JP3916020B2 - Al alloy fin material for heat exchangers with high erosion resistance and high strength and high thermal conductivity - Google Patents

Al alloy fin material for heat exchangers with high erosion resistance and high strength and high thermal conductivity Download PDF

Info

Publication number
JP3916020B2
JP3916020B2 JP05799098A JP5799098A JP3916020B2 JP 3916020 B2 JP3916020 B2 JP 3916020B2 JP 05799098 A JP05799098 A JP 05799098A JP 5799098 A JP5799098 A JP 5799098A JP 3916020 B2 JP3916020 B2 JP 3916020B2
Authority
JP
Japan
Prior art keywords
weight
fin material
alloy
thermal conductivity
erosion resistance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP05799098A
Other languages
Japanese (ja)
Other versions
JPH11256259A (en
Inventor
保明 磯部
胤治 新保
周 黒田
建 当摩
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Aluminum Co Ltd
Denso Corp
Original Assignee
Mitsubishi Aluminum Co Ltd
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Aluminum Co Ltd, Denso Corp filed Critical Mitsubishi Aluminum Co Ltd
Priority to JP05799098A priority Critical patent/JP3916020B2/en
Publication of JPH11256259A publication Critical patent/JPH11256259A/en
Application granted granted Critical
Publication of JP3916020B2 publication Critical patent/JP3916020B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/147Alloys characterised by their composition
    • H01F1/14766Fe-Si based alloys
    • H01F1/14775Fe-Si based alloys in the form of sheets
    • H01F1/14783Fe-Si based alloys in the form of sheets with insulating coating

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Prevention Of Electric Corrosion (AREA)

Description

【0001】
【発明の属する技術分野】
この発明は、耐エロージョン性に優れた高強度および高熱伝導度を有する熱交換器用Al合金フィン材、特にろう付け工法により製造される自動車用熱交換器の耐エロージョン性に優れた高強度および高熱伝導度を有するAl合金フィン材に関するものである。
【0002】
【従来の技術】
一般に自動車のラジエータなどとして用いられている熱交換器の構造部材であるフィン材は、冷媒通路形成体(例えば、管材)にAl−Si系ろう材によりろう付けして金属的に結合させ、伝熱面積を広くすることにより、熱交換効率の向上を図っている。前記フィン材にはAA1050合金やAA3003合金が用いられており、Al−Si系ろう材にはAA4343合金が用いられている。
【0003】
フィン材を冷媒通路形成体にろう付けする際に、図1の一部拡大断面図に示されるように、フィン材1および冷媒通路形成体2の一部は溶融ろうによって溶解される共にフィン材と冷媒通路形成体の隙間が溶融ろうによって充填されてフィレット3を形成し、このフィレット3によりフィン材1と冷媒通路形成体2の強固な接合がなされている。この場合、フィン材1および冷媒通路形成体2の一部が溶融ろうによって溶解されることをエロージョン(侵食)といい、この侵食された部分をエロージョン部4という。適度な厚さのエロージョン部4の存在はフィン材と冷媒通路形成体の強固な接合に大きく寄与している。
【0004】
前述のように、フィン材1として通常はAA1050合金、AA3003合金などが用いられているが、近年、Fe:0.1〜3重量%を含有し、さらに必要に応じてZn:0.1〜1.5重量%を含有し、残りがAlと不可避不純物からなる組成を有し、超急冷組織を有する高強度を有する熱交換器用Al合金フィン材が開発されており、この熱交換器用Al合金フィン材は従来のフィン材よりも強度が優れていると言われている(特公平6−53904号公報参照)。
【0005】
このフィン材は、高強度を有するところから、従来よりも薄いフィン材とすることができ、従ってAl熱交換器の軽量化および小型化が促進され、さらに熱交換器の組立て時の真空ろう付けや実用時に変形を起すことがなく、犠牲陽極作用の備えているところから熱交換機能を長期に渡って維持させるのに大いに貢献している。
【0006】
【発明が解決しようとする課題】
しかし、この従来のフィン材は、高強度を有するところから従来よりも薄肉化が可能となったが、熱伝導率が不足し、さらにフィン材を冷媒通路形成体にろう付けする際にフィン材が溶融ろうによってエロージョン(侵食)されやすく、このエロージョン(侵食)されやすい薄肉のフィン材を冷媒通路形成体にろう付けすると、図2の拡大断面図に示されるように、エロージョン部4が大きくなってフィレット3に接する部分のフィン材1の肉厚tが極端に薄くなり、最悪の場合はエロージョン部4がフィン材1を貫通し、熱交換器のフィン材として必要な耐圧強度および構造を保てなくなるばかりでなく熱交換機能の低下が避けられないという問題が生じてきた。
【0007】
【課題を解決するための手段】
そこで、本発明者等は、上述のような観点から、高強度および高熱伝導度を有し、さらに従来よりもエロージョン(侵食)しにくい特性(以下、耐エロージョン性と言う)を有するフィン材を得るべく研究を行なった結果、
(イ)Fe:1.0〜2.5重量%と共にCe:0.005〜0.5重量%を含有するAl合金で構成したフィン材は、高強度および高熱伝導度を有すると共に優れた耐エロージョン性を示す、
(ロ)Fe:1.0〜2.5重量%と共にCe:0.005〜0.5重量%を含有し、さらにZr:0.05〜0.20重量%およびZn:0.5〜2.0重量%を含有するAl合金で構成したフィン材は、高強度および高熱伝導度を有すると共に優れた耐エロージョン性を示す、
(ハ)Fe:1.0〜2.5重量%と共にCe:0.005〜0.5重量%を含有し、さらに、Mn:0.1〜0.5重量%、Si:0.1〜0.5重量%、Cu:0.05〜0.7重量%の内の1種または2種以上を含有するAl合金で構成したフィン材は、高強度および高熱伝導度を有すると共に優れた耐エロージョン性を示す、
(ニ)前記(ロ)記載のAl合金に、さらに、Mn:0.1〜0.5重量%、Si:0.1〜0.5重量%、Cu:0.05〜0.7重量%の内の1種または2種以上を含有するAl合金で構成したフィン材は、高強度および高熱伝導度を有すると共に優れた耐エロージョン性を示す、
などの研究結果が得られたのである。
【0008】
この発明は、上記の研究結果にもとづいてなされたものであって、
(1)Fe:1.0〜2.5重量%、Ce:0.005〜0.5重量%を含有し、残りがAlと不可避不純物からなる組成を有するAl合金で構成した耐エロージョン性に優れた高強度および高熱伝導度を有する熱交換器用Al合金フィン材、
(2)Fe:1.0〜2.5重量%、Ce:0.005〜0.5重量%を含有し、さらに、
Zr:0.05〜0.2重量%、
Zn:0.5〜2.0重量%、
を含有し、残りがAlと不可避不純物からなる組成を有するAl合金で構成した耐エロージョン性に優れた高強度および高熱伝導度を有する熱交換器用Al合金フィン材、
(3)Fe:1.0〜2.5重量%、Ce:0.005〜0.5重量%を含有し、さらに、
Mn:0.1〜0.5重量%、
Si:0.1〜0.5重量%、
Cu:0.05〜0.7重量%
の内の1種または2種以上を含有し、残りがAlと不可避不純物からなる組成を有するAl合金で構成した耐エロージョン性に優れた高強度および高熱伝導度を有する熱交換器用Al合金フィン材、
(4)Fe:1.0〜2.5重量%、Ce:0.005〜0.5重量%を含有し、さらに、
Zr:0.05〜0.2重量%、
Zn:0.5〜2.0重量%、
を含有し、さらに、
Mn:0.1〜0.5重量%、
Si:0.1〜0.5重量%、
Cu:0.05〜0.7重量%
の内の1種または2種以上を含有し、残りがAlと不可避不純物からなる組成を有するAl合金で構成した耐エロージョン性に優れた高強度および高熱伝導度を有する熱交換器用Al合金フィン材、に特徴を有するものである。
【0009】
さらに、本発明者等は、フィン材の耐エロージョン性について研究していたところ、フィン材のエロージョン(侵食)は従来は結晶粒界で優先的に進行していたが、結晶粒内でエロージョンが起きるようにした方が耐エロージョン性が著しく改善され、そのためには、ろうが溶融する直前までフィン材の結晶粒内に添加元素が過飽和固溶していることおよび晶出物が微細でその量が少ないことが必要であり、このような組織にするには、Al合金のインゴットを鋳造時の冷却速度が15℃/sec〜1000℃/sec範囲内で冷却して得られたインゴットを熱間圧延せずに中間焼鈍および冷間圧延を繰り返し施して所定の厚さのフィン材とすることにより得られることが分かった。
【0010】
したがって、この発明の耐エロージョン性に優れた高強度および高熱伝導度を有する熱交換器用Al合金フィン材は、前記(1)、(2)、(3)または(4)記載のAl合金を溶解し、得られた溶湯を鋳造と同時に冷却速度:15℃/sec〜1000℃/secで冷却してインゴットを製造し、このインゴットを繰り返し冷間圧延して所定の厚さのフィン材とすることにより得られる。Al合金の種類によって冷間圧延を繰り返す間に加工硬化して冷間圧延が不可能になる場合は中間焼鈍を付加して冷間圧延を繰り返すことが好ましい。
【0011】
この発明の製造方法で得られた晶出物の量が少ないアルミニウム熱交換器用Al合金フィン材は、ろうが溶融する直前まで結晶粒内において元素が過飽和に固溶しているために耐エロージョン性が向上し、ろう付け後の冷却過程で過飽和に固溶した元素が微細に均一に析出分散することによりろう付け後のフィン材の強度が高くなり、フィン材中に固溶する元素も少なくなって熱伝導率も高くなると考えられる。
【0012】
フィン材を構成するAl合金の成分組成範囲およびインゴットの鋳造時の冷却速度を上記の通りに限定した理由を説明する。
【0013】
(a)Fe
Fe成分は、ろう付け後素地に微細均一に分散してフィン材の強度を向上させると共に、ろうによるエロージョンを結晶粒内から進行させて耐エロージョン性を向上させ、ろう付け後の固溶度が小さく、素地に固溶しても熱伝導性の低下をさせにくい作用があるが、その含有量が1.0重量%以下では強度的に不十分であるので耐エロージョン性に優れた高強度および高熱伝導度を確保することができず、一方その含有量が2.5重量%を越えると、自己耐食性が低下すると共に粗大な晶出物を形成しやすくなり、耐エロージョン性と強度を低下させるところから、その含有量を1.0〜2.5重量%と定めた。Fe含有量の一層好ましい範囲は1.5〜2.3重量%である。
【0014】
(b)Ce
Ce成分は、鋳造時の晶出物を微細にし、ろう付け時の耐エロージョン性を向上させ、ろう付け時に過飽和に固溶した溶質元素をその冷却時において析出を促進し、熱伝導度と共に強度を向上させる作用を有するが、その含有量が0.005重量%未満では所望の効果が得られず、一方その含有量が0.5重量%を越えると、自己耐食性が低下し、加工性が低下するので好ましくない。従って、その含有量を0.005〜0.5重量%と定めた。Ce含有量の一層好ましい範囲は0.05〜0.3重量%である。
【0015】
(c)Zr
Zr成分は、ろう付け後に微細なAl−Zr金属間化合物を形成して素地に分散し、強度を向上させると共に、耐エロージョン性を向上させ、素地に固溶しても熱伝導性の低下をさせにくい作用があるので必要に応じて添加されるが、その含有量が0.05重量%未満では所望の強度向上効果が得られず、一方その含有量が0.2重量%を越えると、冷間加工性が劣化してこの発明の製造方法ではフィン材に成形することができなくなることから、その含有量を0.05〜0.2重量%と定めた。Zr含有量の一層好ましい範囲は0.1〜0.15重量%である。
【0016】
(d)Zn
Zn成分には、素地に固溶してフィン材を電気化学的に卑にし、冷媒通路形成体(例えば、管材)に対する犠牲陽極効果を向上させる作用があるので必要に応じて添加されるが、その含有量が0.5重量%未満では前記作用に所望の効果が得られず、一方その含有量が2重量%を越えると、ろう付け後の固溶度が高くなって熱伝導度を低下させ、自己耐食性が低下することから、その含有量を0.5〜2重量%と定めた。Zn含有量の一層好ましい範囲は1〜1.5重量%である。
【0017】
(e)Mn、SiおよびCu
Mn成分はAl−Mn(Fe,Si)系化合物を形成することにより強度を向上させ、Si成分はAl−Mn−Si系化合物を形成することにより強度を向上させ、さらにCu成分は素地中に固溶して強度を向上させるところから、必要に応じて添加されるが、その含有量がMn:0.1重量%未満およびSi:0.1重量%未満およびCu:0.05重量%未満では所望の強度向上効果が得られず、一方その含有量がMnおよびSiにあっては0.5重量%を越えると熱伝導率が著しく低下しまた加工性も低下するので好ましくなく、Cuにあっては0.7重量%を越えると熱伝導率およびろう付け時の耐エロージョン性が低下するようになることから、その含有量をそれぞれMn:0.1〜0.5重量%、Si:0.1〜0.5重量%、Cu:0.05〜0.7重量%と定めた。
【0018】
(f)インゴット鋳造時の冷却速度
フィン材が優れた耐エロージョン性を有するためには、晶出物の量を減らし、ろうが溶融する直前までフィン材の結晶粒内に添加元素が過飽和固溶しており、ろう付け後の冷却過程で過飽和に固溶したFeを微細均一に析出分散させる必要があり、そのためには、インゴット鋳造時の冷却速度が大きいほど好ましく、インゴット鋳造時の冷却速度は15℃/sec.以上であることが必要である。しかし、インゴット鋳造時の冷却速度は1000℃/sec.が限界であるから、インゴット鋳造時の冷却速度は15〜1000℃/sec.に定めた。インゴット鋳造時の冷却速度の一層好ましい範囲は20〜200℃/sec.である。
【0019】
【発明の実施の形態】
つぎに、この発明のAl合金フィン材を実施例により具体的に説明する。
通常の溶解法により、それぞれ表1〜表4に示される成分組成をもったAl合金溶湯を調製し、このAl合金溶湯を幅:200mm×長さ:500mm×厚さ:6mmの寸法をもった金型に鋳造し、ただちに冷却水量を変えることにより表5〜表8に示される冷却速度で冷却し、インゴットを製造した。このインゴットを冷間圧延を繰り返し施して厚さ:100μmの冷延板とすることにより本発明フィン材1〜33、比較フィン材1〜7および従来フィン材をそれぞれ製造した。
【0020】
一方、心材としてAl−1重量%Mn−0.15重量%Cu(AA3003)を用意し、さらにろう材としてAl−7.5重量%Si(AA4343)を用意し、心材:ろう材=85:15のクラッド率となるように心材の片面にろう材をクラッドした厚さ:0.3mmのブレージングシートを用意した。このブレージングシートの片面にコルゲート加工を施した本発明フィン材1〜33、比較フィン材1〜7および従来フィン材を組み付け、これにフラックスを塗布した後、ろう付け熱処理し、その後断面の観察を行うことにより、溶融ろうによるフィン材の最大エロージョン深さ(図1のエロージョン部4の厚さH)について測定し、その結果を表5〜表8に示した。
【0021】
さらに、本発明フィン材1〜33、比較フィン材1〜7および従来フィン材からなる引張り試験片を作製し、これら試験片を高純度窒素ガス中、温度:600℃、5分間保持したのち、冷却速度:100℃/min.で常温まで冷却するろう付け相当熱処理を施し、引張試験を行なうことにより引張り強さを測定し、その結果を表5〜表8に示した。
さらに、熱伝導率は電気伝導度に置き換えて評価できるので、本発明フィン材1〜33、比較フィン材1〜7および従来フィン材にろう付け相当熱処理を施した後、ダブルブリッジ法により求め、その結果を表5〜表8に示した。
【0022】
【表1】

Figure 0003916020
【0023】
【表2】
Figure 0003916020
【0024】
【表3】
Figure 0003916020
【0025】
【表4】
Figure 0003916020
【0026】
【表5】
Figure 0003916020
【0027】
【表6】
Figure 0003916020
【0028】
【表7】
Figure 0003916020
【0029】
【表8】
Figure 0003916020
【0030】
【発明の効果】
表1〜表8に示される結果から、本発明フィン材1〜33は従来フィン材と比べて、ろう付け相当熱処理後の引張り強さおよび電気伝導度が優れており、さらに溶融ろうによるフィン材の最大エロージョン深さが小さいところから、本発明フィン材1〜33は、いずれも従来フィン材に比して耐エロージョン性に優れかつ高強度および高熱伝導度をもつことが明らかである。
【0031】
一方、比較Al合金フィン材1〜7に見られるように、Al合金の構成成分のうちのいずれかの成分含有量がこの発明の範囲から外れると(表4においてこの発明の範囲から外れた成分組成の値に*印が付されている)、上記の特性のうちの少なくともいずれかの特性が劣ったものになることが明らかである。
【0032】
上述のように、この発明の熱交換器用Al合金フィン材は、耐エロージョン性に優れかつ高強度および高熱伝導度を有するので、この発明のフィン材で作製したAl熱交換器は軽量化および小型化が可能であると共に、熱交換機能の一層の向上に役立つものである。
【図面の簡単な説明】
【図1】 フィン材を冷媒通路形成体にろう付けして得られた接合部の一部拡大断面図である。
【図2】 フィン材を冷媒通路形成体にろう付けして得られた接合部の一部拡大断面図である。
【符号の説明】
1 フィン材、
2 冷媒通路形成体、
3 フィレット、
4 エロージョン部[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an Al alloy fin material for a heat exchanger having high strength and high thermal conductivity excellent in erosion resistance, particularly high strength and high heat excellent in erosion resistance of an automotive heat exchanger manufactured by a brazing method. The present invention relates to an Al alloy fin material having conductivity.
[0002]
[Prior art]
Generally, a fin material, which is a structural member of a heat exchanger used as a radiator of an automobile, is brazed to a refrigerant passage forming body (for example, a pipe material) with an Al-Si brazing material to be metallically bonded and transmitted. By increasing the heat area, the heat exchange efficiency is improved. AA1050 alloy or AA3003 alloy is used for the fin material, and AA4343 alloy is used for the Al-Si brazing material.
[0003]
When the fin material is brazed to the refrigerant passage forming body, as shown in the partially enlarged sectional view of FIG. The fillet 3 is formed by filling the gap between the refrigerant passage forming body and the refrigerant passage forming body with the molten solder, and the fin material 1 and the refrigerant passage forming body 2 are firmly joined by the fillet 3. In this case, the fact that a part of the fin material 1 and the refrigerant passage forming body 2 is melted by the melting wax is called erosion (erosion), and the eroded part is called the erosion part 4. The presence of the erosion portion 4 having an appropriate thickness greatly contributes to the strong bonding between the fin material and the coolant passage forming body.
[0004]
As described above, AA1050 alloy, AA3003 alloy and the like are usually used as the fin material 1, but in recent years, Fe: 0.1 to 3 wt% is contained, and Zn: 0.1 to 0.1% as necessary. A high-strength Al alloy fin material for heat exchangers having a composition containing 1.5% by weight and the balance consisting of Al and inevitable impurities and having an ultra-quenched structure has been developed. This Al alloy for heat exchangers It is said that the fin material is superior in strength to the conventional fin material (see Japanese Patent Publication No. 6-53904).
[0005]
Since this fin material has high strength, it can be made thinner than the conventional fin material, and thus the weight reduction and miniaturization of the Al heat exchanger are promoted, and further, vacuum brazing during assembly of the heat exchanger is promoted. It does not cause deformation in practical use, and contributes greatly to maintaining the heat exchange function over a long period of time because it has a sacrificial anodic action.
[0006]
[Problems to be solved by the invention]
However, this conventional fin material can be made thinner than the conventional one because of its high strength, but the thermal conductivity is insufficient, and when the fin material is brazed to the refrigerant passage forming body, the fin material Erosion (erosion) is easily caused by melting brazing, and when this thin fin material that is easily erosion (erosion) is brazed to the refrigerant passage forming body, the erosion portion 4 becomes large as shown in the enlarged sectional view of FIG. Thus, the thickness t of the fin material 1 in contact with the fillet 3 becomes extremely thin, and in the worst case, the erosion part 4 penetrates the fin material 1 to maintain the pressure strength and structure necessary for the fin material of the heat exchanger. In addition to disappearing, there has been a problem that the heat exchange function is inevitably lowered.
[0007]
[Means for Solving the Problems]
In view of the above, the present inventors have made a fin material having a high strength and a high thermal conductivity, and having a characteristic that erosion (erosion) is harder than conventional (hereinafter referred to as erosion resistance). As a result of research to obtain,
(A) A fin material composed of an Al alloy containing Fe: 1.0 to 2.5% by weight and Ce: 0.005 to 0.5% by weight has high strength and high thermal conductivity and has excellent resistance to resistance. Showing erosion,
(B) Fe: 1.0 to 2.5% by weight and Ce: 0.005 to 0.5% by weight, Zr: 0.05 to 0.20% by weight and Zn: 0.5 to 2% The fin material composed of an Al alloy containing 0.0% by weight has high strength and high thermal conductivity and exhibits excellent erosion resistance.
(C) Fe: 1.0 to 2.5% by weight and Ce: 0.005 to 0.5% by weight, Mn: 0.1 to 0.5% by weight, Si: 0.1 to 0.1% by weight A fin material composed of an Al alloy containing 0.5% by weight, Cu: 0.05 to 0.7% by weight or one or more of them has high strength and high thermal conductivity as well as excellent resistance. Showing erosion,
(D) In addition to the Al alloy described in (b), Mn: 0.1 to 0.5% by weight, Si: 0.1 to 0.5% by weight, Cu: 0.05 to 0.7% by weight A fin material composed of an Al alloy containing one or more of the above has high strength and high thermal conductivity and exhibits excellent erosion resistance.
The research results were obtained.
[0008]
This invention was made based on the above research results,
(1) Fe: 1.0 to 2.5% by weight, Ce: 0.005 to 0.5% by weight, with the remaining being erosion resistant composed of an Al alloy having a composition composed of Al and inevitable impurities. Al alloy fin material for heat exchangers with excellent high strength and high thermal conductivity,
(2) Fe: 1.0 to 2.5 wt%, Ce: 0.005 to 0.5 wt%,
Zr: 0.05 to 0.2% by weight,
Zn: 0.5 to 2.0% by weight,
Al alloy fin material for heat exchangers having high strength and high thermal conductivity excellent in erosion resistance, comprising an Al alloy having a composition consisting of Al and inevitable impurities, and the rest
(3) Fe: 1.0 to 2.5 wt%, Ce: 0.005 to 0.5 wt%,
Mn: 0.1 to 0.5% by weight,
Si: 0.1 to 0.5% by weight,
Cu: 0.05 to 0.7% by weight
Al alloy fin material for heat exchangers having high strength and high thermal conductivity excellent in erosion resistance, comprising one or more of the above, and the balance comprising an Al alloy having a composition comprising Al and inevitable impurities ,
(4) Fe: 1.0 to 2.5 wt%, Ce: 0.005 to 0.5 wt%,
Zr: 0.05 to 0.2% by weight,
Zn: 0.5 to 2.0% by weight,
In addition,
Mn: 0.1 to 0.5% by weight,
Si: 0.1 to 0.5% by weight,
Cu: 0.05 to 0.7% by weight
Al alloy fin material for heat exchangers having high strength and high thermal conductivity excellent in erosion resistance, comprising one or more of the above, and the balance comprising an Al alloy having a composition comprising Al and inevitable impurities , Has characteristics.
[0009]
Further, the present inventors have been studying the erosion resistance of the fin material, and the erosion (erosion) of the fin material has conventionally preferentially proceeded at the crystal grain boundary. The erosion resistance is remarkably improved by making it occur. To this end, the additive element is supersaturated in the crystal grains of the fin material until the wax melts, and the amount of the crystallized substance is fine. In order to obtain such a structure, the ingot obtained by cooling the ingot of the Al alloy within a range of 15 ° C./sec to 1000 ° C./sec during the casting is hot. It turned out that it can obtain by performing intermediate annealing and cold rolling repeatedly without rolling, and setting it as the fin material of predetermined thickness.
[0010]
Therefore, the Al alloy fin material for heat exchanger having high strength and high thermal conductivity excellent in erosion resistance according to the present invention dissolves the Al alloy described in (1), (2), (3) or (4). Then, the obtained molten metal is cooled simultaneously with casting at a cooling rate of 15 ° C./sec to 1000 ° C./sec to produce an ingot, and this ingot is repeatedly cold-rolled to obtain a fin material having a predetermined thickness. Is obtained. Depending on the type of Al alloy, when cold rolling is impossible due to work hardening during repeated cold rolling, it is preferable to repeat cold rolling by adding intermediate annealing.
[0011]
The Al alloy fin material for aluminum heat exchangers with a small amount of crystallized material obtained by the production method of the present invention is resistant to erosion because the element is supersaturated in the crystal grains until immediately before the wax melts. As a result, the strength of the fin material after brazing is increased and the elements dissolved in the fin material are reduced. Therefore, it is thought that the thermal conductivity increases.
[0012]
The reason for limiting the component composition range of the Al alloy constituting the fin material and the cooling rate during casting of the ingot as described above will be described.
[0013]
(A) Fe
The Fe component is finely and uniformly dispersed in the base material after brazing to improve the strength of the fin material, and erosion due to brazing is advanced from within the crystal grains to improve erosion resistance, and the solid solubility after brazing is increased. Although it is small and has the effect of hardly lowering the thermal conductivity even if it dissolves in the substrate, its strength is insufficient if its content is 1.0% by weight or less, and it has high strength and excellent erosion resistance. High thermal conductivity cannot be ensured. On the other hand, if its content exceeds 2.5% by weight, the self-corrosion resistance is lowered and coarse crystals are easily formed, and the erosion resistance and strength are lowered. Therefore, the content was determined to be 1.0 to 2.5% by weight. A more preferable range of the Fe content is 1.5 to 2.3% by weight.
[0014]
(B) Ce
Ce component refines the crystallized product during casting, improves erosion resistance during brazing, promotes precipitation during cooling of solute elements that are supersaturated during brazing, and provides strength along with thermal conductivity. However, if the content is less than 0.005% by weight, the desired effect cannot be obtained. On the other hand, if the content exceeds 0.5% by weight, the self-corrosion resistance is lowered and the workability is reduced. Since it falls, it is not preferable. Therefore, the content was determined to be 0.005 to 0.5% by weight. A more preferable range of the Ce content is 0.05 to 0.3% by weight.
[0015]
(C) Zr
The Zr component forms a fine Al-Zr intermetallic compound after brazing and disperses it in the substrate, improving the strength and improving the erosion resistance. Even if it dissolves in the substrate, the thermal conductivity decreases. Since it has an action that is difficult to prevent, it is added as necessary, but if its content is less than 0.05% by weight, the desired strength improvement effect cannot be obtained, while if its content exceeds 0.2% by weight, Since the cold workability deteriorates and the production method of the present invention makes it impossible to form the fin material, the content is determined to be 0.05 to 0.2% by weight. A more preferable range of the Zr content is 0.1 to 0.15% by weight.
[0016]
(D) Zn
The Zn component is added as necessary because it has the effect of improving the sacrificial anode effect on the coolant passage forming body (for example, the pipe material) by dissolving the fin material in the base material and making the fin material electrochemically base. If the content is less than 0.5% by weight, the desired effect cannot be obtained. On the other hand, if the content exceeds 2% by weight, the solid solubility after brazing increases and the thermal conductivity decreases. Therefore, the content is determined to be 0.5 to 2% by weight. A more preferable range of the Zn content is 1 to 1.5% by weight.
[0017]
(E) Mn, Si and Cu
The Mn component improves the strength by forming an Al-Mn (Fe, Si) -based compound, the Si component improves the strength by forming an Al-Mn-Si-based compound, and the Cu component further enters the substrate. It is added as needed from the point of improving the strength by solid solution, the content is Mn: less than 0.1 wt% and Si: less than 0.1 wt% and Cu: less than 0.05 wt% However, if the content exceeds 0.5% by weight in the case of Mn and Si, the thermal conductivity is remarkably lowered and the workability is also lowered. If it exceeds 0.7% by weight, the thermal conductivity and the erosion resistance at the time of brazing will decrease, so the contents thereof are Mn: 0.1 to 0.5% by weight, Si: 0.1 to 0.5% by weight, u: 0.05~0.7 was defined as percent by weight.
[0018]
(F) Cooling rate during ingot casting In order for the fin material to have excellent erosion resistance, the amount of crystallized material is reduced, and the additive element is supersaturated in the crystal grains of the fin material until the wax melts. Therefore, it is necessary to finely and uniformly precipitate and disperse supersaturated Fe in the cooling process after brazing. For that purpose, a larger cooling rate during ingot casting is preferable, and a cooling rate during ingot casting is 15 ° C./sec. That is necessary. However, the cooling rate during ingot casting is 1000 ° C./sec. Therefore, the cooling rate during ingot casting is 15 to 1000 ° C./sec. Determined. A more preferable range of the cooling rate during ingot casting is 20 to 200 ° C./sec. It is.
[0019]
DETAILED DESCRIPTION OF THE INVENTION
Next, the Al alloy fin material of the present invention will be specifically described with reference to examples.
Al alloy melts having the component compositions shown in Tables 1 to 4 were prepared by ordinary melting methods, and the Al alloy melt had dimensions of width: 200 mm × length: 500 mm × thickness: 6 mm. The ingot was manufactured by casting into a mold and immediately cooling at a cooling rate shown in Tables 5 to 8 by changing the amount of cooling water. This ingot was repeatedly subjected to cold rolling to form a cold-rolled sheet having a thickness of 100 μm, thereby producing the present fin materials 1 to 33, comparative fin materials 1 to 7 and conventional fin materials.
[0020]
On the other hand, Al-1 wt% Mn-0.15 wt% Cu (AA3003) is prepared as the core material, and Al-7.5 wt% Si (AA4343) is prepared as the brazing material, and the core material: brazing material = 85: A brazing sheet having a thickness of 0.3 mm in which a brazing material was clad on one side of the core material so as to have a cladding rate of 15 was prepared. The present invention fin materials 1 to 33, comparative fin materials 1 to 7 and conventional fin materials which are corrugated on one side of this brazing sheet are assembled, flux is applied thereto, brazing heat treatment is performed, and then the cross section is observed. By performing, it measured about the maximum erosion depth (thickness H of the erosion part 4 of FIG. 1) of the fin material by a fusion | melting brazing, and the result was shown in Table 5-Table 8. FIG.
[0021]
Furthermore, after producing the tensile test piece which consists of this invention fin materials 1-33, the comparison fin materials 1-7, and a conventional fin material, these test pieces are hold | maintained in high purity nitrogen gas, temperature: 600 degreeC for 5 minutes, Cooling rate: 100 ° C./min. The tensile strength was measured by performing a brazing equivalent heat treatment for cooling to room temperature and performing a tensile test, and the results are shown in Tables 5 to 8.
Furthermore, since the thermal conductivity can be evaluated by replacing the electrical conductivity, after subjecting the fin materials 1 to 33 of the present invention, the comparative fin materials 1 to 7 and the conventional fin material to brazing equivalent heat treatment, the double bridge method is used. The results are shown in Tables 5-8.
[0022]
[Table 1]
Figure 0003916020
[0023]
[Table 2]
Figure 0003916020
[0024]
[Table 3]
Figure 0003916020
[0025]
[Table 4]
Figure 0003916020
[0026]
[Table 5]
Figure 0003916020
[0027]
[Table 6]
Figure 0003916020
[0028]
[Table 7]
Figure 0003916020
[0029]
[Table 8]
Figure 0003916020
[0030]
【The invention's effect】
From the results shown in Tables 1 to 8, the fin materials 1 to 33 of the present invention are superior in tensile strength and electrical conductivity after brazing-equivalent heat treatment to those of the conventional fin materials, and further are fin materials by melting brazing. From the fact that the maximum erosion depth is small, it is clear that the fin materials 1 to 33 of the present invention all have excellent erosion resistance and high strength and high thermal conductivity as compared with the conventional fin materials.
[0031]
On the other hand, as can be seen in the comparative Al alloy fin materials 1 to 7, when the content of any of the constituent components of the Al alloy is out of the scope of the present invention (in Table 4, the components that are out of the scope of the present invention It is clear that at least one of the above properties is inferior if the composition value is marked with *.
[0032]
As described above, since the Al alloy fin material for heat exchanger of the present invention has excellent erosion resistance and high strength and high thermal conductivity, the Al heat exchanger made of the fin material of the present invention is reduced in weight and size. It is possible to improve the heat exchange function.
[Brief description of the drawings]
FIG. 1 is a partially enlarged cross-sectional view of a joint obtained by brazing a fin material to a refrigerant passage forming body.
FIG. 2 is a partially enlarged cross-sectional view of a joint obtained by brazing a fin material to a refrigerant passage forming body.
[Explanation of symbols]
1 Fin material,
2 refrigerant passage forming body,
3 Fillets,
4 Erosion Club

Claims (6)

Fe:1.0〜2.5重量%、Ce:0.005〜0.5重量%を含有し、残りがAlと不可避不純物からなる組成を有するAl合金で構成したことを特徴とする耐エロージョン性に優れた高強度および高熱伝導度を有する熱交換器用Al合金フィン材。Erosion resistance characterized by comprising Fe: 1.0 to 2.5% by weight, Ce: 0.005 to 0.5% by weight, and the balance being composed of an Al alloy having a composition composed of Al and inevitable impurities. Al alloy fin material for heat exchanger having high strength and high thermal conductivity with excellent properties. Fe:1.0〜2.5重量%、Ce:0.005〜0.5重量%を含有し、さらに、
Zr:0.05〜0.2重量%、
Zn:0.5〜2.0重量%、
を含有し、残りがAlと不可避不純物からなる組成を有するAl合金で構成したことを特徴とする耐エロージョン性に優れた高強度および高熱伝導度を有する熱交換器用Al合金フィン材。
Fe: 1.0 to 2.5 wt%, Ce: 0.005 to 0.5 wt%,
Zr: 0.05 to 0.2% by weight,
Zn: 0.5 to 2.0% by weight,
An Al alloy fin material for heat exchangers having high strength and high thermal conductivity excellent in erosion resistance, characterized in that it is made of an Al alloy having a composition composed of Al and inevitable impurities .
Fe:1.0〜2.5重量%、Ce:0.005〜0.5重量%を含有し、さらに、
Mn:0.1〜0.5重量%、
Si:0.1〜0.5重量%、
Cu:0.05〜0.7重量%
の内の1種または2種以上を含有し、残りがAlと不可避不純物からなる組成を有するAl合金で構成したことを特徴とする耐エロージョン性に優れた高強度および高熱伝導度を有する熱交換器用Al合金フィン材。
Fe: 1.0 to 2.5 wt%, Ce: 0.005 to 0.5 wt%,
Mn: 0.1 to 0.5% by weight,
Si: 0.1 to 0.5% by weight,
Cu: 0.05 to 0.7% by weight
Heat exchange with high strength and high thermal conductivity excellent in erosion resistance, characterized in that it is composed of an Al alloy having a composition of one or more of the above and the remainder comprising Al and inevitable impurities Al alloy fin material for device.
Fe:1.0〜2.5重量%、Ce:0.005〜0.5重量%を含有し、さらに、
Zr:0.05〜0.2重量%、
Zn:0.5〜2.0重量%、
を含有し、さらに、
Mn:0.1〜0.5重量%、
Si:0.1〜0.5重量%、
Cu:0.05〜0.7重量%
の内の1種または2種以上を含有し、残りがAlと不可避不純物からなる組成を有するAl合金で構成したことを特徴とする耐エロージョン性に優れた高強度および高熱伝導度を有する熱交換器用Al合金フィン材。
Fe: 1.0 to 2.5 wt%, Ce: 0.005 to 0.5 wt%,
Zr: 0.05 to 0.2% by weight,
Zn: 0.5 to 2.0% by weight,
In addition,
Mn: 0.1 to 0.5% by weight,
Si: 0.1 to 0.5% by weight,
Cu: 0.05 to 0.7% by weight
Heat exchange with high strength and high thermal conductivity excellent in erosion resistance, characterized in that it is composed of an Al alloy having a composition of one or more of the above and the remainder comprising Al and inevitable impurities Al alloy fin material for device.
請求項1、2、3または4記載のAl合金を溶解し、得られた溶湯を鋳造する時の冷却速度:15℃/sec〜1000℃/secで冷却してインゴットを製造し、このインゴットを繰り返し冷間圧延して所定の厚さのフィン材とすることを特徴とする耐エロージョン性に優れた高強度および高熱伝導度を有する熱交換器用Al合金フィン材の製造方法。A cooling rate when melting the Al alloy according to claim 1, 2, 3 or 4 and casting the obtained molten metal: cooling at 15 ° C / sec to 1000 ° C / sec to produce an ingot, A method for producing an Al alloy fin material for a heat exchanger having high strength and high thermal conductivity excellent in erosion resistance, characterized by repeated cold rolling to obtain a fin material having a predetermined thickness. 請求項記載の製造方法により製造したことを特徴とする耐エロージョン性に優れた高強度および高熱伝導度を有する熱交換器用Al合金フィン材。An Al alloy fin material for a heat exchanger having high strength and high thermal conductivity excellent in erosion resistance, characterized by being manufactured by the manufacturing method according to claim 5 .
JP05799098A 1998-03-10 1998-03-10 Al alloy fin material for heat exchangers with high erosion resistance and high strength and high thermal conductivity Expired - Fee Related JP3916020B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP05799098A JP3916020B2 (en) 1998-03-10 1998-03-10 Al alloy fin material for heat exchangers with high erosion resistance and high strength and high thermal conductivity

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP05799098A JP3916020B2 (en) 1998-03-10 1998-03-10 Al alloy fin material for heat exchangers with high erosion resistance and high strength and high thermal conductivity

Publications (2)

Publication Number Publication Date
JPH11256259A JPH11256259A (en) 1999-09-21
JP3916020B2 true JP3916020B2 (en) 2007-05-16

Family

ID=13071458

Family Applications (1)

Application Number Title Priority Date Filing Date
JP05799098A Expired - Fee Related JP3916020B2 (en) 1998-03-10 1998-03-10 Al alloy fin material for heat exchangers with high erosion resistance and high strength and high thermal conductivity

Country Status (1)

Country Link
JP (1) JP3916020B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4574036B2 (en) * 2001-02-28 2010-11-04 三菱アルミニウム株式会社 Aluminum alloy for fin material of heat exchanger and manufacturing method of fin material of heat exchanger
JP5354911B2 (en) * 2008-01-09 2013-11-27 住友軽金属工業株式会社 Aluminum heat exchanger and manufacturing method thereof
KR101426708B1 (en) * 2012-01-12 2014-08-07 한국생산기술연구원 Al-Fe-Zn-Si ALLOY HAVING HIGH THERMAL CONDUCTIVITY FOR DIE CASTING
CN110484783B (en) * 2019-09-06 2021-05-25 上海交通大学 Aluminum-rare earth alloy powder and preparation method and application thereof
CN116024462A (en) * 2023-01-10 2023-04-28 深圳市英伦博创轻合金技术有限公司 High-heat-conductivity pressure casting aluminum alloy and preparation method thereof

Also Published As

Publication number Publication date
JPH11256259A (en) 1999-09-21

Similar Documents

Publication Publication Date Title
JP4166613B2 (en) Aluminum alloy fin material for heat exchanger and heat exchanger formed by assembling the fin material
JP4636520B2 (en) Brazing material for aluminum brazing sheet for heat exchanger and method for producing the same
KR101455874B1 (en) Process for manufacturing aluminum alloy fin material for heat exchanger, and process for manufacturing heat exchanger through brazing of the fin material
JP4623729B2 (en) Aluminum alloy clad material and heat exchanger excellent in surface bonding by brazing of sacrificial anode material surface
JP4822277B2 (en) Aluminum alloy brazing sheet for heat exchanger tubes with excellent brazing and corrosion resistance and heat exchanger tubes with excellent corrosion resistance
JP2010255013A (en) Clad material of aluminum alloy for heat exchanger and method for manufacturing the same
JP7132362B2 (en) aluminum brazing sheet
WO2017141921A1 (en) Aluminum alloy brazing sheet, manufacturing method therefor, and manufacturing method for vehicle heat exchanger using said brazing sheet
JP2007216283A (en) Method for producing aluminum alloy clad plate having excellent face joinability by brazing on sacrificial anode material face
AU2004314437A1 (en) High-conductivity finstock alloy, method of manufacture and resultant product
JP3772035B2 (en) Aluminum alloy clad material for heat exchangers with excellent erosion and corrosion resistance
JP3916020B2 (en) Al alloy fin material for heat exchangers with high erosion resistance and high strength and high thermal conductivity
JP3533434B2 (en) Brazing sheet for aluminum alloy heat exchanger
JP2000008130A (en) Member for heat exchanger made of aluminum alloy excellent in corrosion resistance
JP2004017116A (en) Aluminum alloy brazing sheet for brazed pipe making tubes, and its producing method
JP3967669B2 (en) High strength aluminum alloy fin material for automobile heat exchanger excellent in rolling property and method for producing the same
JP4574036B2 (en) Aluminum alloy for fin material of heat exchanger and manufacturing method of fin material of heat exchanger
JP3333600B2 (en) High strength Al alloy fin material and method of manufacturing the same
JP3360026B2 (en) Brazing method of aluminum alloy brazing sheet for heat exchanger
JP2006176852A (en) High-strength aluminum alloy cladding material for heat exchanger having excellent erosion resistance, heat exchanger and method for producing high-strength aluminum alloy cladding material
JP3876505B2 (en) Al alloy fin material for heat exchangers with excellent erosion resistance
JP3170202B2 (en) Aluminum alloy clad fin material and method of manufacturing the same
JP2002256402A (en) Method of producing fin material for use in heat exchanger
JP4566729B2 (en) High strength aluminum alloy fin material and heat exchanger for heat exchanger with excellent erosion resistance
JP3845851B2 (en) Al alloy fin material for heat exchangers with high erosion resistance and high strength and high thermal conductivity

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040616

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060821

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061011

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070119

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070201

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100216

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110216

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110216

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120216

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130216

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees