JP3967669B2 - High strength aluminum alloy fin material for automobile heat exchanger excellent in rolling property and method for producing the same - Google Patents

High strength aluminum alloy fin material for automobile heat exchanger excellent in rolling property and method for producing the same Download PDF

Info

Publication number
JP3967669B2
JP3967669B2 JP2002341272A JP2002341272A JP3967669B2 JP 3967669 B2 JP3967669 B2 JP 3967669B2 JP 2002341272 A JP2002341272 A JP 2002341272A JP 2002341272 A JP2002341272 A JP 2002341272A JP 3967669 B2 JP3967669 B2 JP 3967669B2
Authority
JP
Japan
Prior art keywords
fin material
aluminum alloy
strength aluminum
alloy fin
strength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002341272A
Other languages
Japanese (ja)
Other versions
JP2004176091A (en
Inventor
周 黒田
晶 渡部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Aluminum Co Ltd
Original Assignee
Mitsubishi Aluminum Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Aluminum Co Ltd filed Critical Mitsubishi Aluminum Co Ltd
Priority to JP2002341272A priority Critical patent/JP3967669B2/en
Publication of JP2004176091A publication Critical patent/JP2004176091A/en
Application granted granted Critical
Publication of JP3967669B2 publication Critical patent/JP3967669B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Continuous Casting (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、ラジエータなど、特にろう付工法により製造される自動車用熱交換器に使用されるアルミニウム合金フィン材及びその製造方法に関するものである。
【0002】
【従来の技術】
一般に自動車のラジエータなどとして用いられている熱交換器の構造部材であるフィン材は冷媒通路形成体(例えば管材)にAl−Siろう材によりろう付して金属的に結合させ、伝熱面積を広くすることにより熱交換効率の向上を図っている。前記フィン材にはAA1050合金などの純Al系合金、AA3003合金などのAl−Mn系合金、Al−Fe系合金などが用いられている。
近年の自動車の軽量化により自動車用熱交換器もまた軽量化が求められており、フィン材にも薄肉、高強度化が求められている。
従来はフィン材としてAA1050合金、AA3003合金などが用いられているが、高強度化を目的として、Mn:0.6〜2.0%、Si:1.2〜2.5%、Fe:0.05〜2.0%からなる組成で規定した高強度Al合金フィン材(特許文献1参照)や、Mn:0.5〜2.0%、Si:0.4越え〜2%、Ni:0.1〜1.0%からなる組成で規定したAl合金フィン材(特許文献2参照)などが開発されている。
【0003】
【特許文献1】
特開平7−90446号公報(第2頁)
【特許文献2】
特開2000−273565号公報(第2頁)
【0004】
【発明が解決しようとする課題】
しかし、このような従来のフィン材でも高強度を達成するには限界があった。また、高強度を達成させようとすると、圧延性が著しく劣り、圧延時のサイドクラックなどが著しく大きく歩留りが低下したり、圧延中に破断が発生しやすくなるなどの問題が生じる。強度や自己耐食性が不足するものであったり、高強度ではあるが、耐エロージョン性や熱伝導性が不足するものであり、熱伝導性、自己耐食性や耐エロージョン性と強度を全て満足できるものはなかった。いずれの特性も欠けてしまうことによって、熱交換器のフィン材としての必要な特性を満足できなくなるばかりでなく、熱交換器性能の低下が避けられないという問題が生じてきた。
【0005】
そこで、本発明者らは上述のような観点から、高強度で優れた圧延性を保持するフィン材を得るべく研究を行った。この問題は特に、晶出物が粗大化することにより発生することを見出した。
本発明は、上記の知見に基づき、圧延性に優れた自動車熱交換器用高強度アルミニウム合金フィン材及びその製造方法を提供するものである。
【0006】
【課題を解決するための手段】
上記課題を解決するため本発明の圧延性に優れた自動車熱交換器用高強度アルミニウム合金フィン材のうち、請求項1記載の発明は、重量%で、Mn:2.0超〜3.0%、Si:0.8〜1.5%、Fe:0.05〜0.4%未満、Zn:0.1〜3.0%、残部がAl及び不可避不純物からなる組成を有し、MnとSiとFeの含有量が、Mn/(Si+Fe)≧1.6の関係式を満足することを特徴とする。
【0007】
請求項2記載の圧延性に優れた自動車熱交換器用高強度アルミニウム合金フィン材は、請求項1記載の発明において、さらに、重量%で、Ni:0.01〜1.0%を含有し、残部がAlと不可避不純物からなる組成を有し、MnとSiとNiの含有量が、Mn−(Si+Ni)≧0の関係式を満足することを特徴とする。
【0008】
請求項3記載の圧延性に優れた自動車熱交換器用高強度アルミニウム合金フィン材は、請求項1又は2記載の発明において、さらに、重量%で、Zr:0.05〜0.20%、Ti:0.01〜0.30%のうちの1種または2種を含有し、残部がAl及び不可避不純物からなる組成を有することを特徴とする。
【0009】
請求項4記載の圧延性に優れた自動車熱交換器用高強度アルミニウム合金フィン材は、請求項1〜3のいずれかに記載の発明において、さらに、重量%で、In:0.001〜0.20%、Sn:0.01〜0.50%のうちの1種または2種を含有し、残部がAl及び不可避不純物からなる組成を有することを特徴とする。
【0010】
請求項5記載の圧延性に優れた自動車熱交換器用高強度アルミニウム合金フィン材の製造方法は、請求項1〜4のいずれかに記載の組成を有する圧延性に優れた自動車熱交換器用高強度アルミニウム合金フィン材の製造方法において、鋳造時の冷却速度を、15〜1000℃/sとすることを特徴とする。
【0011】
以下に、本発明で限定する事項について説明する。
Mn:2.0超〜3.0%
Mnは、金属間化合物として晶出または析出し、ろう付後の強度を向上させる。また、Al−Mn−Si系化合物を形成して、マトリックスのSi固溶度を低くし、マトリックスの融点を向上させることができる。2.0%以下であると上記効果が小さく、3.0%を超えると、粗大晶出物を形成し鋳造性や圧延性が著しく低下する。
【0012】
Si:0.8〜1.5%
Siは、Al−Mn−Si、Al−Fe−Si、Al−Mn−Si−Fe、Zr−Si系化合物として分散あるいはマトリックスに固溶して強度を向上させる。また、このような化合物の形成によりろう付後のMnやZr固溶度を低下させ熱伝導性を向上させる。0.8%未満であると上記効果が小さく、1.5%を超えると、粗大晶出物を形成し鋳造性や圧延性が著しく低下する。また、融点が低下し、ろう付時に溶融する。さらにSi固溶度が増大し、熱伝導性が低下する。
【0013】
Fe:0.05〜0.4%未満
Feは、金属間化合物として晶出または析出し、ろう付後の強度を向上させる。また、Al−Mn−Fe、Al−Fe−Si、Al−Mn−Fe−Si系化合物を形成して、マトリックス中のMnやSi固溶度を低下させ、熱伝導性を向上させる。0.05%未満であると上記効果が小さく、0.4%以上であると、粗大晶出物を形成し鋳造性や圧延性が著しく低下する。
【0014】
Zn:0.1〜3.0%
Znは、非接合部材よりも電位を卑にし、犠牲陽極材として作用する。0.1%未満であると上記効果が小さく、3.0%を超えると自己腐食速度が著しく大きくなる。
【0015】
Mn/(Si+Fe)≧1.6
晶出物を微細化させて、強度の向上とともに圧延性を低下させないことから、上記関係式を満足することが好ましい。関係式が1.6未満であると晶出物が粗大化し圧延性が低下するとともに強度の低下を招くなどの不具合が生じる。
【0016】
Ni:0.01〜1.0%
Niは、金属間化合物として晶出または析出し、ろう付後の強度を向上させる。0.01%未満であると上記効果が小さく、1.0%を越えると自己腐食速度が著しく大きくなる。また、Al−Mn−Ni系の化合物を形成するため、過剰な単体Siを形成し、固相線温度低下を招き、ろう付時に溶融しやすくなる。
【0017】
Mn−(Si+Ni)≧0
化合物を形成しない単体Siがフィン材マトリックスに固溶して融点を低下させるため上記関係式を満足することが好ましい。関係式を満たさない場合は、ろう付熱処理時の溶融ろうによる侵食を受けやすくなったり、フィン材自身が溶融するなどの不具合が生じる。
【0018】
Zr:0.05〜0.20%、Ti:0.01〜0.30%
Zr、Tiは、ろう付後に微細な金属間化合物として分散し、強度を向上させる。Zr:0.05%未満、Ti:0.01%未満であると上記効果が小さく、Zr:0.20%超、Ti:0.30%超であると、鋳造性や圧延性が著しく低下する。
【0019】
In:0.001〜0.20%、Sn:0.01〜0.50%
In、Snは、非接合部材よりも電位を卑にし、犠牲陽極材として作用する。In:0.001%未満、Sn:0.01%未満であると上記効果が小さく、In:0.20%超、Sn:0.50%超であると自己腐食速度が著しく大きくなる。また、圧延性が低下する。
【0020】
鋳造時の冷却速度:15〜1000℃/s
鋳造時の冷却速度を、15〜1000℃/sとすると、冷却速度が速いため、粗大晶出物の形成を抑制することができ、さらなる圧延性の向上と強度向上ができる。なお、冷却速度を1000℃/sより速くしても一層の効果が得られないため、冷却速度は15〜1000℃/sに設定する。
【0021】
【発明の実施の形態】
本発明のフィン材に用いるアルミニウム合金は、上記組成に従って常法により製造することができる。本発明のフィン材は製造方法が限定されるものではない。上記により得られたフィン材は、通常はコルゲート加工を施してフィンとする。上記フィンは、チューブ間に設置するなどして組付けられ、ろう付処理が行われ熱交換器が得られる。
【0022】
【実施例】
表1に示す組成のアルミニウム合金を鋳造時の冷却速度を変えて鋳造し、熱間圧延およびまたは冷間圧延、中間焼鈍、冷間圧延を施すことにより、0.06mmの板厚の圧延材を作製した。
【0023】
ろう付後の引張強さ
ろう付後のフィン材の強度の評価として、フィン材単体を高純度窒素ガス雰囲気中でろう付相当熱処理(600〜610℃×5分、冷却速度100℃/分)を施し引張試験を行い、引張強さを測定した。AA3003合金を用いて作製された従来のフィン材の引張強さが110MPaであることから、引張強さが145MPa以上あったものを十分に強度があると判定した。
【0024】
圧延性
フィン材の圧延性は、圧延後のサイドクラックの合計長さを圧延後の材料の長さで除した値、により評価した。板厚2mmまで圧延後、端面を同一条件に切削し、200mm長さ×100mm幅のサンプルを得た。その後、560℃で60sの中間焼鈍を行った(いずれの材料も完全に軟化させるための条件とした)。その後、0.1mmまで冷間圧延を施し、圧延性を評価した。なお、0.5mm未満のサイドクラックは実質上問題とならないと判断し、0.5mm以上のサイドクラックを対象とした。0.15以下であれば十分な圧延性であると判断した。
【0025】
耐ろう侵食性
ろう付熱処理時のろうによる侵食やフィン材自身の溶融によりフィン材の座屈などについて評価するため、ろう付熱処理相当10℃/minの速度で昇温した際のフィン材溶融開始温度について調査した。ろう付熱処理温度が600℃程度で実施されていることからフィン材溶融開始温度が610℃以上であるものを耐ろう侵食性が十分であると判断した。
【0026】
各評価の結果を表1に示すが、本発明材は、いずれも優れた強度、圧延性を示した。
【0027】
【表1】

Figure 0003967669
【0028】
【発明の効果】
以上説明したように、本発明の圧延性に優れた自動車熱交換器用高強度アルミニウム合金フィン材及びその製造方法によれば、優れた強度、圧延性を有するフィン材が得られる。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an aluminum alloy fin material used for a heat exchanger for automobiles manufactured by a brazing method, such as a radiator, and a method for manufacturing the same.
[0002]
[Prior art]
Generally, the fin material, which is a structural member of a heat exchanger used as a radiator of an automobile, is brazed to a refrigerant passage forming body (for example, a pipe material) with an Al-Si brazing material and is metallically bonded to reduce the heat transfer area. By increasing the width, heat exchange efficiency is improved. As the fin material, a pure Al alloy such as AA1050 alloy, an Al-Mn alloy such as AA3003 alloy, an Al-Fe alloy, or the like is used.
With the recent reduction in weight of automobiles, heat exchangers for automobiles are also required to be reduced in weight, and fin materials are also required to be thin and high in strength.
Conventionally, AA1050 alloy, AA3003 alloy and the like are used as fin materials, but Mn: 0.6 to 2.0%, Si: 1.2 to 2.5%, Fe: 0 for the purpose of increasing the strength. 0.05% to 2.0% high strength Al alloy fin material (see Patent Document 1), Mn: 0.5 to 2.0%, Si: more than 0.4 to 2%, Ni: An Al alloy fin material (see Patent Document 2) defined with a composition of 0.1 to 1.0% has been developed.
[0003]
[Patent Document 1]
JP-A-7-90446 (2nd page)
[Patent Document 2]
JP 2000-273565 A (second page)
[0004]
[Problems to be solved by the invention]
However, even such a conventional fin material has a limit in achieving high strength. Moreover, when trying to achieve high strength, the rollability is remarkably inferior, the side cracks during rolling are remarkably large, the yield decreases, and breakage is likely to occur during rolling. Those that are insufficient in strength and self-corrosion resistance or high in strength but lack erosion resistance and thermal conductivity, and those that satisfy all of the thermal conductivity, self-corrosion resistance, erosion resistance and strength There wasn't. The lack of any of the characteristics has caused problems that not only the characteristics required as the fin material of the heat exchanger cannot be satisfied, but also that the performance of the heat exchanger is inevitably deteriorated.
[0005]
In view of the above, the present inventors have studied to obtain a fin material having high strength and excellent rollability. It has been found that this problem occurs particularly when the crystallized product becomes coarse.
Based on the above findings, the present invention provides a high-strength aluminum alloy fin material for automobile heat exchangers excellent in rollability and a method for producing the same.
[0006]
[Means for Solving the Problems]
Among the high-strength aluminum alloy fin materials for automobile heat exchangers excellent in rollability of the present invention for solving the above-mentioned problems, the invention according to claim 1 is by weight%, Mn: more than 2.0 to 3.0% , Si: 0.8 to 1.5%, Fe: 0.05 to less than 0.4%, Zn: 0.1 to 3.0%, the balance is composed of Al and inevitable impurities, and Mn The contents of Si and Fe satisfy the relational expression of Mn / (Si + Fe) ≧ 1.6.
[0007]
The high-strength aluminum alloy fin material for automobile heat exchanger excellent in rollability according to claim 2 further comprises Ni: 0.01 to 1.0% by weight in the invention according to claim 1, The remainder has a composition composed of Al and inevitable impurities, and the contents of Mn, Si, and Ni satisfy the relational expression of Mn− (Si + Ni) ≧ 0.
[0008]
The high-strength aluminum alloy fin material for automobile heat exchanger excellent in rollability according to claim 3 is the invention according to claim 1 or 2, further comprising, in wt%, Zr: 0.05 to 0.20%, Ti : One or two of 0.01 to 0.30% are contained, and the balance has a composition composed of Al and inevitable impurities.
[0009]
The high-strength aluminum alloy fin material for an automotive heat exchanger excellent in rollability according to claim 4 is the invention according to any one of claims 1 to 3, and further, in wt%, In: 0.001 to 0.00. 20%, Sn: One or two of 0.01 to 0.50% are contained, and the balance is composed of Al and inevitable impurities.
[0010]
The method for producing a high-strength aluminum alloy fin material for automobile heat exchanger excellent in rollability according to claim 5 is a high-strength for automobile heat exchanger excellent in rollability having the composition according to any one of claims 1 to 4. In the manufacturing method of an aluminum alloy fin material, the cooling rate at the time of casting shall be 15-1000 degrees C / s.
[0011]
Below, the matter limited by this invention is demonstrated.
Mn: more than 2.0 to 3.0%
Mn crystallizes or precipitates as an intermetallic compound, and improves the strength after brazing. Moreover, an Al—Mn—Si based compound can be formed to lower the Si solid solubility of the matrix and improve the melting point of the matrix. If it is 2.0% or less, the above effect is small, and if it exceeds 3.0%, a coarse crystallized product is formed and castability and rollability are remarkably lowered.
[0012]
Si: 0.8 to 1.5%
Si is dispersed as Al—Mn—Si, Al—Fe—Si, Al—Mn—Si—Fe, and Zr—Si compounds or is dissolved in a matrix to improve the strength. In addition, the formation of such a compound reduces the solid solubility of Mn and Zr after brazing and improves thermal conductivity. If the content is less than 0.8%, the above effect is small. If the content exceeds 1.5%, coarse crystals are formed, and the castability and rollability are remarkably lowered. Moreover, melting | fusing point falls and it fuse | melts at the time of brazing. Furthermore, Si solid solubility increases and thermal conductivity falls.
[0013]
Fe: 0.05 to less than 0.4% Fe crystallizes or precipitates as an intermetallic compound, and improves the strength after brazing. In addition, Al—Mn—Fe, Al—Fe—Si, and Al—Mn—Fe—Si based compounds are formed to reduce Mn and Si solid solubility in the matrix and improve thermal conductivity. If it is less than 0.05%, the above effect is small, and if it is 0.4% or more, a coarse crystallized product is formed and castability and rollability are remarkably lowered.
[0014]
Zn: 0.1-3.0%
Zn has a lower potential than the non-joining member and acts as a sacrificial anode material. If it is less than 0.1%, the above effect is small, and if it exceeds 3.0%, the self-corrosion rate is remarkably increased.
[0015]
Mn / (Si + Fe) ≧ 1.6
It is preferable to satisfy the above relational expression because the crystallized material is refined so that the strength is improved and the rollability is not lowered. If the relational expression is less than 1.6, the crystallized material is coarsened, and the rollability is lowered and the strength is lowered.
[0016]
Ni: 0.01 to 1.0%
Ni crystallizes or precipitates as an intermetallic compound, and improves the strength after brazing. If it is less than 0.01%, the above effect is small, and if it exceeds 1.0%, the self-corrosion rate is remarkably increased. In addition, since an Al—Mn—Ni based compound is formed, excessive single Si is formed, resulting in a decrease in the solidus temperature and being easily melted during brazing.
[0017]
Mn- (Si + Ni) ≧ 0
It is preferable to satisfy the above relational formula because simple Si that does not form a compound dissolves in the fin material matrix and lowers the melting point. When the relational expression is not satisfied, problems such as being susceptible to erosion due to melting brazing during the brazing heat treatment and melting of the fin material itself occur.
[0018]
Zr: 0.05 to 0.20%, Ti: 0.01 to 0.30%
Zr and Ti are dispersed as fine intermetallic compounds after brazing to improve the strength. When Zr: less than 0.05% and Ti: less than 0.01%, the above effects are small, and when Zr: more than 0.20% and Ti: more than 0.30%, castability and rollability are remarkably lowered. To do.
[0019]
In: 0.001 to 0.20%, Sn: 0.01 to 0.50%
In and Sn have a lower potential than the non-joining member and act as a sacrificial anode material. When In: less than 0.001% and Sn: less than 0.01%, the above effects are small, and when In: more than 0.20% and Sn: more than 0.50%, the self-corrosion rate is remarkably increased. In addition, the rollability is reduced.
[0020]
Cooling rate during casting: 15 to 1000 ° C./s
When the cooling rate at the time of casting is 15 to 1000 ° C./s, the cooling rate is fast, so that formation of coarse crystals can be suppressed, and further improvement in rolling properties and strength can be achieved. In addition, since a further effect is not acquired even if it makes a cooling rate higher than 1000 degrees C / s, a cooling rate is set to 15-1000 degrees C / s.
[0021]
DETAILED DESCRIPTION OF THE INVENTION
The aluminum alloy used for the fin material of the present invention can be produced by a conventional method according to the above composition. The manufacturing method of the fin material of the present invention is not limited. The fin material obtained as described above is usually subjected to corrugation to obtain fins. The fins are assembled, for example, by being installed between tubes, and a brazing process is performed to obtain a heat exchanger.
[0022]
【Example】
An aluminum alloy having the composition shown in Table 1 was cast at a different cooling rate during casting, and subjected to hot rolling and / or cold rolling, intermediate annealing, and cold rolling to obtain a rolled material having a thickness of 0.06 mm. Produced.
[0023]
Tensile strength after brazing As an evaluation of the strength of the fin material after brazing, the fin material itself was brazed equivalently in a high-purity nitrogen gas atmosphere (600 to 610 ° C. × 5 minutes, cooling rate 100 ° C./minute). A tensile test was performed to measure the tensile strength. Since the tensile strength of the conventional fin material produced using the AA3003 alloy was 110 MPa, it was determined that a material having a tensile strength of 145 MPa or more was sufficiently strong.
[0024]
The rollability of the rollable fin material was evaluated by a value obtained by dividing the total length of side cracks after rolling by the length of the material after rolling. After rolling to a plate thickness of 2 mm, the end face was cut under the same conditions to obtain a sample of 200 mm length × 100 mm width. Thereafter, intermediate annealing was performed at 560 ° C. for 60 s (the conditions were set so that all materials were completely softened). Then, cold rolling was performed to 0.1 mm, and rollability was evaluated. In addition, it was judged that the side crack of less than 0.5 mm does not become a problem substantially, and the side crack of 0.5 mm or more was made into object. If it was 0.15 or less, it was judged that the rollability was sufficient.
[0025]
In order to evaluate the erosion caused by brazing during the brazing heat-resistant brazing heat treatment and the buckling of the fin material due to the melting of the fin material itself, the melting of the fin material starts when the temperature is raised at a rate equivalent to brazing heat treatment at 10 ° C / min. The temperature was investigated. Since the brazing heat treatment temperature is about 600 ° C., it was judged that the fin material melting start temperature is 610 ° C. or more has sufficient brazing erosion resistance.
[0026]
The results of each evaluation are shown in Table 1. All of the materials of the present invention exhibited excellent strength and rollability.
[0027]
[Table 1]
Figure 0003967669
[0028]
【The invention's effect】
As described above, according to the high-strength aluminum alloy fin material for automobile heat exchanger excellent in rollability of the present invention and the manufacturing method thereof, a fin material having excellent strength and rollability can be obtained.

Claims (5)

重量%で、Mn:2.0超〜3.0%、Si:0.8〜1.5%、Fe:0.05〜0.4%未満、Zn:0.1〜3.0%、残部がAl及び不可避不純物からなる組成を有し、MnとSiとFeの含有量が、Mn/(Si+Fe)≧1.6の関係式を満足することを特徴とする圧延性に優れた自動車熱交換器用高強度アルミニウム合金フィン材。% By weight, Mn: more than 2.0 to 3.0%, Si: 0.8 to 1.5%, Fe: 0.05 to less than 0.4%, Zn: 0.1 to 3.0%, Automotive heat excellent in rollability, characterized in that the balance is composed of Al and inevitable impurities, and the contents of Mn, Si and Fe satisfy the relational expression of Mn / (Si + Fe) ≧ 1.6 High-strength aluminum alloy fin material for exchangers. さらに、重量%で、Ni:0.01〜1.0%を含有し、MnとSiとNiの含有量が、Mn−(Si+Ni)≧0の関係式を満足することを特徴とする請求項1記載の圧延性に優れた自動車熱交換器用高強度アルミニウム合金フィン材。Furthermore, Ni: 0.01-1.0% is contained by weight%, Content of Mn, Si, and Ni satisfies the relational expression of Mn- (Si + Ni)> = 0. 1. A high-strength aluminum alloy fin material for automobile heat exchangers having excellent rollability according to 1. さらに、重量%で、Zr:0.05〜0.20%、Ti:0.01〜0.30%のうちの1種または2種を含有することを特徴とする請求項1又は2記載の圧延性に優れた自動車熱交換器用高強度アルミニウム合金フィン材。Furthermore, 1% or 2 types of Zr: 0.05-0.20% and Ti: 0.01-0.30% are contained by weight%, The 1 or 2 characterized by the above-mentioned. High strength aluminum alloy fin material for automotive heat exchangers with excellent rolling properties. さらに、重量%で、In:0.001〜0.20%、Sn:0.01〜0.50%のうちの1種または2種を含有することを特徴とする請求項1〜3のいずれかに記載の圧延性に優れた自動車熱交換器用高強度アルミニウム合金フィン材。Furthermore, 1% or 2 types in In: 0.001-0.20% and Sn: 0.01-0.50% are contained by weight%, Any of Claims 1-3 characterized by the above-mentioned. A high-strength aluminum alloy fin material for automobile heat exchangers having excellent rolling properties as described in Crab. 請求項1〜4のいずれかに記載の組成を有する圧延性に優れた自動車熱交換器用高強度アルミニウム合金フィン材の製造方法において、鋳造時の冷却速度を、15〜1000℃/sとすることを特徴とする圧延性に優れた自動車熱交換器用高強度アルミニウム合金フィン材の製造方法。In the manufacturing method of the high intensity | strength aluminum alloy fin material for motor vehicle heat exchangers which has the rolling property which has the composition in any one of Claims 1-4, the cooling rate at the time of casting shall be 15-1000 degrees C / s. A method for producing a high-strength aluminum alloy fin material for automobile heat exchangers with excellent rolling properties.
JP2002341272A 2002-11-25 2002-11-25 High strength aluminum alloy fin material for automobile heat exchanger excellent in rolling property and method for producing the same Expired - Fee Related JP3967669B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002341272A JP3967669B2 (en) 2002-11-25 2002-11-25 High strength aluminum alloy fin material for automobile heat exchanger excellent in rolling property and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002341272A JP3967669B2 (en) 2002-11-25 2002-11-25 High strength aluminum alloy fin material for automobile heat exchanger excellent in rolling property and method for producing the same

Publications (2)

Publication Number Publication Date
JP2004176091A JP2004176091A (en) 2004-06-24
JP3967669B2 true JP3967669B2 (en) 2007-08-29

Family

ID=32703686

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002341272A Expired - Fee Related JP3967669B2 (en) 2002-11-25 2002-11-25 High strength aluminum alloy fin material for automobile heat exchanger excellent in rolling property and method for producing the same

Country Status (1)

Country Link
JP (1) JP3967669B2 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4725019B2 (en) 2004-02-03 2011-07-13 日本軽金属株式会社 Aluminum alloy fin material for heat exchanger, manufacturing method thereof, and heat exchanger provided with aluminum alloy fin material
JP4566729B2 (en) * 2004-12-24 2010-10-20 三菱アルミニウム株式会社 High strength aluminum alloy fin material and heat exchanger for heat exchanger with excellent erosion resistance
JP4669712B2 (en) * 2005-02-17 2011-04-13 古河スカイ株式会社 Brazing fin material and manufacturing method thereof
JP5371173B2 (en) 2005-07-27 2013-12-18 日本軽金属株式会社 Manufacturing method of high strength aluminum alloy fin material
JP5195837B2 (en) * 2010-07-16 2013-05-15 日本軽金属株式会社 Aluminum alloy fin material for heat exchanger
JP5506732B2 (en) * 2011-04-11 2014-05-28 日本軽金属株式会社 High strength aluminum alloy fin material for heat exchanger
JP5762387B2 (en) * 2012-12-04 2015-08-12 日本軽金属株式会社 Manufacturing method of high strength aluminum alloy fin material
RU2752489C1 (en) 2020-12-26 2021-07-28 Общество с ограниченной ответственностью "Институт легких материалов и технологий" Powder material with high thermal conductivity
LU503252B1 (en) * 2022-12-23 2024-06-24 Iskra Isd D O O An aluminium alloy and a method of producing an aluminium alloy

Also Published As

Publication number Publication date
JP2004176091A (en) 2004-06-24

Similar Documents

Publication Publication Date Title
JP4166613B2 (en) Aluminum alloy fin material for heat exchanger and heat exchanger formed by assembling the fin material
JP5049488B2 (en) Method for producing aluminum alloy brazing sheet
CN105734368B (en) Aluminum alloy fin material, method for producing same, and heat exchanger provided with same
US20050150642A1 (en) High-conductivity finstock alloy, method of manufacture and resultant product
JP3967669B2 (en) High strength aluminum alloy fin material for automobile heat exchanger excellent in rolling property and method for producing the same
JPH11131166A (en) Thin aluminum alloy fin material excellent for forming and brazing, and its production
JP5578702B2 (en) Aluminum alloy fin material for heat exchanger and heat exchanger
JP3533434B2 (en) Brazing sheet for aluminum alloy heat exchanger
JP4574036B2 (en) Aluminum alloy for fin material of heat exchanger and manufacturing method of fin material of heat exchanger
JP2009293059A (en) High strength aluminum alloy fin material having excellent erosion resistance, method for producing the same, and automobile heat exchanger
JP4566729B2 (en) High strength aluminum alloy fin material and heat exchanger for heat exchanger with excellent erosion resistance
JPH1088265A (en) Aluminum alloy fin material for heat exchanger, excellent in sacrificial anode effect as well as in strength after brazing
JPH07179971A (en) Aluminum alloy brazing sheet bar for resistance welding
JP3876505B2 (en) Al alloy fin material for heat exchangers with excellent erosion resistance
JP5431046B2 (en) Manufacturing method of brazing structure made of aluminum alloy for heat exchanger excellent in high temperature durability
JP3916020B2 (en) Al alloy fin material for heat exchangers with high erosion resistance and high strength and high thermal conductivity
JPH09302432A (en) Brazing sheet for heat exchanger fin
JP3359115B2 (en) Aluminum alloy fin material for heat exchanger
JP3845851B2 (en) Al alloy fin material for heat exchangers with high erosion resistance and high strength and high thermal conductivity
JPH11131167A (en) Thin aluminum alloy fin material excellent for forming and brazing, and its production
JPH0797652A (en) Production of aluminum alloy brazing sheet fin material and heat exchanger made of aluminum alloy
JP2004176090A (en) Aluminum alloy fin material for heat exchanger having excellent formability, brazability and erosion resistance, and its manufacturing method
WO2023079909A1 (en) Aluminum alloy brazing sheet and method for producing same
JPH09279271A (en) Brazing sheet made of aluminum alloy
JPH1017968A (en) Aluminum alloy clad fin material

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050929

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070523

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070529

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070531

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100608

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110608

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120608

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees