordingly, the extrusion temperature (heating temperature of the billet) is set to 450 to 500 ° C. When the extrusion speed is less than 3 m / min, the productivity is low. On the other hand, if it exceeds 10 m / min, there will be a risk that seizure will occur in the extruded material due to a large processing heat generation and an increase in material temperature. In addition, when the extruded material has corners in the cross section, a phenomenon of corner cracking in which metal does not spread around the corners is likely to occur. Accordingly, the extrusion speed is 3 to 10 m / min. In the production method of the present invention, the extrusion ratio (cross-sectional area of the extrusion container / cross-sectional area of the extrusion outlet) is preferably 15 to 40.
押出後の冷却条件
 押出直後の押出材は、押出出口温度から250℃以下の温度まで、50℃/秒以上の平均冷却速度でオンラインで強制冷却(ダイクエンチ)する。250℃以下になれば室温まで放冷でもよい。この平均冷却速度を50℃/秒以上とすることにより、MgSiの析出を防止する。好ましい冷却手段は水冷である。
時効処理条件
 ダイクエンチした押出材は時効処理を行う。時効処理条件は160~200℃×2~10時間の範囲内で行えばよい。
Cooling conditions after extrusion The extruded material immediately after extrusion is forcibly cooled (die-quenched) online at an average cooling rate of 50 ° C./second or more from the extrusion outlet temperature to a temperature of 250 ° C. or lower. If it becomes 250 degrees C or less, it may cool to room temperature. By setting this average cooling rate to 50 ° C./second or more, precipitation of Mg 2 Si is prevented. A preferred cooling means is water cooling.
Aging treatment conditions Die-quenched extruded material is subjected to aging treatment. The aging treatment condition may be 160 to 200 ° C. × 2 to 10 hours.
(押出材におけるAlFeSi粒子とMgSi粒子の数密度)
 本発明に係るAl-Mg-Si系アルミニウム合金押出材における粗大なβ-AlFeSi粒子とMgSi粒子の分布状態は、均質化処理後(冷却後)のビレットにおけるβ-AlFeSi相とMgSi相の分布状態を反映したものとなっている。この点を図2A~4Bの電子顕微鏡組織写真を参照して説明する。
 図2A、図3A及び図4Aは、それぞれ実施例No.1,12,13のビレットにおけるβ-AlFeSi相とMgSi相の分布状態を示す電子顕微鏡組織写真である。β-AlFeSi相は白色の針状の粒子として、MgSi相は黒色の粒状の粒子として示されている。図2B、図3B及び図4Bは、それらのビレットから得られた押出材におけるAlFeSi粒子とMgSi粒子の分布状態を示す電子顕微鏡組織写真である。元のβ-AlFeSi相は押出時に分断され、白色の粒状の粒子の集合体となっている。
(Number density of AlFeSi particles and Mg 2 Si particles in the extruded material)
The distribution of coarse β-AlFeSi particles and Mg 2 Si particles in the Al—Mg—Si-based aluminum alloy extruded material according to the present invention is determined by the β-AlFeSi phase and Mg 2 Si in the billet after homogenization (after cooling). It reflects the distribution of phases. This point will be described with reference to the electron micrographs of FIGS. 2A to 4B.
2A, FIG. 3A, and FIG. It is an electron micrograph showing the distribution of β-AlFeSi phase and Mg 2 Si phase in billets of 1,12,13. The β-AlFeSi phase is shown as white needle-like particles, and the Mg 2 Si phase is shown as black granular particles. 2B, 3B and 4B are electron micrographs showing the distribution of AlFeSi particles and Mg 2 Si particles in the extruded materials obtained from these billets. The original β-AlFeSi phase is divided during extrusion and becomes an aggregate of white granular particles.
 後述する実施例の表2に示すように、図2Bでは、直径5μm以上のAlFeSi粒子と直径2μm以上のMgSi粒子の、一定面積(50μm×50μm)当たりの個数が、いずれも本発明の規定範囲内である。図2Bに示された各粒子の分布状態を基準にすると、図3Bでは、直径5μm以上のAlFeSi粒子の個数が比較的多く、本発明の規定範囲を超え、図4Bでは、直径2μm以上のMgSi粒子の個数が比較的多く、本発明の規定範囲を超える。一方、図2A、図3A及び図4Aにおいてβ-AlFeSi相とMgSi相の分布状態を比較すると、図2Aでは、β-AlFeSi相が少なく、かつMgSi相が小さく、図3Aではβ-AlFeSi相が比較的多く、図4AではMgSi相のサイズが比較的大きい。 As shown in Table 2 of Examples to be described later, in FIG. 2B, the number of AlFeSi particles having a diameter of 5 μm or more and Mg 2 Si particles having a diameter of 2 μm or more per fixed area (50 μm × 50 μm) are both in the present invention. Within specified range. Based on the distribution state of each particle shown in FIG. 2B, the number of AlFeSi particles having a diameter of 5 μm or more is relatively large in FIG. 3B, which exceeds the prescribed range of the present invention, and in FIG. 4B, Mg having a diameter of 2 μm or more. 2 The number of Si particles is relatively large and exceeds the specified range of the present invention. On the other hand, comparing the distribution state of β-AlFeSi phase and Mg 2 Si phase in FIG. 2A, FIG. 3A and FIG. 4A, FIG. 2A has less β-AlFeSi phase and smaller Mg 2 Si phase, and FIG. -AlFeSi phase is relatively large, and in FIG. 4A, the size of the Mg 2 Si phase is relatively large.
 このように、押出材において直径5μm以上の粗大なAlFeSi粒子の個数が多い場合、押出前(均質化処理後)のビレットのβ-AlFeSi相の量が多い。押出材において直径2μm以上の粗大なMgSi粒子の個数が多い場合、押出前(均質化処理後)のビレットのMgSi粒子のサイズが大きい。この対応関係は、押出比が極度に大きい場合(例えば45以上)を除いて成立し得る。従って、押出材における直径5μm以上のβ-AlFeSi粒子と直径2μm以上のMgSi粒子の分布状態を規定することで、押出前(均質化処理後)のビレットにおけるβ-AlFeSi相とMgSi相の分布状態を間接的に規定したことになる。 Thus, when the number of coarse AlFeSi particles having a diameter of 5 μm or more in the extruded material is large, the amount of β-AlFeSi phase of the billet before extrusion (after homogenization treatment) is large. When the number of coarse Mg 2 Si particles having a diameter of 2 μm or more in the extruded material is large, the size of the Mg 2 Si particles of the billet before extrusion (after the homogenization treatment) is large. This correspondence can be established except when the extrusion ratio is extremely large (for example, 45 or more). Therefore, by defining the distribution state of β-AlFeSi particles having a diameter of 5 μm or more and Mg 2 Si particles having a diameter of 2 μm or more in the extruded material, the β-AlFeSi phase and Mg 2 Si in the billet before extrusion (after homogenization treatment) are determined. This indirectly defines the phase distribution.
 そして、押出材における直径5μm以上のAlFeSi粒子と直径2μm以上のMgSi粒子の一定面積当たりの個数が、本発明の規定範囲内の場合、ビレット中のβ-AlFeSi相の生成量が少なく、MgSi粒子の析出が抑えられ、MgSi相のサイズが小さい。逆に、押出材における直径5μm以上のAlFeSi粒子の一定面積当たりの個数が、本発明の規定範囲を超える場合、ビレット中のβ-AlFeSi相の生成量が多い。また、押出材における直径2μm以上のMgSi粒子の一定面積当たりの個数が、本発明の規定範囲を超える場合、ビレット中のMgSi相の析出が十分抑えられず、MgSi相のサイズが大きい。 When the number per unit area of AlFeSi particles having a diameter of 5 μm or more and Mg 2 Si particles having a diameter of 2 μm or more in the extruded material is within the specified range of the present invention, the production amount of β-AlFeSi phase in the billet is small, Precipitation of Mg 2 Si particles is suppressed, and the size of the Mg 2 Si phase is small. Conversely, when the number of AlFeSi particles having a diameter of 5 μm or more per unit area in the extruded material exceeds the specified range of the present invention, the amount of β-AlFeSi phase generated in the billet is large. Further, when the number of Mg 2 Si particles having a diameter of 2 μm or more in the extruded material per certain area exceeds the specified range of the present invention, the precipitation of the Mg 2 Si phase in the billet is not sufficiently suppressed, and the Mg 2 Si phase The size is large.
 本発明におけるAlFeSi粒子とMgSi粒子の数密度は、以下の手順で測定する。
 1)押出材の数密度の測定を行う断面を研磨した後、走査型電子顕微鏡(SEM)観察により、数密度測定を行う50μm×50μmの正方形(一対の辺が押出方向に平行)の観察領域を2つ以上選択する。
 2)当該観察領域に含まれる、直径5μm以上のAlFeSi粒子および直径2μm以上のMgSi粒子の個数をそれぞれ測定する(直径は円相当直径)。なお、当該領域に含まれる粒子の個数を測定するときは、精度良く測定するためにSEMの倍率を1000倍以上にすることが好ましい。観察領域の辺上に跨がって存在している粒子は、1個としてカウントする。
 3)上記2)の手順で選択した全ての観察領域に対して各粒子の個数を測定し、選択した全ての観察領域に含まれるそれぞれの粒子の個数の平均値を求める。
The number density of AlFeSi particles and Mg 2 Si particles in the present invention is measured by the following procedure.
1) Observation area of 50 μm × 50 μm square (a pair of sides parallel to the extrusion direction) in which number density measurement is performed by scanning electron microscope (SEM) observation after polishing the cross section for measuring the number density of the extruded material Select two or more.
2) The number of AlFeSi particles having a diameter of 5 μm or more and Mg 2 Si particles having a diameter of 2 μm or more included in the observation region is measured (diameter is equivalent to a circle). When measuring the number of particles contained in the region, it is preferable to set the SEM magnification to 1000 times or more in order to measure with high accuracy. Particles that exist across the side of the observation area are counted as one.
3) The number of each particle is measured with respect to all the observation areas selected in the procedure of 2), and the average value of the number of each particle included in all the selected observation areas is obtained.
(押出材の表面粗さ)
 前記組成のAl-Mg-Si系アルミニウム合金のビレットを前記条件で均質化処理することにより、ビレット中に晶出していた帯状のSi相が球状化し、かつMgSiが固溶する。続いて、均質化処理温度に保持されたビレットを、通常より大きい50℃/時間以上の冷却速度で250℃以下まで強制冷却することにより、冷却過程におけるMgSi粒子の析出が抑えられる。このビレットは、β-AlFeSi相の生成量が少なく、MgSi相の析出が抑えられていることから、押出時にβ-AlFeSi相とMgSi相の包晶反応が抑えられ、また、MgSi相の析出が抑えられていることによりSi、Al及びMgSiの共晶反応も抑えられる。その結果、押出材の焼き付きが軽減され、表面粗さの小さいAl-Mg-Si系アルミニウム合金押出材(押出まま材)を製造することができる。本発明によれば、Al-Mg-Si系アルミニウム合金押出材の表面粗さを、十点平均粗さRz(JIS B0601:1994)で80μm以下とすることができる。
(Extruded surface roughness)
By homogenizing the billet of the Al—Mg—Si based aluminum alloy having the above composition under the above conditions, the band-like Si phase crystallized in the billet is spheroidized and Mg 2 Si is dissolved. Subsequently, precipitation of Mg 2 Si particles during the cooling process can be suppressed by forcibly cooling the billet maintained at the homogenization temperature to 250 ° C. or less at a cooling rate of 50 ° C./hour or more, which is higher than usual. In this billet, the production amount of β-AlFeSi phase is small and precipitation of Mg 2 Si phase is suppressed, so that the peritectic reaction between β-AlFeSi phase and Mg 2 Si phase is suppressed during extrusion, and Mg By suppressing the precipitation of the 2 Si phase, the eutectic reaction of Si, Al and Mg 2 Si can also be suppressed. As a result, seizure of the extruded material is reduced, and an Al—Mg—Si-based aluminum alloy extruded material (as-extruded material) having a small surface roughness can be produced. According to the present invention, the surface roughness of the Al—Mg—Si-based aluminum alloy extruded material can be 80 μm or less in terms of a ten-point average roughness Rz (JIS B0601: 1994).
 表1に示す化学組成(溶解後の組成)のAl-Si-Mg系アルミニウム合金を溶解し、半連続鋳造により直径400mmのビレットを作成し、表1に示す均質化処理条件(保持温度、保持時間、冷却速度)で均質化処理を行った。なお、表1において記載されている組成の残部はAl、およびFeを除く不可避不純物である。続いて表1に示す押出条件(押出温度(ビレット加熱温度)、押出速度、冷却速度)、押出比33で押出成形を行い、中実矩形断面(100mm×40mm)の押出材を得て、その後180℃×4時間の時効処理を行った。なお、冷却速度はいずれも250℃までの冷却速度である。 An Al—Si—Mg-based aluminum alloy having the chemical composition shown in Table 1 (composition after melting) was melted to produce a billet having a diameter of 400 mm by semi-continuous casting, and the homogenization treatment conditions (holding temperature and holding) shown in Table 1 Time, cooling rate). The balance of the composition described in Table 1 is inevitable impurities excluding Al and Fe. Subsequently, extrusion molding was carried out under the extrusion conditions (extrusion temperature (billet heating temperature), extrusion speed, cooling rate) shown in Table 1 and an extrusion ratio of 33 to obtain an extruded material having a solid rectangular cross section (100 mm × 40 mm). An aging treatment was performed at 180 ° C. for 4 hours. The cooling rate is a cooling rate up to 250 ° C.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 得られた押出材を供試材とし、粗大なAlFeSi粒子及びMgSi粒子の数密度、並びに切削性、硬度、表面粗さ(十点平均粗さRz)、及び押出性を下記要領で測定した。
(AlFeSi粒子及びMgSi粒子の数密度)
 各供試材の数密度の測定を行う断面を研磨した後、各供試材についてSEM観察(Scanning Electron Microscope、走査型電子顕微鏡)により、数密度測定を行う50μm×50μmの正方形(一対の辺が押出方向に平行)の観察領域を2つ選択した。各供試材について、選択した2つの観察領域を1000倍でSEM観察し、各観察領域の範囲内に観察される直径(円相当直径)5μm以上のAlFeSi粒子及び直径(円相当直径)2μm以上のMgSi粒子の個数を測定し、2つの観察領域で測定された各粒子の個数のそれぞれの平均値を求めた。その結果を表2に示す。なお、観察領域の辺上に跨がって存在している粒子は、1個としてカウントした。
Using the obtained extruded material as a test material, the number density of coarse AlFeSi particles and Mg 2 Si particles, as well as machinability, hardness, surface roughness (10-point average roughness Rz), and extrudability were measured as follows. did.
(Number density of AlFeSi particles and Mg 2 Si particles)
After polishing the cross section for measuring the number density of each sample material, each sample material is subjected to SEM observation (Scanning Electron Microscope) to measure the number density of a 50 μm × 50 μm square (a pair of sides) Two observation regions were selected (in parallel to the extrusion direction). For each specimen, two selected observation areas were observed by SEM at a magnification of 1000 times, and the diameter (equivalent circle diameter) of 5 μm or more observed within the range of each observation area and the diameter (equivalent circle diameter) of 2 μm or more The number of Mg 2 Si particles was measured, and the average value of the number of each particle measured in the two observation regions was determined. The results are shown in Table 2. Note that the number of particles existing across the side of the observation area was counted as one.
(切削性)
 市販の高速度鋼製の4mm径ドリルを用い、回転数1500rpm、送り速度300mm/分の条件にて穴あけ加工し、得られた切粉100g中の切粉数をカウントし、押出材の切削性(切粉分断性)を測定した。切粉数が7000個を超えるものを優(◎)、切粉数が7000~5000個のものを良(○)、切粉数が5000未満~3000個のものを可(△)、切り粉数が3000個未満のものを不可(×)と評価した。その結果を表2の特性の欄に示す。
(Machinability)
Using a commercially available 4 mm diameter drill made of high speed steel, drilling was performed under conditions of a rotation speed of 1500 rpm and a feed speed of 300 mm / min. The number of chips in 100 g of the obtained chips was counted, and the machinability of the extruded material (Chip cutting property) was measured. Excellent (◎) if the number of chips exceeds 7,000, good (○) if the number of chips is 7000 to 5000, acceptable (△) if the number of chips is less than 5000 to 3,000. Those having a number of less than 3000 were evaluated as impossible (×). The results are shown in the characteristic column of Table 2.
(硬度)
 JIS Z 2245:2011のロックウェル硬さ試験-試験方法に基づき、ロックウェル硬さ(HRB)を測定した。
(表面粗さ)
 押出材の上下左右の各面(計4面)を押出材の全長にわたり目視で観察し、各面について表面粗さが最も大きいと判定した箇所の表面粗さ(十点平均粗さRz)を、押出方向に垂直方向に、JIS B0601:1994の規定に基づいて測定した。各面で得られた十点平均粗さRzのうち最大値を、押出材の表面粗さ(十点平均粗さRz)として表2の特性の欄に示す。
(hardness)
Rockwell hardness test of JIS Z 2245: 2011-Rockwell hardness (HRB) was measured based on the test method.
(Surface roughness)
The surface roughness (ten-point average roughness Rz) of each portion where the top, bottom, left and right surfaces (total of four surfaces) of the extruded material were visually observed over the entire length of the extruded material and the surface roughness was determined to be the largest for each surface. Measured in the direction perpendicular to the extrusion direction according to JIS B0601: 1994. The maximum value among the ten-point average roughness Rz obtained on each surface is shown in the column of characteristics in Table 2 as the surface roughness of the extruded material (ten-point average roughness Rz).
(押出性)
 No.1~22の押出材の角部を押出材の全長にわたり目視で観察し、角割れの発生の有無(押出性の良否)を観察した。その上で、角割れの発生が確認された試験番号の押出材に対応するビレットについて、表1に示す押出速度より小さい押出速度で押し出し、それぞれ角割れの発生の有無を観察した。また、角割れの発生が確認されなかった押出材の試験番号に対応するビレットについて、表1に示す押出速度より大きい押出速度で押し出し、それぞれ角割れの発生の有無を観察した。なお、このときの押出速度は3m/分、5m/分、10m/分のいずれかとし、均質化処理条件と押出条件(押出速度を除く)は表1に記載のとおりとした。押出速度が10m/分で角割れの発生が確認されなかった場合、押出性を優(○)と評価し、押出速度が10m/分で角割れの発生が確認されたが、5m/分で角割れの発生が確認されなかった場合、押出性を良(△)と評価し、押出速度が3m/分でも角割れの発生が確認された場合、押出性を不良(×)と評価した。その結果を表2に示す。
(Extrudability)
No. The corners of the extruded materials 1 to 22 were visually observed over the entire length of the extruded material, and the presence / absence of occurrence of square cracks (existence of extrudability) was observed. Then, the billet corresponding to the extruded material of the test number in which the occurrence of the angular cracking was confirmed was extruded at an extrusion speed smaller than the extrusion speed shown in Table 1, and the presence or absence of the occurrence of the angular cracking was observed. Moreover, about the billet corresponding to the test number of the extrusion material by which generation | occurrence | production of a square crack was not confirmed, it extruded at the extrusion speed larger than the extrusion speed shown in Table 1, and the presence or absence of generation | occurrence | production of a square crack was observed, respectively. The extrusion speed at this time was either 3 m / min, 5 m / min, or 10 m / min, and the homogenization conditions and extrusion conditions (excluding the extrusion speed) were as shown in Table 1. When the occurrence of square cracks was not confirmed at an extrusion speed of 10 m / min, the extrudability was evaluated as excellent (O), and the occurrence of square cracks was confirmed at an extrusion speed of 10 m / min, but at 5 m / min. When the occurrence of square cracks was not confirmed, the extrudability was evaluated as good (Δ), and when the occurrence of square cracks was confirmed even at an extrusion speed of 3 m / min, the extrudability was evaluated as poor (x). The results are shown in Table 2.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 表1,2に示すように、本発明に規定する組成を有し、AlFeSi粒子及びMgSi粒子の数密度が本発明の規定を満たすNo.1~9の押出材は、表面粗さが小さく(十点平均粗さRz≦80μm)、切削性も優れる。また、ロックウェル硬さが38HRB以上であり、強度的にも優れる。No.1~9の押出材は、いずれも本発明に規定する製造方法で製造されたものである。なお、No.1のビレット(均質化処理後)と押出材の電子顕微鏡組織写真を図2Aおよび図2Bに示す。 As shown in Tables 1 and 2, No. 1 has the composition defined in the present invention, and the number density of AlFeSi particles and Mg 2 Si particles satisfies the definition of the present invention. The extruded materials 1 to 9 have a small surface roughness (10-point average roughness Rz ≦ 80 μm) and excellent machinability. Further, the Rockwell hardness is 38 HRB or more, which is excellent in strength. No. Extruded materials 1 to 9 are all manufactured by the manufacturing method defined in the present invention. In addition, No. An electron micrograph of the billet 1 (after homogenization) and the extruded material is shown in FIGS. 2A and 2B.
 一方、No.10の押出材は、Si含有量が過剰なため焼き付きが発生し、表面粗さが大きい。
 No.11の押出材は、Si含有量が過少なため切削性が劣る。
 No.12の押出材は、不純物であるFe含有量が過剰なため、AlFeSi粒子の数密度が本発明の規定を超え、表面粗さが大きい(十点平均粗さRz>80μm)。No.12のビレット(均質化処理後)と押出材の電子顕微鏡組織写真を図3Aおよび図3Bに示す。図3Aに示すように、ビレット中のβ-AlFeSi相が多く、押出時に焼き付きが発生し、表面粗さが大きくなった。
On the other hand, no. The extruded material of No. 10 has seizure due to excessive Si content and has a large surface roughness.
No. The extruded material of No. 11 is inferior in machinability due to its excessive Si content.
No. Since the extruded material of No. 12 has an excessive Fe content as an impurity, the number density of AlFeSi particles exceeds the definition of the present invention, and the surface roughness is large (ten-point average roughness Rz> 80 μm). No. An electron micrograph of 12 billets (after homogenization) and the extruded material are shown in FIGS. 3A and 3B. As shown in FIG. 3A, there were many β-AlFeSi phases in the billet, seizure occurred during extrusion, and the surface roughness increased.
 No.13の押出材は、MgSi粒子の数密度が本発明の規定を超え、表面粗さが大きい(十点平均粗さRz>80μm)。No.13のビレット(均質化処理後)と押出材の電子顕微鏡組織写真を図4Aおよび図4Bに示す。均質化処理後の冷却速度が小さいため、図4Aに示すように、ビレット中のMgSi相のサイズが大きく、押出時に焼き付きが発生し、表面粗さが大きくなった。
 No.14の押出材は、AlFeSi粒子とMgSi粒子の数密度が本発明の規定を超え、No.15の押出材は、AlFeSi粒子の数密度が本発明の規定を超え、いずれも表面粗さが大きい(十点平均粗さRz>80μm)。これは、No.14では均質化処理の時間が短く、No.15では均質化処理の温度が低く、いずれもβ-AlFeSi粒子のα化が進行せず、かつビレット中のSi相の分断及びMgSi相の固溶が不十分であったためである。
No. In the extruded material No. 13, the number density of Mg 2 Si particles exceeds the definition of the present invention, and the surface roughness is large (ten-point average roughness Rz> 80 μm). No. An electron micrograph of 13 billets (after homogenization) and the extruded material are shown in FIGS. 4A and 4B. Since the cooling rate after the homogenization treatment was small, as shown in FIG. 4A, the size of the Mg 2 Si phase in the billet was large, seizure occurred during extrusion, and the surface roughness increased.
No. In the extruded material of No. 14, the number density of AlFeSi particles and Mg 2 Si particles exceeded the regulation of the present invention. The extruded material of No. 15 has a number density of AlFeSi particles exceeding the definition of the present invention, and all have a large surface roughness (10-point average roughness Rz> 80 μm). This is no. No. 14 has a short homogenization time. In No. 15, the temperature of the homogenization treatment was low, none of the β-AlFeSi particles were pre-gelatinized, and the Si phase in the billet and the Mg 2 Si phase were insufficiently dissolved.
 No.16,17の押出材は、いずれもFe含有量が過剰で、AlFeSi粒子の数密度が本発明の規定を超えているが、表面粗さが小さい(十点平均粗さRz≦80μm)。
 これは、No.16では、押出速度を規定の下限値である3m/分よりかなり低下させ、No.17では、均質化処理の時間を規定の上限値である15時間よりかなり長くしたためである。これにより、No.16,17では生産性が低下している。
 No.18,19の押出材は、AlFeSi粒子とMgSi粒子の数密度がいずれも本発明の規定を満たすが、表面粗さが大きい(十点平均粗さRz>80μm)。これは、No.18は押出温度が高すぎ、No.19は押出速度が大きすぎて、加工発熱により材料温度が上がり、押出材に焼き付きが生じたためである。
No. The extruded materials 16 and 17 both have an excessive Fe content, and the number density of AlFeSi particles exceeds the definition of the present invention, but the surface roughness is small (10-point average roughness Rz ≦ 80 μm).
This is no. In No. 16, the extrusion speed was considerably lowered from the prescribed lower limit of 3 m / min. This is because the time for the homogenization process is set to be considerably longer than 15 hours, which is the prescribed upper limit value. As a result, no. In 16 and 17, productivity decreases.
No. In the extruded materials 18 and 19, the number density of AlFeSi particles and Mg 2 Si particles both satisfy the provisions of the present invention, but the surface roughness is large (ten-point average roughness Rz> 80 μm). This is no. No. 18 has too high extrusion temperature. 19 is because the extrusion speed was too high, the material temperature rose due to processing heat generation, and seizure occurred in the extruded material.
 No.20の押出材は、Cu含有量が過剰なため、押出性が低下した。
 No.21の押出材は、Mg含有量が過少なため、強度(硬度)が低い。
 No.22の押出材は、Mg含有量が過剰なため、MgSi粒子の数密度が本発明の規定を超え、表面粗さが大きい(十点平均粗さRz>80μm)。これは、Mg含有量が過剰なため、ビレット中にMgSi相が多く形成され、押出時に焼き付きが発生したためと考えられる。
No. Extruded material No. 20 had an excessive Cu content, so the extrudability was lowered.
No. The extruded material No. 21 has a low strength (hardness) because the Mg content is too small.
No. Since the extruded material of No. 22 has an excessive Mg content, the number density of Mg 2 Si particles exceeds the definition of the present invention, and the surface roughness is large (ten-point average roughness Rz> 80 μm). This is presumably because the Mg content was excessive, so that many Mg 2 Si phases were formed in the billet and seizure occurred during extrusion.
 本出願は、出願日が2014年7月31日である日本国特許出願、特願第2014-156634号を基礎出願とする優先権主張と伴う。特願第2014-156634号は参照することにより本明細書に取り込まれる。 This application is accompanied by a priority claim based on Japanese Patent Application No. 2014-156634, whose application date is July 31, 2014. Japanese Patent Application No. 2014-156634 is incorporated herein by reference.

Claims (8)

  1.  切削性に優れたAl-Si-Mg系アルミニウム合金押出材であって、
     Si:2.0~6.0質量%、
     Mg:0.3~1.2質量%、
     Ti:0.01~0.2質量%
    を含有し、
     Fe含有量が0.2質量%以下に規制され、
    残部Al及び不可避不純物からなり、
     直径5μm以上のAlFeSi粒子が50×50μmの面積当り20個以下、
     直径2μm以上のMgSi粒子が50×50μmの面積当り20個以下であり、
     押出材表面の十点平均粗さRzが80μm以下であるアルミニウム合金押出材。
    Al-Si-Mg aluminum alloy extruded material with excellent machinability,
    Si: 2.0 to 6.0% by mass,
    Mg: 0.3 to 1.2% by mass,
    Ti: 0.01 to 0.2% by mass
    Containing
    Fe content is regulated to 0.2 mass% or less,
    It consists of the balance Al and inevitable impurities,
    20 or less AlFeSi particles having a diameter of 5 μm or more per 50 × 50 μm area,
    There are 20 or less Mg 2 Si particles having a diameter of 2 μm or more per 50 × 50 μm area,
    An aluminum alloy extruded material having a ten-point average roughness Rz of 80 μm or less on the surface of the extruded material.
  2.  さらにMn:0.1~1.0質量%とCu:0.1~0.4質量%の1種以上を含有することを特徴とする請求項1に記載されたAl-Si-Mg系アルミニウム合金押出材。 The Al-Si-Mg-based aluminum according to claim 1, further comprising at least one of Mn: 0.1 to 1.0 mass% and Cu: 0.1 to 0.4 mass%. Alloy extruded material.
  3.  さらにCr:0.03~0.1質量%とZr:0.03~0.1質量%の1種以上を含有することを特徴とする請求項1に記載されたAl-Si-Mg系アルミニウム合金押出材。 2. The Al—Si—Mg-based aluminum according to claim 1, further comprising at least one of Cr: 0.03-0.1% by mass and Zr: 0.03-0.1% by mass. Alloy extruded material.
  4.  さらにCr:0.03~0.1質量%とZr:0.03~0.1質量%の1種以上を含有することを特徴とする請求項2に記載されたAl-Si-Mg系アルミニウム合金押出材。 3. The Al—Si—Mg based aluminum according to claim 2, further comprising at least one of Cr: 0.03-0.1% by mass and Zr: 0.03-0.1% by mass. Alloy extruded material.
  5.  切削性に優れたAl-Si-Mg系アルミニウム合金押出材の製造方法であって、
      Si:2.0~6.0質量%、
      Mg:0.3~1.2質量%、
      Ti:0.01~0.2質量%
    を含有し、
     Fe含有量が0.2質量%以下に規制され、
    残部Al及び不可避不純物からなるアルミニウム合金ビレットを、
    500~550℃で4~15時間保持する均質化処理を行い、50℃/時間以上の平均冷却速度で250℃以下の温度まで強制冷却し、450~500℃に加熱して3~10m/minの押出速度で熱間押出を行い、押出材を50℃/秒以上の平均冷却速度で強制冷却し、時効処理を行うアルミニウム合金押出材の製造方法。
    A method for producing an Al—Si—Mg-based aluminum alloy extrudate excellent in machinability,
    Si: 2.0 to 6.0% by mass,
    Mg: 0.3 to 1.2% by mass,
    Ti: 0.01 to 0.2% by mass
    Containing
    Fe content is regulated to 0.2 mass% or less,
    An aluminum alloy billet composed of the balance Al and inevitable impurities,
    Homogenization treatment is performed at 500 to 550 ° C. for 4 to 15 hours, forced cooling to a temperature of 250 ° C. or less at an average cooling rate of 50 ° C./hour or more, heating to 450 to 500 ° C., and 3 to 10 m / min. A method for producing an aluminum alloy extruded material, in which hot extrusion is performed at an extrusion speed of 5 ° C., the extruded material is forcibly cooled at an average cooling rate of 50 ° C./second or more, and an aging treatment is performed.
  6.  前記アルミニウム合金が、さらにMn:0.1~1.0質量%とCu:0.1~0.4質量%の1種以上を含有することを特徴とする請求項5に記載されたAl-Si-Mg系アルミニウム合金押出材の製造方法。 6. The Al— according to claim 5, wherein the aluminum alloy further contains at least one of Mn: 0.1 to 1.0 mass% and Cu: 0.1 to 0.4 mass%. A method for producing a Si—Mg-based aluminum alloy extruded material.
  7.  前記アルミニウム合金が、さらにCr:0.03~0.1質量%とZr:0.03~0.1質量%の1種以上を含有することを特徴とする請求項5に記載されたAl-Si-Mg系アルミニウム合金押出材の製造方法。 The Al-- according to claim 5, wherein the aluminum alloy further contains at least one of Cr: 0.03-0.1 mass% and Zr: 0.03-0.1 mass%. A method for producing a Si—Mg-based aluminum alloy extruded material.
  8.  前記アルミニウム合金が、さらにCr:0.03~0.1質量%とZr:0.03~0.1質量%の1種以上を含有することを特徴とする請求項6に記載されたAl-Si-Mg系アルミニウム合金押出材の製造方法。 The Al-- according to claim 6, wherein the aluminum alloy further contains at least one of Cr: 0.03-0.1 mass% and Zr: 0.03-0.1 mass%. A method for producing a Si—Mg-based aluminum alloy extruded material.
PCT/JP2014/084569 2014-07-31 2014-12-26 Aluminium alloy extruded material with superior machinability and production method therefor WO2016017046A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP14898493.3A EP3176274B1 (en) 2014-07-31 2014-12-26 Aluminium alloy extruded material with excellent machinability and manufacturing method thereof
CN201480046489.4A CN105473747B (en) 2014-07-31 2014-12-26 The Aluminum alloy extrusion material and its manufacturing method of excellent in machinability
KR1020157021657A KR101688358B1 (en) 2014-07-31 2014-12-26 Aluminum alloy extruded material having excellent machinability and method for manufacturing same
KR1020167027531A KR102156008B1 (en) 2014-07-31 2014-12-26 Aluminum alloy extruded material having excellent machinability and method for manufacturing same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-156634 2014-07-31
JP2014156634A JP5777782B2 (en) 2013-08-29 2014-07-31 Manufacturing method of extruded aluminum alloy with excellent machinability

Publications (1)

Publication Number Publication Date
WO2016017046A1 true WO2016017046A1 (en) 2016-02-04

Family

ID=55216978

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/084569 WO2016017046A1 (en) 2014-07-31 2014-12-26 Aluminium alloy extruded material with superior machinability and production method therefor

Country Status (4)

Country Link
EP (1) EP3176274B1 (en)
KR (2) KR101688358B1 (en)
CN (1) CN105473747B (en)
WO (1) WO2016017046A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109576620B (en) * 2018-08-13 2020-10-20 广东宏锦新材料科技有限公司 Aluminum alloy processing method
CN110358938A (en) * 2019-07-29 2019-10-22 广东坚美铝型材厂(集团)有限公司 A kind of free machining aluminium alloy and preparation method thereof
CN113564429A (en) * 2021-08-10 2021-10-29 江苏亚太航空科技有限公司 Fine-grain aluminum alloy block and preparation process and application thereof
CN115572868B (en) * 2022-09-09 2023-11-03 江苏亚太轻合金科技股份有限公司 Low-performance and hardness 6-series aluminum alloy and preparation method thereof

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH108175A (en) * 1996-06-26 1998-01-13 Kobe Steel Ltd Aluminum alloy excellent in machinability and its manufacture
JP2002047525A (en) * 2000-05-26 2002-02-15 Kobe Steel Ltd Al-Mg-Si BASED ALUMINUM ALLOY EXTRUSION MATERIAL FOR MACHINING

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3335732B2 (en) * 1993-10-12 2002-10-21 日本軽金属株式会社 Hypoeutectic Al-Si alloy and casting method thereof
JP3107517B2 (en) 1995-03-30 2000-11-13 株式会社神戸製鋼所 High corrosion resistant aluminum alloy extruded material with excellent machinability
JPH0941062A (en) * 1995-07-27 1997-02-10 Furukawa Electric Co Ltd:The Alum.-magnesium-silicon type alum. alloy sheet material for automotive body sheet small in secular change and excellent in baking hardenability and its production
JP3846702B2 (en) 2001-11-09 2006-11-15 株式会社神戸製鋼所 Al-Mg-Si aluminum alloy extruded material for cutting
US20050109429A1 (en) * 2003-11-21 2005-05-26 Showa Denko K.K. Aluminum alloy, bar-like material, forge-formed article, machine-formed article, wear-resistant aluminum alloy with excellent anodized coat using the same and production methods thereof
CN101855123A (en) * 2007-07-18 2010-10-06 清洁车辆有限公司 External-rotor electric motor with or without a planetary gear mechanism, motor vehicle with an external-rotor electric motor and a method for operating such a vehicle
JP5160930B2 (en) * 2008-03-25 2013-03-13 株式会社神戸製鋼所 Aluminum alloy extruded material excellent in bending crushability and corrosion resistance and method for producing the same
WO2011001870A1 (en) * 2009-06-29 2011-01-06 アイシン軽金属株式会社 Wear-resistant aluminum alloy extruded material having excellent fatigue strength and cutting properties
JP5698695B2 (en) * 2012-03-30 2015-04-08 株式会社神戸製鋼所 Aluminum alloy forgings for automobiles and manufacturing method thereof

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH108175A (en) * 1996-06-26 1998-01-13 Kobe Steel Ltd Aluminum alloy excellent in machinability and its manufacture
JP2002047525A (en) * 2000-05-26 2002-02-15 Kobe Steel Ltd Al-Mg-Si BASED ALUMINUM ALLOY EXTRUSION MATERIAL FOR MACHINING

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
ALUMINUM NO SOSHIKI TO SEISHITSU, 30 November 1991 (1991-11-30), pages 287 - 289, XP008184903 *
See also references of EP3176274A4 *

Also Published As

Publication number Publication date
EP3176274A4 (en) 2018-01-24
KR102156008B1 (en) 2020-09-15
CN105473747B (en) 2019-04-26
KR101688358B1 (en) 2016-12-20
KR20160024837A (en) 2016-03-07
EP3176274B1 (en) 2019-06-26
EP3176274A1 (en) 2017-06-07
KR20170027316A (en) 2017-03-09
CN105473747A (en) 2016-04-06

Similar Documents

Publication Publication Date Title
JP5561846B2 (en) High strength aluminum alloy material and manufacturing method thereof
JP2015519475A5 (en) Improved free-cutting wrought aluminum alloy product and manufacturing method thereof
WO2016017046A1 (en) Aluminium alloy extruded material with superior machinability and production method therefor
US20190078180A1 (en) Free-machining aluminum alloy extruded material with reduced surface roughness and excellent productivity
JPH10219381A (en) High strength aluminum alloy excellent in intergranular corrosion resistance, and its production
JP2004084058A (en) Method for producing aluminum alloy forging for transport structural material and aluminum alloy forging
JP6113371B2 (en) Aluminum alloy casting excellent in high-temperature strength and thermal conductivity, manufacturing method thereof, and aluminum alloy piston for internal combustion engine
JP2007186747A (en) Aluminum alloy material to be formed at high temperature and a high speed, manufacturing method therefor and method for manufacturing formed article from aluminum alloy
JP6638192B2 (en) Aluminum alloy processing material and method of manufacturing the same
WO2018088351A1 (en) Aluminum alloy extruded material
JP6452042B2 (en) Method for producing magnesium alloy
JP2016151044A (en) Aluminum alloy extruded material excellent in machinability and production method therefor
JP6017625B2 (en) Aluminum alloy extruded material with excellent machinability
JP7002711B2 (en) Magnesium alloy
JP2016169431A5 (en)
JP2004277762A (en) Method for manufacturing heat treatment type aluminum alloy material for cold working
JP2000104149A (en) Production of aluminum-manganese alloy rolling stock having fine recrystallized grain structure
JP2005139505A (en) Aluminum alloy fin material, and its production method
JP2022513644A (en) Aluminum extruded alloy
JP2004277786A (en) Method for manufacturing heat treatment type aluminum alloy material for cold working superior in machinability
JP5825990B2 (en) Al-Mg-Si alloy extruded material
JP2004269937A (en) ABRASION RESISTANT Al-Si ALLOY SUPERIOR IN MACHINABILITY, AND CASTING METHOD THEREFOR
EP4394066A1 (en) Extruded multi-hole tube and production method for same
JP2010053433A (en) Free-cutting aluminum alloy
JP2018070899A (en) Hypereutectic Al-Mn Aluminum Alloy Casting Material and Method for Producing the Same

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201480046489.4

Country of ref document: CN

ENP Entry into the national phase

Ref document number: 20157021657

Country of ref document: KR

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2014898493

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2014898493

Country of ref document: EP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14898493

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE