JP3876505B2 - Al alloy fin material for heat exchangers with excellent erosion resistance - Google Patents

Al alloy fin material for heat exchangers with excellent erosion resistance Download PDF

Info

Publication number
JP3876505B2
JP3876505B2 JP34130097A JP34130097A JP3876505B2 JP 3876505 B2 JP3876505 B2 JP 3876505B2 JP 34130097 A JP34130097 A JP 34130097A JP 34130097 A JP34130097 A JP 34130097A JP 3876505 B2 JP3876505 B2 JP 3876505B2
Authority
JP
Japan
Prior art keywords
fin material
alloy
crystal grains
weight
erosion resistance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP34130097A
Other languages
Japanese (ja)
Other versions
JPH11172356A (en
Inventor
周 黒田
建 当摩
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Aluminum Co Ltd
Original Assignee
Mitsubishi Aluminum Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Aluminum Co Ltd filed Critical Mitsubishi Aluminum Co Ltd
Priority to JP34130097A priority Critical patent/JP3876505B2/en
Publication of JPH11172356A publication Critical patent/JPH11172356A/en
Application granted granted Critical
Publication of JP3876505B2 publication Critical patent/JP3876505B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Prevention Of Electric Corrosion (AREA)

Description

【0001】
【発明の属する技術分野】
この発明は、耐エロージョン性に優れた熱交換器用Al合金フィン材に関するものである。
【0002】
【従来の技術】
従来、一般に自動車のラジエータなどとして用いられている熱交換器の構造部材であるフィン材は、冷媒通路形成体(例えば、管材)にろう付けして金属的に結合させ、伝熱面積を広くすることにより、熱交換効率の向上を図っている。これらフィン材として通常はAA1050合金、AA3003合金などが用いられているが、近年、下記のごとき高強度を有する熱交換器用Al合金フィン材も開発されている。
Fe:1.1〜1.5重量%、Si:0.35〜0.8重量%、Mn:0.15〜0.4重量%を含有し、残りがAlと不可避不純物からなる組成を有する高強度を有する熱交換器用Al合金フィン材(特開1−292945号公報参照)、
Fe:1.1〜1.5重量%、Si:0.1〜0.8重量%、Mg:0.05〜0.5重量%を含有し、さらにMn:0.1〜0.8重量%、Zr:0.02〜0.2重量%のうちの1種または2種を含有し、残りがAlと不可避不純物からなる組成を有する高強度を有する熱交換器用Al合金フィン材(特開1−292955号公報参照)、
Fe:1.1〜1.5重量%、Si:0.35〜0.8重量%、Zr:0.02〜0.2重量%を含有し、残りがAlと不可避不純物からなる組成を有する高強度を有する熱交換器用Al合金フィン材(特開1−292953号公報参照)。
【0003】
これら、フィン材は、高強度を有するところから、従来よりも薄いフィン材とすることができ、従ってAl熱交換器の軽量化および小型化を促進し、さらに熱交換器の組立て時の真空ろう付けや実用時に変形を起すことがなく、熱伝導性にも優れているところから熱交換機能を従来よりも向上させるのに大いに貢献している。このフィン材を冷媒通路形成体にろう付けするには、図1の一部拡大断面図に示されるように、フィン材1および冷媒通路形成体2の一部は溶融ろうによって溶解される共にフィン材と冷媒通路形成体の隙間が溶融ろうによって充填されてフィレット3を形成し、このフィレット3によりフィン材1と冷媒通路形成体2の強固な接合がなされている。この場合、フィン材1および冷媒通路形成体2の一部が溶融ろうによって溶解されることをエロージョン(侵食)といい、この侵食された部分をエロージョン部4という。適度な厚さのエロージョン部4の存在はフィン材と冷媒通路形成体の強固な接合に大きく寄与している。
【0004】
【発明が解決しようとする課題】
近年、自動車などの燃費の向上から、自動車部品の1つである熱交換器についても軽量化および小型化が求められており、熱交換器のフィン材についてもますます薄肉化されて熱交換器の軽量化および小型化が促進されている。しかし、従来のフィン材は溶融ろうによってエロージョン(侵食)されやすく、このエロージョン(侵食)されやすい薄肉のフィン材を冷媒通路形成体にろう付けすると、フィン材が薄肉であるために、図2の拡大断面図に示されるように、フィン材1の厚さに比べてエロージョン部4が大きくなり、フィレット3に接する部分のフィン材1の肉厚tが極端に薄くなって、最悪の場合はエロージョン部4がフィン材1を貫通し、熱交換器のフィン材として必要な耐圧強度および構造を保てなくなるばかりでなく熱交換機能の低下が避けられないという問題が生じてきた。
【0005】
【課題を解決するための手段】
そこで、本発明者等は、上述のような観点から、耐エロージョン性に優れたフィン材を得るべく研究を行なった結果、
(a)フィン材のエロージョンは、結晶粒内部と粒界で生じるが、エロージョンによる被害は特にフィン材の結晶粒界で進行するものが圧倒的であるところから、フィン材を構成するAl合金の結晶粒を大きくして結晶粒界の組織中に占める割合を少なくし、フィン材の厚さ方向と垂直な面の結晶粒の平均粒径を300〜50000μmにすると一層優れた耐エロージョン性を示す、
(b)一般に、熱交換器のフィン材はAl合金を冷間圧延することにより仕上げられるが、冷間圧延して得られた結晶粒の組織が円形に近いほど優れた耐エロージョン性を示すところから、フィン材の圧延方向の結晶粒の長さをL、圧延方向に垂直でかつ圧延面に平行な方向の結晶粒の長さをLTで示すと、LとLTの比(以下、LT/Lで示す)が0.12〜1であることが好ましい、
(c)フィン材の厚さ方向と垂直な面の結晶粒の平均粒径が300〜50000μmとなるように大きくして結晶粒界の占める割合を少なくし、さらに結晶粒の形状を円形に近いLT/Lが0.12〜1の範囲とした熱交換器のフィン材を構成するAl合金は、いかなる構造用のAl合金であってもよいが、従来よりもFe含有量の多いFe:1.5超〜3重量%を含有するAl合金であると、一層優れた耐エロージョン性を示す、などの研究結果が得られたのである。
【0006】
そして、この発明の耐エロージョン性に優れた熱交換器用Al合金フィン材を構成するAl合金は、特にFeを1.5重量%を越えて含有するAl合金で構成することが好ましく、このFeを1.5重量%を越えて含有するAl合金として、
(イ)Fe:1.5超〜3重量%を含有し、残りがAlと不可避不純物からなる組成を有するAl合金、
(ロ)Fe:1.5超〜3重量%を含有し、さらにMn:0.1〜0.5重量%、Si:0.1〜0.5重量%、Cu:0.05〜0.7重量%の内の1種または2種以上を含有し、残りがAlと不可避不純物からなる組成を有するAl合金、
(ハ)Fe:1.5超〜3重量%、Zn:0.5〜3重量%、Zr:0.05〜0.2重量%を含有し、残りがAlと不可避不純物からなる組成を有するAl合金、
(ニ)Fe:1.5超〜3重量%、Zn:0.5〜3重量%、Zr:0.05〜0.2重量%を含有し、さらにMn:0.1〜0.5重量%、Si:0.1〜0.5重量%、Cu:0.05〜0.7重量%の内の1種または2種以上を含有し、残りがAlと不可避不純物からなる組成を有するAl合金、
(ホ)前記(イ)、(ロ)、(ハ)または(ニ)記載のAl合金に、さらにMg:0.05〜0.2重量%を含有させた組成を有するAl合金、などがある。
【0007】
従って、この発明は、
(1)Fe:1.5超〜3重量%を含有し、残りがAlと不可避不純物からなる組成を有し、さらにフィン材の厚さ方向と垂直な面の結晶粒の平均粒径が300〜50000μmであって、かつLT/Lが0.12〜1である結晶粒を有するAl合金で構成された耐エロージョン性に優れた熱交換器用Al合金フィン材、
(2)Fe:1.5超〜3重量%を含有し、さらにMn:0.1〜0.5重量%、Si:0.1〜0.5重量%、Cu:0.05〜0.7重量%の内の1種または2種以上を含有し、残りがAlと不可避不純物からなる組成を有し、さらにフィン材の厚さ方向と垂直な面の結晶粒の平均粒径が300〜50000μmであって、かつLT/Lが0.12〜1である結晶粒を有するAl合金で構成された耐エロージョン性に優れた熱交換器用Al合金フィン材、
(3)Fe:1.5超〜3重量%、Zn:0.5〜3重量%、Zr:0.05〜0.2重量%を含有し、残りがAlと不可避不純物からなる組成を有し、さらにフィン材の厚さ方向と垂直な面の結晶粒の平均粒径が300〜50000μmであって、かつLT/Lが0.12〜1である結晶粒を有するAl合金で構成された耐エロージョン性に優れた熱交換器用Al合金フィン材、
(4)Fe:1.5超〜3重量%、Zn:0.5〜3重量%、Zr:0.05〜0.2重量%を含有し、さらにMn:0.1〜0.5重量%、Si:0.1〜0.5重量%、Cu:0.05〜0.7重量%の内の1種または2種以上を含有し、残りがAlと不可避不純物からなる組成を有し、さらにフィン材の厚さ方向と垂直な面の結晶粒の平均粒径が300〜50000μmであって、かつLT/Lが0.12〜1である結晶粒を有するAl合金で構成された耐エロージョン性に優れた熱交換器用Al合金フィン材、
(5)前記(1)、(2)、(3)または(4)記載のAl合金に、さらにMg:0.05〜0.2重量%を含有させた組成を有し、さらにフィン材の厚さ方向と垂直な面の結晶粒の平均粒径が300〜50000μmであって、かつLT/Lが0.12〜1である結晶粒を有するAl合金で構成された耐エロージョン性に優れた熱交換器用Al合金フィン材、に特徴を有するものである。
【0008】
この発明の耐エロージョン性に優れた熱交換器用Al合金フィン材を製造するには、半連続鋳造して得られたビレットを熱間圧延し、中間焼鈍と冷間圧延を繰り返したのち最終冷間圧延する工程において、最終冷間圧延直前の中間焼鈍を従来よりも長時間中間焼鈍するかまたは従来よりも高温の中間焼鈍を行った後、従来よりも低い圧延率で最終冷間圧延することにより製造することができる。例えば、従来は最終冷間圧延直前の中間焼鈍を350〜400℃に2時間保持の条件で行うAl合金に対して、この発明の耐エロージョン性に優れた熱交換器用Al合金フィン材を製造するには、最終冷間圧延直前の中間焼鈍を350〜400℃に4時間保持、400超〜500℃に3時間保持、または500超〜600℃に2時間保持の条件で行い、その後の最終冷間圧延の圧延率を従来の30〜80%に対してこの発明の最終冷間圧延の圧延率は5〜25%で行う。
【0009】
フィン材を構成するAl合金の結晶粒の平均粒径およびLT/L、並びにAl合金の内でも、Feを1.5重量%を越えて含有するAl合金の成分組成範囲を上記の通りに限定した理由を説明する。
【0010】
(a)Fe
Fe成分は、ろう付け後素地に微細均一に分散してフィン材の強度を向上させると共に、ろうによるエロージョンを結晶粒内から進行させて耐エロージョン性を向上させ、ろう付け後の固溶度が小さく、素地に固溶しても熱伝導性の低下をさせにくい作用があるが、その含有量が1.5重量%以下では強度的に不十分であるので耐エロージョン性に優れた高熱伝導度および高強度を確保することができず、一方その含有量が3重量%を越えると、自己耐食性が低下すると共に粗大な晶出物を形成しやすくなり、耐エロージョン性と強度を低下させるところから、その含有量を1.5超〜3重量%と定めた。Fe含有量の一層好ましい範囲は1.7〜2.5重量%である。
【0011】
(b)Zn
Zn成分には、素地に固溶してフィン材を電気化学的に卑にし、冷媒通路形成体(例えば、管材)に対する犠牲陽極効果を向上させる作用があるが、その含有量が0.5重量%未満では前記作用に所望の効果が得られず、一方その含有量が3重量%を越えると、ろう付け後の固溶度が高くなって熱伝導度を低下させ、自己耐食性が低下することから、その含有量を0.5〜3重量%と定めた。Zn含有量の一層好ましい範囲は0.8〜2.0重量%である。
【0012】
(c)Zr
Zr成分は、ろう付け後に微細なAl−Zr金属間化合物を形成して素地に分散し、強度を向上させると共に、耐エロージョン性を向上させ、素地に固溶しても熱伝導性の低下をさせにくい作用があるが、その含有量が0.05重量%未満では所望の強度向上効果が得られず、一方その含有量が0.2重量%を越えると、熱間および冷間加工性が劣化するようになることから、その含有量を0.05〜0.2重量%と定めた。Zr含有量の一層好ましい範囲は0.08〜0.15重量%である。
【0013】
(d)Mn、SiおよびCu
これら成分は、AlおよびFeと共にAl−Mn−Fe化合物、Al−Si−Fe化合物、Al−Fe化合物として素地中に分散し、耐食性と熱伝導率を低下させることがなく、さらにCuは素地に固溶してフィン材の強度を著しく向上させる作用があるので必要に応じて添加されるが、その含有量がMn:0.1重量%未満およびSi:0.2重量%未満およびCu:0.05重量%未満では所望の強度向上効果が得られず、一方その含有量がMnにあっては0.5重量%を越えると熱伝導率が著しく低下しまた加工性も低下するので好ましくなく、SiおよびCuにあっては0.5重量%を越えると熱伝導率およびろう付け時の耐エロージョン性が低下するようになることから、その含有量をそれぞれMn:0.1〜0.5重量%、Si:0.1〜0.5重量%、Cu:0.05〜0.7重量%と定めた。
【0014】
(e)Mg
Mg成分には素地中に固溶して強度を向上させる作用があるので、必要に応じて含有されるが、その含有量が0.05重量%未満では所望の強度向上効果が得られず、一方その含有量が0.2重量%を越えると、素地に固溶する割合が多くなり、電気化学的に貴になる傾向が現われ、管材に対する犠牲陽極効果が低下し、かつろう付け性を阻害すると共にろう付け時の耐エロージョン性および熱伝導性も低下するようになることから、その含有量を0.05〜0.2重量%と定めた。
【0015】
(f)結晶粒の平均粒径および形状
フィン材が優れた耐エロージョン性を有するためには、フィン材を構成するAl合金の結晶粒を大きくして結晶粒界の組織中に占める割合を少なくし、さらに結晶粒の歪みを小さくする必要がある。そのために、フィン材を構成するAl合金の結晶粒の平均粒径を300μm以上とする必要があるが、結晶粒を50000μmを越えて大きくすることは困難であるところから、結晶粒の平均粒径を300〜50000μmとし、さらに最終冷間圧延による結晶粒の歪みを少なくするために、最終冷間圧延の圧延率を従来よりも小さくして結晶粒の形状を円形に近い形状にすることが好ましいところからLT/Lの値を0.12以上とする必要がり、したがって、LT/L:0.12〜1に定めた。フィン材を構成するAl合金の結晶粒の平均粒径の一層好ましい範囲は500〜20000μmであり、LT/Lの一層好ましい範囲は0.3〜0.8である。
【0016】
【発明の実施の形態】
つぎに、この発明のAl合金フィン材を実施例により具体的に説明する。
通常の溶解法により、それぞれ表1〜表4に示される成分組成をもったAl合金溶湯を調製し、このAl合金溶湯を半連続鋳造法により鋳造し、鋳塊A〜kを製造した。
【0017】
【表1】

Figure 0003876505
【0018】
【表2】
Figure 0003876505
【0019】
【表3】
Figure 0003876505
【0020】
【表4】
Figure 0003876505
【0021】
これら鋳塊A〜kを500℃で熱間圧延した後、表5〜表8に示される条件の中間焼鈍および通常の冷間圧延を繰り返し施し、最終冷間圧延を表5〜表8に示される圧延率にて厚さ:100μmの冷延板とすることにより本発明フィン材1〜37、比較フィン材1〜2および従来フィン材をそれぞれ製造し、得られた本発明フィン材1〜37、比較フィン材1〜2および従来フィン材の平均結晶粒径およびLT/Lを測定し、その結果を表5〜表8に示した。
【0022】
一方、心材としてAl−1重量%Mn−0.15重量%Cu(AA3003)を用意し、さらにろう材としてAl−7.5重量%Si(AA4343)を用意し、心材:ろう材=85:15のクラッド率となるように心材の片面にろう材をクラッドした厚さ:0.3mmのブレージングシートを用意した。このブレージングシートの片面にコルゲート加工を施した本発明フィン材1〜37、比較フィン材1〜2および従来フィン材を組み付け、これにフラックスを塗布した後、600℃のAr雰囲気中でろう付けしたのち空冷し、その後断面の観察を行うことにより、ろうによるフィンの最大エロージョン深さ(図1のエロージョン部4の厚さH)について測定し、その結果を表5〜表8に示した。
【0023】
【表5】
Figure 0003876505
【0024】
【表6】
Figure 0003876505
【0025】
【表7】
Figure 0003876505
【0026】
【表8】
Figure 0003876505
【0027】
【発明の効果】
表1〜表8に示される結果から、本発明フィン材1〜37は従来フィン材と比べて、溶融ろうによるフィンの最大エロージョン深さが小さいところから、本発明フィン材1〜37は、いずれも一段と耐エロージョン性に優れていることが明らかである。
一方、比較Al合金フィン材1〜2に見られるように、Al合金の平均結晶粒径およびLT/Lのずれかがこの発明の範囲から外れると(この発明の範囲から外れた値を表7に*印を付して示した)、最大エロージョン深さが大きくなり過ぎることが明らかである。
【0028】
上述のように、この発明の熱交換器用Al合金フィン材は、耐エロージョン性に優れ、この発明のフィン材で作製したAl熱交換器は軽量化および小型化が可能であると共に、熱交換機能の一層の向上に役立つものである。
【図面の簡単な説明】
【図1】 フィン材を冷媒通路形成体にろう付けして得られた接合部の一部拡大断面図である。
【図2】 フィン材を冷媒通路形成体にろう付けして得られた接合部の一部拡大断面図である。
【符号の説明】
1 フィン材、
2 冷媒通路形成体、
3 フィレット、
4 エロージョン部[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an Al alloy fin material for a heat exchanger having excellent erosion resistance.
[0002]
[Prior art]
Conventionally, a fin material, which is a structural member of a heat exchanger that is generally used as a radiator of an automobile, is brazed to a refrigerant passage forming body (for example, a pipe material) and is metallically bonded to widen a heat transfer area. Thus, the heat exchange efficiency is improved. As these fin materials, AA1050 alloy, AA3003 alloy and the like are usually used, but in recent years, Al alloy fin materials for heat exchangers having the following high strength have been developed.
Fe: 1.1 to 1.5% by weight, Si: 0.35 to 0.8% by weight, Mn: 0.15 to 0.4% by weight, with the remainder consisting of Al and inevitable impurities Al alloy fin material for heat exchanger having high strength (see JP-A-1-292945),
Fe: 1.1 to 1.5 wt%, Si: 0.1 to 0.8 wt%, Mg: 0.05 to 0.5 wt%, and Mn: 0.1 to 0.8 wt% %, Zr: Al alloy fin material for heat exchangers having a high strength having a composition comprising Al and inevitable impurities, containing one or two of 0.02 to 0.2% by weight 1-292955 gazette),
Fe: 1.1 to 1.5% by weight, Si: 0.35 to 0.8% by weight, Zr: 0.02 to 0.2% by weight, with the remainder consisting of Al and inevitable impurities Al alloy fin material for heat exchangers having high strength (see Japanese Patent Laid-Open No. 1-292953).
[0003]
Since these fin materials have high strength, they can be made thinner than conventional fin materials. Therefore, the weight reduction and size reduction of the Al heat exchanger are promoted, and further, the vacuum brazing is performed when the heat exchanger is assembled. It does not cause deformation during mounting or practical use, and has excellent thermal conductivity, so it greatly contributes to improving the heat exchange function compared to the past. In order to braze the fin material to the refrigerant passage forming body, as shown in the partially enlarged cross-sectional view of FIG. The gap between the material and the refrigerant passage forming body is filled with molten solder to form the fillet 3, and the fin material 1 and the refrigerant passage forming body 2 are firmly joined by the fillet 3. In this case, the fact that a part of the fin material 1 and the refrigerant passage forming body 2 is melted by the melting wax is called erosion (erosion), and the eroded part is called the erosion part 4. The presence of the erosion portion 4 having an appropriate thickness greatly contributes to the strong bonding between the fin material and the coolant passage forming body.
[0004]
[Problems to be solved by the invention]
In recent years, in order to improve the fuel efficiency of automobiles, etc., heat exchangers, which are one of the automotive parts, are required to be lighter and more compact, and the heat exchanger fin materials are becoming thinner and more heat exchangers. The reduction in weight and size is promoted. However, the conventional fin material is easily eroded by the molten solder, and when the thin fin material that is easily eroded (eroded) is brazed to the refrigerant passage forming body, the fin material is thin, so that FIG. As shown in the enlarged cross-sectional view, the erosion portion 4 is larger than the thickness of the fin material 1, and the thickness t of the fin material 1 in contact with the fillet 3 is extremely thin. In the worst case, erosion The part 4 penetrates the fin material 1, so that not only the pressure strength and structure necessary for the fin material of the heat exchanger cannot be maintained, but also a problem in that the heat exchange function is unavoidably deteriorated.
[0005]
[Means for Solving the Problems]
Therefore, as a result of conducting research to obtain a fin material excellent in erosion resistance from the above viewpoint,
(A) The erosion of the fin material occurs at the inside of the crystal grains and at the grain boundaries, but the damage caused by the erosion is predominantly the one that proceeds at the crystal grain boundaries of the fin material. When the crystal grains are enlarged to reduce the proportion of the grain boundary in the structure, and the average grain size of the crystal grains in the plane perpendicular to the thickness direction of the fin material is 300 to 50,000 μm, more excellent erosion resistance is exhibited. ,
(B) In general, the fin material of the heat exchanger is finished by cold rolling an Al alloy, but the better the erosion resistance the closer the crystal grain structure obtained by cold rolling is to a circular shape. The length of crystal grains in the rolling direction of the fin material is denoted by L, and the length of crystal grains in the direction perpendicular to the rolling direction and parallel to the rolling surface is denoted by LT, and the ratio of L to LT (hereinafter referred to as LT / L) is preferably 0.12 to 1,
(C) The average grain size of the crystal grains in the plane perpendicular to the thickness direction of the fin material is increased so as to be 300 to 50,000 μm to reduce the proportion of crystal grain boundaries, and the crystal grain shape is close to a circle. The Al alloy constituting the fin material of the heat exchanger having LT / L in the range of 0.12 to 1 may be any structural Al alloy, but Fe: 1 having a higher Fe content than conventional ones. As a result, research results have been obtained, such as better erosion resistance when the Al alloy contains more than .5 wt% to 3 wt%.
[0006]
And it is preferable that the Al alloy constituting the Al alloy fin material for heat exchangers with excellent erosion resistance of the present invention is composed of an Al alloy containing more than 1.5% by weight of Fe. As an Al alloy containing more than 1.5% by weight,
(A) Fe: Al alloy containing more than 1.5 to 3% by weight, with the remainder comprising Al and inevitable impurities,
(B) Fe: more than 1.5 to 3% by weight, Mn: 0.1 to 0.5% by weight, Si: 0.1 to 0.5% by weight, Cu: 0.05 to 0. An Al alloy containing one or more of 7% by weight, the balance being composed of Al and inevitable impurities,
(C) Fe: more than 1.5 to 3% by weight, Zn: 0.5 to 3% by weight, Zr: 0.05 to 0.2% by weight, with the remainder consisting of Al and inevitable impurities Al alloy,
(D) Fe: more than 1.5 to 3 wt%, Zn: 0.5 to 3 wt%, Zr: 0.05 to 0.2 wt%, and Mn: 0.1 to 0.5 wt% %, Si: 0.1 to 0.5% by weight, Cu: 0.05 to 0.7% by weight, one or more of Al, and the remainder is Al having a composition composed of Al and inevitable impurities alloy,
(E) Al alloy having a composition in which Mg: 0.05 to 0.2% by weight is further added to the Al alloy described in (a), (b), (c) or (d). .
[0007]
Therefore, the present invention
(1) Fe: more than 1.5 to 3% by weight, with the balance being composed of Al and inevitable impurities, and the average grain size of the crystal grains in the plane perpendicular to the thickness direction of the fin material is 300 Al alloy fin material for heat exchangers having excellent erosion resistance, which is made of an Al alloy having crystal grains having a crystal grain size of 50,000 to 50,000 μm and LT / L of 0.12 to 1,
(2) Fe: more than 1.5 to 3% by weight, Mn: 0.1 to 0.5% by weight, Si: 0.1 to 0.5% by weight, Cu: 0.05 to 0. One or more of 7% by weight, the remainder having a composition composed of Al and inevitable impurities, and the average grain size of the crystal grains in the plane perpendicular to the thickness direction of the fin material is 300 to An Al alloy fin material for heat exchangers having excellent erosion resistance, which is made of an Al alloy having crystal grains of 50000 μm and LT / L of 0.12 to 1,
(3) Fe: more than 1.5 to 3% by weight, Zn: 0.5 to 3% by weight, Zr: 0.05 to 0.2% by weight, with the remainder consisting of Al and inevitable impurities Furthermore, the average grain size of the crystal grains in the plane perpendicular to the thickness direction of the fin material is 300 to 50000 μm, and LT / L is made of an Al alloy having crystal grains of 0.12 to 1. Al alloy fin material for heat exchangers with excellent erosion resistance,
(4) Fe: more than 1.5 to 3 wt%, Zn: 0.5 to 3 wt%, Zr: 0.05 to 0.2 wt%, and Mn: 0.1 to 0.5 wt% %, Si: 0.1 to 0.5% by weight, Cu: 0.05 to 0.7% by weight, one or more of them, and the balance is composed of Al and inevitable impurities Furthermore, the average grain size of the crystal grains in the plane perpendicular to the thickness direction of the fin material is 300 to 50000 μm, and LT / L is made of an Al alloy having crystal grains of 0.12 to 1. Al alloy fin material for heat exchangers with excellent erosion properties,
(5) The Al alloy according to (1), (2), (3) or (4) has a composition further containing Mg: 0.05 to 0.2% by weight; Excellent erosion resistance composed of an Al alloy having crystal grains having an average grain size of 300 to 50,000 μm in the plane perpendicular to the thickness direction and LT / L of 0.12 to 1 It is characterized by the Al alloy fin material for heat exchangers.
[0008]
In order to produce an Al alloy fin material for a heat exchanger excellent in erosion resistance according to the present invention, a billet obtained by semi-continuous casting is hot-rolled, and after intermediate annealing and cold rolling are repeated, the final cold In the rolling process, the intermediate annealing immediately before the final cold rolling is subjected to intermediate annealing for a longer time than before or after the intermediate annealing at a higher temperature than before, followed by the final cold rolling at a lower rolling rate than before. Can be manufactured. For example, the Al alloy fin material for heat exchangers with excellent erosion resistance according to the present invention is manufactured for an Al alloy that is conventionally subjected to intermediate annealing immediately before final cold rolling at 350 to 400 ° C. for 2 hours. The intermediate annealing immediately before the final cold rolling is carried out under the conditions of holding at 350 to 400 ° C. for 4 hours, holding over 400 to 500 ° C. for 3 hours, or holding over 500 to 600 ° C. for 2 hours, followed by final cooling The rolling rate of the final cold rolling of the present invention is 5 to 25% with respect to the conventional rolling rate of 30 to 80%.
[0009]
The average grain size and LT / L of the Al alloy crystal grains constituting the fin material, and the composition range of the Al alloy containing Fe exceeding 1.5% by weight is limited as described above. Explain why.
[0010]
(A) Fe
The Fe component is finely and uniformly dispersed in the base material after brazing to improve the strength of the fin material, and erosion due to brazing is advanced from within the crystal grains to improve erosion resistance, and the solid solubility after brazing is increased. Although it is small and has the effect of not causing a decrease in thermal conductivity even when dissolved in a substrate, its content is insufficient in strength when its content is 1.5% by weight or less, so it has a high thermal conductivity excellent in erosion resistance. On the other hand, if the content exceeds 3% by weight, the self-corrosion resistance is lowered and coarse crystals are easily formed, and the erosion resistance and strength are reduced. The content was determined to be more than 1.5 to 3% by weight. A more preferable range of the Fe content is 1.7 to 2.5% by weight.
[0011]
(B) Zn
The Zn component has an action of solid-dissolving in the base material to make the fin material electrochemically base and improve the sacrificial anode effect on the refrigerant passage forming body (for example, pipe material), but its content is 0.5 weight. If the content is less than 1%, the desired effect cannot be obtained. On the other hand, if the content exceeds 3% by weight, the solid solubility after brazing increases, the thermal conductivity decreases, and the self-corrosion resistance decreases. Therefore, the content was determined to be 0.5 to 3% by weight. A more preferable range of the Zn content is 0.8 to 2.0% by weight.
[0012]
(C) Zr
The Zr component forms a fine Al-Zr intermetallic compound after brazing and disperses it in the substrate, improving the strength and improving the erosion resistance. Even if it dissolves in the substrate, the thermal conductivity decreases. However, if the content is less than 0.05% by weight, the desired strength improvement effect cannot be obtained. On the other hand, if the content exceeds 0.2% by weight, hot workability and cold workability are reduced. Since it comes to deteriorate, the content was determined to be 0.05 to 0.2% by weight. A more preferable range of the Zr content is 0.08 to 0.15% by weight.
[0013]
(D) Mn, Si and Cu
These components are dispersed in the substrate as Al-Mn-Fe compound, Al-Si-Fe compound, and Al-Fe compound together with Al and Fe, so that the corrosion resistance and the thermal conductivity are not lowered, and Cu is further added to the substrate. It is added as necessary because it has the effect of significantly improving the strength of the fin material by solid solution, but its content is Mn: less than 0.1% by weight and Si: less than 0.2% by weight and Cu: 0 If it is less than 0.05% by weight, the desired strength improving effect cannot be obtained. On the other hand, if the content is Mn, if it exceeds 0.5% by weight, the thermal conductivity is remarkably lowered and the workability is also lowered. In the case of Si and Cu, when the content exceeds 0.5% by weight, the thermal conductivity and the erosion resistance during brazing are lowered. Wt%, Si 0.1 to 0.5 wt%, Cu: 0.05 to 0.7 was defined as wt%.
[0014]
(E) Mg
Since the Mg component has the effect of improving the strength by solid solution in the substrate, it is contained as necessary, but if the content is less than 0.05% by weight, the desired strength improvement effect cannot be obtained, On the other hand, if the content exceeds 0.2% by weight, the proportion of solid solution in the substrate increases, and there is a tendency to become electrochemically noble, the sacrificial anode effect on the pipe material is reduced, and brazing properties are impaired. At the same time, the erosion resistance and thermal conductivity during brazing are also lowered, so the content was determined to be 0.05 to 0.2% by weight.
[0015]
(F) Average grain size and shape of crystal grains In order for the fin material to have excellent erosion resistance, the crystal grain of the grain boundary is reduced by enlarging the crystal grains of the Al alloy constituting the fin material. In addition, it is necessary to further reduce the distortion of the crystal grains. For this purpose, the average grain size of the Al alloy grains constituting the fin material needs to be 300 μm or more, but it is difficult to increase the grain size beyond 50000 μm. In order to make the diameter 300 to 50,000 μm and further reduce distortion of the crystal grains due to the final cold rolling, the rolling rate of the final cold rolling should be made smaller than before to make the crystal grains nearly circular. From a preferable point, the value of LT / L needs to be 0.12 or more. Therefore, LT / L is set to 0.12 to 1. A more preferable range of the average grain size of Al alloy crystal grains constituting the fin material is 500 to 20000 μm, and a more preferable range of LT / L is 0.3 to 0.8.
[0016]
DETAILED DESCRIPTION OF THE INVENTION
Next, the Al alloy fin material of the present invention will be specifically described with reference to examples.
Ingots A to k were produced by preparing Al alloy melts having the component compositions shown in Tables 1 to 4 by a normal melting method, and casting the Al alloy melts by a semi-continuous casting method.
[0017]
[Table 1]
Figure 0003876505
[0018]
[Table 2]
Figure 0003876505
[0019]
[Table 3]
Figure 0003876505
[0020]
[Table 4]
Figure 0003876505
[0021]
After these ingots A to k are hot-rolled at 500 ° C., intermediate annealing and normal cold rolling under the conditions shown in Tables 5 to 8 are repeated, and the final cold rolling is shown in Tables 5 to 8. The present invention fin materials 1 to 37, the comparative fin materials 1 and 2, and the conventional fin materials 1 to 37 are obtained by forming a cold-rolled sheet having a thickness of 100 μm at a rolling ratio to be obtained, and the obtained fin materials 1 to 37 of the present invention. The average crystal grain size and LT / L of the comparative fin materials 1 and 2 and the conventional fin material were measured, and the results are shown in Tables 5 to 8.
[0022]
On the other hand, Al-1 wt% Mn-0.15 wt% Cu (AA3003) is prepared as the core material, and Al-7.5 wt% Si (AA4343) is prepared as the brazing material, and the core material: brazing material = 85: A brazing sheet having a thickness of 0.3 mm in which a brazing material was clad on one side of the core material so as to have a cladding rate of 15 was prepared. The present invention fin materials 1 to 37, comparative fin materials 1 and 2 and a conventional fin material that have been corrugated on one side of the brazing sheet are assembled, and flux is applied thereto, followed by brazing in an Ar atmosphere at 600 ° C. Thereafter, air cooling was performed, and then the cross-section was observed to measure the maximum erosion depth of the fin by the brazing (the thickness H of the erosion part 4 in FIG. 1). The results are shown in Tables 5 to 8.
[0023]
[Table 5]
Figure 0003876505
[0024]
[Table 6]
Figure 0003876505
[0025]
[Table 7]
Figure 0003876505
[0026]
[Table 8]
Figure 0003876505
[0027]
【The invention's effect】
From the results shown in Tables 1 to 8, the fin materials 1 to 37 of the present invention are smaller in the maximum erosion depth of the fin due to the fusion brazing than the conventional fin materials, It is clear that it is further excellent in erosion resistance.
On the other hand, as seen in the comparative Al alloy fin materials 1 and 2, when the deviation of the average crystal grain size and LT / L of the Al alloy is out of the scope of the present invention (Table 7 shows the values out of the scope of the present invention. It is clear that the maximum erosion depth becomes too large.
[0028]
As described above, the Al alloy fin material for heat exchanger of the present invention has excellent erosion resistance, and the Al heat exchanger made of the fin material of the present invention can be reduced in weight and size, and has a heat exchange function. It will help to further improve
[Brief description of the drawings]
FIG. 1 is a partially enlarged cross-sectional view of a joint obtained by brazing a fin material to a refrigerant passage forming body.
FIG. 2 is a partially enlarged cross-sectional view of a joint obtained by brazing a fin material to a refrigerant passage forming body.
[Explanation of symbols]
1 Fin material,
2 refrigerant passage forming body,
3 Fillets,
4 Erosion Club

Claims (5)

Fe:1.5超〜3%を含有し、残りがAlと不可避不純物からなる組成を有し、さらにフィン材の厚さ方向と垂直な面の結晶粒の平均粒径が300〜50000μmであって、かつ、フィン材の圧延方向の結晶粒の長さをL、圧延方向に垂直でかつ圧延面に平行な方向の結晶粒の長さをLTで示すと、LT/Lが0.12〜1である結晶粒からなるAl合金で構成されていることを特徴とする耐エロージョン性に優れた熱交換器用Al合金フィン材。Fe: more than 1.5 to 3%, the balance is composed of Al and inevitable impurities, and the average grain size of the crystal grains in the plane perpendicular to the thickness direction of the fin material is 300 to 50,000 μm. When the length of crystal grains in the rolling direction of the fin material is indicated by L and the length of crystal grains in the direction perpendicular to the rolling direction and parallel to the rolling surface is indicated by LT, LT / L is 0.12 to 1. An Al alloy fin material for heat exchangers having excellent erosion resistance, wherein the Al alloy fin material is composed of an Al alloy composed of crystal grains. Fe:1.5超〜3%を含有し、
さらに、
Mn:0.1〜0.5%、
Si:0.1〜0.5%、
Cu:0.05〜0.7%、
の内の1種または2種以上を含有し、残りがAlと不可避不純物からなる組成を有し、さらにフィン材の厚さ方向と垂直な面の結晶粒の平均粒径が300〜50000μmであって、かつ、フィン材の圧延方向の結晶粒の長さをL、圧延方向に垂直でかつ圧延面に平行な方向の結晶粒の長さをLTで示すと、LT/Lが0.12〜1である結晶粒からなるAl合金で構成されていることを特徴とする耐エロージョン性に優れた熱交換器用Al合金フィン材。
Fe: more than 1.5 to 3%,
further,
Mn: 0.1 to 0.5%
Si: 0.1 to 0.5%,
Cu: 0.05 to 0.7%,
1 or 2 or more of them, the remainder has a composition composed of Al and inevitable impurities, and the average grain size of the crystal grains in the plane perpendicular to the thickness direction of the fin material is 300 to 50000 μm. When the length of crystal grains in the rolling direction of the fin material is indicated by L and the length of crystal grains in the direction perpendicular to the rolling direction and parallel to the rolling surface is indicated by LT, LT / L is 0.12 to 1. An Al alloy fin material for heat exchangers having excellent erosion resistance, wherein the Al alloy fin material is composed of an Al alloy composed of crystal grains.
Fe:1.5超〜3%、
Zn:0.5〜3%、
Zr:0.05〜0.2%を含有し、残りがAlと不可避不純物からなる組成を有し、さらにフィン材の厚さ方向と垂直な面の結晶粒の平均粒径が300〜50000μmであって、かつ、フィン材の圧延方向の結晶粒の長さをL、圧延方向に垂直でかつ圧延面に平行な方向の結晶粒の長さをLTで示すと、LT/Lが0.12〜1である結晶粒からなるAl合金で構成されていることを特徴とする耐エロージョン性に優れた熱交換器用Al合金フィン材。
Fe: more than 1.5 to 3%,
Zn: 0.5-3%,
Zr: 0.05 to 0.2%, the remainder is composed of Al and inevitable impurities, and the average grain size of the crystal grains in the plane perpendicular to the thickness direction of the fin material is 300 to 50,000 μm. When the length of the crystal grain in the rolling direction of the fin material is indicated by L, and the length of the crystal grain in the direction perpendicular to the rolling direction and parallel to the rolling surface is indicated by LT, LT / L is 0.12. An Al alloy fin material for heat exchangers excellent in erosion resistance, characterized by being composed of an Al alloy comprising crystal grains of ˜1.
Fe:1.5超〜3%、
Zn:0.5〜3%、
Zr:0.05〜0.2%、
を含有し、さらに、
Mn:0.1〜0.5%、
Si:0.1〜 0.5%、
Cu:0.05〜0.7%、
の内の1種または2種以上を含有し、
残りがAlと不可避不純物からなる組成を有し、さらにフィン材の厚さ方向と垂直な面の結晶粒の平均粒径が300〜50000μmであって、かつ、フィン材の圧延方向の結晶粒の長さをL、圧延方向に垂直でかつ圧延面に平行な方向の結晶粒の長さをLTで示すと、LT/Lが0.12〜1である結晶粒からなるAl合金で構成されていることを特徴とする耐エロージョン性に優れた熱交換器用Al合金フィン材。
Fe: more than 1.5 to 3%,
Zn: 0.5-3%,
Zr: 0.05 to 0.2%,
In addition,
Mn: 0.1 to 0.5%
Si: 0.1 to 0.5%,
Cu: 0.05 to 0.7%,
Containing one or more of
The balance is composed of Al and inevitable impurities, and the average grain size of the crystal grains in the plane perpendicular to the thickness direction of the fin material is 300 to 50,000 μm, and the crystal grains in the rolling direction of the fin material When the length of the crystal grain in the direction perpendicular to the rolling direction and parallel to the rolling surface is indicated by LT, the length is L, and the LT / L is made of an Al alloy made of crystal grains having a ratio of 0.12 to 1. An Al alloy fin material for heat exchangers with excellent erosion resistance, characterized by
前記フィン材を構成するAl合金は、請求項1、2、3または4記載のAl合金に、さらにMg:0.05〜0.2%を含有させた組成を有するAl合金であることを特徴とする耐エロージョン性に優れた熱交換器用Al合金フィン材。  The Al alloy constituting the fin material is an Al alloy having a composition in which Mg: 0.05 to 0.2% is further added to the Al alloy according to claim 1, 2, 3 or 4. Al alloy fin material for heat exchangers with excellent erosion resistance.
JP34130097A 1997-12-11 1997-12-11 Al alloy fin material for heat exchangers with excellent erosion resistance Expired - Fee Related JP3876505B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP34130097A JP3876505B2 (en) 1997-12-11 1997-12-11 Al alloy fin material for heat exchangers with excellent erosion resistance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP34130097A JP3876505B2 (en) 1997-12-11 1997-12-11 Al alloy fin material for heat exchangers with excellent erosion resistance

Publications (2)

Publication Number Publication Date
JPH11172356A JPH11172356A (en) 1999-06-29
JP3876505B2 true JP3876505B2 (en) 2007-01-31

Family

ID=18344990

Family Applications (1)

Application Number Title Priority Date Filing Date
JP34130097A Expired - Fee Related JP3876505B2 (en) 1997-12-11 1997-12-11 Al alloy fin material for heat exchangers with excellent erosion resistance

Country Status (1)

Country Link
JP (1) JP3876505B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4804901B2 (en) * 2005-01-26 2011-11-02 古河スカイ株式会社 Heat exchanger and fin material for the heat exchanger
JP4667064B2 (en) * 2005-02-17 2011-04-06 古河スカイ株式会社 Brazing fin material and manufacturing method thereof
JP4669710B2 (en) * 2005-02-17 2011-04-13 古河スカイ株式会社 Brazing fin material and manufacturing method thereof
JP4669712B2 (en) * 2005-02-17 2011-04-13 古河スカイ株式会社 Brazing fin material and manufacturing method thereof
JP4667065B2 (en) * 2005-02-17 2011-04-06 古河スカイ株式会社 Brazing fin material and manufacturing method thereof

Also Published As

Publication number Publication date
JPH11172356A (en) 1999-06-29

Similar Documents

Publication Publication Date Title
JP4166613B2 (en) Aluminum alloy fin material for heat exchanger and heat exchanger formed by assembling the fin material
JP4822277B2 (en) Aluminum alloy brazing sheet for heat exchanger tubes with excellent brazing and corrosion resistance and heat exchanger tubes with excellent corrosion resistance
JP2002059291A (en) Brazing sheet made of aluminum alloy for heat exchanger
JP2011202285A (en) Brazing sheet
JP4023760B2 (en) Aluminum alloy clad material for heat exchangers with excellent brazing and corrosion resistance
JP3910506B2 (en) Aluminum alloy clad material and manufacturing method thereof
JPH11131166A (en) Thin aluminum alloy fin material excellent for forming and brazing, and its production
JP3533434B2 (en) Brazing sheet for aluminum alloy heat exchanger
JP3876505B2 (en) Al alloy fin material for heat exchangers with excellent erosion resistance
JP3967669B2 (en) High strength aluminum alloy fin material for automobile heat exchanger excellent in rolling property and method for producing the same
JP3360026B2 (en) Brazing method of aluminum alloy brazing sheet for heat exchanger
JP2004017116A (en) Aluminum alloy brazing sheet for brazed pipe making tubes, and its producing method
JP3345845B2 (en) Aluminum alloy brazing sheet strip for ERW processing
JP4574036B2 (en) Aluminum alloy for fin material of heat exchanger and manufacturing method of fin material of heat exchanger
JP2006176852A (en) High-strength aluminum alloy cladding material for heat exchanger having excellent erosion resistance, heat exchanger and method for producing high-strength aluminum alloy cladding material
JP3916020B2 (en) Al alloy fin material for heat exchangers with high erosion resistance and high strength and high thermal conductivity
JP4566729B2 (en) High strength aluminum alloy fin material and heat exchanger for heat exchanger with excellent erosion resistance
JP3845851B2 (en) Al alloy fin material for heat exchangers with high erosion resistance and high strength and high thermal conductivity
JP3345850B2 (en) Aluminum alloy brazing sheet strip for ERW processing
JP3876179B2 (en) Aluminum alloy three-layer clad material
JP5847443B2 (en) Brazing sheet excellent in brazing property and method for producing brazed product
JPH0790442A (en) Aluminum alloy brazing sheet for heat exchanger and manufacture of aluminum alloy-made heat exchanger
JP3863595B2 (en) Aluminum alloy brazing sheet
JPH1088267A (en) Aluminum alloy clad fin material and heat exchanger made of aluminum alloy using the clad fin material
JPH0788677A (en) Manufacture of aluminum alloy brazing sheet and heat exchanger made of aluminum alloy

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040624

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060515

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060707

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060731

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060912

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061010

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061023

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees