JP2007186747A - Aluminum alloy material to be formed at high temperature and a high speed, manufacturing method therefor and method for manufacturing formed article from aluminum alloy - Google Patents

Aluminum alloy material to be formed at high temperature and a high speed, manufacturing method therefor and method for manufacturing formed article from aluminum alloy Download PDF

Info

Publication number
JP2007186747A
JP2007186747A JP2006005406A JP2006005406A JP2007186747A JP 2007186747 A JP2007186747 A JP 2007186747A JP 2006005406 A JP2006005406 A JP 2006005406A JP 2006005406 A JP2006005406 A JP 2006005406A JP 2007186747 A JP2007186747 A JP 2007186747A
Authority
JP
Japan
Prior art keywords
aluminum alloy
temperature
alloy material
speed
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006005406A
Other languages
Japanese (ja)
Other versions
JP4996853B2 (en
Inventor
Koji Ichitani
幸司 一谷
Tsutomu Tagata
勉 田形
Toshio Komatsubara
俊雄 小松原
Takeshi Takada
健 高田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Furukawa Sky KK
Original Assignee
Nippon Steel Corp
Furukawa Sky KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp, Furukawa Sky KK filed Critical Nippon Steel Corp
Priority to JP2006005406A priority Critical patent/JP4996853B2/en
Priority to PCT/JP2007/050276 priority patent/WO2007080938A1/en
Priority to EP07706623A priority patent/EP1975263A4/en
Publication of JP2007186747A publication Critical patent/JP2007186747A/en
Priority to US12/171,380 priority patent/US8500926B2/en
Application granted granted Critical
Publication of JP4996853B2 publication Critical patent/JP4996853B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Continuous Casting (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an aluminum alloy material to be formed at a high temperature and a high speed, which can provide a formed article having superior strength and fatigue characteristics after having been formed, and further has superior formability at the high temperature and the high speed; and to provide a manufacturing method therefor. <P>SOLUTION: The aluminum alloy material to be formed at the high temperature and the high speed comprises 2.0-8.0% Mg, 0.05-1.5% Mn, 0.05-0.4% Cr, 0.4% or less Fe, 0.4% or less Si, and the balance Al; includes Cr-based intermetallic compounds with sizes of 20 μm or smaller, which are formed in a melting and casting step; includes intermetallic compound particles in an amount of 350,000 pieces per square meter, which are Mn- and Cr-based precipitates and have sizes of 50 to 1,000 nm; and is formed at 200 to 550°C and a strain ratio of 10<SP>-2</SP>to 10/second, and immediately is cooled to room temperature at 20°C/minute or higher. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、冷間プレスでは成形することが困難な複雑形状を有し、なおかつ成形品に優れた強度や疲労特性が要求されるアルミニウム合金部材を高温高速成形により成形加工するのに好適な高温高速成形用アルミニウム合金材とその製造方法に関する。   The present invention is a high temperature suitable for forming an aluminum alloy member having a complicated shape difficult to be formed by a cold press and requiring excellent strength and fatigue characteristics by a high temperature high speed forming. The present invention relates to an aluminum alloy material for high speed forming and a method for producing the same.

Al−Mg系アルミニウム合金は、高温領域で、10−3/sec程度のひずみ速度において300%以上もの高い伸びを示す超塑性現象を発現することが知られており、この特性を利用して、アルミニウム合金板を高温に加熱してガス圧等により任意形状の金型に沿うように成形している。そして、通常の室温でのプレス成形では製造することが困難である複雑な形状を有する成形体を得ることが可能な超塑性成形用のアルミニウム合金板に関する技術が知られている(例えば、特許文献1参照)。
さらに最近では、高温成形時のひずみ速度を従来よりも一桁以上大きくして、例えば10−2〜1/secのひずみ速度として、生産性を大幅に高める高温高速成形に関する技術が多数開示されている(例えば、次の特許文献2〜7参照)。
Al—Mg-based aluminum alloys are known to exhibit a superplastic phenomenon exhibiting a high elongation of 300% or more at a strain rate of about 10 −3 / sec in a high-temperature region. The aluminum alloy plate is heated to a high temperature and shaped so as to follow a mold having an arbitrary shape by gas pressure or the like. Further, a technique relating to an aluminum alloy plate for superplastic forming that can obtain a compact having a complicated shape that is difficult to manufacture by press forming at normal room temperature is known (for example, Patent Documents). 1).
More recently, a number of techniques related to high-temperature high-speed molding have been disclosed in which the strain rate during high-temperature molding is increased by an order of magnitude or more, for example, a strain rate of 10 −2 to 1 / sec. (For example, see Patent Documents 2 to 7 below).

最近行われている上述のようなひずみ速度の高い領域で行う高温成形では、より高い高温高速成形性を確保する目的で高温高速成形中における結晶組織の制御がなされている。例えば特許文献2では、Mn、Cr、Zr、V、Ti、Bのうち一種または二種以上を適量添加して、高温成形時に結晶粒が異常粒成長することを防止する技術が開示されている。
また、特許文献4では、Mn、Cr、Zrのうち一種または二種以上を適量添加することによって高温変形中の合金の再結晶において、再結晶粒を微細にする技術が開示されている。さらに、特許文献5では、Mn、Crのうち一種または二種を適量添加することにより、高温変形中に生成する再結晶を安定化させ、良好な成形性および成形後の外観品質を与え、また成形後の強度を高める技術が開示されている。
このように、従来の高温高速成形技術ではMnやCrに代表される各種遷移元素を適量添加して結晶組織を制御することが行われている。
In the high temperature molding performed in the region where the strain rate is high as described above, the crystal structure is controlled during the high temperature high speed molding for the purpose of ensuring higher high temperature high speed moldability. For example, Patent Document 2 discloses a technique for preventing crystal grains from growing abnormally during high temperature molding by adding an appropriate amount of one or more of Mn, Cr, Zr, V, Ti, and B. .
Patent Document 4 discloses a technique for refining recrystallized grains in recrystallization of an alloy during high temperature deformation by adding an appropriate amount of one or more of Mn, Cr, and Zr. Furthermore, in Patent Document 5, by adding an appropriate amount of one or two of Mn and Cr, recrystallization generated during high-temperature deformation is stabilized, giving good moldability and appearance quality after molding, A technique for increasing the strength after molding is disclosed.
As described above, in the conventional high-temperature high-speed forming technique, an appropriate amount of various transition elements represented by Mn and Cr is added to control the crystal structure.

特許第2831157号公報Japanese Patent No. 2831157 特開平8−199272JP-A-8-199272 特許第3145904号公報Japanese Patent No. 3145904 特開平10−259441JP-A-10-259441 特開2003−342665JP 2003-342665 A 特開2004−225114JP 2004-225114 A 特開2004−285390JP 2004-285390 A

しかしながら、これまでに高温高速成形におけるAl−Mg系アルミニウム合金の変形の機構は十分に明らかにされておらず、優れた高温高速成形性を得るため、また成形品の強度を高めるためにはどのような結晶組織が最適であり、どのような組織制御が必要であるのかは不明のままであった。このため、高温高速成形技術を利用して成形品を生産する現場においては、時として成形温度・ひずみ速度等の条件によっては、成形途中で素材が破断したり、成形後の製品の強度が不足したりするなどのトラブルが見受けられた。
また、上記のような目的でMnやCrを過度に添加した場合には、Cr系の巨大な金属間化合物が溶解鋳造時に生成して、アルミニウム合金中に混入することによって、このCr系金属間化合物が破断の起点となり、成形性が低下することがあった。この場合、高温高速成形が首尾よく実施できたとしても、得られた成形品の疲労特性が大幅に低下するため、この成形品を例えば輸送機器用部材のような繰り返し荷重のかかる部材に適用することはできなかった。
本発明はこのような事情に着目してなされたものであって、成形後の強度および疲労特性に優れた成形品を得ることが可能で、なおかつ高温高速成形性に優れた特定の合金組成を有する高温高速成形用アルミニウム合金材およびその製造方法、さらに、アルミニウム合金成形品の製造方法を提供することを目的としている。
However, the deformation mechanism of Al-Mg-based aluminum alloys in high-temperature high-speed forming has not been clarified so far, and in order to obtain excellent high-temperature high-speed formability and to increase the strength of the molded product Such a crystal structure is optimal, and what kind of structure control is necessary remains unclear. For this reason, at sites where high-temperature, high-speed molding technology is used to produce molded products, sometimes the material breaks during molding or the strength of the molded product is insufficient depending on conditions such as molding temperature and strain rate. Troubles such as doing were seen.
In addition, when Mn or Cr is excessively added for the purpose as described above, a Cr-based huge intermetallic compound is formed during melt casting and mixed in the aluminum alloy, thereby interstituting this Cr-based intermetallic compound. The compound may be the starting point of rupture and formability may be reduced. In this case, even if high-temperature and high-speed molding can be carried out successfully, the fatigue characteristics of the obtained molded product are greatly reduced. Therefore, this molded product is applied to a member that is subjected to repeated loads, such as a member for transportation equipment. I couldn't.
The present invention has been made by paying attention to such circumstances, and it is possible to obtain a molded product excellent in strength and fatigue characteristics after molding, and a specific alloy composition excellent in high-temperature high-speed formability. An object of the present invention is to provide an aluminum alloy material for high-temperature high-speed forming, a method for producing the same, and a method for producing an aluminum alloy molded article.

発明者らは、より優れた高温高速成形性と成形品の高強度化および疲労強度の向上を目的として、アルミニウム合金材の高温高速変形のメカニズムと、Cr系の粗大金属間化合物の生成メカニズムついて鋭意検討を実施した。
まず、変形メカニズム関しては、200〜550℃の温度域において、ひずみ速度が10−2/sec以上で行われる高温高速変形では、変形中に結晶粒内に亜結晶粒組織が形成され、この亜結晶粒の回転が、従来から知られている粒界すべり及び粒内変形に重畳することにより、高温高速伸びに寄与していることが明らかとなった。ここで言う「亜結晶粒」とは、粒界角が15度以上の結晶粒界で構成される通常の結晶粒内部において、粒界角が15度未満の亜結晶粒界により構成される粒のことである。この亜結晶粒組織は、高温高速成形性を高めるのみではなく、個々の結晶粒を強化することにより、成形後の強度向上にも寄与する。一方で、この亜結晶粒組織は高温高速成形中および成形後の冷却過程で再結晶が生じることにより容易に消滅してしまい、亜結晶粒組織が形成されることによりもたらされる高温高速成形性の向上や成形品の強度向上の効果が得られなくなってしまう。
The inventors have studied the mechanism of high-temperature high-speed deformation of aluminum alloy materials and the mechanism of formation of Cr-based coarse intermetallic compounds for the purpose of better high-temperature high-speed formability, higher strength of molded products, and improvement of fatigue strength. An intensive study was conducted.
First, regarding the deformation mechanism, in high-temperature high-speed deformation performed at a strain rate of 10 −2 / sec or more in a temperature range of 200 to 550 ° C., a subgrain structure is formed in the crystal grains during the deformation. It has been clarified that the rotation of the sub-crystal grains contributes to the high-temperature and high-speed elongation by superimposing on the conventionally known grain boundary sliding and intra-granular deformation. The term “subcrystalline grain” as used herein refers to a grain constituted by a subcrystalline grain boundary having a grain boundary angle of less than 15 degrees inside a normal grain having a grain boundary angle of 15 degrees or more. That's it. This subcrystalline grain structure not only enhances the high-temperature high-speed formability, but also contributes to improving the strength after molding by strengthening individual crystal grains. On the other hand, this subcrystalline grain structure easily disappears due to recrystallization during the high-temperature high-speed molding and in the cooling process after molding, and the high-temperature high-speed formability brought about by the formation of the subcrystalline grain structure. The effect of improvement and strength improvement of a molded product cannot be obtained.

発明者らはこの問題に対して鋭意検討を行い、適量のMnおよびCrを共添加して、これらの元素とAlにより構成される析出物の分布形態を適切に制御することにより、高温高速成形中及び、成形後の冷却過程において、この亜結晶粒組織を安定に存在させることが可能であることを見出した。
次に、溶解鋳造時に生成するCr系の巨大な金属間化合物については、結晶粒微細化材として添加されるTiが過度の量で存在すると、Cr系の巨大な金属間化合物が生成しやすくなる傾向を見出し、Ti量を一定量以下に制限することによって、巨大な金属間化合物の生成を抑制しうることを見出した。
以上の知見をもとに、発明者らは各種元素の添加量、析出物の粒子径および分布密度に関する分布形態を綿密に検討して、本発明をなすに至った。
The inventors have intensively studied this problem, co-adding appropriate amounts of Mn and Cr, and appropriately controlling the distribution form of precipitates composed of these elements and Al, thereby enabling high-temperature high-speed molding. It has been found that this sub-grain structure can be stably present in the cooling process during and after molding.
Next, for Cr-based giant intermetallic compounds produced during melt casting, if an excessive amount of Ti is added as a grain refiner, Cr-based giant intermetallic compounds are likely to be produced. The inventors found a tendency and found that the formation of huge intermetallic compounds can be suppressed by limiting the amount of Ti to a certain amount or less.
Based on the above knowledge, the inventors have studied the distribution form relating to the addition amount of various elements, the particle size of the precipitates, and the distribution density, and have come to make the present invention.

すなわち、本発明は、
(1)Mg:2.0〜8.0%(質量%、以下同じ)、Mn:0.05〜1.5%、Cr:0.05〜0.4%を含有し、Feを0.4%以下、Siを0.4%以下に規制し、残部がAl及び不可避不純物よりなり、
溶解鋳造時に形成されるCr系の金属間化合物の粒子径が20μm以下であり、かつ、Mn及びCr系の析出物として粒子径50〜1000nmの金属間化合物粒子が350,000個/mm以上の分布密度で存在する高温高速成形用アルミニウム合金材であって、
200〜550℃の温度、10−2〜10/secのひずみ速度における成形後に直ちに20℃/分以上の冷却速度で室温まで冷却を行う高温高速成形に用いられることを特徴とする高温高速成形用アルミニウム合金材、
(2)Mg:2.0〜8.0%(質量%、以下同じ)、Mn:0.05〜1.5%、Cr:0.05〜0.4%、Ti:0.004〜0.02%を含有し、Feを0.4%以下、Siを0.4%以下に規制し、さらに、V:0.01〜0.2%、Sc:0.01〜0.4%、B:0.0001〜0.05%、Be:0.0001〜0.01%のうち1種又は2種以上を含有し、残部がAl及び不可避不純物よりなり、
溶解鋳造時に形成されるCr系の金属間化合物の粒子径が20μm以下であり、かつ、Mn及びCr系の析出物として粒子径50〜1000nmの金属間化合物粒子が350,000個/mm以上の分布密度で存在する高温高速成形用アルミニウム合金材であって、
200〜550℃の温度、10−2〜10/secのひずみ速度における成形後に直ちに20℃/分以上の冷却速度で室温まで冷却を行う高温高速成形に用いられることを特徴とする高温高速成形用アルミニウム合金材、
(3)Mg:2.0〜8.0%(質量%、以下同じ)、Mn:0.05〜1.5%、Cr:0.05〜0.4%、Ti:0.004〜0.02%を含有し、Feを0.4%以下、Siを0.4%以下に規制し、さらに、V:0.01〜0.2%、Sc:0.01〜0.4%、B:0.0001〜0.05%、Be:0.0001〜0.01%のうち1種又は2種以上とCu:0.05〜1.0質量%を含有し、残部がAl及び不可避不純物よりなり、
溶解鋳造時に形成されるCr系の金属間化合物の粒子径が20μm以下であり、かつ、Mn及びCr系の析出物として粒子径50〜1000nmの金属間化合物粒子が350,000個/mm以上の分布密度で存在する高温高速成形用アルミニウム合金材であって、
200〜550℃の温度、10−2〜10/secのひずみ速度における成形後に直ちに20℃/分以上の冷却速度で室温まで冷却を行う高温高速成形に用いられることを特徴とする高温高速成形用アルミニウム合金材、
(4)Mg:2.0〜8.0%(質量%、以下同じ)、Mn:0.05〜1.5%、Cr:0.05〜0.4%を含有し、Feを0.4%以下、Siを0.4%以下に規制し、残部がAl及び不可避不純物よりなるアルミニウム合金鋳塊に、
400〜550℃、1〜24時間で均質化処理を行う工程と、前記均質化処理を経た合金鋳塊に熱間加工と冷間加工の両方又はいずれか一方を行う工程とを少なくとも含むことによって、アルミニウム合金材中に溶解鋳造時に形成されるCr系の金属間化合物の粒子径を20μm以下とし、かつ、前記アルミニウム合金材中にMn及びCr系の析出物として粒子径50〜1000nmの金属間化合物粒子を350,000個/mm以上の分布密度で存在させる高温高速成形用アルミニウム合金材の製造方法であって、
前記高温高速成形用アルミニウム合金材は、200〜550℃の温度、10−2〜10/secのひずみ速度における成形後に直ちに20℃/分以上の冷却速度で室温まで冷却を行う高温高速成形に用いられることを特徴とする高温高速成形用アルミニウム合金材の製造方法、
(5)Mg:2.0〜8.0%(質量%、以下同じ)、Mn:0.05〜1.5%、Cr:0.05〜0.4%、Ti:0.004〜0.02%を含有し、Feを0.4%以下、Siを0.4%以下に規制し、さらに、V:0.01〜0.2%、Sc:0.01〜0.4%、B:0.0001〜0.05%、Be:0.0001〜0.01%のうち1種又は2種以上を含有し、残部がAl及び不可避不純物よりなるアルミニウム合金鋳塊に、
400〜550℃、1〜24時間で均質化処理を行う工程と、前記均質化処理を経た合金鋳塊に熱間加工と冷間加工の両方又はいずれか一方を行う工程とを少なくとも含むことによって、アルミニウム合金材中に溶解鋳造時に形成されるCr系の金属間化合物の粒子径を20μm以下とし、かつ、前記アルミニウム合金材中にMn及びCr系の析出物として粒子径50〜1000nmの金属間化合物粒子を350,000個/mm以上の分布密度で存在させる高温高速成形用アルミニウム合金材の製造方法であって、
前記高温高速成形用アルミニウム合金材は、200〜550℃の温度、10−2〜10/secのひずみ速度における成形後に直ちに20℃/分以上の冷却速度で室温まで冷却を行う高温高速成形に用いられることを特徴とする高温高速成形用アルミニウム合金材の製造方法、
(6)Mg:2.0〜8.0%(質量%、以下同じ)、Mn:0.05〜1.5%、Cr:0.05〜0.4%、Ti:0.004〜0.02%を含有し、Feを0.4%以下、Siを0.4%以下に規制し、さらに、V:0.01〜0.2%、Sc:0.01〜0.4%、B:0.0001〜0.05%、Be:0.0001〜0.01%のうち1種又は2種以上とCu:0.05〜1.0質量%を含有し、残部がAl及び不可避不純物よりなるアルミニウム合金鋳塊に、
400〜550℃、1〜24時間で均質化処理を行う工程と、前記均質化処理を経た合金鋳塊に熱間加工と冷間加工の両方又はいずれか一方を行う工程とを少なくとも含むことによって、アルミニウム合金材中に溶解鋳造時に形成されるCr系の金属間化合物の粒子径を20μm以下とし、かつ、前記アルミニウム合金材中にMn及びCr系の析出物として粒子径50〜1000nmの金属間化合物粒子を350,000個/mm以上の分布密度で存在させる高温高速成形用アルミニウム合金材の製造方法であって、
前記高温高速成形用アルミニウム合金材は、200〜550℃の温度、10−2〜10/secのひずみ速度における成形後に直ちに20℃/分以上の冷却速度で室温まで冷却を行う高温高速成形に用いられることを特徴とする高温高速成形用アルミニウム合金材の製造方法、および、
(7)前記(1)〜(3)のいずれか1項に記載の高温高速成形用アルミニウム合金材を、200〜550℃の温度、10−2〜10/secのひずみ速度で高温高速成形し、直ちに20℃/分以上の冷却速度で室温まで冷却することにより、金属組織を亜結晶粒組織とすることを特徴とするアルミニウム合金成形品の製造方法、
を提供するものである。
That is, the present invention
(1) Mg: 2.0 to 8.0% (mass%, the same shall apply hereinafter), Mn: 0.05 to 1.5%, Cr: 0.05 to 0.4%, Fe: 4% or less, Si is regulated to 0.4% or less, the balance is made of Al and inevitable impurities,
The particle diameter of the Cr-based intermetallic compound formed at the time of melt casting is 20 μm or less, and 350,000 particles / mm 2 or more of the Mn and Cr-based precipitates having a particle diameter of 50 to 1000 nm. An aluminum alloy material for high-temperature high-speed forming that exists at a distribution density of
For high-temperature high-speed molding, characterized in that it is used for high-temperature high-speed molding that cools to room temperature at a cooling rate of 20 ° C./min or more immediately after molding at a temperature of 200 to 550 ° C. and a strain rate of 10 −2 to 10 / sec. Aluminum alloy material,
(2) Mg: 2.0 to 8.0% (mass%, the same applies hereinafter), Mn: 0.05 to 1.5%, Cr: 0.05 to 0.4%, Ti: 0.004 to 0 0.02%, Fe is regulated to 0.4% or less, Si is regulated to 0.4% or less, V: 0.01 to 0.2%, Sc: 0.01 to 0.4%, B: 0.0001-0.05%, Be: contain 0.0001-0.01% of one or more, the balance consists of Al and inevitable impurities,
The particle diameter of the Cr-based intermetallic compound formed at the time of melt casting is 20 μm or less, and 350,000 particles / mm 2 or more of the Mn and Cr-based precipitates having a particle diameter of 50 to 1000 nm. An aluminum alloy material for high-temperature high-speed forming that exists at a distribution density of
For high-temperature high-speed molding, characterized in that it is used for high-temperature high-speed molding that cools to room temperature at a cooling rate of 20 ° C./min or more immediately after molding at a temperature of 200 to 550 ° C. and a strain rate of 10 −2 to 10 / sec. Aluminum alloy material,
(3) Mg: 2.0 to 8.0% (mass%, the same applies hereinafter), Mn: 0.05 to 1.5%, Cr: 0.05 to 0.4%, Ti: 0.004 to 0 0.02%, Fe is regulated to 0.4% or less, Si is regulated to 0.4% or less, V: 0.01 to 0.2%, Sc: 0.01 to 0.4%, B: 0.0001-0.05%, Be: One or more of 0.0001-0.01% and Cu: 0.05-1.0% by mass, the balance being Al and inevitable Made of impurities,
The particle diameter of the Cr-based intermetallic compound formed at the time of melt casting is 20 μm or less, and 350,000 particles / mm 2 or more of the Mn and Cr-based precipitates having a particle diameter of 50 to 1000 nm. An aluminum alloy material for high-temperature high-speed forming that exists at a distribution density of
For high-temperature high-speed molding, characterized in that it is used for high-temperature high-speed molding that cools to room temperature at a cooling rate of 20 ° C./min or more immediately after molding at a temperature of 200 to 550 ° C. and a strain rate of 10 −2 to 10 / sec. Aluminum alloy material,
(4) Mg: 2.0 to 8.0% (mass%, the same shall apply hereinafter), Mn: 0.05 to 1.5%, Cr: 0.05 to 0.4%, Fe: 4% or less, Si is regulated to 0.4% or less, and the balance is made of an aluminum alloy ingot consisting of Al and inevitable impurities.
By including at least a step of performing a homogenization treatment at 400 to 550 ° C. for 1 to 24 hours, and a step of performing hot working and / or cold working on the alloy ingot that has undergone the homogenizing treatment. The particle diameter of the Cr-based intermetallic compound formed at the time of melt casting in the aluminum alloy material is 20 μm or less, and between the metals having a particle diameter of 50 to 1000 nm as Mn and Cr-based precipitates in the aluminum alloy material A method for producing an aluminum alloy material for high-temperature high-speed forming, in which compound particles are present at a distribution density of 350,000 particles / mm 2 or more,
The aluminum alloy material for high-temperature high-speed forming is used for high-temperature high-speed forming that cools to room temperature at a cooling rate of 20 ° C./min or more immediately after forming at a temperature of 200 to 550 ° C. and a strain rate of 10 −2 to 10 / sec. A method for producing an aluminum alloy material for high-temperature high-speed forming, characterized in that
(5) Mg: 2.0 to 8.0% (mass%, the same applies hereinafter), Mn: 0.05 to 1.5%, Cr: 0.05 to 0.4%, Ti: 0.004 to 0 0.02%, Fe is regulated to 0.4% or less, Si is regulated to 0.4% or less, V: 0.01 to 0.2%, Sc: 0.01 to 0.4%, B: 0.0001 to 0.05%, Be: 0.0001 to 0.01% of one or two or more of the aluminum alloy ingot, the balance of Al and inevitable impurities,
By including at least a step of performing a homogenization treatment at 400 to 550 ° C. for 1 to 24 hours, and a step of performing hot working and / or cold working on the alloy ingot that has undergone the homogenizing treatment. The particle diameter of the Cr-based intermetallic compound formed at the time of melt casting in the aluminum alloy material is 20 μm or less, and between the metals having a particle diameter of 50 to 1000 nm as Mn and Cr-based precipitates in the aluminum alloy material A method for producing an aluminum alloy material for high-temperature high-speed forming, in which compound particles are present at a distribution density of 350,000 particles / mm 2 or more,
The aluminum alloy material for high-temperature high-speed forming is used for high-temperature high-speed forming that cools to room temperature at a cooling rate of 20 ° C./min or more immediately after forming at a temperature of 200 to 550 ° C. and a strain rate of 10 −2 to 10 / sec. A method for producing an aluminum alloy material for high-temperature high-speed forming, characterized in that
(6) Mg: 2.0 to 8.0% (mass%, the same applies hereinafter), Mn: 0.05 to 1.5%, Cr: 0.05 to 0.4%, Ti: 0.004 to 0 0.02%, Fe is regulated to 0.4% or less, Si is regulated to 0.4% or less, V: 0.01 to 0.2%, Sc: 0.01 to 0.4%, B: 0.0001-0.05%, Be: One or more of 0.0001-0.01% and Cu: 0.05-1.0% by mass, the balance being Al and inevitable To an aluminum alloy ingot made of impurities,
By including at least a step of performing a homogenization treatment at 400 to 550 ° C. for 1 to 24 hours, and a step of performing hot working and / or cold working on the alloy ingot that has undergone the homogenizing treatment. The particle diameter of the Cr-based intermetallic compound formed at the time of melt casting in the aluminum alloy material is 20 μm or less, and between the metals having a particle diameter of 50 to 1000 nm as Mn and Cr-based precipitates in the aluminum alloy material A method for producing an aluminum alloy material for high-temperature high-speed forming, in which compound particles are present at a distribution density of 350,000 particles / mm 2 or more,
The aluminum alloy material for high-temperature high-speed forming is used for high-temperature high-speed forming that cools to room temperature at a cooling rate of 20 ° C./min or more immediately after forming at a temperature of 200 to 550 ° C. and a strain rate of 10 −2 to 10 / sec. A method for producing an aluminum alloy material for high temperature and high speed forming, and
(7) The high-temperature high-speed forming aluminum alloy material according to any one of (1) to (3) is formed at a high temperature and high speed at a temperature of 200 to 550 ° C. and a strain rate of 10 −2 to 10 / sec. Immediately after cooling to room temperature at a cooling rate of 20 ° C./minute or more, the metal structure becomes a subcrystalline structure,
Is to provide.

本発明によれば、遷移元素系の分散粒子をマトリクス中に均一かつ高密度に分散させることにより、亜結晶粒組織を成形時および成形後の冷却過程で安定に存在させ、優れた高温高速成形性と成形後の強度、疲労特性を有する高温高速成形用のアルミニウム合金材が得られる。そして、本発明のアルミニウム合金材を使用することにより、従来の冷間成形加工では成形が困難な複雑な形状を有する成形品の量産が可能となる。   According to the present invention, the transition element-based dispersed particles are uniformly and densely dispersed in the matrix, so that the sub-grain structure is stably present during the molding and the cooling process after the molding, and excellent high-temperature and high-speed molding is achieved. Thus, an aluminum alloy material for high-temperature high-speed forming having the properties, strength after forming, and fatigue characteristics can be obtained. By using the aluminum alloy material of the present invention, it becomes possible to mass-produce molded products having complicated shapes that are difficult to form by conventional cold forming.

以下、本発明の高温高速成形用アルミニウム合金材について詳細に説明する。
先ず、本発明のアルミニウム合金材を構成する合金成分元素の添加理由および添加範囲について説明をする。
Hereinafter, the high temperature high speed forming aluminum alloy material of the present invention will be described in detail.
First, the reason and range of addition of alloy component elements constituting the aluminum alloy material of the present invention will be described.

本発明において、Mgの含有量は、2.0〜8.0%(%は質量%を表す。以下同じ)である。
Mgはアルミニウムに高温高速成形性を付与するための必須元素であると同時に、固溶硬化により成形品の強度向上に寄与するもので、合金中の含有量は2.0〜8.0%、好ましくは2.4〜7.6%の範囲である。Mg量が少な過ぎると高温高速成形時に十分な伸びが得られないと同時に、成形品の強度が大きく低下する。また、Mg量が多過ぎると熱間加工性が大幅に低下して、熱間加工により高温高速成形用の素材を製造することが困難となる。
In the present invention, the content of Mg is 2.0 to 8.0% (% represents mass%, the same applies hereinafter).
Mg is an essential element for imparting high-temperature high-speed formability to aluminum, and at the same time contributes to improving the strength of the molded product by solid solution hardening. The content in the alloy is 2.0 to 8.0%, Preferably it is 2.4 to 7.6% of range. If the amount of Mg is too small, sufficient elongation cannot be obtained during high-temperature and high-speed molding, and at the same time, the strength of the molded product is greatly reduced. Moreover, when there is too much Mg amount, hot workability will fall significantly and it will become difficult to manufacture the raw material for high-temperature high-speed shaping | molding by hot work.

Mnの含有量は0.05〜1.5%であり、また、Crの含有量は0.05〜0.4%である。
本発明では、MnおよびCrは必須元素である。これらは同時に添加されることにより、鋳造に引き続いて行われる均質化処理によってマトリクス中に均一且つ密に(Mn,Cr)Alまたは(Mn,Cr)Alの分散粒子として析出して、高温高速成形時に結晶粒内に形成される亜結晶粒組織を安定化させ、成形中および成形終了後の再結晶により亜結晶組織が消滅することを防止する。
この析出物の粒子径が50〜1000nm、好ましくは50〜700nmの時に亜結晶組織を安定化する効果を有する。粒子径が50nm以下では亜結晶粒界と析出物の接触面積が微小なため、亜結晶粒を安定化する効果は認められない。粒子径が上限を超える場合には、析出物の周辺にひずみが過度に蓄積することにより、再結晶粒の核となることにより、亜結晶粒組織を消滅せしめる再結晶を誘起する。
The Mn content is 0.05 to 1.5%, and the Cr content is 0.05 to 0.4%.
In the present invention, Mn and Cr are essential elements. When these are added simultaneously, they are precipitated as dispersed particles of (Mn, Cr) Al 4 or (Mn, Cr) Al 6 uniformly and densely in the matrix by a homogenization process performed subsequent to casting. It stabilizes the subcrystalline structure formed in the crystal grains at the time of high-speed forming, and prevents the subcrystalline structure from disappearing due to recrystallization during and after forming.
This precipitate has an effect of stabilizing the subcrystalline structure when the particle size of the precipitate is 50 to 1000 nm, preferably 50 to 700 nm. When the particle diameter is 50 nm or less, the contact area between the sub-crystal grain boundary and the precipitate is very small, so that the effect of stabilizing the sub-crystal grain is not recognized. When the particle diameter exceeds the upper limit, excessive accumulation of strain around the precipitate causes recrystallization grains to be recrystallized, thereby inducing recrystallization that causes the subgrain structure to disappear.

さらに、高温高速成形時に形成される亜結晶粒を安定化させるためには、析出物が隙間無く分布していることが必要である。もし、析出物が存在しない領域が比較的広い場合には、その領域中に存在する亜結晶粒は安定化されず、再結晶の核として成長し、一定の大きさに達すると分散粒子の有無に関係なく粗大な再結晶粒として成長することにより、亜結晶粒組織が消滅してしまう場合がある。そのため、析出物の分布密度は350,000個/mm以上、好ましくは400,000個/mm以上である必要がある。分布密度がこれより低い場合には、再結晶組織の安定化効果が不十分なため成形途中もしくは、成形後の冷却過程に再結晶が生じ、亜結晶組織が消滅して、高温高速成形性が低下するとともに成形品の強度低下を引き起こす。
アルミニウム合金材における金属間化合物の分布密度および粒子径は、薄膜のアルミニウム合金サンプルを透過型電子顕微鏡により観察して得られる観察写真を解析することにより測定することができる。また、析出物がMnおよびCr系の金属間化合物粒子であることは、透過型電子顕微鏡に具備されている元素分析装置によって、個々の析出物の元素分析を行うことにより確認できる。
Furthermore, in order to stabilize the sub-crystal grains formed at the time of high-temperature high-speed molding, it is necessary that the precipitates are distributed without gaps. If the region where no precipitate is present is relatively wide, the sub-grains present in that region are not stabilized and grow as recrystallization nuclei. In some cases, the sub-grain structure disappears by growing as coarse recrystallized grains regardless of the above. Therefore, the distribution density of precipitates needs to be 350,000 pieces / mm 2 or more, preferably 400,000 pieces / mm 2 or more. If the distribution density is lower than this, the effect of stabilizing the recrystallized structure is insufficient, so that recrystallization occurs during the molding or cooling process after molding, the subcrystalline structure disappears, and high-temperature high-speed formability is achieved. As well as lowering, the strength of the molded product is reduced.
The distribution density and particle size of the intermetallic compound in the aluminum alloy material can be measured by analyzing an observation photograph obtained by observing a thin-film aluminum alloy sample with a transmission electron microscope. Further, it can be confirmed that the precipitates are Mn and Cr-based intermetallic compound particles by performing an elemental analysis of each precipitate with an elemental analyzer provided in the transmission electron microscope.

Crを添加せずに、Mnのみを添加すると、Mnは均質化処理時にMnAl及びMnAlとして析出するが、その多くが1000nm以上の粒子径で析出してしまい、亜結晶粒組織の安定化に寄与する粒子径50〜1000nmの析出物の分布密度は350,000個/mm以下であるため、亜結晶粒組織を安定させることは出来ず、高温高速成形中に再結晶が生じ、これにより高温高速成形性が大幅に低下する。またMnを添加せずにCrのみを添加すると、Crは均質化処理時にCrAl及びMgCrAl18として析出するが、析出密度が350,000個/mmよりも低く、亜結晶粒組織の十分な安定化効果は得られない。 When only Mn is added without adding Cr, Mn is precipitated as MnAl 4 and MnAl 6 during the homogenization treatment, but most of them are precipitated with a particle diameter of 1000 nm or more, and stabilization of the subgrain structure. The distribution density of precipitates with a particle size of 50 to 1000 nm that contributes to 3 is less than 350,000 / mm 2 , so the subcrystalline structure cannot be stabilized and recrystallization occurs during high-temperature high-speed molding. As a result, the high-temperature high-speed formability is significantly reduced. When only Cr is added without adding Mn, Cr precipitates as CrAl 7 and Mg 3 Cr 2 Al 18 during the homogenization treatment, but the precipitation density is lower than 350,000 pieces / mm 2 , A sufficient stabilization effect of the organization cannot be obtained.

Mnの含有範囲は0.05〜1.5%、好ましくは0.1〜1.5%であり、Crは0.05〜0.4%、好ましくは0.05〜0.32%である。上記のごとくMn量およびCr量が下限よりも低い場合には上記の効果に乏しく、Mn量およびCr量が上限よりも高い場合には、後述するTi量制限の効果は無く、溶解鋳造時に例えば、Al−Fe−Mn−Si、Al−CrのようなMn及びCr系の巨大な金属間化合物を生成し、高温高速成形時に破壊の起点となり高温高速成形性が低下するとともに、成形品の疲労特性が大幅に低下する。   The content range of Mn is 0.05 to 1.5%, preferably 0.1 to 1.5%, and Cr is 0.05 to 0.4%, preferably 0.05 to 0.32%. . As described above, when the amount of Mn and the amount of Cr are lower than the lower limit, the above effect is poor. When the amount of Mn and the amount of Cr is higher than the upper limit, there is no effect of limiting the amount of Ti described later, , A large Mn- and Cr-based intermetallic compound such as Al-Fe-Mn-Si and Al-Cr, which becomes a starting point of fracture during high-temperature high-speed molding, and the high-temperature high-speed moldability deteriorates, and the fatigue of the molded product The characteristics are greatly reduced.

本発明のアルミニウム合金材では、FeおよびSiの含有量を規制する必要があり、Feの含有量は0.4%以下に、Siの含有量は0.4%以下に規制する。
FeおよびSiは一般に不純物としてAl地金に含有されるものであるが、合金中に混入するとAl−Fe−Mn−Si系、Mg−Si系の金属間化合物を生成し、高温高速成形性を阻害する。したがって、FeおよびSiの混入許容範囲はそれぞれ0.4%以下、好ましくはそれぞれ0.35%以下である。上限を超えると高温高速成形性が著しく低下する。
また、Tiは鋳造時の結晶粒微細化のために添加されるのが好ましいが、その含有量は0.004%〜0.02%である。0.02%を超えて添加されると、本発明の規定範囲内のMnおよびCr含有量でも溶解鋳造時に粗大なCr系の金属間化合物が生成して、アルミニウム合金中に混入することにより、高温高速成形性が低下するととともに、成形品の疲労特性が低下する。したがって、結晶粒微細化のためのTiの含有量は0.02%以下に制限するが、好ましくは、0.015%以下0.004%以上である。その含有量が0.004%未満では、結晶粒微細化の効果が少なく、より良好な鋳塊が得られない。
In the aluminum alloy material of the present invention, it is necessary to regulate the contents of Fe and Si. The Fe content is regulated to 0.4% or less, and the Si content is regulated to 0.4% or less.
Fe and Si are generally contained in Al ingots as impurities, but if mixed into the alloy, they produce Al-Fe-Mn-Si-based and Mg-Si-based intermetallic compounds, resulting in high-temperature, high-speed formability. Inhibit. Therefore, the permissible ranges of Fe and Si are each 0.4% or less, preferably 0.35% or less. When the upper limit is exceeded, the high-temperature high-speed formability is significantly lowered.
Ti is preferably added for crystal grain refinement during casting, but its content is 0.004% to 0.02%. When added over 0.02%, even if the Mn and Cr contents within the specified range of the present invention, a coarse Cr-based intermetallic compound is produced during melt casting, and mixed into the aluminum alloy, The high temperature and high speed moldability is lowered, and the fatigue characteristics of the molded product are lowered. Therefore, the Ti content for crystal grain refinement is limited to 0.02% or less, but is preferably 0.015% or less and 0.004% or more. If the content is less than 0.004%, the effect of crystal grain refinement is small, and a better ingot cannot be obtained.

さらに、本発明のアルミニウム合金材の構成成分としては、任意に、V:0.01〜0.2%、Sc:0.01〜0.4%、B:0.0001〜0.05%、Be:0.0001〜0.01%のうち1種又は2種以上を含有することができる。
VおよびScはいずれも均質化処理によってマトリックス中に析出し、MnやCr系の析出物の亜結晶粒組織を安定化する効果を補う。V量が0.01%以下、Sc量が0.01%以下では、これらの効果に乏しい。一方、V量が0.2%以上、Sc量が0.4%以上では、鋳造時にこれらがAl10V、AlScのような巨大な金属間化合物を生成して、高温高速成形性が大幅に低下してしまう。
また、V、Scと同様の作用・効果を有するZrを任意の構成成分とするのが好ましい。そのZrの好ましい含有量は、0.01〜0.3%であり、多すぎるとAlZrの大きな金属間化合物を生成し、高温高速成形の妨げとなる。
BはTiとともに含有されることにより、Tiが鋳塊の結晶粒を微細化する効果をさらに高める。その結果、成形前の素材の結晶粒径が微細化することにより、高温高速成形性を向上させる。B量が0.0001以下では上述の効果に乏しく、B量が0.05%以上ではAlB等の巨大な晶出物を形成して、高温高速成形性が著しく低下してしまう。
Beは高温高速成形用のアルミニウム合金材表面のMgの高温成形中における酸化を抑制し、表面を安定化することにより、成形後に引き続いて実施される塗装・陽極酸化処理性が向上する。Be量が0.0001%以下では上記の効果が発現しない。Be量が0.01%以上でも良いが、上記の効果が飽和してしまい経済上不利益を生じる。
Furthermore, as a constituent component of the aluminum alloy material of the present invention, V: 0.01 to 0.2%, Sc: 0.01 to 0.4%, B: 0.0001 to 0.05%, Be: One or more of 0.0001 to 0.01% can be contained.
Both V and Sc are precipitated in the matrix by the homogenization treatment, and supplement the effect of stabilizing the subgrain structure of the Mn and Cr-based precipitates. When the V amount is 0.01% or less and the Sc amount is 0.01% or less, these effects are poor. On the other hand, when the V amount is 0.2% or more and the Sc amount is 0.4% or more, these produce a large intermetallic compound such as Al 10 V and Al 3 Sc at the time of casting, and high temperature and high speed formability is obtained. It will drop significantly.
Further, Zr having the same action and effect as V and Sc is preferably an optional constituent. The preferable content of Zr is 0.01 to 0.3%. If it is too much, a large intermetallic compound of Al 3 Zr is generated, which hinders high-temperature high-speed molding.
By containing B together with Ti, Ti further enhances the effect of refining the crystal grains of the ingot. As a result, the high-temperature high-speed moldability is improved by reducing the crystal grain size of the material before molding. When the amount of B is 0.0001 or less, the above-described effect is poor. When the amount of B is 0.05% or more, a large crystallized product such as AlB 2 is formed, and the high-temperature high-speed formability is remarkably deteriorated.
Be suppresses the oxidation of Mg on the surface of the aluminum alloy material for high-temperature high-speed forming during high-temperature forming and stabilizes the surface, thereby improving the coating and anodizing treatment properties that are subsequently performed after forming. When the amount of Be is 0.0001% or less, the above effect is not exhibited. The amount of Be may be 0.01% or more, but the above effect is saturated, resulting in an economic disadvantage.

本発明のアルミニウム合金材の任意構成成分としてさらに、Cuを0.05〜1.0%含有することができる。Cuは高温高速成形終了後に成形品を室温に1日以上保持するか、または100℃以上の温度で1時間以上保持することにより、マトリクス中に析出して成形品の強度向上に寄与する。このようなCuの析出により強度を向上させる場合には、高温高速成形終了後に成形品をできるだけ速やかに室温まで冷却する必要がある。成形温度から室温までの冷却速度は、20℃/分以上が好ましい。Cu量が0.05%以下では上記の効果が発現しないし、また、1.0%以上では成形品の耐食性が著しく低下してしまう。Cuの含有量は0.1〜0.5%が好ましい。   As an optional constituent of the aluminum alloy material of the present invention, 0.05 to 1.0% of Cu can be further contained. Cu is deposited in the matrix and contributes to improving the strength of the molded product by holding the molded product at room temperature for 1 day or more after completion of high-temperature and high-speed molding, or holding it at a temperature of 100 ° C. or more for 1 hour or more. In the case of improving the strength by precipitation of such Cu, it is necessary to cool the molded product to room temperature as soon as possible after completion of high-temperature high-speed molding. The cooling rate from the molding temperature to room temperature is preferably 20 ° C./min or more. If the amount of Cu is 0.05% or less, the above effects are not exhibited, and if the amount of Cu is 1.0% or more, the corrosion resistance of the molded product is significantly lowered. The content of Cu is preferably 0.1 to 0.5%.

本発明の高温高速成形用アルミニウム合金材は、化学的成分組成としては以上の条件を満たしていればよいが、良好な高温高速成形性と成形品の高強度および疲れ強さを確保するためには、本発明合金が以下に述べる金属組織的特徴を有するとことが重要である。
まず、Cr系の金属間化合物の粒子径は20μm以下とするのが好ましい。溶解鋳造時にAl−Cr系の巨大な金属間化合物が生成して、高温高速成形用のアルミニウム合金材に20μm以上の金属間化合物が存在すると、これが高温高速成形時に破壊の起点となり高温高速成形性が低下するとともに、成形品の疲労特性が低下する。
さらに、MnおよびCr系の析出物として、粒子径50〜10000nmの析出物が、350,000個/mm以上の分布密度で存在する必要がある。これら析出物の粒子径及び分布密度の限定理由については、既にMnおよびCrの含有量に関連して述べたとおりである。
The aluminum alloy material for high-temperature high-speed forming of the present invention only needs to satisfy the above conditions as the chemical component composition, but in order to ensure good high-temperature high-speed formability and high strength and fatigue strength of the molded product. It is important that the alloy of the present invention has the metallographic characteristics described below.
First, the particle diameter of the Cr-based intermetallic compound is preferably 20 μm or less. If an Al-Cr-based huge intermetallic compound is formed during melt casting and an intermetallic compound of 20 μm or more exists in the aluminum alloy material for high-temperature high-speed forming, this becomes the starting point of fracture during high-temperature high-speed forming, and high-temperature high-speed formability As well as the fatigue properties of the molded product.
Furthermore, as Mn and Cr-based precipitates, precipitates having a particle diameter of 50 to 10,000 nm must be present at a distribution density of 350,000 / mm 2 or more. The reasons for limiting the particle size and distribution density of these precipitates are as already described in relation to the contents of Mn and Cr.

本発明合金は、高い高温高速成形性と成形品の強度を高めるために、上記2つの金属組織的特徴に加えて、さらに以下の金属組織的特徴を満足する必要がある。即ち、200〜550℃の温度範囲において10−2〜10/secのひずみ速度で成形後に直ちに20℃/分以上の冷却速度で室温まで冷却後、その金属組織が亜結晶粒組織よりなることである。これらの成形条件の範囲を定めた理由について説明する。
まず、成形温度は200〜550℃、好ましくは300〜500℃の範囲内である。成形温度が低すぎる場合には、十分な高温高速成形伸びが得られず、冷間成形加工で成形困難な複雑形状の成形品を得ることができない。一方、成形温度が上限以上では、成形中に形成される亜結晶粒組織を安定化するためにマトリクス中に均一かつ高密度に析出せしめたMnおよびCr系の分散粒子がマトリクス中に再固溶し消滅してしまうことにより、亜結晶粒組織の安定化効果が失われ、成形時もしくは成形終了後に再結晶が生じて亜結晶組織が消滅してしまう。
The alloy of the present invention needs to satisfy the following metallographic characteristics in addition to the above two metallographic characteristics in order to increase the high-temperature high-speed formability and the strength of the molded product. That is, after forming at a strain rate of 10 −2 to 10 / sec in a temperature range of 200 to 550 ° C. and immediately cooling to room temperature at a cooling rate of 20 ° C./min or more, the metal structure is composed of a subgrain structure. is there. The reason for determining the range of these molding conditions will be described.
First, the molding temperature is 200 to 550 ° C., preferably 300 to 500 ° C. If the molding temperature is too low, sufficient high-temperature and high-speed molding elongation cannot be obtained, and a molded product having a complicated shape that is difficult to mold by cold forming cannot be obtained. On the other hand, when the molding temperature is higher than the upper limit, Mn and Cr-based dispersed particles precipitated in the matrix uniformly and at a high density in order to stabilize the subgrain structure formed during molding are re-dissolved in the matrix. As a result, the effect of stabilizing the sub-grain structure is lost, and recrystallization occurs at the time of molding or after completion of the molding, so that the sub-crystal structure disappears.

次に、高温高速成形時の平均のひずみ速度は10−2〜10/secとする。ひずみ速度が10−2/sec以下のひずみ速度での成形は技術的に可能であるが、生産性に著しく劣るため経済的ではない。一方、ひずみ速度が10/sec以上では変形速度が高すぎて、亜結晶組織が形成されないため高温高速成形性が著しく低下して、複雑な形状に成形することが不可能となる。
さらに、本発明では高温高速成形後の室温までの冷却速度は20℃/分以上、好ましくは25℃/分以上である。冷却速度が低すぎる場合には、冷却過程で再結晶が生じることにより亜結晶粒が消滅して、成形品の強度が大幅に低下してしまう。
Next, the average strain rate during high-temperature high-speed molding is 10 −2 to 10 / sec. Molding at a strain rate of 10 −2 / sec or less is technically possible, but is not economical because the productivity is remarkably inferior. On the other hand, when the strain rate is 10 / sec or more, the deformation rate is too high and a subcrystalline structure is not formed, so that the high-temperature high-speed moldability is remarkably deteriorated and it becomes impossible to mold into a complicated shape.
Furthermore, in the present invention, the cooling rate to room temperature after high-temperature high-speed molding is 20 ° C./min or more, preferably 25 ° C./min or more. When the cooling rate is too low, recrystallization occurs during the cooling process, and thus the sub-crystal grains disappear and the strength of the molded product is greatly reduced.

以下に、本発明におけるアルミニウム合金材の製造方法について説明する。
本発明の合金材は基本的に展伸用のアルミニウム合金の製造において通常採用されている方法により製造が可能である。即ち、前記した本発明の成分規格の範囲内に溶解調整されたアルミニウム合金溶湯を通常の溶解鋳造法を適宜選択して鋳造する。ここで通常の溶解鋳造法としては、例えば半連続鋳造法(DC鋳造法)や薄板連続鋳造法(ロールキャスト法等)などを含む。
Below, the manufacturing method of the aluminum alloy material in this invention is demonstrated.
The alloy material of the present invention can basically be produced by a method usually employed in producing an aluminum alloy for extension. That is, an aluminum alloy melt adjusted to be dissolved within the range of the above-described component specifications of the present invention is cast by appropriately selecting a normal melting casting method. Here, the normal melt casting method includes, for example, a semi-continuous casting method (DC casting method), a thin plate continuous casting method (roll casting method, etc.) and the like.

ついで、このアルミニウム合金鋳塊に均質化処理を施す。均質化処理はMnおよびCr系の分散粒子を、マトリクス中に均一かつ高密度に析出させるために必要な工程である。好ましくは400〜550℃、さらに好ましくは430〜530℃の範囲で、1〜24時間、好ましくは8〜12時間の条件で実施する。この均質化処理工程の前もしくは後で適宜面削を施した後、熱間加工、冷間加工の両方又はいずれか一方を実施することにより、高温高速成形用のアルミニウム合金材を製造する。この際、必要に応じて適宜中間焼鈍を行ってもよいし、最終焼鈍を実施してもよい。ここで、熱間加工、冷間加工とは製造する高温高速成形用のアルミニウム合金材の最終形態に応じて、圧延であっても良いし、押出し、引き抜き、鍛造であっても良い。
製造される高温高速成型用アルミニウム合金材の形状としては、板をはじめとして、円状・角状・その他の複雑形状よりなる断面形状を有する中空管等いずれの形状でも良い。
また、本発明でいう高温高速成形とは、200〜550℃の温度範囲で10−2〜10/secのひずみ速度で行われる成形加工方法であり、ガス等の流体の圧力を利用したバルジ成形や任意のプレス成形方法、金型成型方法等も含まれる。
Next, the aluminum alloy ingot is subjected to a homogenization treatment. The homogenization treatment is a process necessary for depositing Mn and Cr-based dispersed particles uniformly and densely in the matrix. Preferably it implements on the conditions of 400-550 degreeC, More preferably, the range of 430-530 degreeC is 1 to 24 hours, Preferably it is 8 to 12 hours. An aluminum alloy material for high-temperature high-speed high-speed forming is manufactured by appropriately performing chamfering before or after this homogenization treatment step and then performing either or both of hot working and cold working. At this time, intermediate annealing may be appropriately performed as necessary, and final annealing may be performed. Here, hot working and cold working may be rolling, extrusion, drawing, or forging depending on the final form of the aluminum alloy material for high-temperature high-speed forming to be produced.
The shape of the aluminum alloy material for high-temperature high-speed molding to be produced may be any shape such as a plate, a hollow tube having a cross-sectional shape composed of a circle, a square, and other complicated shapes.
The high-temperature high-speed molding referred to in the present invention is a molding method performed at a strain rate of 10 −2 to 10 / sec in a temperature range of 200 to 550 ° C., and bulge molding utilizing the pressure of a fluid such as gas. And arbitrary press molding methods, mold molding methods, and the like.

以下に、本発明を実施例に基づきさらに詳細に説明するが、本発明はこれに限定されるものではない。
(実施例1)
表1に示す化学成分および組成を有する各アルミニウム合金を680℃で溶解し、DC鋳造法により鋳造した。得られた各鋳塊を面削後、510℃×8時間の均質化処理をしてから、490℃で熱間圧延を開始し280℃で板厚を5mmとして熱間圧延を終了した。その後、400℃×3時間の中間焼鈍を行ってから、板厚1mmまで冷間圧延を行った。最後に、この冷間圧延板を520℃×20秒焼鈍して再結晶組織として、以下の試験の供試材とした。
なお、比較例である「合金10」はMg量が本発明の規定範囲以上であり、熱間圧延性が極めて悪く、圧延時に割れが発生したため、板厚1mmの供試材を作製するに至らず、以降の試験を中止した。
まず、供試材中の金属間化合物の粒子径を光学顕微鏡により調べた結果と、厚さ約0.3μmの薄膜サンプルを作製して、析出物の粒子径及び分布密度を透過型電子顕微鏡により調べた結果を表2に示す。金属間化合物の粒子径が15μm以下および粒子径50〜1000nmの析出物の分布密度が350,000個/mm以上のいずれも満たすものは分布形態の判定を「○」、いずれかを満たさないものを「×」とした。
Hereinafter, the present invention will be described in more detail based on examples, but the present invention is not limited thereto.
Example 1
Each aluminum alloy having the chemical composition and composition shown in Table 1 was melted at 680 ° C. and cast by the DC casting method. After each of the obtained ingots was subjected to a homogenization treatment at 510 ° C. for 8 hours, hot rolling was started at 490 ° C., the plate thickness was 5 mm at 280 ° C., and the hot rolling was finished. Thereafter, after intermediate annealing at 400 ° C. for 3 hours, cold rolling was performed to a plate thickness of 1 mm. Finally, this cold-rolled sheet was annealed at 520 ° C. for 20 seconds to obtain a recrystallized structure, which was used as a test material for the following test.
In addition, “Alloy 10” which is a comparative example has an Mg amount which is not less than the specified range of the present invention, has extremely poor hot rollability, and cracks occurred during rolling, leading to the production of a specimen having a plate thickness of 1 mm. After that, the subsequent test was discontinued.
First, the result of examining the particle diameter of the intermetallic compound in the test material with an optical microscope and a thin film sample with a thickness of about 0.3 μm were prepared, and the particle diameter and distribution density of the precipitate were measured with a transmission electron microscope. The examination results are shown in Table 2. When the distribution density of precipitates with an intermetallic compound particle size of 15 μm or less and a particle size of 50 to 1000 nm is 350,000 / mm 2 or more, the determination of the distribution form is “◯”, and either is not satisfied The thing was made into "x".

Figure 2007186747
Figure 2007186747

Figure 2007186747
Figure 2007186747

次に、これらの供試材より、引張試験片(幅4mm×平行部長さ15mm)を作製して、500℃においてひずみ速度10−1/secの条件で高温引張試験[温度条件以外はJIS Z2241に準ずる]を実施し、高温高速伸びを調べ、結果を表3にまとめた。本発明では150%以上の高温高速伸びが得られた場合に良好な高温高速成形性を有するものと判定し、「○」で示した。
また、これらの冷間圧延板より300mm角の成形用板を切り出し、不活性ガスの圧力を利用して成形を行う小型のブロー成形機を用いて高温高速ブロー成形を行った。金型には一辺250mmで高さ60mmの角筒金型を使用し、成形用板を成形機にセット後に加熱して500℃の成形温度に達した後、平均のひずみ速度が約10−1/sとなるように不活性ガスの昇圧速度を制御して、高さ60mmの高温高速成形を行った。成形完了後直ちに角筒成形品を成形機より取り外し、40℃/分の冷却速度で室温まで冷却した。図1に示すように、この得られた角筒成形品1の上面中心部2より圧延方向にJIS5号引張試験片を採取して引張試験[JIS Z2241に準拠]を行った。その結果得られた0.2%耐力値及び引張強度を表3に示した。
さらに、同様にして成形した複数の角筒成形品の上面中央部2より、疲労試験片を作製して、片振り引張りの条件で疲労試験[JIS Z2273に準拠]を行い、1×10回の疲れ強さを調べて表3に示した。引張強度に対する10回疲れ強さの比によって定義される疲労比を同表に示し、この疲労比が0.4未満の場合に、成形品の疲れ強さが不十分であると判断し「×」で示し、0.4以上を「○」とした。
Next, a tensile test piece (width 4 mm × parallel portion length 15 mm) was prepared from these test materials, and a high-temperature tensile test was performed at 500 ° C. under a strain rate of 10 −1 / sec [except for temperature conditions, JIS Z2241. The results were summarized in Table 3. In the present invention, when high-temperature high-speed elongation of 150% or more was obtained, it was determined that the film had good high-temperature high-speed moldability and indicated by “◯”.
Further, 300 mm square forming plates were cut out from these cold-rolled plates, and high-temperature high-speed blow molding was performed using a small blow molding machine that performs molding using the pressure of an inert gas. As the mold, a rectangular tube mold having a side of 250 mm and a height of 60 mm is used. After the molding plate is set in a molding machine and heated to reach a molding temperature of 500 ° C., the average strain rate is about 10 −1. The pressurization rate of the inert gas was controlled so as to be / s, and high-temperature high-speed molding with a height of 60 mm was performed. Immediately after the completion of molding, the rectangular tube molded product was removed from the molding machine and cooled to room temperature at a cooling rate of 40 ° C./min. As shown in FIG. 1, a JIS No. 5 tensile test piece was taken in the rolling direction from the upper surface central portion 2 of the obtained rectangular tube molded product 1 and subjected to a tensile test [based on JIS Z2241]. The resulting 0.2% proof stress value and tensile strength are shown in Table 3.
Further, a fatigue test piece is prepared from the central portion 2 of the upper surface of a plurality of rectangular tube molded products formed in the same manner, and subjected to a fatigue test [in accordance with JIS Z2273] under the condition of swing swing 1 × 10 7 times. Table 3 shows the fatigue strength. The fatigue ratio defined by the ratio of 10 7 times fatigue strength to tensile strength is shown in the same table. When this fatigue ratio is less than 0.4, it is judged that the fatigue strength of the molded product is insufficient. “×”, and 0.4 or more is “◯”.

Figure 2007186747
Figure 2007186747

さらにまた、これらの成形品の組織が亜結晶粒組織より構成されているかどうかを調べるために、上記と同じ温度およびひずみ速度条件の高温高速ブロー成形により別途角筒成形品を作製した。図1に示すように、その角筒成形品1の上面中心部2、上面コーナー部3および側面中心部4よりそれぞれ10×10mmのサンプルを採取し、これを以下に説明する方法で結晶粒界解析に供した。
まず、これらのサンプルを板厚方向中心部まで機械研磨した後、仕上げ研磨により鏡面として、さらに電解研磨を施し成形品の板厚中心部を露出させた。その後、このサンプルを結晶粒界解析が可能である電子後方散乱回折像解析装置を具備した走査型電子顕微鏡にセットして、露出させた部分のうち200×200μmの領域の結晶粒界を解析した。
解析したデータをもとにして、粒界角が15度以上の粒界を通常の「結晶粒界」、角度差が15度未満の粒界を「亜結晶粒界」として分類して、通常の結晶粒界と亜結晶粒界を合わせたすべての粒界に占める亜結晶粒界の割合を算出し、成形品の各部位についての亜結晶粒界の割合を表4にまとめた。
さらに、本発明では、高温高速成形中に形成される亜結晶粒界の割合と、高温高速成形性および成形後の強度の関係について蓄積した多数の試験データを基にして、サンプルを採取した3箇所の亜結晶粒界の割合の平均値が5%以上の場合に成形品が亜結晶粒組織により構成されていると判断して「○」で示し、5%以下は「×」で同表に示した。
Furthermore, in order to investigate whether or not the structure of these molded articles is composed of a subgrain structure, a rectangular tube molded article was separately produced by high-temperature high-speed blow molding under the same temperature and strain rate conditions as described above. As shown in FIG. 1, samples of 10 × 10 mm are taken from the upper surface center portion 2, the upper surface corner portion 3 and the side surface center portion 4 of the rectangular tube molded product 1, and the crystal grain boundaries are obtained by the method described below. It used for analysis.
First, these samples were mechanically polished to the center portion in the plate thickness direction, and then subjected to electrolytic polishing as a mirror surface by finish polishing to expose the plate thickness center portion of the molded product. Thereafter, this sample was set in a scanning electron microscope equipped with an electron backscatter diffraction image analyzer capable of crystal grain boundary analysis, and the grain boundaries in the 200 × 200 μm region of the exposed portion were analyzed. .
Based on the analyzed data, grain boundaries with a grain boundary angle of 15 degrees or more are classified as normal “crystal grain boundaries”, and grain boundaries with an angle difference of less than 15 degrees are classified as “subgrain boundaries”. The ratio of the sub-crystal grain boundary in all the grain boundaries including the crystal grain boundary and the sub-crystal grain boundary was calculated, and the ratio of the sub-crystal grain boundary for each part of the molded product was summarized in Table 4.
Furthermore, in the present invention, a sample was collected based on a large number of test data accumulated on the relationship between the ratio of the sub-grain boundaries formed during high-temperature high-speed forming and the relationship between high-temperature high-speed formability and strength after forming. When the average value of the ratio of the sub-grain boundaries is 5% or more, it is judged that the molded product is composed of the sub-grain structure. It was shown to.

Figure 2007186747
Figure 2007186747

本発明の成分範囲内の「合金1〜8」中の金属間化合物の粒子径はいずれも20μm以下であり、またMnおよびCr系の析出物として、粒子径50〜1000nmの析出物が350,000個/mm以上の分布密度で分布しており、金属間化合物の粒子径および析出物の分布形態に関しても本発明の要件を満たしていた。また、500℃の温度でひずみ速度(10−1/s)で変形すると、いずれの場合も150%以上の高温高速伸びを示し、良好な高温高速成形性を有していることが明らかとなった。さらに、40℃/分の冷却速度で室温まで冷却後の組織は、いずれの合金の場合も亜結晶粒組織となっていた。 The particle diameters of the intermetallic compounds in “Alloys 1 to 8” within the component range of the present invention are all 20 μm or less, and as Mn and Cr-based precipitates, there are 350, precipitates having a particle diameter of 50 to 1000 nm. The distribution density was 000 / mm 2 or more, and the requirements of the present invention were satisfied with respect to the particle size of the intermetallic compound and the distribution form of the precipitates. Moreover, when it deform | transforms with the strain rate (10 < -1 > / s) at the temperature of 500 degreeC, in any case, high temperature high speed elongation of 150% or more was shown, and it became clear that it has favorable high temperature high speed moldability. It was. Furthermore, the structure after cooling to room temperature at a cooling rate of 40 ° C./min was a subgrain structure in any alloy.

一方、比較例である「合金9」はMg量が本発明の規定範囲以下であるため、150%以上の高温高速伸びが得られず、「合金10」は先に記載したように、圧延で試供材を作製することができなかった。
また、比較例の「合金11」および「合金12」は、それぞれ規定量共添加されるべきMn、Crのうち一方の量が本発明の範囲より少ないため、粒子径が50〜1000nmの析出物の分布密度が350,000個/mm以下であるため、高温高速成形時に形成される亜結晶組織を安定化することができず、再結晶が生じることにより亜結晶粒組織が消滅したために、十分な高温高速伸びが得られなかった。この結果はMnとCrを共に適量添加することの有効性を裏付けている。また高温高速ブロー成形後の結晶組織では亜結晶粒組織が全面で消失していた。Mgを主要な添加元素とする本供試材では、基本的に、固溶強化に寄与するMg添加量によって強度が決まるが、これら「合金11」及び「合金12」の成形品の0.2%耐力および引張強度は、Mg量がほぼ同等でかつ成形品が亜結晶組織により成っていた本発明「合金1」に比較してそれぞれ15MPa程度低い。これは本発明例である「合金1」が成形後も亜結晶粒組織を維持することによって強度の向上を図っていることを裏付けている。
On the other hand, since “Alloy 9” as a comparative example has an Mg amount below the specified range of the present invention, a high-temperature high-speed elongation of 150% or more cannot be obtained, and “Alloy 10” is obtained by rolling as described above. The sample material could not be produced.
In addition, since “alloy 11” and “alloy 12” of the comparative example each have a smaller amount than the range of the present invention, one of Mn and Cr to be co-added with a specified amount, a precipitate having a particle size of 50 to 1000 nm. Since the distribution density of 350,000 pieces / mm 2 or less cannot stabilize the subcrystalline structure formed at the time of high-temperature high-speed molding, the subcrystalline grain structure disappears due to recrystallization, Sufficient high-temperature high-speed elongation was not obtained. This result supports the effectiveness of adding appropriate amounts of both Mn and Cr. Further, in the crystal structure after the high-temperature high-speed blow molding, the subgrain structure disappeared on the entire surface. In this test material containing Mg as a main additive element, the strength is basically determined by the amount of Mg added that contributes to solid solution strengthening, but 0.2% of the molded products of these “Alloy 11” and “Alloy 12”. The% proof stress and tensile strength are respectively lower by about 15 MPa than the “alloy 1” of the present invention in which the amount of Mg is substantially the same and the molded product is made of a subcrystalline structure. This confirms that “Alloy 1”, which is an example of the present invention, has improved strength by maintaining the subgrain structure after forming.

さらに、比較例の「合金13、14」は、それぞれMn、Crの添加量が本発明範囲よりも多いために、また、「合金16」はZr、V、Scが多く、鋳造時に粗大な金属間化合物が生成して、これが高温高速変形時に破断の起点となるため高温高速伸びが低く、良好な高温高速成形性が得られない。また成形に必要な伸びが比較的小さく、成形が可能であった場合でも、これらの合金の成形品は粗大な金属間化合物を多数含むために、表3に示したとおり疲労比は0.4以下と低く疲労特性が劣るために、輸送機器等の繰り返し応力が負荷される部材への使用は困難である。
比較例の「合金15」は粗大な金属間化合物を生成する遷移元素であるMn、Crの添加量は本発明の範囲を超えていないが、鋳造時の結晶粒を微細化するために添加されるTiが多く添加されたために、溶解鋳造時にCr系の金属間化合物の生成を促進して、20μm以上の粒子径のCr系金属化合物が素材に混入した。このため、良好な高温高速成形性が得られず、また成形品の疲労比が0.4以下と低く、疲労特性に劣る。
Further, since “Alloys 13 and 14” of Comparative Examples each have a larger amount of Mn and Cr than the range of the present invention, “Alloy 16” has a large amount of Zr, V and Sc, and is a coarse metal during casting. Since an intermetallic compound is formed and becomes the starting point of fracture at high temperature and high speed deformation, high temperature and high speed elongation is low, and good high temperature and high speed moldability cannot be obtained. Further, even when the elongation required for molding is relatively small and molding is possible, the molded products of these alloys contain a large number of coarse intermetallic compounds, so that the fatigue ratio is 0.4 as shown in Table 3. Since the fatigue characteristics are low and the following, it is difficult to use for a member that is subjected to repeated stress such as transportation equipment.
In Comparative Example “Alloy 15”, the amount of addition of Mn and Cr, which are transition elements that generate coarse intermetallic compounds, does not exceed the range of the present invention, but is added to refine crystal grains during casting. Since a large amount of Ti was added, the production of Cr-based intermetallic compounds was promoted during melt casting, and Cr-based metal compounds having a particle diameter of 20 μm or more were mixed into the material. For this reason, good high-temperature high-speed moldability cannot be obtained, and the fatigue ratio of the molded product is as low as 0.4 or less, resulting in poor fatigue characteristics.

(実施例2)
実施例1で作製した表1に示す本発明例「合金1」の板厚1mmの供試材より引張試験片(圧延引張幅4mm、平行部長さ15mm)を作製し、表5に示す温度およびひずみ速度条件で150%の高温高速変形を与えた。その後、直ちに表5に示す冷却速度で室温まで冷却した。この高温高速変形後の引張試験片の平行部中心領域より、結晶粒界解析用のサンプル(10mm×4mm)を採取して、実施例1で説明した方法により板厚方向中心面における結晶粒界解析を行ない、全結晶粒界に占める亜結晶粒界の割合を算出して、結果を表5にまとめた。
実施例1の場合と同様に亜結晶粒界の割合が5%以上の場合を、組織が亜結晶粒より構成されていると判断し「○」で示した。なお、高温高速変形時に伸びが150%未満で破断した場合には、直ちに試験を中断して、サンプルを取り外して表5記載の冷却速度で室温まで冷却し、破断部近傍から結晶粒界解析用のサンプルを採取して、同様の方法で結晶粒界解析を実施した。
(Example 2)
Tensile test pieces (rolling tensile width 4 mm, parallel part length 15 mm) were prepared from the test material of 1 mm thickness of the present invention example “Alloy 1” shown in Table 1 prepared in Example 1, and the temperatures and High-temperature high-speed deformation of 150% was given under the strain rate condition. Then, it cooled immediately to room temperature with the cooling rate shown in Table 5. A sample (10 mm × 4 mm) for grain boundary analysis is taken from the central region of the parallel part of the tensile test piece after this high-temperature high-speed deformation, and the grain boundary in the center plane in the plate thickness direction is obtained by the method described in Example 1. Analysis was performed to calculate the ratio of subgrain boundaries to the total grain boundaries, and the results are summarized in Table 5.
As in the case of Example 1, the case where the ratio of the sub-crystal grain boundary was 5% or more was judged to be composed of sub-crystal grains and indicated by “◯”. If the elongation breaks at less than 150% during high-temperature and high-speed deformation, the test is immediately interrupted, the sample is removed, and cooled to room temperature at the cooling rate shown in Table 5, and used for grain boundary analysis from the vicinity of the fracture. The sample was collected and the grain boundary analysis was performed by the same method.

Figure 2007186747
Figure 2007186747

本発明の成分範囲内の「合金1」を本発明の範囲内の温度とひずみ速度で成形した場合の「条件1〜7」では、150%の高温高速伸びが得られ、この範囲内の条件で良好な高温高速成形性が得られることが明らかとなった。さらに変形後直ちに、本発明の範囲内の冷却速度で室温まで冷却後に、結晶粒界解析を行なった結果より、いずれの場合もこれ等のサンプルが亜結晶粒界組織6%以上より成っていることが明らかになった。
一方、成分的には本発明の範囲内にある「合金1」を、本発明の範囲外の条件で高温高速成形した比較例である「条件8〜11」で成形した場合について説明する。「条件8」では変形の温度が本発明範囲より低くいために、高温高速伸びが低く、良好な高温高速成形性が得られない。また、「条件9」は変形温度が本発明範囲より高く、亜結晶粒組織の安定化に寄与するMnおよびCr系の析出物が再固溶して亜結晶組織の安定化効果が消失して、変形中に再結晶が生じることにより高温高速伸びが大幅に低下した。さらに、「条件10」ではひずみ速度が高すぎるために、亜結晶組織が形成されず高温高速成形伸びが低い。「条件11」では150%の高温高速伸びがあったが、高温高速変形後の冷却速度が本発明の範囲より低いため、冷却中に再結晶が生じて、高温高速成形中に形成された亜結晶組織が消滅してしまって、亜結晶組織による強度向上は得られなかった。
In “Conditions 1 to 7” when “Alloy 1” within the component range of the present invention is molded at a temperature and strain rate within the range of the present invention, a high-temperature high-speed elongation of 150% is obtained. It was revealed that good high-temperature high-speed moldability can be obtained. Further, immediately after the deformation, after cooling to room temperature at a cooling rate within the range of the present invention, the results of the grain boundary analysis show that in any case, these samples are composed of a sub-grain boundary structure of 6% or more. It became clear.
On the other hand, the case where “alloy 1”, which is within the scope of the present invention in terms of components, is molded under “conditions 8 to 11” which are comparative examples obtained by high-temperature high-speed molding under conditions outside the scope of the present invention will be described. Under “Condition 8”, since the temperature of deformation is lower than the range of the present invention, the high-temperature high-speed elongation is low, and good high-temperature high-speed moldability cannot be obtained. Further, in “Condition 9”, the deformation temperature is higher than the range of the present invention, and Mn and Cr-based precipitates contributing to the stabilization of the subgrain structure are re-dissolved, and the effect of stabilizing the subcrystal structure disappears. The high-temperature and high-speed elongation was greatly reduced by recrystallization during deformation. Furthermore, since the strain rate is too high under “Condition 10”, the subcrystalline structure is not formed and the high-temperature high-speed forming elongation is low. Under “Condition 11”, the high-temperature and high-speed elongation was 150%, but the cooling rate after the high-temperature and high-speed deformation was lower than the range of the present invention. The crystal structure disappeared, and the strength improvement due to the sub-crystal structure was not obtained.

実施例1における角筒成形品からの結晶粒界解析用サンプル採取部位を示す模式図である。FIG. 3 is a schematic diagram showing a sample collection site for analyzing a grain boundary from a rectangular tube molded product in Example 1.

符号の説明Explanation of symbols

1 角筒成形品
2 上面中心部
3 上面コーナー部
4 側面中心部
DESCRIPTION OF SYMBOLS 1 Square cylinder molded product 2 Upper surface center part 3 Upper surface corner part 4 Side surface center part

Claims (7)

Mg:2.0〜8.0%(質量%、以下同じ)、Mn:0.05〜1.5%、Cr:0.05〜0.4%を含有し、Feを0.4%以下、Siを0.4%以下に規制し、残部がAl及び不可避不純物よりなり、
溶解鋳造時に形成されるCr系の金属間化合物の粒子径が20μm以下であり、かつ、Mn及びCr系の析出物として粒子径50〜1000nmの金属間化合物粒子が350,000個/mm以上の分布密度で存在する高温高速成形用アルミニウム合金材であって、
200〜550℃の温度、10−2〜10/secのひずみ速度における成形後に直ちに20℃/分以上の冷却速度で室温まで冷却を行う高温高速成形に用いられることを特徴とする高温高速成形用アルミニウム合金材。
Mg: 2.0-8.0% (mass%, the same shall apply hereinafter), Mn: 0.05-1.5%, Cr: 0.05-0.4%, Fe 0.4% or less , Si is restricted to 0.4% or less, the balance is made of Al and inevitable impurities,
The particle diameter of the Cr-based intermetallic compound formed at the time of melt casting is 20 μm or less, and 350,000 particles / mm 2 or more of the Mn and Cr-based precipitates having a particle diameter of 50 to 1000 nm. An aluminum alloy material for high-temperature high-speed forming that exists at a distribution density of
For high-temperature high-speed molding, characterized in that it is used for high-temperature high-speed molding that cools to room temperature at a cooling rate of 20 ° C./min or more immediately after molding at a temperature of 200 to 550 ° C. and a strain rate of 10 −2 to 10 / sec. Aluminum alloy material.
Mg:2.0〜8.0%(質量%、以下同じ)、Mn:0.05〜1.5%、Cr:0.05〜0.4%、Ti:0.004〜0.02%を含有し、Feを0.4%以下、Siを0.4%以下に規制し、さらに、V:0.01〜0.2%、Sc:0.01〜0.4%、B:0.0001〜0.05%、Be:0.0001〜0.01%のうち1種又は2種以上を含有し、残部がAl及び不可避不純物よりなり、
溶解鋳造時に形成されるCr系の金属間化合物の粒子径が20μm以下であり、かつ、Mn及びCr系の析出物として粒子径50〜1000nmの金属間化合物粒子が350,000個/mm以上の分布密度で存在する高温高速成形用アルミニウム合金材であって、
200〜550℃の温度、10−2〜10/secのひずみ速度における成形後に直ちに20℃/分以上の冷却速度で室温まで冷却を行う高温高速成形に用いられることを特徴とする高温高速成形用アルミニウム合金材。
Mg: 2.0 to 8.0% (mass%, the same applies hereinafter), Mn: 0.05 to 1.5%, Cr: 0.05 to 0.4%, Ti: 0.004 to 0.02% Fe is regulated to 0.4% or less, Si is regulated to 0.4% or less, V: 0.01 to 0.2%, Sc: 0.01 to 0.4%, B: 0 .0001-0.05%, Be: contains 0.0001-0.01% of one or more, the balance consists of Al and inevitable impurities,
The particle diameter of the Cr-based intermetallic compound formed at the time of melt casting is 20 μm or less, and 350,000 particles / mm 2 or more of the Mn and Cr-based precipitates having a particle diameter of 50 to 1000 nm. An aluminum alloy material for high-temperature high-speed forming that exists at a distribution density of
For high-temperature high-speed molding, characterized in that it is used for high-temperature high-speed molding that cools to room temperature at a cooling rate of 20 ° C./min or more immediately after molding at a temperature of 200 to 550 ° C. and a strain rate of 10 −2 to 10 / sec. Aluminum alloy material.
Mg:2.0〜8.0%(質量%、以下同じ)、Mn:0.05〜1.5%、Cr:0.05〜0.4%、Ti:0.004〜0.02%を含有し、Feを0.4%以下、Siを0.4%以下に規制し、さらに、V:0.01〜0.2%、Sc:0.01〜0.4%、B:0.0001〜0.05%、Be:0.0001〜0.01%のうち1種又は2種以上とCu:0.05〜1.0質量%を含有し、残部がAl及び不可避不純物よりなり、
溶解鋳造時に形成されるCr系の金属間化合物の粒子径が20μm以下であり、かつ、Mn及びCr系の析出物として粒子径50〜1000nmの金属間化合物粒子が350,000個/mm以上の分布密度で存在する高温高速成形用アルミニウム合金材であって、
200〜550℃の温度、10−2〜10/secのひずみ速度における成形後に直ちに20℃/分以上の冷却速度で室温まで冷却を行う高温高速成形に用いられることを特徴とする高温高速成形用アルミニウム合金材。
Mg: 2.0 to 8.0% (mass%, the same applies hereinafter), Mn: 0.05 to 1.5%, Cr: 0.05 to 0.4%, Ti: 0.004 to 0.02% Fe is regulated to 0.4% or less, Si is regulated to 0.4% or less, V: 0.01 to 0.2%, Sc: 0.01 to 0.4%, B: 0 .0001-0.05%, Be: 0.0001-0.01% of one or more and Cu: 0.05-1.0% by mass, the balance is made of Al and inevitable impurities ,
The particle diameter of the Cr-based intermetallic compound formed at the time of melt casting is 20 μm or less, and 350,000 particles / mm 2 or more of the Mn and Cr-based precipitates having a particle diameter of 50 to 1000 nm. An aluminum alloy material for high-temperature high-speed forming that exists at a distribution density of
For high-temperature high-speed molding, characterized in that it is used for high-temperature high-speed molding that cools to room temperature at a cooling rate of 20 ° C./min or more immediately after molding at a temperature of 200 to 550 ° C. and a strain rate of 10 −2 to 10 / sec. Aluminum alloy material.
Mg:2.0〜8.0%(質量%、以下同じ)、Mn:0.05〜1.5%、Cr:0.05〜0.4%を含有し、Feを0.4%以下、Siを0.4%以下に規制し、残部がAl及び不可避不純物よりなるアルミニウム合金鋳塊に、
400〜550℃、1〜24時間で均質化処理を行う工程と、前記均質化処理を経た合金鋳塊に熱間加工と冷間加工の両方又はいずれか一方を行う工程とを少なくとも含むことによって、アルミニウム合金材中に溶解鋳造時に形成されるCr系の金属間化合物の粒子径を20μm以下とし、かつ、前記アルミニウム合金材中にMn及びCr系の析出物として粒子径50〜1000nmの金属間化合物粒子を350,000個/mm以上の分布密度で存在させる高温高速成形用アルミニウム合金材の製造方法であって、
前記高温高速成形用アルミニウム合金材は、200〜550℃の温度、10−2〜10/secのひずみ速度における成形後に直ちに20℃/分以上の冷却速度で室温まで冷却を行う高温高速成形に用いられることを特徴とする高温高速成形用アルミニウム合金材の製造方法。
Mg: 2.0-8.0% (mass%, the same shall apply hereinafter), Mn: 0.05-1.5%, Cr: 0.05-0.4%, Fe 0.4% or less , Si is regulated to 0.4% or less, and the balance is made of an aluminum alloy ingot consisting of Al and inevitable impurities.
By including at least a step of performing a homogenization treatment at 400 to 550 ° C. for 1 to 24 hours, and a step of performing hot working and / or cold working on the alloy ingot that has undergone the homogenizing treatment. The particle diameter of the Cr-based intermetallic compound formed at the time of melt casting in the aluminum alloy material is 20 μm or less, and between the metals having a particle diameter of 50 to 1000 nm as Mn and Cr-based precipitates in the aluminum alloy material A method for producing an aluminum alloy material for high-temperature high-speed forming, in which compound particles are present at a distribution density of 350,000 particles / mm 2 or more,
The aluminum alloy material for high-temperature high-speed forming is used for high-temperature high-speed forming that cools to room temperature at a cooling rate of 20 ° C./min or more immediately after forming at a temperature of 200 to 550 ° C. and a strain rate of 10 −2 to 10 / sec. A method for producing an aluminum alloy material for high-temperature high-speed forming, characterized in that:
Mg:2.0〜8.0%(質量%、以下同じ)、Mn:0.05〜1.5%、Cr:0.05〜0.4%、Ti:0.004〜0.02%を含有し、Feを0.4%以下、Siを0.4%以下に規制し、さらに、V:0.01〜0.2%、Sc:0.01〜0.4%、B:0.0001〜0.05%、Be:0.0001〜0.01%のうち1種又は2種以上を含有し、残部がAl及び不可避不純物よりなるアルミニウム合金鋳塊に、
400〜550℃、1〜24時間で均質化処理を行う工程と、前記均質化処理を経た合金鋳塊に熱間加工と冷間加工の両方又はいずれか一方を行う工程とを少なくとも含むことによって、アルミニウム合金材中に溶解鋳造時に形成されるCr系の金属間化合物の粒子径を20μm以下とし、かつ、前記アルミニウム合金材中にMn及びCr系の析出物として粒子径50〜1000nmの金属間化合物粒子を350,000個/mm以上の分布密度で存在させる高温高速成形用アルミニウム合金材の製造方法であって、
前記高温高速成形用アルミニウム合金材は、200〜550℃の温度、10−2〜10/secのひずみ速度における成形後に直ちに20℃/分以上の冷却速度で室温まで冷却を行う高温高速成形に用いられることを特徴とする高温高速成形用アルミニウム合金材の製造方法。
Mg: 2.0 to 8.0% (mass%, the same applies hereinafter), Mn: 0.05 to 1.5%, Cr: 0.05 to 0.4%, Ti: 0.004 to 0.02% Fe is regulated to 0.4% or less, Si is regulated to 0.4% or less, V: 0.01 to 0.2%, Sc: 0.01 to 0.4%, B: 0 In an aluminum alloy ingot containing one or more of 0.0001-0.05% and Be: 0.0001-0.01%, the balance being made of Al and inevitable impurities,
By including at least a step of performing a homogenization treatment at 400 to 550 ° C. for 1 to 24 hours, and a step of performing hot working and / or cold working on the alloy ingot that has undergone the homogenizing treatment. The particle diameter of the Cr-based intermetallic compound formed at the time of melt casting in the aluminum alloy material is 20 μm or less, and between the metals having a particle diameter of 50 to 1000 nm as Mn and Cr-based precipitates in the aluminum alloy material A method for producing an aluminum alloy material for high-temperature high-speed forming, in which compound particles are present at a distribution density of 350,000 particles / mm 2 or more,
The aluminum alloy material for high-temperature high-speed forming is used for high-temperature high-speed forming that cools to room temperature at a cooling rate of 20 ° C./min or more immediately after forming at a temperature of 200 to 550 ° C. and a strain rate of 10 −2 to 10 / sec. A method for producing an aluminum alloy material for high-temperature high-speed forming, characterized in that:
Mg:2.0〜8.0%(質量%、以下同じ)、Mn:0.05〜1.5%、Cr:0.05〜0.4%、Ti:0.004〜0.02%を含有し、Feを0.4%以下、Siを0.4%以下に規制し、さらに、V:0.01〜0.2%、Sc:0.01〜0.4%、B:0.0001〜0.05%、Be:0.0001〜0.01%のうち1種又は2種以上とCu:0.05〜1.0質量%を含有し、残部がAl及び不可避不純物よりなるアルミニウム合金鋳塊に、
400〜550℃、1〜24時間で均質化処理を行う工程と、前記均質化処理を経た合金鋳塊に熱間加工と冷間加工の両方又はいずれか一方を行う工程とを少なくとも含むことによって、アルミニウム合金材中に溶解鋳造時に形成されるCr系の金属間化合物の粒子径を20μm以下とし、かつ、前記アルミニウム合金材中にMn及びCr系の析出物として粒子径50〜1000nmの金属間化合物粒子を350,000個/mm以上の分布密度で存在させる高温高速成形用アルミニウム合金材の製造方法であって、
前記高温高速成形用アルミニウム合金材は、200〜550℃の温度、10−2〜10/secのひずみ速度における成形後に直ちに20℃/分以上の冷却速度で室温まで冷却を行う高温高速成形に用いられることを特徴とする高温高速成形用アルミニウム合金材の製造方法。
Mg: 2.0 to 8.0% (mass%, the same applies hereinafter), Mn: 0.05 to 1.5%, Cr: 0.05 to 0.4%, Ti: 0.004 to 0.02% Fe is regulated to 0.4% or less, Si is regulated to 0.4% or less, V: 0.01 to 0.2%, Sc: 0.01 to 0.4%, B: 0 .0001-0.05%, Be: 0.0001-0.01% of one or more and Cu: 0.05-1.0% by mass, with the balance consisting of Al and inevitable impurities For aluminum alloy ingots,
By including at least a step of performing a homogenization treatment at 400 to 550 ° C. for 1 to 24 hours, and a step of performing hot working and / or cold working on the alloy ingot that has undergone the homogenizing treatment. The particle diameter of the Cr-based intermetallic compound formed at the time of melt casting in the aluminum alloy material is 20 μm or less, and between the metals having a particle diameter of 50 to 1000 nm as Mn and Cr-based precipitates in the aluminum alloy material A method for producing an aluminum alloy material for high-temperature high-speed forming, in which compound particles are present at a distribution density of 350,000 particles / mm 2 or more,
The aluminum alloy material for high-temperature high-speed forming is used for high-temperature high-speed forming that cools to room temperature at a cooling rate of 20 ° C./min or more immediately after forming at a temperature of 200 to 550 ° C. and a strain rate of 10 −2 to 10 / sec. A method for producing an aluminum alloy material for high-temperature high-speed forming, characterized in that:
請求項1〜3のいずれか1項に記載の高温高速成形用アルミニウム合金材を、200〜550℃の温度、10−2〜10/secのひずみ速度で高温高速成形し、直ちに20℃/分以上の冷却速度で室温まで冷却することにより、金属組織を亜結晶粒組織とすることを特徴とするアルミニウム合金成形品の製造方法。
The high-temperature high-speed forming aluminum alloy material according to any one of claims 1 to 3 is subjected to high-temperature high-speed forming at a temperature of 200 to 550 ° C and a strain rate of 10 -2 to 10 / sec, and immediately 20 ° C / min. A method for producing an aluminum alloy molded article, wherein the metal structure is changed to a subgrain structure by cooling to room temperature at the above cooling rate.
JP2006005406A 2006-01-12 2006-01-12 Aluminum alloy material for high temperature and high speed forming, method for manufacturing the same, and method for manufacturing aluminum alloy formed product Active JP4996853B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2006005406A JP4996853B2 (en) 2006-01-12 2006-01-12 Aluminum alloy material for high temperature and high speed forming, method for manufacturing the same, and method for manufacturing aluminum alloy formed product
PCT/JP2007/050276 WO2007080938A1 (en) 2006-01-12 2007-01-11 Aluminum alloys for high-temperature and high-speed forming, processes for production thereof, and process for production of aluminum alloy forms
EP07706623A EP1975263A4 (en) 2006-01-12 2007-01-11 Aluminum alloys for high-temperature and high-speed forming, processes for production thereof, and process for production of aluminum alloy forms
US12/171,380 US8500926B2 (en) 2006-01-12 2008-07-11 Aluminum alloy material for high-temperature/high-speed molding, method of producing the same, and method of producing a molded article of an aluminum alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006005406A JP4996853B2 (en) 2006-01-12 2006-01-12 Aluminum alloy material for high temperature and high speed forming, method for manufacturing the same, and method for manufacturing aluminum alloy formed product

Publications (2)

Publication Number Publication Date
JP2007186747A true JP2007186747A (en) 2007-07-26
JP4996853B2 JP4996853B2 (en) 2012-08-08

Family

ID=38342112

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006005406A Active JP4996853B2 (en) 2006-01-12 2006-01-12 Aluminum alloy material for high temperature and high speed forming, method for manufacturing the same, and method for manufacturing aluminum alloy formed product

Country Status (1)

Country Link
JP (1) JP4996853B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009138247A (en) * 2007-12-10 2009-06-25 Kobe Steel Ltd EXTRUDED MATERIAL OF Al-Mg-BASED ALUMINUM ALLOY SUPERIOR IN WORK HARDENING CHARACTERISTICS FOR COLD WORKING
JP2009197258A (en) * 2008-02-19 2009-09-03 Furukawa-Sky Aluminum Corp Molded article by high temperature pressurized gas molding
JP2012241225A (en) * 2011-05-18 2012-12-10 Nippon Steel Corp Aluminum alloy sheet for warm forming
US20170306453A1 (en) * 2014-10-09 2017-10-26 Uacj Corporation Superplastic-forming aluminum alloy plate and production method therefor
WO2021070889A1 (en) 2019-10-08 2021-04-15 株式会社Uacj Aluminum alloy material
WO2021070890A1 (en) 2019-10-08 2021-04-15 株式会社Uacj Aluminum alloy material
CN113508185A (en) * 2019-12-27 2021-10-15 俄罗斯工程技术中心有限责任公司 Aluminium base alloy

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000237882A (en) * 1999-02-19 2000-09-05 Sky Alum Co Ltd Aluminum alloy plate for super plastic forming, aluminum alloy tube and its super plastic formed body
JP2003342665A (en) * 2002-03-12 2003-12-03 Sumitomo Light Metal Ind Ltd Aluminum-magnesium aluminum alloy plate for hot blow molding and hot-blow-molded article

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000237882A (en) * 1999-02-19 2000-09-05 Sky Alum Co Ltd Aluminum alloy plate for super plastic forming, aluminum alloy tube and its super plastic formed body
JP2003342665A (en) * 2002-03-12 2003-12-03 Sumitomo Light Metal Ind Ltd Aluminum-magnesium aluminum alloy plate for hot blow molding and hot-blow-molded article

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009138247A (en) * 2007-12-10 2009-06-25 Kobe Steel Ltd EXTRUDED MATERIAL OF Al-Mg-BASED ALUMINUM ALLOY SUPERIOR IN WORK HARDENING CHARACTERISTICS FOR COLD WORKING
JP2009197258A (en) * 2008-02-19 2009-09-03 Furukawa-Sky Aluminum Corp Molded article by high temperature pressurized gas molding
JP2012241225A (en) * 2011-05-18 2012-12-10 Nippon Steel Corp Aluminum alloy sheet for warm forming
US20170306453A1 (en) * 2014-10-09 2017-10-26 Uacj Corporation Superplastic-forming aluminum alloy plate and production method therefor
EP3205734B1 (en) 2014-10-09 2018-12-12 UACJ Corporation Superplastic-forming aluminium alloy plate and production method therefor
US11499209B2 (en) 2014-10-09 2022-11-15 Uacj Corporation Superplastic-forming aluminum alloy plate and production method therefor
WO2021070890A1 (en) 2019-10-08 2021-04-15 株式会社Uacj Aluminum alloy material
KR20220078525A (en) 2019-10-08 2022-06-10 가부시키가이샤 유에이씨제이 aluminum alloy
KR20220079494A (en) 2019-10-08 2022-06-13 가부시키가이샤 유에이씨제이 aluminum alloy
WO2021070889A1 (en) 2019-10-08 2021-04-15 株式会社Uacj Aluminum alloy material
CN113508185A (en) * 2019-12-27 2021-10-15 俄罗斯工程技术中心有限责任公司 Aluminium base alloy
JP2022532819A (en) * 2019-12-27 2022-07-20 オブシュチェストボ・エス・オグラニチェノイ・オトベツトベノスティウ“オベディネナヤ・コンパニヤ・ルサール・インツェネルノ-テフノロギチェスキー・ツェントル” Aluminum alloy
JP7273174B2 (en) 2019-12-27 2023-05-12 オブシュチェストボ・エス・オグラニチェノイ・オトベツトベノスティウ“オベディネナヤ・コンパニヤ・ルサール・インツェネルノ-テフノロギチェスキー・ツェントル” aluminum alloy

Also Published As

Publication number Publication date
JP4996853B2 (en) 2012-08-08

Similar Documents

Publication Publication Date Title
JP5758676B2 (en) Aluminum alloy plate for forming and method for producing the same
US8500926B2 (en) Aluminum alloy material for high-temperature/high-speed molding, method of producing the same, and method of producing a molded article of an aluminum alloy
JP6022882B2 (en) High strength aluminum alloy extruded material and manufacturing method thereof
JP2013525608A (en) Damage-resistant aluminum material with hierarchical microstructure
JP4996853B2 (en) Aluminum alloy material for high temperature and high speed forming, method for manufacturing the same, and method for manufacturing aluminum alloy formed product
WO2009096622A1 (en) Magnesium alloy panel having high strength and manufacturing method thereof
JP2009221567A (en) Aluminum alloy sheet for positive pressure coated can lid, and method for producing the same
JP6176393B2 (en) High-strength aluminum alloy plate with excellent bending workability and shape freezing property
JP2005307300A (en) Al-Mg ALLOY SHEET HAVING EXCELLENT HIGH TEMPERATURE HIGH SPEED FORMABILITY AND ITS PRODUCTION METHOD
JP2004084058A (en) Method for producing aluminum alloy forging for transport structural material and aluminum alloy forging
CA2588046C (en) Aluminum alloy sheet and method for manufacturing the same
JP2011144396A (en) High strength aluminum alloy extruded material having excellent stress corrosion cracking resistance
JP2010116594A (en) Al-Mg-Si-BASED ALUMINUM ALLOY SHEET SUPERIOR IN BENDABILITY
JP2011202273A (en) Aluminum alloy cold-rolled sheet for bottle can
JP6719219B2 (en) High strength aluminum alloy sheet excellent in formability and method for producing the same
JP5059505B2 (en) Aluminum alloy cold-rolled sheet that can be formed with high strength
JP2004315938A (en) Forged material of aluminum alloy for structural material in transport aircraft, and manufacturing method therefor
JP4328242B2 (en) Aluminum alloy plate with excellent ridging mark characteristics
JP5111966B2 (en) Method for manufacturing aluminum alloy panel
JP7414453B2 (en) Aluminum alloy material and its manufacturing method
JP4996854B2 (en) Aluminum alloy material for high temperature and high speed forming, method for manufacturing the same, and method for manufacturing aluminum alloy formed product
JP2008062255A (en) SUPERPLASTIC MOLDING METHOD FOR Al-Mg-Si BASED ALUMINUM ALLOY SHEET HAVING REDUCED GENERATION OF CAVITY, AND Al-Mg-Si BASED ALUMINUM ALLOY MOLDED SHEET
EP0846781B1 (en) Process of forming an aluminium sheet with excellent high speed superplastic formability
JP6857535B2 (en) High-strength aluminum alloy plate with excellent formability, bendability and dent resistance and its manufacturing method
JP7432352B2 (en) Aluminum alloy plate for cap material and its manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080423

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110726

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110926

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120508

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120514

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150518

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4996853

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150518

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250