JP2005139505A - Aluminum alloy fin material, and its production method - Google Patents

Aluminum alloy fin material, and its production method Download PDF

Info

Publication number
JP2005139505A
JP2005139505A JP2003376647A JP2003376647A JP2005139505A JP 2005139505 A JP2005139505 A JP 2005139505A JP 2003376647 A JP2003376647 A JP 2003376647A JP 2003376647 A JP2003376647 A JP 2003376647A JP 2005139505 A JP2005139505 A JP 2005139505A
Authority
JP
Japan
Prior art keywords
fin material
aluminum alloy
region
strength
alloy fin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003376647A
Other languages
Japanese (ja)
Inventor
Atsushi Fukumoto
敦志 福元
Akira Kawahara
晃 川原
Akio Niikura
昭男 新倉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Sky KK
Original Assignee
Furukawa Sky KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Sky KK filed Critical Furukawa Sky KK
Priority to JP2003376647A priority Critical patent/JP2005139505A/en
Publication of JP2005139505A publication Critical patent/JP2005139505A/en
Pending legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide an aluminum alloy fin material which has excellent self-corrosion resistance while maintaining high strength and electroconductivity after brazing under heating. <P>SOLUTION: In the aluminum alloy fin material, the ratio between the numerical density N<SB>1</SB>of intermetallic compounds with a particle diameter of the equivalent sphere of ≥0.5 μm present in the region A of 1/20 to the sheet thickness from the surface and the numerical density N<SB>2</SB>of intermetallic compounds with a particle diameter of the equivalent sphere of ≥0.5 μm present outside of the region A, N<SB>2</SB>/N<SB>1</SB>, is ≥1.2, and also, the numerical density N<SB>1</SB>of the intermetallic compounds with a particle diameter of the equivalent sphere of ≥0.5 μm present in the region A is ≥2×10<SP>4</SP>pieces/mm<SP>2</SP>. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、自動車や電気製品などの熱交換器に使用されるもので、高強度と高熱伝導性を有し、且つ自己耐食性に優れるアルミニウム合金フィン材とその製造法に関するものである。   The present invention relates to an aluminum alloy fin material that is used in heat exchangers such as automobiles and electrical products, has high strength and high thermal conductivity, and has excellent self-corrosion resistance, and a method for producing the same.

アルミニウム合金は軽量かつ高熱伝導性を備えているため、近年、自動車用熱交換器に用いられている。自動車用熱交換器は主にろう付法によって製造される。通常ろう付けはAl−Si系のろう材を用い、600℃程度の高温で行われる。従って、ろう付け後に高い強度、熱伝導性、耐食性を有するアルミニウム合金が必要とされている。   In recent years, aluminum alloys are used for automobile heat exchangers because they are lightweight and have high thermal conductivity. Automotive heat exchangers are mainly manufactured by the brazing method. Usually, brazing is performed at a high temperature of about 600 ° C. using an Al—Si brazing material. Accordingly, there is a need for an aluminum alloy that has high strength, thermal conductivity, and corrosion resistance after brazing.

ろう付けを用いて製造するアルミニウム合金製熱交換器は、主に放熱の役割を担うコルゲート成形したフィンと冷却水や冷媒を循環させるための通路となるチューブとで構成される。フィンはチューブ内に流れる冷却水や冷媒の熱を放出させるために、熱伝導性が優れていることが要求されている。又、熱交換器の強度を維持するためのフィン材強度、及び自己耐食性が非常に重要である。
従来、自動車用熱交換器に使用されるアルミニウム合金フィン材には熱伝導性に優れる1050合金などの純アルミニウム合金や強度、耐座屈性に優れる3003合金などのAl−Mn系合金が一般的に用いられてきた(例えば、非特許文献1参照)。
Aluminum alloy heat exchangers manufactured using brazing are mainly composed of corrugated fins that play a role of heat dissipation and tubes that serve as passages for circulating cooling water and refrigerant. The fins are required to have excellent thermal conductivity in order to release the heat of cooling water and refrigerant flowing in the tube. Also, the fin material strength and the self-corrosion resistance for maintaining the strength of the heat exchanger are very important.
Conventionally, aluminum alloy fin materials used for heat exchangers for automobiles include pure aluminum alloys such as 1050 alloy excellent in thermal conductivity and Al-Mn alloys such as 3003 alloy excellent in strength and buckling resistance. (See, for example, Non-Patent Document 1).

しかしながら、純アルミニウム合金は、熱伝導性に優れるものの強度不足で、熱交換器コアを組み付ける際もしくはろう付けの加熱時にフィンが潰れるといった問題が生じる。又、Al−Mn系合金はMnの固溶体強化により強度の向上をはかっているが、熱伝導性を低下させる原因となり、熱交換器の熱交換率を低下させて、その軽量化、小型化を妨げる結果となる。   However, although a pure aluminum alloy is excellent in thermal conductivity, the strength is insufficient, and there arises a problem that fins are crushed when the heat exchanger core is assembled or when brazing is heated. In addition, Al-Mn alloys have improved strength by strengthening the solid solution of Mn, but this causes a decrease in thermal conductivity, lowers the heat exchange rate of the heat exchanger, and reduces its weight and size. Results in hindering.

更にフィンは、犠牲防食の作用によりチューブの腐食を防止する役割も担っている。犠牲防食とは、Zn、Sn、In等の元素を添加することでフィンの電位を卑にして、チューブとの間に電位差を設け、チューブに対してフィンが優先的に腐食してチューブを腐食から守る方法である。しかし、フィン自体の耐食性が低いと早くにフィンが消失し、犠牲防食によりチューブを防食できなくなり、チューブに孔があくなど熱交換器としての寿命を短くするばかりでなく、その強度、熱交換率も維持できなくなる。   Furthermore, the fin plays a role of preventing the corrosion of the tube by the sacrificial anticorrosive action. Sacrificial corrosion protection means that by adding elements such as Zn, Sn, In, etc., the potential of the fin is made lower, a potential difference is established between the tube and the fin corrodes preferentially against the tube, corroding the tube. It is a way to protect from. However, if the corrosion resistance of the fin itself is low, the fin disappears quickly, and the tube cannot be protected by sacrificial protection, and not only the life of the heat exchanger is shortened, such as a hole in the tube, but also its strength and heat exchange rate Cannot be maintained.

以上の理由から、自動車用熱交換器のフィン材には強度、熱伝導性、耐食性等の特性において優れた材料が望まれ、鋳造後の冷却速度の速い鋳造法やハンター法、3C法等の連続鋳造法を用いた種々の組成を有するフィン材およびその製造法が提案されている(例えば、特許文献1〜5)。   For the above reasons, a material excellent in properties such as strength, thermal conductivity, corrosion resistance and the like is desired for the fin material of the heat exchanger for automobiles. The casting method, the hunter method, the 3C method, etc., which have a fast cooling rate after casting. Fin materials having various compositions using a continuous casting method and manufacturing methods thereof have been proposed (for example, Patent Documents 1 to 5).

連続鋳造法は鋳造ロールにより溶湯と鋳型との間に常に圧力を付加しているため熱伝導率が極めて高く、鋳造時の冷却速度が他の鋳造法、例えばダイレクトチル法(以下、DC法と略す)等に比べて速く、そのため得られるスラブ若しくは鋳造板材のミクロ組織が微細かつ均一になり易く、それらを圧延して得られるアルミニウム合金フィン材は、合金内に微細かつ密に分散した金属間化合物を生成する。この微細に分散した金属間化合物により、ろう付け後に高い強度、熱伝導性を示すアルミニウム合金フィン材を得ることができる(例えば特許文献1、2参照)。   In the continuous casting method, pressure is constantly applied between the molten metal and the mold by the casting roll, so that the thermal conductivity is extremely high, and the cooling rate at the time of casting is other casting methods such as the direct chill method (hereinafter referred to as DC method). Therefore, the microstructure of the slab or cast plate obtained is likely to be fine and uniform, and the aluminum alloy fin material obtained by rolling them is between finely and densely dispersed metals in the alloy. A compound is produced. With this finely dispersed intermetallic compound, an aluminum alloy fin material exhibiting high strength and thermal conductivity after brazing can be obtained (see, for example, Patent Documents 1 and 2).

特許文献1では、鋳造時の冷却速度を10〜250℃/secに規定した連続鋳造圧延法を用いることで、強度および熱伝導性に優れたAl−Mn−Fe−Si系合金からなるフィン材が提案されている。又、特許文献2には、連続鋳造法を用いることで、直径が4μm以上の晶出物が20個/mm以上存在するアルミニウム合金板を製造できることが示されている。 In patent document 1, the fin material which consists of an Al-Mn-Fe-Si type alloy excellent in intensity | strength and heat conductivity by using the continuous casting rolling method which prescribed | regulated the cooling rate at the time of casting to 10-250 degreeC / sec. Has been proposed. Further, Patent Document 2, by using a continuous casting process, has been shown to be able to produce an aluminum alloy plate having a diameter there is 4μm or more crystallizate 20 / mm 2 or more.

特許文献3、4、5では、鋳造時の冷却速度を15〜1000℃/secと非常に速くすることで、フィン材マトリックス内に金属間化合物を微細かつ均一に分散させることができ、その存在はフィン材マトリックスの固溶Mnの析出を促進させ、導電率を向上させている。   In Patent Documents 3, 4, and 5, the intermetallic compound can be finely and uniformly dispersed in the fin material matrix by making the cooling rate during casting as very high as 15 to 1000 ° C./sec. Promotes the precipitation of solute Mn in the fin matrix and improves the electrical conductivity.

社団法人軽金属協会 アルミニウム技術便覧編集委員編,「新版/アルミニウム技術便覧」,新版,カロス出版株式会社,1996年11月、p.1063〜1074,p.1146〜1150Japan Light Metal Association Aluminum Technical Handbook Editorial Committee, New Edition / Aluminum Technical Handbook, New Edition, Karos Publishing Co., Ltd., November 1996, p. 1063-1074, p. 1146 to 1150 特表2002−521564号公報Japanese translation of PCT publication No. 2002-521564 特開平9−78168号公報JP-A-9-78168 特開2002−256402号公報JP 2002-256402 A 特開2002−256403号公報JP 2002-256403 A 特開2002−256364号公報JP 2002-256364 A

特許文献1の発明では、析出強化と固溶体強化の最適な組み合わせを得るために、高速の冷却速度でストリップキャストし、ろう付加熱後のフィン材の熱伝導性を低下させないためにMnの添加量を0.3〜0.5mass%と規定している。Mn添加量が低いと、母相中の固溶Mn量が減るため熱伝導率の低下が抑えられる。しかし添加Mn量を減らすことにより、固溶体強化、析出強化による十分な強化効果を得ることができない。この強度低下を補うためにろう付けの結晶粒径を30〜80μmとしている。結晶粒径が微細であると、ろう材の拡散によりエロージョン侵食の発生や耐垂下性が低下する可能性がある。   In the invention of Patent Document 1, in order to obtain the optimum combination of precipitation strengthening and solid solution strengthening, strip casting is performed at a high cooling rate, and the amount of Mn added is not reduced so as not to lower the thermal conductivity of the fin material after brazing addition heat. Is defined as 0.3 to 0.5 mass%. When the amount of Mn added is low, the amount of solid solution Mn in the parent phase is reduced, so that a decrease in thermal conductivity is suppressed. However, by reducing the amount of added Mn, a sufficient strengthening effect due to solid solution strengthening and precipitation strengthening cannot be obtained. In order to compensate for this decrease in strength, the crystal grain size of brazing is set to 30 to 80 μm. If the crystal grain size is fine, erosion erosion and droop resistance may be reduced due to diffusion of the brazing material.

特許文献2の発明では、結晶粒を微細化させるためFeと共にCrを添加し、板材中に存在する晶出物を粗大化させている。晶出物を粗大化させると、得られるアルミニウム合金板の強度、導電率が低下する。また結晶粒が微細であるため、自動車熱交換器用フィン材として用いる場合には、ろう付け加熱時のろう材の拡散によりエロージョン侵食が発生する可能性がある。   In the invention of Patent Document 2, Cr is added together with Fe in order to make crystal grains finer, and crystallized substances present in the plate material are coarsened. When the crystallized material is coarsened, the strength and conductivity of the resulting aluminum alloy plate are lowered. In addition, since the crystal grains are fine, when used as a fin material for an automobile heat exchanger, erosion erosion may occur due to diffusion of the brazing material during brazing heating.

更に、特許文献3、4、5に見られる金属間化合物は、同時に、その自然電位がフィン材マトリックスの自然電位より貴にあると、金属間化合物周囲のマトリックスが溶解してしまい腐食起点となりやすい。更にその密度は、冷却速度の遅いDC鋳造法と比較すると非常に大きいために腐食起点を増やすことなり、結果的にフィン材の自己耐食性を低下させてしまう。   Further, the intermetallic compounds found in Patent Documents 3, 4, and 5 are likely to be corrosion starting points because the matrix around the intermetallic compound dissolves if the natural potential is more noble than the natural potential of the fin material matrix. . Furthermore, since the density is very large compared with the DC casting method with a slow cooling rate, the corrosion starting point is increased, and as a result, the self-corrosion resistance of the fin material is lowered.

これらの問題に鑑み、本発明は高強度と熱伝導性を有し、且つ優れた自己耐食性を示すアルミニウム合金フィン材の提供を目的とするものである。   In view of these problems, an object of the present invention is to provide an aluminum alloy fin material having high strength and thermal conductivity and exhibiting excellent self-corrosion resistance.

請求項1記載の発明は、アルミニウム合金フィン材の表面から板厚の1/20の領域Aに存在する球相当粒径が0.5μm以上の金属間化合物の数密度Nと前記領域A以外の領域に存在する球相当粒径が0.5μm以上の金属間化合物の数密度Nとの比、N/Nが1.2以上で、且つ前記領域Aに存在する球相当粒径が0.5μm以上の金属間化合物の数密度Nが2×10個/mm以上であることを特徴とするアルミニウム合金フィン材である。 The invention described in claim 1 is the number density N 1 of the intermetallic compound having a sphere equivalent particle size of 0.5 μm or more existing in the region A 1/20 of the plate thickness from the surface of the aluminum alloy fin material, and other than the region A The ratio between the number density N 2 of the intermetallic compound having a sphere equivalent particle size of 0.5 μm or more existing in the region of N 2 / N 1 is 1.2 or more, and the sphere equivalent particle size existing in the region A The aluminum alloy fin material is characterized in that the number density N 1 of the intermetallic compound having a thickness of 0.5 μm or more is 2 × 10 4 pieces / mm 2 or more.

請求項2記載の発明は、前記金属間化合物が晶出物であることを特徴とする請求項1記載のアルミニウム合金フィン材である。   The invention according to claim 2 is the aluminum alloy fin material according to claim 1, wherein the intermetallic compound is a crystallized product.

請求項3記載の発明は、前記アルミニウム合金フィン材が、デンドライト2次枝間隔が35μm以下の領域を80%以上有する鋳塊から製造されることを特徴とするアルミニウム合金フィン材である。   The invention according to claim 3 is the aluminum alloy fin material, wherein the aluminum alloy fin material is manufactured from an ingot having 80% or more of a region having a dendrite secondary branch interval of 35 μm or less.

請求項4記載の発明は、前記鋳塊が鋳型による1次冷却と冷却水による2次冷却の2段階の冷却を備える鋳造方法を用いて、その厚みが80〜300mmに鋳造された鋳塊であることを特徴とするアルミニウム合金フィン材の製造方法である。   The invention according to claim 4 is an ingot in which the ingot is cast to a thickness of 80 to 300 mm using a casting method including two-stage cooling of primary cooling by a mold and secondary cooling by cooling water. It is a manufacturing method of the aluminum alloy fin material characterized by being.

請求項5記載の発明は、前記鋳造方法がダイレクトチル法であることを特徴とする請求項4記載のアルミニウム合金フィン材の製造方法である。   The invention according to claim 5 is the method for producing an aluminum alloy fin material according to claim 4, wherein the casting method is a direct chill method.

本発明によれば、フィン材表面層に存在する金属間化合物は粗大かつ疎となり、中央部にある金属間化合物は微細かつ密となるアルミニウム合金フィン材を得ることができ、ろう付け加熱後においても、高強度、高熱伝導性、そして優れた耐食性を有するアルミニウム合金フィン材を提供することができ、工業上顕著な効果を奏するものである。   According to the present invention, the intermetallic compound existing in the fin material surface layer becomes coarse and sparse, and the intermetallic compound in the center can obtain a fine and dense aluminum alloy fin material. However, it is possible to provide an aluminum alloy fin material having high strength, high thermal conductivity, and excellent corrosion resistance, and has an industrially significant effect.

本発明者らは、前記課題を解決すべく研究を重ね、フィン材内の金属間化合物からなる晶出物の存在がフィン材の自己耐食性に大きく影響することを見出した。
即ち、フィン材内に金属間化合物の晶出物が存在すると、晶出物とフィン材マトリックス間に電位差が生じ、晶出物周りのフィン材マトリックスが溶解する。即ち、晶出物の数密度(以下、晶出物密度とする)が大きいと、腐食起点も多くなりフィン材の自己耐食性は低下する。従って、フィン材の自己耐食性を向上させるには、その晶出物密度を小さくする必要がある。
この晶出物密度は、鋳造時の冷却速度に大きく依存し、その冷却速度が速い場合には鋳造組織は微細となり、晶出物も微細になる傾向がある。それに対して冷却速度が遅ければ鋳造組織は粗大となり、その晶出物も粗大になる傾向がある。
The present inventors have conducted research to solve the above-mentioned problems, and have found that the presence of a crystallized product composed of an intermetallic compound in the fin material greatly affects the self-corrosion resistance of the fin material.
That is, when a crystallized product of an intermetallic compound is present in the fin material, a potential difference is generated between the crystallized product and the fin material matrix, and the fin material matrix around the crystallized material is dissolved. That is, when the number density of crystallized substances (hereinafter referred to as crystallized substance density) is large, the number of corrosion starting points increases and the self-corrosion resistance of the fin material decreases. Therefore, in order to improve the self-corrosion resistance of the fin material, it is necessary to reduce the crystallized substance density.
This crystallized density greatly depends on the cooling rate at the time of casting, and when the cooling rate is high, the cast structure becomes fine and the crystallized product tends to become fine. On the other hand, if the cooling rate is slow, the cast structure becomes coarse and the crystallized product tends to become coarse.

従って、その冷却速度の制御が重要となり、自己耐食性を向上させるために晶出物密度を小さくする冷却速度の遅い鋳造法を用いなければならない。しかしながら、晶出物密度を小さくすると強度、熱伝導性共に低下してしまう。
そこで、本発明者らは、強度が高く、又熱伝導性も良く、自己耐食性にも優れるアルミニウム合金フィン材として、表層は晶出物密度が小さい相からなり、内部は晶出物密度が大きな相からなるアルミニウム合金フィン材を見出したものである。
Therefore, it is important to control the cooling rate, and in order to improve the self-corrosion resistance, it is necessary to use a casting method with a low cooling rate to reduce the crystallized density. However, when the crystallized density is reduced, both strength and thermal conductivity are lowered.
Therefore, the inventors of the present invention, as an aluminum alloy fin material having high strength, good thermal conductivity, and excellent self-corrosion resistance, the surface layer is composed of a phase with a low crystallized density, and the inside has a high crystallized density. The present inventors have found an aluminum alloy fin material composed of phases.

本発明による表層の晶出物密度を小さく、内部の晶出物密度は大きいフィン材を製造するには、鋳造工程において、溶湯を凝固させる際に鋳型による1次冷却と冷却水による2次冷却の2段階の冷却を備える鋳造方法を用いることで望みとする鋳塊を得ることができ、特にDC法を用いると容易に達成できる。   In order to produce a fin material having a low crystallized surface density and a large internal crystallized density according to the present invention, in the casting process, when the molten metal is solidified, primary cooling with a mold and secondary cooling with cooling water are performed. The desired ingot can be obtained by using a casting method having the two-stage cooling, and can be easily achieved particularly by using the DC method.

DC法のような冷却形態は他の鋳造法にはないもので、このDC法特有の2段階の冷却により、その表層は周囲よりも鋳造時の冷却速度が遅く、そのため粗大セル層が表層に生成する。この粗大セル層は、フィン材表層の晶出物密度をフィン材内部より低いものとすることができる。
更に、その鋳塊厚みを従来のDC法による鋳塊厚みより薄い80〜300mmとすることで、フィン材内部の晶出物密度を高める。通常、DC法によって製造される鋳塊厚みは400mm以上であることが多く、厚みがこれほど大きいと鋳塊内部まで十分に冷却が行われず、スラブ中央のミクロ組織は非常に粗大なものとなる。そのため、フィン材内部に高密度の金属間化合物が存在するフィン材を得ることができない。しかし鋳塊厚みを薄くすることで内部まで冷却速度を速くする事ができ、フィン材内部に高密度の晶出物が存在するフィン材を得ることができる。
The cooling method such as the DC method is not found in other casting methods, and due to the two-stage cooling unique to this DC method, the surface layer has a slower cooling rate during casting than the surroundings, so that the coarse cell layer becomes the surface layer. Generate. This coarse cell layer can make the crystallized material density of a fin material surface layer lower than the inside of a fin material.
Furthermore, the ingot thickness inside fin material is raised by making the ingot thickness into 80-300 mm thinner than the ingot thickness by the conventional DC method. Usually, the thickness of an ingot produced by the DC method is often 400 mm or more. If the thickness is so large, the inside of the ingot is not sufficiently cooled, and the microstructure in the center of the slab becomes very coarse. . Therefore, a fin material in which a high density intermetallic compound exists inside the fin material cannot be obtained. However, by reducing the thickness of the ingot, the cooling rate can be increased to the inside, and a fin material in which a high-density crystallized substance exists in the fin material can be obtained.

鋳塊厚みが80mmよりも薄い場合には、鋳塊全体の冷却速度が速すぎて、作製したフィン材中の金属間化合物が非常に微細かつ密となり、フィン材の自己耐食性に悪影響を及ぼす。また鋳塊厚みが300mmを超える場合には、スラブの内部まで十分な冷却速度が得られず、スラブのミクロ組織が粗大となる。その結果、フィン材中の金属間化合物が粗大かつ疎となり強度、導電性や熱伝導性の低下をもたらすことから限定したものである。   When the thickness of the ingot is thinner than 80 mm, the cooling rate of the entire ingot is too fast, and the intermetallic compound in the produced fin material becomes very fine and dense, which adversely affects the self-corrosion resistance of the fin material. When the ingot thickness exceeds 300 mm, a sufficient cooling rate cannot be obtained up to the inside of the slab, and the microstructure of the slab becomes coarse. As a result, the intermetallic compound in the fin material becomes coarse and sparse, resulting in a decrease in strength, conductivity, and thermal conductivity.

次に、フィン材内の晶出物について、より具体的に規定する。
アルミニウム合金フィン材の表面から板厚の1/20の領域Aに存在する球相当粒径が0.5μm以上の晶出物の晶出物密度Nと前記領域A以外の領域に存在する球相当粒径が0.5μm以上の晶出物の晶出物密度Nとの比、N/Nが1.2以上であり、且つ晶出物密度Nが2×10個/mm以上である場合に、良好な自己耐食性と強度などが得られる。
ここで晶出物を0.5μm以上と限定したのは、0.5μm以上の晶出物は腐食起点となり易く、フィン材の自己耐食性を低下させるからである。フィン材の前記領域Aに存在する球相当粒径が0.5μm以上の晶出物の晶出物密度Nが2×10個/mmより少ないとフィン材の強度、導電性や熱伝導性を満足しない。好ましくは4×10個/mm以上が良い。
Next, the crystallized substance in the fin material will be more specifically defined.
Sphere sphere equivalent diameter that exists from the surface of the aluminum alloy fin material in the area A of the thickness of 1/20 is present in a region other than the region A and the precipitated crystalline density N 1 of 0.5μm or more crystallizate The ratio of the crystallization product having an equivalent particle size of 0.5 μm or more to the crystallization product density N 2 , N 2 / N 1 is 1.2 or more, and the crystallization product density N 1 is 2 × 10 4 / In the case of mm 2 or more, good self-corrosion resistance and strength are obtained.
Here, the reason why the crystallized material is limited to 0.5 μm or more is that the crystallized material of 0.5 μm or more is likely to be a starting point of corrosion and lowers the self-corrosion resistance of the fin material. If the crystallized material density N 1 of the crystallized material having a sphere equivalent particle size of 0.5 μm or more existing in the region A of the fin material is less than 2 × 10 4 pieces / mm 2 , the strength, conductivity and heat of the fin material are reduced. Not satisfied with conductivity. Preferably 4 × 10 4 pieces / mm 2 or more is preferable.

又、前記領域Aに存在する球相当粒径が0.5μm以上の晶出物の晶出物密度Nと前記領域A以外の領域に存在する球相当粒径が0.5μm以上の晶出物の晶出物密度Nとの比、N/Nが1.2未満であると、前記領域Aに存在する球相当粒径が0.5μm以上の晶出物の晶出物密度Nが大きくなりフィン材の自己耐食性を悪くする、若しくは前記領域A以外の領域に存在する球相当粒径が0.5μm以上の晶出物の晶出物密度Nが小さくなることによりフィン材の強度、熱伝導性を低下させる。好ましくは1.4以上が良い。 Further, the crystallized substance density N 1 of the crystallized substance having a sphere equivalent particle size of 0.5 μm or more existing in the region A and the crystallization having a sphere equivalent particle size of 0.5 μm or more existing in a region other than the region A. When the ratio of N 2 / N 1 to the crystallized product density N 2 of the product is less than 1.2, the crystallized product density of the crystallized product having a sphere equivalent particle size of 0.5 μm or more existing in the region A When N 1 is increased and the self-corrosion resistance of the fin material is deteriorated, or the crystallized material density N 2 of the crystallized material having a sphere equivalent particle size of 0.5 μm or more existing in the region other than the region A is decreased. Reduces the strength and thermal conductivity of the material. Preferably 1.4 or more is good.

次に、得られる鋳塊の表層領域を除いた80%の領域におけるデンドライト2次枝間隔(以後、DASとする)が35μm以下であるとしたことは、鋳塊のDASは鋳造時の冷却速度、添加元素の濃度等によって大きく変わるものであり、最終的に得られるフィン材の強度、導電性、熱伝導性、自己耐食性などは鋳塊のDASに依存するところが非常に大きい。
DASが小さくなると、得られるフィン材中に存在する晶出物は微細かつ密に分布する。従って、フィン材の強度、熱伝導性は向上する。DASが35μmを超える場合には、得られるフィン材の強度、熱伝導性が低下する。
Next, the dendrite secondary branch interval (hereinafter referred to as DAS) in the 80% region excluding the surface layer region of the ingot obtained is 35 μm or less. The DAS of the ingot is a cooling rate during casting. The strength, conductivity, thermal conductivity, self-corrosion resistance, etc. of the fin material finally obtained greatly depend on the DAS of the ingot.
When the DAS is reduced, the crystallized substances present in the obtained fin material are finely and densely distributed. Accordingly, the strength and thermal conductivity of the fin material are improved. When DAS exceeds 35 μm, the strength and thermal conductivity of the obtained fin material are lowered.

前記のようなDASを得るための鋳造条件は、鋳造時の冷却速度がなるべく速くなる条件とする。鋳造速度は100mm/min以上とし、より好適には120mm/min以上とする。冷却水量は2.0L/cm×min以上とし、より好適には2.50L/cm×min以上とする。次いで作製したスラブをソーキング温度が440〜550℃で熱間圧延し、3〜5mmの板材を作製する。ソーキング温度が440℃よりも低い場合には、熱間圧延でスラブを潰すことが困難となり、設備負荷が増大する。またソーキング温度が550℃よりも高い場合には、鋳造時に晶出した金属間化合物の粗大化を招き、最終的に製造されるフィン材の強度、導電率の低下をもたらす。   The casting conditions for obtaining the DAS as described above are such that the cooling rate during casting is as fast as possible. The casting speed is 100 mm / min or more, and more preferably 120 mm / min or more. The amount of cooling water is 2.0 L / cm × min or more, and more preferably 2.50 L / cm × min or more. Next, the produced slab is hot-rolled at a soaking temperature of 440 to 550 ° C. to produce a plate material of 3 to 5 mm. When the soaking temperature is lower than 440 ° C., it becomes difficult to crush the slab by hot rolling, and the equipment load increases. On the other hand, when the soaking temperature is higher than 550 ° C., the intermetallic compound crystallized at the time of casting is coarsened, and the strength and conductivity of the fin material finally produced are lowered.

続いて、熱間圧延で得られた板材に冷間圧延を行い、冷間圧延した板材に少なくとも一回、6時間以内の中間焼鈍を300〜500℃の温度で施すことにより、フィン材内に析出物の形成を促進させ、製造されるフィン材の強度、導電率を向上させることができる。焼鈍温度が300℃よりも低い場合には、板材を完全に焼鈍しきれず軟化が不十分なため、後の工程に支障をきたす。焼鈍温度が500℃よりも高い場合には、板材中に存在する金属間化合物の粗大化を招き、最終的に製造されるフィン材の強度、導電性、熱伝導性の低下をもたらす。その後、得られた板材に最終圧延率が10〜50%の条件で冷間圧延を施し、最終板厚が0.05〜0.1mmのフィン材を得る。最終圧延率が50%を超えると、ろう付後時の再結晶粒径が微細となり、ろう材の侵食を抑制することが困難となる。また耐垂下性も低下する。   Subsequently, the sheet material obtained by hot rolling is cold-rolled, and the cold-rolled sheet material is subjected to intermediate annealing for 6 hours or less at a temperature of 300 to 500 ° C. The formation of precipitates can be promoted, and the strength and electrical conductivity of the manufactured fin material can be improved. When the annealing temperature is lower than 300 ° C., the plate material cannot be completely annealed and is not sufficiently softened, which hinders subsequent processes. When the annealing temperature is higher than 500 ° C., the intermetallic compound existing in the plate material is coarsened, and the strength, conductivity, and thermal conductivity of the fin material finally produced are lowered. Thereafter, the obtained plate material is cold-rolled under a condition where the final rolling rate is 10 to 50% to obtain a fin material having a final plate thickness of 0.05 to 0.1 mm. When the final rolling rate exceeds 50%, the recrystallized grain size after brazing becomes fine, and it becomes difficult to suppress the erosion of the brazing material. Also, the drooping resistance is reduced.

本発明で用いるアルミニウム合金の成分は特に規定しないが、耐食性、強度、熱伝導性等のフィン材に要求される諸特性を満たすために、Fe、Si、Mnの3元素を添加し、その他の元素を選択添加することが望ましい。
Fe、Si、Mnの3元素を添加すると、フィン材にAl−Si−Fe−Mn系金属間化合物が形成される。このAl−Si−Fe−Mn系金属間化合物の自然電位は、マトリクスの自然電位と大きな差がないことからフィン材の自己耐食性を大きく低下し難いと考えられる。
The components of the aluminum alloy used in the present invention are not particularly specified, but in order to satisfy various properties required for the fin material such as corrosion resistance, strength, and thermal conductivity, three elements of Fe, Si, and Mn are added, and the other It is desirable to selectively add elements.
When three elements of Fe, Si, and Mn are added, an Al—Si—Fe—Mn intermetallic compound is formed in the fin material. Since the natural potential of the Al—Si—Fe—Mn intermetallic compound is not significantly different from the natural potential of the matrix, it is considered that the self-corrosion resistance of the fin material is hardly lowered.

Feの最大固溶量は非常に小さいために、鋳造時に金属間化合物として晶出する。SiやMnなどの添加と組み合わせることにより例えばAl−Si−Fe−Mn系金属間化合物を生成し、フィン材中のMnやSiの固溶量を低減させる働きをして、熱伝導性の低下を抑え、且つ金属間化合物として存在することにより分散強化に寄与し、フィン材の強度を向上させる。これらの効果を得るためにはFeの含有量は0.1〜2.0mass%が好ましい。より好ましくは0.15〜1.5mass%が良い。   Since the maximum solid solution amount of Fe is very small, it crystallizes out as an intermetallic compound during casting. In combination with the addition of Si, Mn, etc., for example, an Al-Si-Fe-Mn intermetallic compound is produced, and the function of reducing the solid solution amount of Mn and Si in the fin material is reduced, resulting in a decrease in thermal conductivity. In addition, the presence of an intermetallic compound contributes to dispersion strengthening and improves the strength of the fin material. In order to obtain these effects, the Fe content is preferably 0.1 to 2.0 mass%. More preferably, 0.15-1.5 mass% is good.

Siを含有させることによりFe、MnとともにAl−Si−Fe−Mn系金属間化合物を生成し、マトリクス中のMnの固溶度を低減させ、フィン材の導電率や熱伝導率を高める働きを示す。又、金属間化合物の分散強化により強度を向上させる。或いは、フィン材中に固溶して固溶強化により強度を向上させることができる。これらの効果を得るためにはSiの含有量は0.5〜1.5mass%が好ましい。より好ましくは0.5〜1.2mass%が良い。   By containing Si, it produces an Al-Si-Fe-Mn intermetallic compound together with Fe and Mn, reduces the solid solubility of Mn in the matrix, and increases the conductivity and thermal conductivity of the fin material. Show. In addition, the strength is improved by strengthening the dispersion of the intermetallic compound. Alternatively, the strength can be improved by solid solution in the fin material and solid solution strengthening. In order to obtain these effects, the Si content is preferably 0.5 to 1.5 mass%. More preferably, 0.5 to 1.2 mass% is good.

フィン材を製造する際に含有させたMnが製造過程で金属間化合物として晶出または析出し、製造されるフィン材のろう付け後の強度を向上させることができる。またSi、FeとともにAl−Si−Fe−Mn系金属間化合物を形成することによりSiの固溶度を低下させ、フィン材の融点低下を抑えることができ、且つ導電率及び熱伝導率が向上する。これらの効果を得るためにはMnの含有量は0.5〜2.0mass%が好ましい。より好ましくは0.6〜1.5mass%が良い。   Mn contained when producing the fin material is crystallized or precipitated as an intermetallic compound in the production process, and the strength of the produced fin material after brazing can be improved. In addition, by forming an Al-Si-Fe-Mn intermetallic compound together with Si and Fe, the solid solubility of Si can be reduced, the melting point of the fin material can be suppressed, and the conductivity and thermal conductivity can be improved. To do. In order to obtain these effects, the Mn content is preferably 0.5 to 2.0 mass%. More preferably, 0.6 to 1.5 mass% is good.

Znを含有させることによりフィン材の自然電位を卑することができ、フィン材の犠牲防食効果を向上させることができる。この効果を得るためにZnの含有量は0.1〜1.5mass%が好ましい。より好ましくは0.5〜1.5mass%が良い。   By containing Zn, the natural potential of the fin material can be reduced, and the sacrificial anticorrosive effect of the fin material can be improved. In order to obtain this effect, the Zn content is preferably 0.1 to 1.5 mass%. More preferably, 0.5 to 1.5 mass% is good.

Inを含有させることによりZnと同様、フィン材の自然電位を卑することができ、フィン材の犠牲防食効果を向上させることができる。Inは少量の添加で十分な犠牲防食効果を得ることができる。この効果を得るためにはInの含有量は0.01〜0.3mass%が好ましい。より好ましくは0.05〜0.15mass%が良い。   By containing In, the natural potential of the fin material can be reduced as in the case of Zn, and the sacrificial anticorrosive effect of the fin material can be improved. A sufficient sacrificial anticorrosive effect can be obtained by adding a small amount of In. In order to obtain this effect, the content of In is preferably 0.01 to 0.3 mass%. More preferably, 0.05 to 0.15 mass% is good.

Snを含有させることによりZnと同様、フィン材の自然電位を卑することができ、フィン材の犠牲防食効果を向上させることができる。この効果を得るためにSnの含有量は0.01〜0.3mass%が好ましい。より好ましくは0.05〜0.2mass%が良い。   By containing Sn, the natural potential of the fin material can be reduced as in the case of Zn, and the sacrificial anticorrosive effect of the fin material can be improved. In order to obtain this effect, the Sn content is preferably 0.01 to 0.3 mass%. More preferably, 0.05 to 0.2 mass% is good.

Cuを含有させるとSi、Mnと同様、固溶強化が得られ、フィン材の強度を向上させることができる。この効果を得るためCuの含有量は0.05〜0.3mass%が好ましい。より好ましくは0.08〜0.22mass%が良い。   When Cu is contained, solid solution strengthening can be obtained in the same manner as Si and Mn, and the strength of the fin material can be improved. In order to obtain this effect, the Cu content is preferably 0.05 to 0.3 mass%. More preferably, 0.08 to 0.22 mass% is good.

Mgを含有させるとSi、Mnと同様、固溶強化が得られ、フィン材の強度を向上させることができる。この効果を得るためにMgの含有量は0.05〜0.3mass%が好ましい。より好ましくは0.08〜0.15mass%が良い。   When Mg is contained, solid solution strengthening can be obtained like Si and Mn, and the strength of the fin material can be improved. In order to obtain this effect, the Mg content is preferably 0.05 to 0.3 mass%. More preferably, 0.08 to 0.15 mass% is good.

NiはFeと同様、鋳造時に金属間化合物として晶出し、Si、Mn等の固溶元素の析出を促進させ、フィン材の導電率を向上させる。またマトリックス中に金属間化合物が微細に晶出または析出することによって分散強化が得られ、強度向上にもつながる。これらの効果を得るためにNiの含有量は0.05〜1.5mass%が好ましい。より好ましくは0.05〜0.5mass%が良い。   Ni, like Fe, crystallizes out as an intermetallic compound during casting, promotes precipitation of solid solution elements such as Si and Mn, and improves the conductivity of the fin material. Further, when the intermetallic compound is finely crystallized or precipitated in the matrix, dispersion strengthening is obtained, which leads to an improvement in strength. In order to obtain these effects, the Ni content is preferably 0.05 to 1.5 mass%. More preferably, 0.05 to 0.5 mass% is good.

Zrにはフィン材の再結晶粒を粗大化させる働きがあり、ろう付け時のフィン材のろう材による侵食を抑制し、ろう付け性を向上させる。また、ろう付け時の耐垂下性を向上させる効果もある。これらの効果を得るためにZrの含有量は0.05〜0.3mass%であることが好ましい。より好ましくは0.05〜0.15mass%が良い。   Zr has a function of coarsening the recrystallized grains of the fin material, suppresses the erosion of the fin material by brazing during brazing, and improves brazing properties. It also has the effect of improving the sag resistance during brazing. In order to obtain these effects, the Zr content is preferably 0.05 to 0.3 mass%. More preferably, 0.05 to 0.15 mass% is good.

TiはSi、Mnと同様、マトリクス中に固溶することにより固溶強化が得られ、フィン材の強度が向上する。この効果を得るためにTiの含有量は0.05〜0.3mass%が好ましい。より好ましくは0.05〜0.15mass%が良い。
以下、実施例を用いて本発明によるアルミニウム合金フィン材を説明する。
Ti, like Si and Mn, is solid-solution strengthened by being dissolved in the matrix, and the strength of the fin material is improved. In order to obtain this effect, the Ti content is preferably 0.05 to 0.3 mass%. More preferably, 0.05 to 0.15 mass% is good.
Hereinafter, the aluminum alloy fin material according to the present invention will be described with reference to examples.

(実施例1)
表1の合金No.1の成分組成を用いて、鋳塊厚みが25〜500mmとなるように鋳造し、440〜550℃の温度でのソーキング後、520〜280℃の温度範囲で熱間圧延を行い、厚みが3.5mmの板材とした。この板材を冷間圧延により0.076mmとし、その後420℃で2時間の中間焼鈍を施した。この中間焼鈍の昇温速度および降温速度は40℃/時とした。この板材に最終圧延率が20%の冷間圧延を施し、0.061mmのアルミニウム合金フィン材を作製した。
(Example 1)
Alloy No. 1 in Table 1 The ingot thickness was cast to 25 to 500 mm using the component composition of No. 1, and after soaking at a temperature of 440 to 550 ° C., hot rolling was performed at a temperature range of 520 to 280 ° C., and the thickness was 3 The plate material was 5 mm. This plate was cold rolled to 0.076 mm, and then subjected to intermediate annealing at 420 ° C. for 2 hours. The temperature increase rate and temperature decrease rate of this intermediate annealing were 40 ° C./hour. The plate material was subjected to cold rolling with a final rolling rate of 20% to produce an aluminum alloy fin material of 0.061 mm.

作製したアルミニウム合金フィン材に、高純度窒素雰囲気下で600℃×3分保持後、常温まで50〜200℃/分の冷却速度で冷却するろう付け加熱に相当する熱処理を施し、引張強さ、導電率、フィン材の表面から板厚の1/20の領域Aに存在する球相当粒径が0.5μm以上の晶出物の晶出物密度N及びフィン材の前記領域A以外の領域に存在する球相当粒径が0.5μm以上の晶出物の晶出物密度N、そしてNとNとの比N/N、並びに自己耐食性として腐食減少量を以下に示す方法で評価した。その結果を表2に示す。また下記に各評価の詳細を示す。 The produced aluminum alloy fin material is subjected to a heat treatment corresponding to brazing heating to be cooled to a normal temperature at a cooling rate of 50 to 200 ° C./min after holding at 600 ° C. for 3 minutes in a high purity nitrogen atmosphere, and tensile strength, conductivity region other than the region a of the precipitated crystalline density N 1 and fin stock crystallizate surface from a sphere-equivalent particle size that exists in the area a of the thickness of 1/20 of above 0.5μm of the fin material The crystallite density N 2 of a crystallized product having a sphere equivalent particle size of 0.5 μm or more present in N, the ratio N 2 / N 1 of N 1 and N 2, and the corrosion reduction amount as self-corrosion resistance are shown below. The method was evaluated. The results are shown in Table 2. Details of each evaluation are shown below.

(1)DAS測定:光学顕微鏡により鋳塊厚み方向の断面組織観察を行い、交線法によりDASを測定した。表記したDASは、鋳塊表層領域の各10%を除く80%の領域におけるDASの平均値とした。
(2)晶出物密度N、Nおよび密度比N/N:フィン材中の晶出物密度はフィン材断面を走査型電子顕微鏡を用いて観察することにより調べた。まず各サンプルにつき10視野ずつ観察し、それぞれの視野のSEM写真を画像解析することにより金属間化合物の密度を求めた。表記した金属間化合物の密度および密度比は、各10視野より求めた値の平均値とした。
(3)自己耐食性(腐食減少量):JIS Z2371に基づき、200時間の塩水噴霧試験を行った後、その腐食減少量を測定した。
(4)引張強さ:引張速度10mm/min、ゲージ長50mmの条件で、JIS Z2241に従って、常温にて行った。
(5)導電率:20℃の恒温曹内で、JIS H0505に基づき電気抵抗を測定して求めた。
(1) DAS measurement: A cross-sectional structure in the thickness direction of the ingot was observed with an optical microscope, and DAS was measured with a crossing method. The indicated DAS was the average value of DAS in the 80% region excluding 10% of the ingot surface layer region.
(2) Crystallized material density N 1 , N 2 and density ratio N 2 / N 1 : The crystallized material density in the fin material was examined by observing a cross-section of the fin material using a scanning electron microscope. First, 10 visual fields were observed for each sample, and the density of the intermetallic compound was determined by image analysis of SEM photographs of the respective visual fields. The density and density ratio of the indicated intermetallic compounds were average values obtained from 10 fields of view.
(3) Self-corrosion resistance (corrosion reduction): Based on JIS Z2371, a 200-hour salt spray test was performed, and then the corrosion reduction was measured.
(4) Tensile strength: It was carried out at room temperature according to JIS Z2241 under the conditions of a tensile speed of 10 mm / min and a gauge length of 50 mm.
(5) Conductivity: It was determined by measuring the electrical resistance in a constant temperature soda at 20 ° C. based on JIS H0505.

表1、表2から明らかなように、鋳塊厚みが本発明範囲内である本発明例No.1〜No.6のアルミニウム合金フィン材は、ろう付け加熱後の引張強さ、導電率、自己耐食性において優れた特性が得られた。
これらの中でも特に本発明例No.1〜No.4では、強度、導電率の面において十分な特性が得られている。
As is clear from Tables 1 and 2, Example No. of the present invention in which the ingot thickness is within the scope of the present invention. 1-No. The aluminum alloy fin material No. 6 was excellent in tensile strength after brazing heating, electrical conductivity, and self-corrosion resistance.
Among these, the invention example No. 1-No. In No. 4, sufficient characteristics are obtained in terms of strength and conductivity.

対して、鋳塊厚みが本発明の範囲よりも小さい比較例No.20、21のアルミニウム合金フィン材ではろう付加熱後の引張強さ、導電率には優れるものの、自己耐食性で劣る結果となった。スラブ厚さが小さい場合、鋳造時の冷却速度が速くなるため、鋳塊のミクロ組織が微細になる。その結果、引張強さ、導電率は向上したが、フィン材中に腐食起点が多くなることにより自己耐食性を阻害した。
また、スラブ厚さが本発明範囲よりも大きい比較例No.22〜No.24のアルミニウム合金フィン材では、ろう付加熱後の引張強さ、導電率において必要特性を満足できなかった。しかし、自己耐食性は良好であった。このような結果が得られたのは、スラブ厚さが大きいことによる鋳造時の冷却速度の低下によるものである。
以上から、フィン材の前記領域Aに存在する球相当粒径が0.5μm以上の晶出物の晶出物密度Nが2×10個/mm以上であり、晶出物密度Nとフィン材の前記領域A以外の領域に存在する球相当粒径が0.5μm以上の晶出物の晶出物密度Nとの比、N/Nが1.2以上である場合、フィン材の強度、導電率と自己耐食性においてバランスのよいアルミニウム合金フィン材が得られることがわかった。
On the other hand, Comparative Example No. whose ingot thickness is smaller than the range of the present invention. The aluminum alloy fins 20 and 21 were excellent in tensile strength and electrical conductivity after brazing addition heat, but were inferior in self-corrosion resistance. When the slab thickness is small, the cooling rate at the time of casting becomes high, and the microstructure of the ingot becomes fine. As a result, although tensile strength and electrical conductivity were improved, self-corrosion resistance was hindered by increasing the number of corrosion starting points in the fin material.
Moreover, comparative example No. whose slab thickness is larger than the range of this invention. 22-No. The 24 aluminum alloy fin material could not satisfy the required properties in terms of tensile strength and conductivity after brazing heat. However, the self-corrosion resistance was good. Such a result was obtained due to a decrease in the cooling rate during casting due to the large slab thickness.
From the above, the crystallized substance density N 1 of the crystallized substance having a sphere equivalent particle size of 0.5 μm or more existing in the region A of the fin material is 2 × 10 4 pieces / mm 2 or more, and the crystallized substance density N 1 and the ratio of the crystallized material density N 2 of the crystallized material having a sphere equivalent particle size of 0.5 μm or more existing in a region other than the region A of the fin material, and N 2 / N 1 is 1.2 or more. In this case, it was found that an aluminum alloy fin material having a good balance in strength, conductivity and self-corrosion resistance of the fin material can be obtained.

(実施例2)
表1に示す合金No.1〜15の成分組成のアルミニウム合金鋳塊をDC法によって作製した。鋳塊厚みは100mmとした。その鋳塊を450℃でソーキングし、次に熱間圧延で厚みが3.5mmの板材とした。この板材を冷間圧延により厚み0.076mmとし、その後420℃で2時間の中間焼鈍を施した。この中間焼鈍の昇温速度および降温速度は40℃/時とした。この板材に最終圧延率が20%の冷間圧延を施し、厚み0.061mmのアルミニウム合金フィン材を作製した。
得られたアルミニウム合金フィン材にろう付け加熱相当の加熱を施し、引張試験、導電率測定、腐食試験を行った。その結果を表3に示す。
(Example 2)
Alloy No. shown in Table 1 Aluminum alloy ingots having a component composition of 1 to 15 were produced by the DC method. The ingot thickness was 100 mm. The ingot was soaked at 450 ° C., and then hot rolled to form a plate having a thickness of 3.5 mm. The plate was cold rolled to a thickness of 0.076 mm, and then subjected to intermediate annealing at 420 ° C. for 2 hours. The temperature increase rate and temperature decrease rate of this intermediate annealing were 40 ° C./hour. The plate material was cold-rolled with a final rolling rate of 20% to produce an aluminum alloy fin material having a thickness of 0.061 mm.
The obtained aluminum alloy fin material was subjected to heating equivalent to brazing heating, and a tensile test, conductivity measurement, and corrosion test were performed. The results are shown in Table 3.

本発明例No.7〜No.16では、十分な強度、導電率、自己耐食性を有するアルミニウム合金フィン材が得られた。これに対して、好適な合金組成の範囲外のものを含む比較例No.25〜No.29は、強度、導電率、自己耐食性の全てを満足するフィン材は得られなかった。
Mnの含有量が1.5mass%よりも多いアルミニウム合金を用いた比較例No.25は固溶Mnによる固溶体強化により、強度は得られているが、導電率の低下が著しく、Mnの含有量が0.5mass%よりも少なく、Feの含有量が0.1mass%よりも少なく、Niの含有量が1.5mass%よりも多い比較例No.26では、固溶Mn量が少なく、またNiによる析出促進効果により十分な導電率が得られたが、強度が若干足りず、またNi過剰添加による自己耐食性の低下が見られた。
Mnの含有量が0.5mass%よりも少ない比較例No.27は、固溶Mn量の低下により十分な導電率が得られたが、強度が大幅に低下した。
Tiの含有量が0.3mass%よりも多い比較例No.28は、添加したTiの固溶体強化により十分な強度が得られた。しかし、導電率、自己耐食性においていずれも必要特性が得られなかった。
Siの含有量が0.5mass%よりも少ない比較例No.29は、Siの添加量を減らしたことにより強度が大幅に低下した。以上から、合金組成が本発明の好適範囲外である実施例11〜15においては、引張強さ、導電率、自己耐食性の全ての特性を満たすことのできるアルミニウム合金フィン材を得ることはできなかった。
Invention Example No. 7-No. In No. 16, an aluminum alloy fin material having sufficient strength, electrical conductivity, and self-corrosion resistance was obtained. On the other hand, comparative example No. including the thing outside the range of a suitable alloy composition. 25-No. For No. 29, a fin material satisfying all of strength, electrical conductivity, and self-corrosion resistance was not obtained.
Comparative Example No. using an aluminum alloy having a Mn content of more than 1.5 mass%. No. 25 is strengthened by solid solution strengthening with solid solution Mn, but the strength is obtained, but the decrease in conductivity is remarkable, the Mn content is less than 0.5 mass%, and the Fe content is less than 0.1 mass%. , Ni content of more than 1.5 mass% Comparative Example No. In No. 26, the amount of dissolved Mn was small, and sufficient conductivity was obtained due to the precipitation promoting effect by Ni, but the strength was slightly insufficient, and the self-corrosion resistance was reduced by excessive addition of Ni.
Comparative Example No. with a Mn content of less than 0.5 mass%. For 27, a sufficient electrical conductivity was obtained due to a decrease in the amount of dissolved Mn, but the strength was significantly reduced.
Comparative Example No. with a Ti content greater than 0.3 mass% In No. 28, sufficient strength was obtained by solid solution strengthening of the added Ti. However, no necessary characteristics were obtained in terms of conductivity and self-corrosion resistance.
Comparative Example No. having a Si content of less than 0.5 mass% In No. 29, the strength was greatly reduced by reducing the amount of Si added. From the above, in Examples 11 to 15 where the alloy composition is outside the preferred range of the present invention, it is not possible to obtain an aluminum alloy fin material that can satisfy all the properties of tensile strength, conductivity, and self-corrosion resistance. It was.

Claims (5)

アルミニウム合金フィン材の表面から板厚の1/20の領域Aに存在する球相当粒径が0.5μm以上の金属間化合物の数密度Nと前記領域A以外の領域に存在する球相当粒径が0.5μm以上の金属間化合物の数密度Nとの比、N/Nが1.2以上で、且つ前記領域Aに存在する球相当粒径が0.5μm以上の金属間化合物の数密度Nが2×10個/mm以上であることを特徴とするアルミニウム合金フィン材。 Sphere-equivalent grain sphere-equivalent particle size that exists from the surface of the aluminum alloy fin material in the area A of the thickness of 1/20 is present in a region other than the region A and the intermetallic compound has a number density N 1 above 0.5μm The ratio between the number density N 2 of the intermetallic compound having a diameter of 0.5 μm or more, N 2 / N 1 is 1.2 or more, and the sphere equivalent particle size existing in the region A is between the metals of 0.5 μm or more. The aluminum alloy fin material, wherein the compound has a number density N 1 of 2 × 10 4 pieces / mm 2 or more. 前記金属間化合物が晶出物であることを特徴とする請求項1記載のアルミニウム合金フィン材。 The aluminum alloy fin material according to claim 1, wherein the intermetallic compound is a crystallized product. 前記アルミニウム合金フィン材が、デンドライト2次枝間隔が35μm以下の領域を80%以上有する鋳塊から製造されることを特徴とするアルミニウム合金フィン材。 The aluminum alloy fin material, wherein the aluminum alloy fin material is manufactured from an ingot having 80% or more of a region having a dendrite secondary branch interval of 35 μm or less. 前記鋳塊が鋳型による1次冷却と冷却水による2次冷却の2段階の冷却を備える鋳造方法を用いて、その厚みが80〜300mmに鋳造された鋳塊であることを特徴とするアルミニウム合金フィン材の製造方法。 The aluminum ingot is characterized in that the ingot is an ingot cast to a thickness of 80 to 300 mm using a casting method including two-stage cooling of primary cooling by a mold and secondary cooling by cooling water. Manufacturing method of fin material. 前記鋳造方法がダイレクトチル法であることを特徴とする請求項4記載のアルミニウム合金フィン材の製造方法。 The method for producing an aluminum alloy fin material according to claim 4, wherein the casting method is a direct chill method.
JP2003376647A 2003-11-06 2003-11-06 Aluminum alloy fin material, and its production method Pending JP2005139505A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003376647A JP2005139505A (en) 2003-11-06 2003-11-06 Aluminum alloy fin material, and its production method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003376647A JP2005139505A (en) 2003-11-06 2003-11-06 Aluminum alloy fin material, and its production method

Publications (1)

Publication Number Publication Date
JP2005139505A true JP2005139505A (en) 2005-06-02

Family

ID=34687625

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003376647A Pending JP2005139505A (en) 2003-11-06 2003-11-06 Aluminum alloy fin material, and its production method

Country Status (1)

Country Link
JP (1) JP2005139505A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007023340A (en) * 2005-07-15 2007-02-01 Sumitomo Light Metal Ind Ltd Aluminum alloy sheet for positive-pressure can top, and method for producing the same
JP2007152421A (en) * 2005-12-08 2007-06-21 Furukawa Sky Kk Aluminum alloy brazing sheet
WO2009101896A1 (en) 2008-02-12 2009-08-20 Kabushiki Kaisha Kobe Seiko Sho Aluminum alloy laminate
US7850796B2 (en) * 2007-08-20 2010-12-14 Denso Corporation Aluminum alloy fin material for brazing
JP2012126950A (en) * 2010-12-14 2012-07-05 Mitsubishi Alum Co Ltd Aluminum alloy fin material for heat exchanger and heat exchanger using the fin material
US20140360712A1 (en) * 2012-01-27 2014-12-11 Uacj Corporation Aluminum alloy material for heat exchanger fin, manufacturing method for same, and heat exchanger using the aluminum alloy material
EP3018224A1 (en) * 2013-07-05 2016-05-11 UACJ Corporation Aluminum alloy fin material for heat exchanger and method for producing same

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007023340A (en) * 2005-07-15 2007-02-01 Sumitomo Light Metal Ind Ltd Aluminum alloy sheet for positive-pressure can top, and method for producing the same
JP2007152421A (en) * 2005-12-08 2007-06-21 Furukawa Sky Kk Aluminum alloy brazing sheet
US7850796B2 (en) * 2007-08-20 2010-12-14 Denso Corporation Aluminum alloy fin material for brazing
US8343635B2 (en) 2008-02-12 2013-01-01 Kobe Steel, Ltd. Multi-layered sheet of aluminum alloys
EP2479303A1 (en) 2008-02-12 2012-07-25 Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) Multi-layered sheet of aluminum alloys
WO2009101896A1 (en) 2008-02-12 2009-08-20 Kabushiki Kaisha Kobe Seiko Sho Aluminum alloy laminate
CN104708867A (en) * 2008-02-12 2015-06-17 株式会社神户制钢所 Multi-layered sheet of aluminum alloys
JP2012126950A (en) * 2010-12-14 2012-07-05 Mitsubishi Alum Co Ltd Aluminum alloy fin material for heat exchanger and heat exchanger using the fin material
US20140360712A1 (en) * 2012-01-27 2014-12-11 Uacj Corporation Aluminum alloy material for heat exchanger fin, manufacturing method for same, and heat exchanger using the aluminum alloy material
EP2808410A4 (en) * 2012-01-27 2016-01-20 Uacj Corp Aluminum alloy for heat exchanger fin and manufacturing method therefor, as well as heat exchanger using said aluminum alloy
US10024611B2 (en) * 2012-01-27 2018-07-17 Uacj Corporation Aluminum alloy material for heat exchanger fin, manufacturing method for same, and heat exchanger using the aluminum alloy material
EP3018224A1 (en) * 2013-07-05 2016-05-11 UACJ Corporation Aluminum alloy fin material for heat exchanger and method for producing same
EP3018224A4 (en) * 2013-07-05 2017-04-05 UACJ Corporation Aluminum alloy fin material for heat exchanger and method for producing same
US10161693B2 (en) 2013-07-05 2018-12-25 Uacj Corporation Aluminum alloy fin material for heat exchangers, and method of producing the same

Similar Documents

Publication Publication Date Title
JP5854954B2 (en) High-strength aluminum alloy fin material and manufacturing method thereof
JP5186185B2 (en) High-strength aluminum alloy material for automobile heat exchanger fins excellent in formability and erosion resistance used for fin material for high-strength automobile heat exchangers manufactured by brazing, and method for producing the same
JP4725019B2 (en) Aluminum alloy fin material for heat exchanger, manufacturing method thereof, and heat exchanger provided with aluminum alloy fin material
JP2007031778A (en) High strength aluminum alloy fin material and producing method therefor
JP6247225B2 (en) Aluminum fin alloy and manufacturing method thereof
EP1100975B1 (en) High conductivity aluminum fin alloy
JP2008308761A (en) Method for producing high strength aluminum alloy material for automobile heat exchanger having excellent erosion resistance and used for high strength automobile heat exchanger member produced by brazing
WO2015141698A1 (en) Aluminum alloy fin material for heat exchanger, method for manufacturing same, and heat exchanger
JP2008081762A (en) Cu-Cr-BASED COPPER ALLOY FOR ELECTRONIC MATERIAL
CN105734368B (en) Aluminum alloy fin material, method for producing same, and heat exchanger provided with same
JP5195837B2 (en) Aluminum alloy fin material for heat exchanger
JP6407253B2 (en) Aluminum alloy clad material excellent in corrosion resistance and brazing and method for producing the same
JP2005139505A (en) Aluminum alloy fin material, and its production method
JP5545798B2 (en) Method for producing aluminum alloy fin material for heat exchanger
JP2005002383A (en) Method of producing high strength aluminum alloy fin material for heat exchanger
JP4574036B2 (en) Aluminum alloy for fin material of heat exchanger and manufacturing method of fin material of heat exchanger
JP2002256402A (en) Method of producing fin material for use in heat exchanger
JP2007146264A (en) Aluminum alloy fin material
JP6307331B2 (en) Aluminum alloy fin material for heat exchanger excellent in room temperature strength, high temperature strength and corrosion resistance after brazing heat and method for producing the same
JP6154224B2 (en) Aluminum alloy fin material for heat exchanger and manufacturing method thereof
JP3735700B2 (en) Aluminum alloy fin material for heat exchanger and method for producing the same
JP6154225B2 (en) Aluminum alloy fin material for heat exchanger and manufacturing method thereof
JP2002256403A (en) Method of producing fin material for use in heat exchanger
JP2011190538A (en) Fin material of high strength aluminum alloy for heat exchanger

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061004

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081015

A131 Notification of reasons for refusal

Effective date: 20081028

Free format text: JAPANESE INTERMEDIATE CODE: A131

RD03 Notification of appointment of power of attorney

Effective date: 20081113

Free format text: JAPANESE INTERMEDIATE CODE: A7423

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081222

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20091006