JP5195837B2 - Aluminum alloy fin material for heat exchanger - Google Patents

Aluminum alloy fin material for heat exchanger Download PDF

Info

Publication number
JP5195837B2
JP5195837B2 JP2010161635A JP2010161635A JP5195837B2 JP 5195837 B2 JP5195837 B2 JP 5195837B2 JP 2010161635 A JP2010161635 A JP 2010161635A JP 2010161635 A JP2010161635 A JP 2010161635A JP 5195837 B2 JP5195837 B2 JP 5195837B2
Authority
JP
Japan
Prior art keywords
fin material
brazing
aluminum alloy
tensile strength
resistance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2010161635A
Other languages
Japanese (ja)
Other versions
JP2010255120A (en
Inventor
義人 沖
秀紀 鈴木
治男 杉山
敏也 穴見
智浩 佐々木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Light Metal Co Ltd
Original Assignee
Nippon Light Metal Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Light Metal Co Ltd filed Critical Nippon Light Metal Co Ltd
Priority to JP2010161635A priority Critical patent/JP5195837B2/en
Publication of JP2010255120A publication Critical patent/JP2010255120A/en
Application granted granted Critical
Publication of JP5195837B2 publication Critical patent/JP5195837B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

本発明は、ろう付け性に優れた熱交換器用アルミニウム合金フィン材およびその製造方法に関し、詳しくは、ラジエータ、カーヒータ、カーエアコンなどのようにフィンと作動流体通路構成材料とがろう付けにより接合される熱交換器に用いられるアルミニウム合金フィン材であって、ろう付け前の強度が適当であるためフィン成形が容易で、つまりろう付け前の強度が高すぎてフィン成形が困難となることが無く、しかも、ろう付け後の強度が高く、且つ伝熱特性、耐エロージョン性、耐サグ性、犠牲陽極効果、自己耐食性に優れた熱交換器用アルミニウム合金フィン材およびその製造方法に関する。   TECHNICAL FIELD The present invention relates to an aluminum alloy fin material for a heat exchanger excellent in brazing and a method for manufacturing the same, and more specifically, a fin and a working fluid passage component material are joined by brazing, such as a radiator, a car heater, and a car air conditioner. Aluminum alloy fin material used in heat exchangers, and it is easy to form fins because the strength before brazing is appropriate, that is, the strength before brazing is too high and it is not difficult to form fins. In addition, the present invention relates to an aluminum alloy fin material for a heat exchanger that has high strength after brazing and is excellent in heat transfer characteristics, erosion resistance, sag resistance, sacrificial anode effect, and self-corrosion resistance, and a method for producing the same.

自動車のラジエータ、エアコン、インタークーラー、オイルクーラーなどの熱交換器は、Al−Cu系合金、Al−Mn系合金、Al−Mn−Cu系合金などからなる作動流体通路構成材料と、Al−Mn系合金などからなるフィンとをろう付けすることにより組立てられる。フィン材には、作動流体通路構成材料を防食するために犠牲陽極効果が要求されるとともに、ろう付け時の高温加熱により変形したり、ろうが浸透したりしないように優れた耐サグ性、耐エロージョン性が要求される。   Heat exchangers for automobile radiators, air conditioners, intercoolers, oil coolers, etc. are composed of working fluid passage materials composed of Al-Cu alloys, Al-Mn alloys, Al-Mn-Cu alloys, and Al-Mn alloys. It is assembled by brazing a fin made of an alloy or the like. The fin material is required to have a sacrificial anode effect in order to prevent the working fluid passage constituent material from being corroded, and has excellent sag resistance and resistance to prevent deformation due to high temperature heating during brazing and penetration of the braze. Erosion is required.

フィン材としてJIS 3003、JIS 3203などのAl−Mn系アルミニウム合金が使用されるのは、Mnがろう付け時の変形やろうの浸食を防ぐために有効に作用するためである。Al−Mn系合金フィン材に犠牲陽極効果を付与するためには、この合金にZn、Sn、Inなどを添加して電気化学的に卑にする方法(特許文献1(特開昭62−120455号公報))などがあり、耐高温座屈性(耐サグ性)をさらに向上させるためには、Al−Mn系合金にCr、Ti、Zrなどを含有させる方法(特許文献2(特開昭50−118919号公報))などがある。   The reason why Al-Mn aluminum alloys such as JIS 3003 and JIS 3203 are used as the fin material is that Mn acts effectively to prevent deformation during brazing and erosion of the brazing. In order to impart the sacrificial anode effect to the Al—Mn alloy fin material, a method of adding Zn, Sn, In, or the like to this alloy to make it electrochemically base (Patent Document 1 (Japanese Patent Laid-Open No. 62-120455)). In order to further improve the high temperature buckling resistance (sag resistance), a method in which an Al—Mn based alloy contains Cr, Ti, Zr, etc. No. 50-118919))).

しかし、最近では、熱交換器の軽量化、コスト低減がますます強く要求され、作動流体通路構成材料、フィン材などの熱交換器構成材料をさらに薄肉化することが必要となってきている。しかし、例えばフィンを薄肉化すると伝熱断面積が小さくなるために熱交換性能が低下し、製品としての熱交換器の強度、耐久性にも問題が生じるところから、一層高い伝熱性能とろう付け後の強度、耐サグ性、耐エロージョン性、自己耐食性が望まれている。   Recently, however, there is an increasing demand for weight reduction and cost reduction of heat exchangers, and it is necessary to further reduce the thickness of heat exchanger constituent materials such as working fluid passage constituent materials and fin materials. However, for example, if the fins are made thinner, the heat transfer cross-sectional area becomes smaller and the heat exchange performance deteriorates, causing problems with the strength and durability of the heat exchanger as a product. The strength, sag resistance, erosion resistance and self-corrosion resistance after application are desired.

従来のAl−Mn系合金では、ろう付け時の加熱によりMnが固溶するため、熱伝導率が低下するという問題点がある。この難点を解決するフィン材として、Mn含有量を0.8wt%以下に制限し、Zr:0.02〜0.2wt%およびSi:0.1〜0.8wt%を含むアルミニウム合金が提案されている(特許文献3(特公昭63−23260号公報))。この合金は改善された熱伝導率を有するが、Mnが少ないためろう付け後の強度が不十分で、熱交換器として使用中にフィン倒れや変形が生じ易く、また電位が十分に卑でないために犠牲陽極効果が小さいという欠点がある。   A conventional Al-Mn alloy has a problem that thermal conductivity is lowered because Mn is dissolved by heating during brazing. As a fin material that solves this problem, an aluminum alloy that limits the Mn content to 0.8 wt% or less and contains Zr: 0.02 to 0.2 wt% and Si: 0.1 to 0.8 wt% has been proposed. (Patent Document 3 (Japanese Patent Publication No. 63-23260)). This alloy has improved thermal conductivity, but because Mn is low, the strength after brazing is insufficient, fins are liable to collapse and deform during use as a heat exchanger, and the potential is not sufficiently low. However, the sacrificial anode effect is small.

一方、アルミニウム合金溶湯を注湯してスラブを鋳造する際の冷却速度を速くすることで、Si、Mn含有量などを0.05〜1.5質量%としてもスラブの段階で晶出している金属間化合物のサイズを最大値5μm以下と小さくすることが可能となり、このようなスラブから圧延工程を経ることで、フィン材の疲労特性を向上させる提案もなされている(特許文献4(特開2001−226730号公報))。しかし、当該発明は疲労寿命を向上させることが目的であり、又スラブを鋳造する際の冷却速度を速くする手段については鋳造スラブを薄くするなどの記載はあるものの、実操業規模における双ベルト鋳造機による薄スラブ連続鋳造などの具体的な開示は見られない。
特開昭62−120455号公報 特開昭50−118919号公報 特公昭63−23260号公報 特開2001−226730号公報
On the other hand, by increasing the cooling rate when casting the slab by pouring molten aluminum alloy, the crystallization of the slab crystallizes even if the Si, Mn content, etc. is 0.05-1.5 mass%. It has become possible to reduce the size of the intermetallic compound to a maximum value of 5 μm or less, and a proposal has been made to improve the fatigue characteristics of the fin material by performing a rolling process from such a slab (Patent Document 4 (Japanese Patent Laid-Open No. 2003-32083). 2001-226730 gazette)). However, the present invention is intended to improve the fatigue life, and although there is a description of thinning the casting slab as a means for increasing the cooling rate when casting the slab, it is a twin belt casting on an actual operation scale. There is no specific disclosure of thin slab continuous casting by machine.
Japanese Patent Laid-Open No. Sho 62-120455 JP 50-118919 A Japanese Patent Publication No. 63-23260 JP 2001-226730 A

本発明の目的は、フィン成形が容易な適度のろう付け前強度を有し、しかもろう付け後には高い強度を有し、且つ耐サグ性、耐エロージョン性、自己耐食性、犠牲陽極効果に優れた熱交換器用アルミニウム合金フィン材およびその製造方法を提供することである。   The object of the present invention is to have a moderate strength before brazing that allows easy fin molding, and a high strength after brazing, and is excellent in sag resistance, erosion resistance, self-corrosion resistance, and sacrificial anode effect. To provide an aluminum alloy fin material for a heat exchanger and a method for producing the same.

上記の目的を達成するために、本発明の熱交換器用アルミニウム合金フィン材の製造方法は、Si:0.8〜1.4wt%、Fe:0.15〜0.7wt%、Mn:1.5〜3.0wt%、Zn:0.5〜2.5wt%を含み、さらに不純物としてのMgを0.05wt%以下に限定し、残部が通常の不純物とAlからなる溶湯を注湯して、双ベルト式鋳造機により厚さ5〜10mmの薄スラブを連続的に鋳造した後、板厚0.05〜2.0mmに冷間圧延し、350〜500°Cで中間焼鈍を施し、冷延率10〜96%の冷間圧延を行って最終板厚を40〜200μmとした後、必要に応じて保持温度300〜400°Cで最終焼鈍(軟化処理)を施すことを特徴とする。本発明は以下に記載する5つの実施形態を含む。連続鋳造した薄スラブは、一旦ロールに巻き取った後に冷間圧延を行なう。   In order to achieve the above object, the method for producing an aluminum alloy fin material for a heat exchanger according to the present invention includes Si: 0.8 to 1.4 wt%, Fe: 0.15 to 0.7 wt%, Mn: 1. 5 to 3.0 wt%, Zn: 0.5 to 2.5 wt%, Mg as an impurity is limited to 0.05 wt% or less, and the remainder is poured with a normal impurity and Al. After continuously casting a thin slab with a thickness of 5 to 10 mm by a twin belt type casting machine, it is cold-rolled to a thickness of 0.05 to 2.0 mm, subjected to intermediate annealing at 350 to 500 ° C., and cooled. After performing cold rolling with a ductility of 10 to 96% to a final plate thickness of 40 to 200 μm, final annealing (softening treatment) is performed at a holding temperature of 300 to 400 ° C. as necessary. The present invention includes five embodiments described below. The continuously cast thin slab is once wound on a roll and then cold-rolled.

Si:0.8〜1.4wt%、Fe:0.15〜0.7wt%、Mn:1.5〜3.0wt%、Zn:0.5〜2.5wt%を含み、さらに不純物としてのMgを0.05wt%以下に限定し、残部が通常の不純物とAlからなり、ろう付前の抗張力が240MPa以下、且つろう付後の抗張力が150MPa以上であることを特徴とする、高強度で且つ伝熱特性、耐エロージョン性、耐サグ性、犠牲陽極効果、自己耐食性に優れた熱交換器用高強度アルミニウム合金フィン材が本発明の第1の実施形態である。   Si: 0.8-1.4 wt%, Fe: 0.15-0.7 wt%, Mn: 1.5-3.0 wt%, Zn: 0.5-2.5 wt%, and further as impurities High strength, characterized in that Mg is limited to 0.05 wt% or less, the balance consists of ordinary impurities and Al, the tensile strength before brazing is 240 MPa or less, and the tensile strength after brazing is 150 MPa or more. In addition, a high-strength aluminum alloy fin material for heat exchangers excellent in heat transfer characteristics, erosion resistance, sag resistance, sacrificial anode effect, and self-corrosion resistance is the first embodiment of the present invention.

Si:0.8〜1.4wt%、Fe:0.15〜0.7wt%、Mn:1.5〜3.0wt%、Zn:0.5〜2.5wt%を含み、さらに不純物としてのMgを0.05wt%以下に限定し、残部が通常の不純物とAlからなり、ろう付前の抗張力が240MPa以下、且つろう付後の抗張力が150MPa以上、且つろう付後の再結晶粒径が500μm以上であることを特徴とする、高強度で且つ伝熱特性、耐エロージョン性、耐サグ性、犠牲陽極効果、自己耐食性に優れた熱交換器用高強度アルミニウム合金フィン材が本発明の第2の実施形態である。   Si: 0.8-1.4 wt%, Fe: 0.15-0.7 wt%, Mn: 1.5-3.0 wt%, Zn: 0.5-2.5 wt%, and further as impurities Mg is limited to 0.05 wt% or less, the balance is made of ordinary impurities and Al, the tensile strength before brazing is 240 MPa or less, the tensile strength after brazing is 150 MPa or more, and the recrystallized grain size after brazing is A high-strength aluminum alloy fin material for heat exchangers having high strength and excellent heat transfer characteristics, erosion resistance, sag resistance, sacrificial anode effect, and self-corrosion resistance, characterized by being 500 μm or more is the second aspect of the present invention. It is an embodiment.

Si:0.8〜1.4wt%、Fe:0.15〜0.7wt%、Mn:1.5〜3.0wt%、Zn:0.5〜2.5wt%を含み、さらに不純物としてのMgを0.05wt%以下に限定し、残部が通常の不純物とAlからなる溶湯を注湯して、双ベルト式鋳造機により厚さ5〜10mmの薄スラブを連続的に鋳造してロールに巻き取った後、板厚0.05〜0.4mmに冷間圧延し、保持温度350〜500°Cで中間焼鈍を施し、冷延率10〜50%で冷間圧延を行って最終板厚を40〜200μmとすることを特徴とする、ろう付前の抗張力が240MPa以下、且つろう付後の抗張力が150MPa以上の熱交換器用高強度アルミニウム合金フィン材の製造方法が本発明の第3の実施形態である。   Si: 0.8-1.4 wt%, Fe: 0.15-0.7 wt%, Mn: 1.5-3.0 wt%, Zn: 0.5-2.5 wt%, and further as impurities The Mg is limited to 0.05 wt% or less, the molten metal consisting of ordinary impurities and Al is poured, and a thin slab having a thickness of 5 to 10 mm is continuously cast into a roll by a twin belt type casting machine. After winding, it is cold-rolled to a thickness of 0.05 to 0.4 mm, subjected to intermediate annealing at a holding temperature of 350 to 500 ° C., and cold-rolled at a cold rolling rate of 10 to 50% to obtain a final thickness A method for producing a high-strength aluminum alloy fin material for a heat exchanger having a tensile strength before brazing of 240 MPa or less and a tensile strength after brazing of 150 MPa or more, characterized in that the tensile strength of the present invention is 40 to 200 μm. It is an embodiment.

Si:0.8〜1.4wt%、Fe:0.15〜0.7wt%、Mn:1.5〜3.0wt%、Zn:0.5〜2.5wt%を含み、さらに不純物としてのMgを0.05wt%以下に限定し、残部が通常の不純物とAlからなる溶湯を注湯して、双ベルト式鋳造機により厚さ5〜10mmの薄スラブを連続的に鋳造してロールに巻き取った後、板厚0.08〜2.0mmに冷間圧延し、350〜500°Cで中間焼鈍を施し、冷延率50〜96%の冷間圧延を行って最終板厚40〜200μmとした後、保持温度300〜400°Cの最終焼鈍を施すことを特徴とする、ろう付前の抗張力が240MPa以下、且つろう付後の抗張力が150MPa以上の熱交換器用高強度アルミニウム合金フィン材の製造方法が本発明の第4の実施形態である。   Si: 0.8-1.4 wt%, Fe: 0.15-0.7 wt%, Mn: 1.5-3.0 wt%, Zn: 0.5-2.5 wt%, and further as impurities The Mg is limited to 0.05 wt% or less, the molten metal consisting of ordinary impurities and Al is poured, and a thin slab having a thickness of 5 to 10 mm is continuously cast into a roll by a twin belt type casting machine. After winding, the sheet is cold-rolled to a thickness of 0.08 to 2.0 mm, subjected to intermediate annealing at 350 to 500 ° C., and cold-rolled at a cold rolling rate of 50 to 96% to obtain a final thickness of 40 to A high-strength aluminum alloy fin for heat exchangers having a tensile strength before brazing of 240 MPa or less and a tensile strength after brazing of 150 MPa or more, which is subjected to final annealing at a holding temperature of 300 to 400 ° C. after 200 μm The manufacturing method of the material is the fourth embodiment of the present invention.

Si:0.8〜1.4wt%、Fe:0.15〜0.7wt%、Mn:1.5〜3.0wt%、Zn:0.5〜2.5wt%を含み、さらに不純物としてのMgを0.05wt%以下に限定し、残部が通常の不純物とAlからなる溶湯を注湯して、双ベルト式鋳造機により厚さ5〜10mmの薄スラブを連続的に鋳造してロールに巻き取った後、板厚0.08〜2.0mmに冷間圧延し、350〜500°Cの中間焼鈍を、連続焼鈍炉により昇温速度100°C/分以上、且つ保持時間5分以内で行った後、冷延率50〜96%の冷間圧延を行って最終板厚40〜200μmとした後、保持温度300〜400°Cの最終焼鈍を施すことを特徴とする、ろう付前の抗張力が240MPa以下、且つろう付後の抗張力が150MPa以上の熱交換器用高強度アルミニウム合金フィン材の製造方法が第5の発明である。   Si: 0.8-1.4 wt%, Fe: 0.15-0.7 wt%, Mn: 1.5-3.0 wt%, Zn: 0.5-2.5 wt%, and further as impurities The Mg is limited to 0.05 wt% or less, the molten metal consisting of ordinary impurities and Al is poured, and a thin slab having a thickness of 5 to 10 mm is continuously cast into a roll by a twin belt type casting machine. After winding, it is cold-rolled to a thickness of 0.08 to 2.0 mm, and an intermediate annealing at 350 to 500 ° C. is performed at a heating rate of 100 ° C./min or more and a holding time within 5 minutes in a continuous annealing furnace. After performing in the above, cold rolling with a cold rolling rate of 50 to 96% is performed to a final thickness of 40 to 200 μm, and then final annealing at a holding temperature of 300 to 400 ° C. is performed. High strength aluminum for heat exchangers with a tensile strength of 240 MPa or less and a tensile strength after brazing of 150 MPa or more A fifth aspect of the present invention is a method for producing a copper alloy fin material.

本発明者は、熱交換器用フィン材に対する薄肉化の要求を満足するアルミニウム合金フィン材を開発するために、強度特性、伝熱性能、耐サグ性、耐エロージョン性、自己耐食性および犠牲陽極効果について、従来のDCスラブ鋳造からの圧延材と双ベルト式連続鋳造からの圧延材の比較を行いつつ、その組成、中間焼鈍条件、圧下率との関係について種々の検討を行った結果、本発明を完成した。   In order to develop an aluminum alloy fin material that satisfies the requirements for thinning the heat exchanger fin material, the present inventor is concerned with strength characteristics, heat transfer performance, sag resistance, erosion resistance, self-corrosion resistance, and sacrificial anode effect. As a result of various investigations on the relationship between the composition, intermediate annealing conditions, and rolling reduction while comparing the rolled material from the conventional DC slab casting and the rolled material from the twin belt type continuous casting, the present invention completed.

本発明の熱交換器用アルミニウム合金フィン材における合金成分の意義および限定理由を以下に説明する。   The significance and reasons for limitation of the alloy components in the aluminum alloy fin material for heat exchangers of the present invention will be described below.

〔Si:0.8〜1.4wt%〕
Siは、Fe、Mnと共存してろう付け時にサブミクロンレベルのAl−(Fe・Mn)−Si系の化合物を生成し、強度を向上させ、同時にMnの固溶量を減少させて熱伝導率を向上させる。Siの含有量が0.8wt%未満ではその効果が十分でなく、1.4wt%を超えると、ろう付け時にフィン材の溶融を生じるおそれがある。従って、好ましい含有範囲は0.8〜1.4wt%である。Siのさらに好ましい含有量は0.9〜1.4wt%の範囲である。
[Si: 0.8 to 1.4 wt%]
Si coexists with Fe and Mn to form submicron-level Al- (Fe · Mn) -Si compounds during brazing, improving strength, and simultaneously reducing the amount of Mn solid solution to conduct heat. Improve the rate. If the Si content is less than 0.8 wt%, the effect is not sufficient. If it exceeds 1.4 wt%, the fin material may be melted during brazing. Therefore, a preferable content range is 0.8 to 1.4 wt%. A more preferable content of Si is in the range of 0.9 to 1.4 wt%.

〔Fe:0.15〜0.7wt%〕
Feは、Mn、Siと共存してろう付け時にサブミクロンレベルのAl−(Fe・Mn)−Si系の化合物を生成し、強度を向上させるとともに、Mnの固溶量を減少させて熱伝導率を向上させる。Feの含有量が0.15wt%未満では高純度の地金を必要とするため製造コストが高くなり好ましくない。0.7wt%を超えると合金の鋳造時に粗大なAl−(Fe・Mn)−Si系晶出物が生成して板材の製造が困難となる。従って、好ましい含有範囲は0.15〜0.7wt%である。Feのさらに好ましい含有量は0.17〜0.6wt%の範囲である。
[Fe: 0.15 to 0.7 wt%]
Fe coexists with Mn and Si to produce submicron-level Al- (Fe · Mn) -Si compounds during brazing, improving strength and reducing Mn solid solution to conduct heat. Improve the rate. If the Fe content is less than 0.15 wt%, a high-purity metal is required, which is not preferable because the production cost increases. If it exceeds 0.7 wt%, coarse Al- (Fe.Mn) -Si-based crystallized products are produced during casting of the alloy, making it difficult to produce a plate material. Therefore, a preferable content range is 0.15-0.7 wt%. A more preferable content of Fe is in the range of 0.17 to 0.6 wt%.

〔Mn:1.5〜3.0wt%〕
Mnは、Fe、Siと共存させることによりろう付け時にサブミクロンレベルのAl−(Fe・Mn)−Si系化合物として高密度に析出して、ろう付け後の合金材の強度を向上させる。また、サブミクロンレベルのAl−(Fe・Mn)−Si系析出物は強い再結晶阻止作用を有するため再結晶粒が500μm以上と粗大になり、耐サグ性と耐エロージョン性が向上する。Mnが1.5wt%未満ではその効果が十分でなく、3.0wt%を超えると合金の鋳造時に粗大なAl−(Fe・Mn)−Si系晶出物が生成して板材の製造が困難となるとともに、Mnの固溶量が増加して熱伝導率が低下する。従って、好ましい含有範囲は1.5〜3.0wt%である。Mnのさらに好ましい含有量は1.8〜3.0wt%である。
[Mn: 1.5 to 3.0 wt%]
By coexisting with Fe and Si, Mn precipitates at a high density as a sub-micron level Al— (Fe · Mn) —Si compound at the time of brazing, and improves the strength of the alloy material after brazing. Further, since the submicron level Al- (Fe.Mn) -Si-based precipitate has a strong recrystallization inhibiting action, the recrystallized grains become coarser to 500 μm or more, and the sag resistance and erosion resistance are improved. If Mn is less than 1.5 wt%, the effect is not sufficient, and if it exceeds 3.0 wt%, coarse Al- (Fe · Mn) -Si-based crystallized products are produced during casting of the alloy, making it difficult to produce a plate material. At the same time, the solid solution amount of Mn increases and the thermal conductivity decreases. Therefore, a preferable content range is 1.5 to 3.0 wt%. A more preferable content of Mn is 1.8 to 3.0 wt%.

〔Zn:0.5〜2.5wt%〕
Znは、フィン材の電位を卑にし、犠牲陽極効果を与える。含有量が0.5wt%未満ではその効果が十分でなく、2.5wt%を超えると材料の自己耐食性が劣化し、また、Znの固溶によって熱伝導率が低下する。従って、好ましい含有範囲は0.5〜2.5wt%である。Znのさらに好ましい含有量は1.0〜1.5wt%の範囲である。
[Zn: 0.5 to 2.5 wt%]
Zn lowers the potential of the fin material and provides a sacrificial anode effect. If the content is less than 0.5 wt%, the effect is not sufficient, and if it exceeds 2.5 wt%, the self-corrosion resistance of the material is deteriorated, and the thermal conductivity is lowered by solid solution of Zn. Therefore, a preferable content range is 0.5 to 2.5 wt%. A more preferable content of Zn is in the range of 1.0 to 1.5 wt%.

〔Mg:0.05wt%以下〕
Mgは、ろう付け性に影響し、含有量が0.05wt%を超えるとろう付け性を害するおそれがある。とくにフッ化物系フラックスろう付けの場合、フラックスの成分であるフッ素(F)と合金中のMgとが反応し易くなり、MgF2 などの化合物が生成することに起因してろう付け時に有効に作用するフラックスの絶対量が不足し、ろう付け不良が生じ易くなる。従って、不純物としてのMgの含有量は0.05wt%以下に限定する。
[Mg: 0.05 wt% or less]
Mg affects the brazing property, and if the content exceeds 0.05 wt%, the brazing property may be impaired. Particularly in the case of fluoride-based flux brazing, fluorine (F), which is a component of the flux, easily reacts with Mg in the alloy, and works effectively during brazing due to the formation of compounds such as MgF 2. The absolute amount of flux to be used is insufficient, and brazing defects are likely to occur. Therefore, the content of Mg as an impurity is limited to 0.05 wt% or less.

Mg以外の不純物成分については、Cuは材料の電位を貴にするため0.2wt%以下に制限するのが好ましく、Cr、Zr、Ti、Vは、微量でも材料の熱伝導率を著しく低下させるので、これらの元素の合計含有量は0.20wt%以下に限定するのが好ましい。   For impurity components other than Mg, Cu is preferably limited to 0.2 wt% or less in order to make the potential of the material noble, and Cr, Zr, Ti, and V significantly reduce the thermal conductivity of the material even in a small amount. Therefore, the total content of these elements is preferably limited to 0.20 wt% or less.

次に、本発明における薄スラブの鋳造条件、中間焼鈍条件、最終冷延率の意義および限定理由を以下に説明する。   Next, the meaning of the casting conditions, the intermediate annealing conditions, the final cold rolling rate of the thin slab in the present invention, and the reasons for limitation will be described below.

〔薄スラブの鋳造条件〕
双ベルト鋳造法は、上下に対峙し水冷されている回転ベルト間に溶湯を注湯してベルト面からの冷却で溶湯を凝固させてスラブとし、ベルトの反注湯側より該スラブを連続して引き出してコイル状に巻き取る連続鋳造方法である。
本発明においては、鋳造するスラブの厚さは5〜10mmが好ましい。この厚さであると板厚中央部の凝固速度も速く、均一組織でしかも本発明範囲の組成であると粗大な化合物の少ない、およびろう付け後において結晶粒径の大きい優れた諸性質を有するフィン材とすることができる。
[Thin slab casting conditions]
In the double belt casting method, molten metal is poured between rotating belts facing each other up and down, and the molten metal is solidified by cooling from the belt surface to form a slab. It is a continuous casting method that is drawn out and wound into a coil.
In the present invention, the thickness of the cast slab is preferably 5 to 10 mm. With this thickness, the solidification rate in the central part of the plate thickness is fast, and with a uniform structure and with a composition within the range of the present invention, there are few coarse compounds and excellent properties with a large crystal grain size after brazing. It can be a fin material.

双ベルト式鋳造機による薄スラブ厚さが5mm未満であると、単位時間当たりに鋳造機を通過するアルミニウム量が小さくなりすぎて、鋳造が困難になる。逆に厚さが10mmを超えると、ロールによる巻取りができなくなるため、スラブ厚さの範囲を5〜10mmとするのが好ましい。   When the thickness of the thin slab by the twin belt type casting machine is less than 5 mm, the amount of aluminum passing through the casting machine per unit time becomes too small and casting becomes difficult. On the other hand, if the thickness exceeds 10 mm, winding with a roll cannot be performed, so the slab thickness range is preferably 5 to 10 mm.

なお、溶湯の凝固時の鋳造速度は5〜15m/分 であることが好ましく、ベルト内で凝固が完了することが望ましい。鋳造速度が5m/分 未満の場合、鋳造に時間が掛かりすぎて生産性が低下するため、好ましくない。鋳造速度が15m/分 を超える場合、アルミニウム溶湯の供給が追いつかず、所定の形状の薄スラブを得ることが困難となる。   The casting speed during the solidification of the molten metal is preferably 5 to 15 m / min, and it is desirable that the solidification is completed within the belt. When the casting speed is less than 5 m / min, casting takes too much time and productivity is lowered, which is not preferable. When the casting speed exceeds 15 m / min, the supply of molten aluminum cannot catch up, making it difficult to obtain a thin slab having a predetermined shape.

〔中間焼鈍条件〕
中間焼鈍の保持温度は350〜500°Cが好ましい。中間焼鈍の保持温度が350°C未満の場合、十分な軟化状態を得ることができない。しかし、中間焼鈍の保持温度が500°Cを超えると、ろう付け時に析出する固溶Mnの多くが高温での中間焼鈍時に比較的大きなAl−(Fe・Mn)−Si系化合物として析出してしまうため、ろう付け時の再結晶阻止作用が弱まって再結晶粒径が500μm未満となり、耐サグ性と耐エロージョン性が低下する。
[Intermediate annealing conditions]
The holding temperature of the intermediate annealing is preferably 350 to 500 ° C. When the holding temperature of the intermediate annealing is less than 350 ° C., a sufficient softened state cannot be obtained. However, when the holding temperature of intermediate annealing exceeds 500 ° C, most of the solid solution Mn that precipitates during brazing precipitates as a relatively large Al- (Fe · Mn) -Si compound during intermediate annealing at high temperature. Therefore, the recrystallization inhibiting action at the time of brazing is weakened, the recrystallized grain size becomes less than 500 μm, and the sag resistance and erosion resistance are lowered.

中間焼鈍の保持時間は特に限定する必要はないが、1〜5時間の範囲とすることが好ましい。中間焼鈍の保持時間が1時間未満では、コイル全体の温度が不均一なままで、板中における均一な再結晶組織の得られない可能性があるので好ましくない。中間焼鈍の保持時間が5時間を超えると、固溶Mnの析出が進行してろう付け後の再結晶粒径500μm以上を安定して確保する上で不利になるばかりでなく、処理に時間が掛かりすぎて生産性が低下するため、好ましくない。   The holding time of the intermediate annealing is not particularly limited, but is preferably in the range of 1 to 5 hours. If the holding time of the intermediate annealing is less than 1 hour, the temperature of the entire coil remains non-uniform, and a uniform recrystallized structure in the plate may not be obtained. If the holding time of the intermediate annealing exceeds 5 hours, precipitation of the solid solution Mn proceeds and not only is disadvantageous in securing a recrystallized grain size of 500 μm or more after brazing, but also the processing time is increased. This is not preferable because it is too much and the productivity is lowered.

中間焼鈍処理時の昇温速度および冷却速度は特に限定する必要はないが、30°C/時間以上とすることが好ましい。中間焼鈍処理時の昇温速度および冷却速度が30°C/時間未満の場合、固溶Mnの析出が進行してろう付け後の再結晶粒径500μm以上を安定して確保する上で不利であるばかりでなく、処理に時間が掛かりすぎて生産性が低下するので、好ましくない。   The temperature increase rate and the cooling rate during the intermediate annealing treatment are not particularly limited, but are preferably 30 ° C./hour or more. When the heating rate and cooling rate during the intermediate annealing process are less than 30 ° C / hour, precipitation of the solid solution Mn proceeds, which is disadvantageous in ensuring stable recrystallization grain size of 500 μm or more after brazing. Not only that, but the process takes too much time and productivity is lowered, which is not preferable.

連続焼鈍炉による中間焼鈍の温度は350〜500°Cが好ましい。350°C未満の場合、十分な軟化状態を得ることができない。しかし、保持温度が500°Cを超えると、ろう付け時に析出する固溶Mnの多くが高温での中間焼鈍時に比較的大きなAl−(Fe・Mn)−Si系化合物として析出してしまうため、ろう付け時の再結晶阻止作用が弱まって再結晶粒径が500μm未満となり、耐サグ性と耐エロージョン性が低下する。   The intermediate annealing temperature in the continuous annealing furnace is preferably 350 to 500 ° C. When it is less than 350 ° C., a sufficient softened state cannot be obtained. However, when the holding temperature exceeds 500 ° C, most of the solid solution Mn that precipitates during brazing is precipitated as a relatively large Al- (Fe · Mn) -Si compound during intermediate annealing at a high temperature. The recrystallization inhibiting action at the time of brazing is weakened, the recrystallized grain size is less than 500 μm, and the sag resistance and erosion resistance are lowered.

連続焼鈍の保持時間は5分以内とすることが好ましい。連続焼鈍の保持時間が5分を超えると、固溶Mnの析出が進行してろう付け後の再結晶粒径500μm以上を安定して確保する上で不利になるばかりでなく、処理に時間が掛かりすぎて生産性が低下するため、好ましくない。   The holding time for continuous annealing is preferably within 5 minutes. If the holding time of continuous annealing exceeds 5 minutes, precipitation of solid solution Mn proceeds and not only is disadvantageous in securing a recrystallized grain size of 500 μm or more after brazing, but also processing time is increased. This is not preferable because it is too much and the productivity is lowered.

連続焼鈍処理時の昇温速度および冷却速度は、昇温速度については100°C/分以上とすることが好ましい。連続焼鈍処理時の昇温速度が100°C/分未満の場合、処理に時間が掛かりすぎて生産性が低下するため、好ましくない。   The heating rate and cooling rate during the continuous annealing treatment are preferably 100 ° C./min or more for the heating rate. When the rate of temperature increase during the continuous annealing process is less than 100 ° C./min, the process takes too much time and productivity is lowered, which is not preferable.

〔最終冷延率〕
最終冷延率は10〜96%が好ましい。最終冷延率が10%未満の場合、冷間圧延で蓄積される歪エネルギーが少なく、ろう付け時の昇温過程で再結晶が完了しないため、耐サグ性と耐エロージョン性が低下する。最終冷延率が96%を超えると圧延時の耳割れが顕著になり歩留まりが低下する。なお、組成によっては製品強度が高くなり過ぎて、フィン成形において所定のフィン形状を得ることが困難になるときには、最終冷延板に保持温度300〜400°Cで1〜3時間程度の最終焼鈍(軟化処理)を行っても諸特性を損なうことはない。特に連続焼鈍炉により中間焼鈍を施した後、最終冷間圧延された板に、更に保持温度300〜400°Cで1〜3時間程度の最終焼鈍(軟化処理)を施したフィン材は、フィン成形性に優れており、しかもろう付け後の強度も高く、耐サグ性に優れている。
[Final cold rolling rate]
The final cold rolling rate is preferably 10 to 96%. When the final cold rolling rate is less than 10%, the strain energy accumulated by cold rolling is small, and recrystallization is not completed in the temperature rising process during brazing, so the sag resistance and erosion resistance are lowered. When the final cold rolling rate exceeds 96%, the ear cracks at the time of rolling become remarkable and the yield decreases. When the product strength becomes too high depending on the composition and it is difficult to obtain a predetermined fin shape in fin molding, the final cold rolled sheet is subjected to final annealing at a holding temperature of 300 to 400 ° C. for about 1 to 3 hours. (Softening treatment) does not impair various properties. In particular, after performing intermediate annealing with a continuous annealing furnace, the fin material obtained by subjecting the final cold-rolled sheet to final annealing (softening treatment) at a holding temperature of 300 to 400 ° C. for about 1 to 3 hours is a fin material. It has excellent moldability, high strength after brazing, and excellent sag resistance.

本発明のアルミニウム合金フィン材は、双ベルト式鋳造機により厚さ5〜10mmの薄スラブを連続的に鋳造しロールに巻き取った後、板厚0.05〜2.0mmに冷間圧延し、保持温度350〜500°Cで中間焼鈍を施し、冷延率10〜96%の冷間圧延を行って最終板厚40〜200μmとした後、必要に応じて保持温度300〜400°Cの最終焼鈍(軟化処理)を施したものとする。この板材は、所定幅にスリッティングした後コルゲート加工して、作動流体通路用材料、例えば、ろう材を被覆した3003合金などからなるクラッド板からなる偏平管と交互に積層し、ろう付け接合することにより熱交換器ユニットとする。   The aluminum alloy fin material of the present invention continuously casts a thin slab having a thickness of 5 to 10 mm with a twin-belt casting machine, wound up on a roll, and then cold-rolled to a thickness of 0.05 to 2.0 mm. Then, intermediate annealing is performed at a holding temperature of 350 to 500 ° C., and cold rolling with a cold rolling rate of 10 to 96% is performed to obtain a final thickness of 40 to 200 μm. It shall be subjected to final annealing (softening treatment). This plate material is slitted to a predetermined width and then corrugated, and alternately laminated with a flat tube made of a clad plate made of a material for working fluid passage, for example, 3003 alloy coated with a brazing material, and brazed and joined. Therefore, a heat exchanger unit is obtained.

本発明の方法によれば、双ベルト式鋳造機による薄スラブ鋳造時、スラブ中にAl−(Fe・Mn)−Si系化合物が均一かつ微細に晶出するとともに、母相Al中に過飽和に固溶したMnとSiが、ろう付け時の高温加熱によってサブミクロンレベルのAl−(Fe・Mn)−Si相として高密度に析出する。これにより熱伝導性を大きく低下させるマトリックス中の固溶Mn量が少なくなるため、ろう付け後の電気伝導率は高くなり、優れた熱伝導性を示す。また、同様の理由により、微細に晶出したAl−(Fe・Mn)−Si系化合物、および高密度に析出したサブミクロンレベルのAl−(Fe・Mn)−Si相が塑性変形時の転位の動きを妨げるため、ろう付け後の最終板の抗張力は高い値を示す。また、ろう付け時に析出するサブミクロンレベルのAl−(Fe・Mn)−Si相は強い再結晶阻止作用を有するため、ろう付け後の再結晶粒径が500μm以上となるため耐サグ性が良好となり、同様の理由から、ろう付け後にも優れた耐エロージョン性を示すようになる。また、本発明においてMnの含有量を1.5wt%以上に限定したことから、ろう付け後の再結晶粒の平均粒径が3000μmを超えても抗張力が低下することはない。   According to the method of the present invention, at the time of thin slab casting by a twin belt type casting machine, Al- (Fe · Mn) -Si compound is crystallized uniformly and finely in the slab and supersaturated in the matrix Al. The solid solution Mn and Si are deposited at a high density as a sub-micron level Al- (Fe.Mn) -Si phase by high-temperature heating during brazing. As a result, the amount of solid solution Mn in the matrix that greatly lowers the thermal conductivity is reduced, so that the electrical conductivity after brazing is increased and excellent thermal conductivity is exhibited. For the same reason, the Al- (Fe · Mn) -Si compound finely crystallized and the submicron-level Al- (Fe · Mn) -Si phase precipitated at high density are dislocations during plastic deformation. The tensile strength of the final plate after brazing shows a high value. In addition, the sub-micron-level Al- (Fe.Mn) -Si phase that precipitates during brazing has a strong recrystallization-inhibiting action, so that the recrystallized grain size after brazing is 500 μm or more, thus providing good sag resistance. Thus, for the same reason, it exhibits excellent erosion resistance even after brazing. In the present invention, since the Mn content is limited to 1.5 wt% or more, the tensile strength does not decrease even if the average grain size of the recrystallized grains after brazing exceeds 3000 μm.

さらに、双ベルト式鋳造機は溶湯の凝固速度が速く、薄スラブ中に晶出するAl−(Fe・Mn)−Si系化合物は均一で微細なものとなる。そのため最終のフィン材において、粗大な晶出物起因の円相当径で5μm以上の第二相粒子が存在しなくなり、優れた自己耐食性を発現するようになる。   Further, the twin-belt casting machine has a high solidification rate of the molten metal, and the Al— (Fe · Mn) —Si compound crystallized in the thin slab becomes uniform and fine. Therefore, in the final fin material, second phase particles having a circle-equivalent diameter of 5 μm or more due to coarse crystals are not present, and excellent self-corrosion resistance is exhibited.

このように双ベルト式連続鋳造法により薄スラブを鋳造することにより、スラブ鋳塊におけるAl−(Fe・Mn)−Si化合物を均一かつ微細とし、ろう付け後のサブミクロンレベルのAl−(Fe・Mn)−Si相析出物を高密度にするとともに、ろう付け後の再結晶粒径を500μm以上と粗くすることで、ろう付け後の強度、熱伝導率、耐サグ性、耐エロージョン性、自己腐食性を高め、同時にZnを含有させることによって材料の電位を卑にして犠牲陽極効果を優れたものとし、耐久性の優れた熱交換器用アルミニウム合金フィン材とすることができる。   Thus, by casting the thin slab by the twin belt type continuous casting method, the Al— (Fe · Mn) —Si compound in the slab ingot is made uniform and fine, and the submicron level Al— (Fe・ Mn) -Si phase precipitates are densified and the recrystallized grain size after brazing is roughened to 500 μm or more, so that strength after brazing, thermal conductivity, sag resistance, erosion resistance, By increasing the self-corrosion property and simultaneously containing Zn, the potential of the material can be reduced, the sacrificial anode effect can be improved, and the aluminum alloy fin material for heat exchanger having excellent durability can be obtained.

以下、本発明の実施例を比較例と対比して説明する。
〔実施例1〕
本発明例および比較例として、表1に示した合金番号1から13の組成の合金溶湯を溶製し、セラミックス製フィルターを通過させて双ベルト鋳造鋳型に注湯し、鋳造速度8m/分 で厚さ7mmのスラブを得た。溶湯の凝固時冷却速度は50°C/秒 であった。該スラブを表2に示した板厚まで冷間圧延して板状とし、昇温速度50°C/時間、表2に示した各温度で2時間保持、冷却速度50°C/時間(100°Cまで)の中間焼鈍を施して軟化させた。次いでこの板を冷間圧延して厚さ50μmのフィン材とした。
Examples of the present invention will be described below in comparison with comparative examples.
[Example 1]
As an example of the present invention and a comparative example, an alloy melt having the composition of alloy numbers 1 to 13 shown in Table 1 was melted, passed through a ceramic filter, poured into a twin belt casting mold, and cast at a casting speed of 8 m / min. A 7 mm thick slab was obtained. The cooling rate during solidification of the molten metal was 50 ° C./second. The slab is cold-rolled to the plate thickness shown in Table 2 to form a plate, and is heated at a rate of 50 ° C / hour for 2 hours and kept at each temperature shown in Table 2 for a cooling rate of 50 ° C / hour (100 Softening was performed by intermediate annealing (up to ° C). Next, this plate was cold-rolled to obtain a fin material having a thickness of 50 μm.

比較例として、表1に示した合金番号14、15の組成の合金溶湯を溶製し、常法のDC鋳造(厚さ500mm、凝固時冷却速度約1°C/秒 )、面削、均熱処理、熱間圧延、冷間圧延(厚さ84μm)、中間焼鈍(400°C×2時間)、冷間圧延により厚さ50μmのフィン材を製造した。
得られた本発明例および比較例のフィン材について下記(1)〜(3)の測定を行なった。
As a comparative example, molten alloys having the compositions of alloy numbers 14 and 15 shown in Table 1 were melted, and DC casting (thickness: 500 mm, cooling rate at solidification: about 1 ° C / second), surface grinding, leveling, A fin material having a thickness of 50 μm was manufactured by heat treatment, hot rolling, cold rolling (thickness 84 μm), intermediate annealing (400 ° C. × 2 hours), and cold rolling.
The following measurements (1) to (3) were performed on the fin materials of the present invention examples and comparative examples.

(1)得られたフィン材の抗張力(MPa )
(2)ろう付け温度を想定して600〜605°C×3.5分間加熱し、冷却後下記項目を測定した。
[1] 抗張力(MPa )
[2] 表面を電解研磨してバーカー法で再結晶粒組織を現出後、切断法で圧延方向に平行な再結晶粒径(μm)
[3] 銀塩化銀電極を照合電極として、5%食塩水中で60分浸漬後の自然電位(mV)
[4] 銀塩化銀電極を照合電極として、5%食塩水中で電位掃引速度20mV/分で行ったカソード分極より求めた腐食電流密度(μA/cm2
[5] JIS−H0505記載の導電性試験法で導電率[%IACS]
(1) Tensile strength of the obtained fin material (MPa)
(2) Heating was performed at 600 to 605 ° C. for 3.5 minutes assuming a brazing temperature, and the following items were measured after cooling.
[1] Tensile strength (MPa)
[2] After the surface is electropolished and the recrystallized grain structure is revealed by the Barker method, the recrystallized grain size parallel to the rolling direction by the cutting method (μm)
[3] Natural potential (mV) after immersion for 60 minutes in 5% saline using a silver-silver chloride electrode as a reference electrode
[4] Corrosion current density (μA / cm 2 ) obtained from cathodic polarization using a silver-silver chloride electrode as a reference electrode in a 5% saline solution at a potential sweep rate of 20 mV / min
[5] Conductivity [% IACS] according to the conductivity test method described in JIS-H0505

(3)LWS T 8801記載のサグ試験方法で、突き出し長さ50mmとしたサグ量(mm)
(4)コルゲート状に加工したフィン材を非腐食性弗化物系フラックスを塗布した厚さ0.25mmのブレージングシート(ろう材4045合金クラッド率8%)のろう材面上に載置(負荷荷重324g)し、昇温速度50°C/分 で605°Cまで加熱して5分間保持した。冷却後、ろう付け断面を観察し、フィン材再結晶粒界のエロージョンが軽微なものを良(○印)とし、エロージョンが激しくフィン材の溶融が顕著なものを不良(×印)とした。なおコルゲート形状は下記のとおりとした。
コルゲート形状:高さ2.3mm×幅21mm×ピッチ3.4mm、10山
結果を表3に示す。
(3) Sag amount (mm) with a protruding length of 50 mm by the sag test method described in LWS T 8801
(4) Place the fin material processed into corrugated on the brazing material surface of brazing sheet (brazing material 4045 alloy clad rate 8%) with non-corrosive fluoride flux applied (load load) 324 g), heated to 605 ° C. at a heating rate of 50 ° C./min and held for 5 minutes. After cooling, the brazed cross section was observed, and a slight erosion of the fin material recrystallized grain boundary was judged as good (◯ mark), and a erosion was severe and the fin material was markedly melted as bad (x mark). The corrugated shape was as follows.
Corrugated shape: height 2.3 mm × width 21 mm × pitch 3.4 mm, 10 peaks The results are shown in Table 3.

Figure 0005195837
Figure 0005195837

Figure 0005195837
Figure 0005195837

Figure 0005195837
Figure 0005195837

表3の結果から、本発明によるフィン材は、ろう付け後の抗張力、耐エロージョン性、耐サグ性、犠牲陽極効果および自己耐食性のいずれも良好であることが判る。比較例のフィン材番号8は、Mn含有量が低く、ろう付け後抗張力が低い。比較例のフィン材番号9は、Mn含有量が多く、鋳造時に巨大晶出物が生成し、冷間圧延中に割れを生じフィン材が得られなかった。比較例のフィン材番号10は、Si含有量が低く、ろう付け後抗張力が低い。比較例のフィン材番号11は、Si含有量が多く、耐エロージョン性が劣った。比較例のフィン材番号12は、Fe含有量が多く、鋳造時に巨大晶出物が生成し、冷間圧延中に割れを生じフィン材が得られなかった。   From the results in Table 3, it can be seen that the fin material according to the present invention has good tensile strength, erosion resistance, sag resistance, sacrificial anode effect and self-corrosion resistance after brazing. Fin material number 8 of the comparative example has a low Mn content and a low tensile strength after brazing. The fin material No. 9 of the comparative example had a large Mn content, a large crystallized product was generated during casting, cracks occurred during cold rolling, and a fin material was not obtained. Fin material number 10 of the comparative example has a low Si content and a low tensile strength after brazing. Fin material number 11 of the comparative example had a large Si content and was inferior in erosion resistance. The fin material No. 12 of the comparative example had a large Fe content, a large crystallized product was generated during casting, cracks occurred during cold rolling, and a fin material was not obtained.

比較例のフィン材番号13は、Zn含有量が低く、自然電位が貴であり、犠牲陽極効果が劣った。比較例のフィン材番号14は、Zn含有量が多く、腐食電流密度が高く、自己耐食性が劣った。比較例のフィン材番号15、16は、最終Red.が高く、ろう付け前の抗張力が高く、フィン成形が困難であった。比較例のフィン材番号17は、中間焼鈍の温度が低く、ろう付け前の抗張力が高く、またサグ量も大きく耐サグ性が劣った。比較例のフィン材番号18は、中間焼鈍の温度が高く、ろう付け後の再結晶粒径が小さく耐エロージョン性が劣り、またサグ量も大きく耐サグ性が劣った。常法のDC鋳造(厚さ500mm、凝固時冷却速度約1°C/秒 )、面削、均熱処理、熱間圧延、冷間圧延(厚さ84μm)、中間焼鈍(400°C×2時間)、冷間圧延により得られたMn含有量の低い比較例のフィン材番号19およびSi、Mn含有量の低い比較例のフィン材番号20は、ろう付け後の抗張力が低く、ろう付け後の再結晶粒径が小さく耐エロージョン性が劣り、また腐食電流密度が高く、自己耐食性が劣った。   Fin material number 13 of the comparative example had a low Zn content, a natural potential was noble, and the sacrificial anode effect was inferior. Fin material number 14 of the comparative example had a large Zn content, a high corrosion current density, and a poor self-corrosion resistance. The fin material numbers 15 and 16 of the comparative examples are the final Red. The tensile strength before brazing was high and fin molding was difficult. The fin material number 17 of the comparative example had a low intermediate annealing temperature, a high tensile strength before brazing, a large sag amount, and a poor sag resistance. Fin material No. 18 of the comparative example had a high intermediate annealing temperature, a small recrystallized grain size after brazing, a poor erosion resistance, a large sag amount, and a poor sag resistance. Conventional DC casting (thickness 500 mm, solidification cooling rate approx. 1 ° C / second), chamfering, soaking, hot rolling, cold rolling (thickness 84 μm), intermediate annealing (400 ° C x 2 hours) ), The fin material number 19 of the comparative example with low Mn content obtained by cold rolling and the fin material number 20 of the comparative example with low Si and Mn content have low tensile strength after brazing, The recrystallized grain size was small, the erosion resistance was poor, the corrosion current density was high, and the self-corrosion resistance was poor.

〔実施例2〕
実施例および比較例として実施例1で得られた表1に示した合金番号1および2の組成の溶製双ベルト鋳造スラブを分割し、表4に示した各製板条件で中間焼鈍板厚まで冷間圧延した後、連続焼鈍炉において昇温速度100°C/秒で加熱し、450°C保持なしで、水冷却により中間焼鈍を施して軟化させた。次いで該板を表4に示した最終冷延率で冷間圧延して厚さ50μmとした。さらに、実施例のフィン材番号21〜23および比較例のフィン材番号27〜30については、昇温速度50°C/時間、表4に示した各温度で2時間保持、冷却速度50°C/時間(100°Cまで)の最終焼鈍を施して軟化させフィン材とした。これらフィン材について、実施例1に示した方法で、ろう付け前の抗張力、ろう付け後の抗張力、ろう付け後の再結晶粒径、耐エロージョン性、耐サグ性、犠牲陽極効果および自己耐食性を評価した結果を表4に示す。
[Example 2]
As an example and a comparative example, the melted double belt cast slab having the composition of alloy numbers 1 and 2 shown in Table 1 obtained in Example 1 was divided, and the thickness of the intermediate annealed plate under each of the plate making conditions shown in Table 4 After being cold-rolled to a low temperature, it was heated at a heating rate of 100 ° C./second in a continuous annealing furnace and softened by subjecting it to intermediate annealing by water cooling without maintaining 450 ° C. Next, the plate was cold-rolled at a final cold rolling rate shown in Table 4 to a thickness of 50 μm. Furthermore, about the fin material numbers 21-23 of an Example and the fin material numbers 27-30 of a comparative example, temperature rising rate 50 degreeC / hour, hold | maintaining for 2 hours at each temperature shown in Table 4, cooling rate 50 degreeC / Final (up to 100 ° C.) and softened to obtain a fin material. For these fin materials, the tensile strength before brazing, the tensile strength after brazing, the recrystallized grain size after brazing, the erosion resistance, the sag resistance, the sacrificial anode effect and the self-corrosion resistance are obtained by the method shown in Example 1. Table 4 shows the evaluation results.

Figure 0005195837
Figure 0005195837

Figure 0005195837
Figure 0005195837

表5に示されているように、本発明方法で製造されたフィン材番号21、22、および23は、ろう付け後の抗張力、耐エロージョン性、耐サグ性、犠牲陽極効果および自己耐食性のいずれも良好である。これに対し、比較例の最終冷延率が高く最終焼鈍を行わないフィン材番号24、25、および26はろう付け前の抗張力が高くフィン成形が困難であり、またサグ量も大きく耐サグ性に劣る。比較例の最終焼鈍温度の低いフィン材番号27、28は、ろう付け前の抗張力が高くフィン成形が困難であり、またサグ量も大きく耐サグ性に劣る。比較例の最終焼鈍温度の高いフィン材番号29、30は、ろう付け前の抗張力は低いがO材となってしまい、伸びがそれぞれ、11%、12%と高くフィン成形が困難で劣ることが分かる。
(発明の効果)
As shown in Table 5, the fin material numbers 21, 22, and 23 manufactured by the method of the present invention are any of tensile strength, erosion resistance, sag resistance, sacrificial anode effect and self-corrosion resistance after brazing. Is also good. On the other hand, the fin material numbers 24, 25, and 26, which have a high final cold rolling ratio in the comparative example and do not perform final annealing, have high tensile strength before brazing and are difficult to form, and have a large sag amount and sag resistance. Inferior to The fin material numbers 27 and 28 having a low final annealing temperature in the comparative example have high tensile strength before brazing and are difficult to form, and have a large sag amount and poor sag resistance. The fin material numbers 29 and 30 having a high final annealing temperature in the comparative example have low tensile strength before brazing but become O material, and the elongations are respectively high as 11% and 12%, which makes the fin forming difficult and inferior. I understand.
(Effect of the invention)

本発明によれば、フィン成形が容易な適度なろう付け前の抗張力、およびろう付け後において高い強度を有し、伝熱特性、耐サグ性、耐エロージョン性、自己耐食性、犠牲陽極効果に優れた熱交換器用アルミニウム合金フィン材が提供される。   According to the present invention, it has an appropriate tensile strength before brazing that facilitates fin molding and high strength after brazing, and is excellent in heat transfer characteristics, sag resistance, erosion resistance, self-corrosion resistance, and sacrificial anode effect. An aluminum alloy fin material for a heat exchanger is provided.

Claims (3)

Si:0.8〜1.4wt%、Fe:0.15〜0.7wt%、Mn:1.5〜3.0wt%、Zn:0.5〜2.5wt%を含み、さらに不純物としてのMgを0.05wt%以下に限定し、不純物としてのCuを0.02wt%以下に制限し、残部が通常の不純物とAlからなるアルミニウム合金のみからなる熱交換器用アルミニウム合金フィン材であって、
ろう付前の抗張力が240MPa以下であり、更に
加熱温度600〜605℃で3.5分間保持し冷却後に測定したときの抗張力が150MPa以上であり且つ圧延方向に平行な平均再結晶粒径が500〜5000μmであることを特徴とする、
高強度で且つ伝熱特性、耐エロージョン性、耐サグ性、犠牲陽極効果、自己耐食性に優れた熱交換器用アルミニウム合金フィン材
Si: 0.8-1.4 wt%, Fe: 0.15-0.7 wt%, Mn: 1.5-3.0 wt%, Zn: 0.5-2.5 wt%, and further as impurities limiting the Mg below 0.05 wt%, of Cu as an impurity is limited to not more than 0.02 wt%, the balance being a heat exchanger use aluminum alloy fin material consisting only of normal impurities and Al Tona Ru aluminum alloy ,
The tensile strength before brazing is 240 MPa or less, and
Tensile strength when measured after cooling at a heating temperature of 600 to 605 ° C. for 3.5 minutes is 150 MPa or more , and an average recrystallized grain size parallel to the rolling direction is 500 to 5000 μm ,
Aluminum alloy fin material for heat exchangers with high strength and excellent heat transfer characteristics, erosion resistance, sag resistance, sacrificial anode effect, and self-corrosion resistance .
Si:1.0〜1.4wt%、Fe:0.15〜0.55wt%、Mn:1.8〜3.0wt%、Zn:0.5〜2.5wt%を含み、さらに不純物としてのMgを0.05wt%以下に限定し、不純物としてのCuを0.2wt%以下に制限し、残部が通常の不純物とAlからなるアルミニウム合金のみからなる熱交換器用アルミニウム合金フィン材であって、
ろう付前の抗張力が240MPa以下であり、更に
加熱温度600〜605℃で3.5分間保持し冷却後に測定したときの抗張力が150MPa以上であり且つ圧延方向に平行な平均再結晶粒径が500〜5000μmであることを特徴とする、
高強度で且つ伝熱特性、耐エロージョン性、耐サグ性、犠牲陽極効果、自己耐食性に優れた熱交換器用アルミニウム合金フィン材
Si: 1.0 to 1.4 wt%, Fe: 0.15 to 0.55 wt%, Mn: 1.8 to 3.0 wt%, Zn: 0.5 to 2.5 wt%, and further as impurities limiting the Mg below 0.05 wt%, of Cu as an impurity is limited to not more than 0.2 wt%, the balance was in heat exchanger use aluminum alloy fin material consisting only of normal impurities and Al Tona Ru aluminum alloy And
The tensile strength before brazing is 240 MPa or less, and
The tensile strength when measured after cooling at a heating temperature of 600 to 605 ° C. for 3.5 minutes is 150 MPa or more and the average recrystallized grain size parallel to the rolling direction is 500 to 5000 μm,
Aluminum alloy fin material for heat exchangers with high strength and excellent heat transfer characteristics, erosion resistance, sag resistance, sacrificial anode effect, and self-corrosion resistance .
Si:0.8〜1.4wt%、Fe:0.15〜0.7wt%、Mn:2.2〜3.0wt%、Zn:0.5〜2.5wt%を含み、さらに不純物としてのMgを0.05wt%以下に限定し、不純物としてのCuを0.2wt%以下に制限し、残部が通常の不純物とAlからなるアルミニウム合金のみからなる熱交換器用アルミニウム合金フィン材であって、
ろう付前の抗張力が240MPa以下であり、更に
加熱温度600〜605℃で3.5分間保持し冷却後に測定したときの抗張力が150MPa以上であり且つ圧延方向に平行な平均再結晶粒径が500〜5000μmであることを特徴とする、
高強度で且つ伝熱特性、耐エロージョン性、耐サグ性、犠牲陽極効果、自己耐食性に優れた熱交換器用アルミニウム合金フィン材
Si: 0.8 to 1.4 wt%, Fe: 0.15 to 0.7 wt%, Mn: 2.2 to 3.0 wt%, Zn: 0.5 to 2.5 wt%, and further as impurities An aluminum alloy fin material for a heat exchanger that is limited to 0.05 wt% or less of Mg, Cu as an impurity is limited to 0.2 wt% or less, and the balance is composed of only an aluminum alloy composed of ordinary impurities and Al,
The tensile strength before brazing is 240 MPa or less, and
Tensile strength when measured after cooling at a heating temperature of 600 to 605 ° C. for 3.5 minutes is 150 MPa or more, and an average recrystallized grain size parallel to the rolling direction is 500 to 5000 μm,
Aluminum alloy fin material for heat exchangers with high strength and excellent heat transfer characteristics, erosion resistance, sag resistance, sacrificial anode effect, and self-corrosion resistance .
JP2010161635A 2010-07-16 2010-07-16 Aluminum alloy fin material for heat exchanger Expired - Fee Related JP5195837B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010161635A JP5195837B2 (en) 2010-07-16 2010-07-16 Aluminum alloy fin material for heat exchanger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010161635A JP5195837B2 (en) 2010-07-16 2010-07-16 Aluminum alloy fin material for heat exchanger

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2004026749A Division JP4725019B2 (en) 2004-02-03 2004-02-03 Aluminum alloy fin material for heat exchanger, manufacturing method thereof, and heat exchanger provided with aluminum alloy fin material

Publications (2)

Publication Number Publication Date
JP2010255120A JP2010255120A (en) 2010-11-11
JP5195837B2 true JP5195837B2 (en) 2013-05-15

Family

ID=43316351

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010161635A Expired - Fee Related JP5195837B2 (en) 2010-07-16 2010-07-16 Aluminum alloy fin material for heat exchanger

Country Status (1)

Country Link
JP (1) JP5195837B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20140103164A (en) 2011-12-16 2014-08-25 노벨리스 인코퍼레이티드 Aluminium fin alloy and method of making the same
WO2015021383A1 (en) * 2013-08-08 2015-02-12 Novelis Inc. High strength aluminum alloy fin stock for heat exchanger
KR102170006B1 (en) * 2013-09-06 2020-10-26 아르코닉 테크놀로지스 엘엘씨 Aluminum alloy products and methods for producing same
JP6206322B2 (en) * 2014-05-14 2017-10-04 日本軽金属株式会社 Aluminum alloy fin material for heat exchanger excellent in brazing and sag resistance and method for producing the same
ES2826482T3 (en) 2014-08-06 2021-05-18 Novelis Inc Aluminum alloy for heat exchanger fins
JP6951488B2 (en) * 2018-08-28 2021-10-20 藤森工業株式会社 Adhesive film and surface protection film
JP2023018399A (en) * 2021-07-27 2023-02-08 Maアルミニウム株式会社 Aluminum alloy fin material and heat exchanger and method for producing aluminum alloy fin material

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01247542A (en) * 1988-03-29 1989-10-03 Furukawa Alum Co Ltd Sagging-resistant aluminum alloy fin material for heat exchanger
JP2651931B2 (en) * 1988-08-12 1997-09-10 日本製箔株式会社 Aluminum alloy foil for cathode of electrolytic capacitor and method for producing the same
JP3396523B2 (en) * 1993-12-01 2003-04-14 三菱アルミニウム株式会社 Al alloy fin material with excellent post-brazing strength and brazing properties
JPH07106445B2 (en) * 1993-12-02 1995-11-15 第一メテコ株式会社 Aluminum alloy heat exchanger and method of manufacturing the same
JP3847077B2 (en) * 2000-11-17 2006-11-15 住友軽金属工業株式会社 Aluminum alloy fin material for heat exchangers with excellent formability and brazing
JP3967669B2 (en) * 2002-11-25 2007-08-29 三菱アルミニウム株式会社 High strength aluminum alloy fin material for automobile heat exchanger excellent in rolling property and method for producing the same
JP2005060790A (en) * 2003-08-18 2005-03-10 Sumitomo Light Metal Ind Ltd Aluminum alloy brazing fin material for heat exchanger

Also Published As

Publication number Publication date
JP2010255120A (en) 2010-11-11

Similar Documents

Publication Publication Date Title
JP4725019B2 (en) Aluminum alloy fin material for heat exchanger, manufacturing method thereof, and heat exchanger provided with aluminum alloy fin material
JP5371173B2 (en) Manufacturing method of high strength aluminum alloy fin material
JP5854954B2 (en) High-strength aluminum alloy fin material and manufacturing method thereof
JP5055881B2 (en) Manufacturing method of aluminum alloy fin material for heat exchanger and manufacturing method of heat exchanger for brazing fin material
JP5195837B2 (en) Aluminum alloy fin material for heat exchanger
CA2856488C (en) Aluminium fin alloy and method of making the same
JP6978983B2 (en) Aluminum alloy fin material for heat exchanger with excellent buckling resistance and its manufacturing method
JP4123059B2 (en) Manufacturing method of high strength aluminum alloy fin material for heat exchanger
JP5762387B2 (en) Manufacturing method of high strength aluminum alloy fin material
JP7207935B2 (en) Aluminum alloy fin material and heat exchanger
JP5545798B2 (en) Method for producing aluminum alloy fin material for heat exchanger
JP5506732B2 (en) High strength aluminum alloy fin material for heat exchanger
JP5447593B2 (en) Aluminum alloy fin material for heat exchanger
JP2015199993A (en) Production method of aluminum alloy fin material for heat exchanger

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110315

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110408

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120214

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20120327

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130108

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130121

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160215

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5195837

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees