JP2015199993A - Production method of aluminum alloy fin material for heat exchanger - Google Patents

Production method of aluminum alloy fin material for heat exchanger Download PDF

Info

Publication number
JP2015199993A
JP2015199993A JP2014080186A JP2014080186A JP2015199993A JP 2015199993 A JP2015199993 A JP 2015199993A JP 2014080186 A JP2014080186 A JP 2014080186A JP 2014080186 A JP2014080186 A JP 2014080186A JP 2015199993 A JP2015199993 A JP 2015199993A
Authority
JP
Japan
Prior art keywords
aluminum alloy
annealing
fin material
strength
brazing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014080186A
Other languages
Japanese (ja)
Other versions
JP6328472B2 (en
Inventor
淳一 望月
Junichi Mochizuki
淳一 望月
新倉 昭男
Akio Niikura
昭男 新倉
敦志 福元
Atsushi Fukumoto
敦志 福元
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
UACJ Corp
Original Assignee
UACJ Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by UACJ Corp filed Critical UACJ Corp
Priority to JP2014080186A priority Critical patent/JP6328472B2/en
Publication of JP2015199993A publication Critical patent/JP2015199993A/en
Application granted granted Critical
Publication of JP6328472B2 publication Critical patent/JP6328472B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Continuous Casting (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a production method of aluminum alloy fin material for heat exchanger, excellent in corrugate molding property and intensity after brazing heating, and having freedom degree of a heat gain during annealing.SOLUTION: An aluminum alloy casting mass is formed by using an aluminum alloy comprising Si:1.0-1.8%, Fe:0.3-0.9%, Mn:1.0-1.8%, Zn:0.5-2.0%, by mass% and balance formed of Al and inevitable impurities and casting. To the aluminum alloy casting mass, at least once or more times of annealing and once or more times of cold rolling are performed and a heat gain Ai(°C.h) per once of annealing at i-th time is 10 or more and 40000 or less, and a final rolling ratio in the cold rolling is 20-50%.

Description

本発明は、コルゲート成形性及びろう付け加熱後の強度に優れた熱交換器用アルミニウム合金フィン材の製造方法に関するものである。   The present invention relates to a method for producing an aluminum alloy fin material for a heat exchanger that is excellent in corrugate formability and strength after brazing heating.

アルミニウム合金は軽量で強度に優れ、更には熱伝導率に優れることから、熱交換器、例えば、ラジエータ、ヒーターコア、コンデンサ、インタークーラ等に好適に用いられている。上記熱交換器は、例えば、コルゲート成形によって波形に成形されたアルミニウム合金のフィンを他の部材とろう付け接合して組み立てられる。アルミニウム合金フィン材の合金としては、熱伝導性に優れるJIS1050合金等の純アルミニウム系合金や、強度および耐座屈性に優れるJIS3003合金等のAl−Mn系合金が一般的に用いられてきた。   Aluminum alloys are suitable for heat exchangers such as radiators, heater cores, condensers, and intercoolers because they are lightweight and have excellent strength and thermal conductivity. The heat exchanger is assembled, for example, by brazing and joining aluminum alloy fins shaped into corrugations by corrugation molding to other members. As an alloy of the aluminum alloy fin material, a pure aluminum alloy such as JIS1050 alloy excellent in thermal conductivity and an Al-Mn alloy such as JIS3003 alloy excellent in strength and buckling resistance have been generally used.

ところで、近年は熱交換器に対して軽量化、小型化及び高性能化の要求が高まってきている。これに伴い、ろう付け接合されるアルミニウム合金フィン材についても、薄肉で、ろう付け加熱後の強度、熱伝導性及び耐食性等の特性に優れていることが望まれている。特に、フィン材の薄肉化が進むに伴い、更なるろう付け加熱後の強度の向上が求められている。しかし、一般的にろう付け加熱後の強度を向上させると、同時にろう付け加熱前の強度が向上するためにコルゲート成形性が低下する。このため、ろう付け加熱後強度とコルゲート成形性を両立することは困難であった。   By the way, in recent years, demands for weight reduction, size reduction, and high performance have been increasing for heat exchangers. Accordingly, the aluminum alloy fin material to be brazed and joined is also desired to be thin and excellent in properties such as strength after brazing heating, thermal conductivity and corrosion resistance. In particular, as the fin material becomes thinner, further improvement in strength after brazing and heating is required. However, generally, when the strength after brazing heating is improved, the strength before brazing heating is improved at the same time, and thus the corrugated formability is lowered. For this reason, it was difficult to achieve both strength after brazing heating and corrugate formability.

アルミニウム合金フィン材として、特許文献1には、双ベルト式連続鋳造圧延法により鋳造し、ろう付け加熱前の金属組織がファイバー組織である板厚が40〜200μmの高強度アルミニウム合金フィン材が記載されている。しかし、中間焼鈍時に再結晶させず、ろう付け加熱前の金属組織をファイバー組織としており、素材状態でのひずみ量が多くなる。その結果、素材強度が高くなり、薄肉のフィン材をコルゲート加工する際に、所定の寸法精度が得られず、熱交換器の性能が低下する虞がある。   As an aluminum alloy fin material, Patent Document 1 describes a high-strength aluminum alloy fin material having a thickness of 40 to 200 μm, which is cast by a twin belt type continuous casting and rolling method, and the metal structure before brazing heating is a fiber structure. Has been. However, recrystallization is not performed during intermediate annealing, and the metal structure before brazing heating is a fiber structure, which increases the amount of strain in the raw material state. As a result, the material strength is increased, and when corrugating a thin fin material, a predetermined dimensional accuracy cannot be obtained, and the performance of the heat exchanger may be deteriorated.

特許文献2には、双ベルト式連続鋳造法により鋳造し、第1次中間焼鈍を250〜550℃、第2次中間焼鈍を360〜550℃の温度で行い、最終板厚を40〜200μmとした熱交換器用アルミニウム合金フィン材が開示されている。しかし、ろう付け加熱前の金属組織が規定されておらず、ろう付け加熱前の素材強度が高く、コルゲート成形性を低下させる可能性がある。   In Patent Document 2, casting is performed by a twin belt type continuous casting method, the first intermediate annealing is performed at a temperature of 250 to 550 ° C., the second intermediate annealing is performed at a temperature of 360 to 550 ° C., and the final thickness is 40 to 200 μm. An aluminum alloy fin material for a heat exchanger is disclosed. However, the metal structure before brazing heating is not specified, the material strength before brazing heating is high, and corrugate formability may be reduced.

特許文献3には、連続鋳造圧延法により鋳造し、1回目の焼鈍を450〜600℃の温度で1〜10h行い、最終板厚を0.1mm以下とした耐エロージョン性に優れたアルミニウム合金材の製造方法が提案されている。しかし、中間焼鈍を高温で行っているため、前述したように焼鈍時に第2相粒子が粗大化して疎な分布になり、ろう付け加熱後の強度が低下してしまう。また、ろう付け加熱後の結晶粒径が微細になることが予想され、ろう付け性を確保できない虞がある。   Patent Document 3 discloses an aluminum alloy material excellent in erosion resistance, cast by a continuous casting and rolling method, first annealed at a temperature of 450 to 600 ° C. for 1 to 10 hours, and having a final thickness of 0.1 mm or less. The manufacturing method of this is proposed. However, since the intermediate annealing is performed at a high temperature, as described above, the second phase particles become coarse and have a sparse distribution during annealing, and the strength after brazing heating decreases. In addition, the crystal grain size after brazing heating is expected to be fine, and there is a possibility that brazing properties cannot be ensured.

特許文献4には、半連続鋳造法で鋳造し、Niを含有することにより優れた耐食性を有する熱交換器用アルミニウム合金フィン材が記載されている。しかし、Niを含む化合物はマトリクスとの電位差が大きく、腐食の起点となりやすいことから、自己耐食性が低く、実用上不十分である。また、半連続鋳造法では鋳造中に生成する化合物のサイズが連続鋳造圧延法と比較して大きく、腐食の起点となる化合物が多く腐食が進行し易いことから、自己耐食性に劣ることになる。   Patent Document 4 describes an aluminum alloy fin material for a heat exchanger which is cast by a semi-continuous casting method and has excellent corrosion resistance by containing Ni. However, since a compound containing Ni has a large potential difference from the matrix and is likely to be a starting point of corrosion, the self-corrosion resistance is low, which is insufficient practically. Further, in the semi-continuous casting method, the size of a compound generated during casting is larger than that in the continuous casting rolling method, and since many compounds that are the starting points of corrosion are likely to proceed, corrosion is inferior.

特開2007−31778号公報JP 2007-31778 A 特開2008−38166号公報JP 2008-38166 A 特開2008−308761号公報JP 2008-307661 A 特開2003−147466号公報JP 2003-147466 A

以上のように従来の熱交換器用フィン材では、コルゲート成形性及びろう付け加熱後強度を両立するような十分な性能を有するものは開発されておらず、また、焼鈍時の処理条件が厳しく規制されており、入熱量に自由度が無かった。   As described above, no conventional heat exchanger fin material has been developed that has both the corrugate formability and the strength after brazing heating, and the processing conditions during annealing are strictly regulated. And there was no degree of freedom in heat input.

本発明はこのような課題に鑑みてなされたものであり、コルゲート成形性及びろう付け加熱後の強度に優れた熱交換器用アルミニウム合金フィン材の製造方法であって、焼鈍時の入熱量に自由度を有する製造方法を提供することを目的とする。   The present invention has been made in view of such problems, and is a method for producing an aluminum alloy fin material for a heat exchanger that is excellent in corrugated formability and strength after brazing heating, and is free from heat input during annealing. It aims at providing the manufacturing method which has a degree.

本発明者らは上記課題について研究した結果、特定の合金組成を有するアルミニウム合金に対して焼鈍時の入熱量と最終圧延率を調整することにより上記課題を解決できることを見出し、本発明を完成させるに至った。   As a result of studying the above problems, the present inventors have found that the above problems can be solved by adjusting the heat input amount during annealing and the final rolling rate for an aluminum alloy having a specific alloy composition, and complete the present invention. It came to.

すなわち、本発明の熱交換器用アルミニウム合金フィン材の製造方法は、以下の(1)〜(3)を特徴としている。
(1)mass%でSiを1.0〜1.8%、Feを0.3〜0.9%、Mnを1.0〜1.8%、Znを0.5〜2.0%、残部がAl及び不可避的不純物からなるアルミニウム合金を用いる。
That is, the method for producing an aluminum alloy fin material for a heat exchanger according to the present invention is characterized by the following (1) to (3).
(1) In mass%, Si is 1.0 to 1.8%, Fe is 0.3 to 0.9%, Mn is 1.0 to 1.8%, Zn is 0.5 to 2.0%, An aluminum alloy composed of Al and inevitable impurities is used as the balance.

(2)上記アルミニウム合金を用いて鋳造したアルミニウム合金鋳塊に対して、少なくとも1回以上の焼鈍と1回以上の冷間圧延を施し、下記式1によって算出されるi回目の焼鈍一回当たりの入熱量Ai(℃・h)が10以上40000以下とする。

Figure 2015199993
(2) An aluminum alloy ingot cast using the above aluminum alloy is subjected to at least one annealing and one or more cold rollings, and per i-th annealing calculated by the following formula 1. The amount of heat input Ai (° C. · h) is 10 or more and 40000 or less.
Figure 2015199993

(3)冷間圧延における最終圧延率を20〜50%の範囲とする。 (3) The final rolling reduction in cold rolling is set to a range of 20 to 50%.

また、下記式2によって算出される焼鈍全回数の合計の入熱量Tが10以上60000以下であることが好ましい。

Figure 2015199993
Moreover, it is preferable that the total heat input T calculated by the following formula 2 is 10 or more and 60000 or less.
Figure 2015199993

本発明の製造方法によれば、焼鈍時の入熱量に自由度を持たせつつ、コルゲート成形性及びろう付け加熱後の強度に優れた熱交換器用アルミニウム合金フィン材を提供することができる。   According to the production method of the present invention, it is possible to provide an aluminum alloy fin material for a heat exchanger that is excellent in corrugated formability and strength after brazing heating while giving a degree of freedom in heat input during annealing.

焼鈍時の温度チャートと入熱量の計算方法を示す図である。It is a figure which shows the temperature chart at the time of annealing, and the calculation method of heat input. 入熱量Aを計算するための温度チャートの一例を示す図である。It is a figure which shows an example of the temperature chart for calculating the heat gain.

以下、本発明の熱交換器用アルミニウム合金フィン材の製造方法について詳細に説明する。   Hereinafter, the manufacturing method of the aluminum alloy fin material for heat exchangers of the present invention will be described in detail.

[1.アルミニウム合金フィン材の組成]
本発明のアルミニウム合金フィン材の組成は、mass%で、Siを1.0〜1.8%、Feを0.3〜0.9%、Mnを1.0〜1.8%、Znを0.5〜2.0%含有し、残部がAl及び不可避的不純物である。以下において、成分元素の添加理由及び含有範囲を限定する理由について説明する。
[1. Composition of aluminum alloy fins]
The composition of the aluminum alloy fin material of the present invention is mass%, Si is 1.0 to 1.8%, Fe is 0.3 to 0.9%, Mn is 1.0 to 1.8%, Zn is It contains 0.5 to 2.0%, and the balance is Al and inevitable impurities. Hereinafter, the reason for adding the component elements and the reason for limiting the content range will be described.

(Si:1.0%以上1.8%以下)
Siは材料の強度を向上させるのに必須の元素である。SiはAl、Fe、Mnと共にAl−Fe−Si系、Al−Mn−Si系、Al−Fe−Mn−Si系化合物を形成することで分散強化を起こし、又はマトリクス中に固溶することで固溶強化を起こして強度を向上させる。本発明ではSiの含有範囲を1.0〜1.8%、好ましくは1.2〜1.5%とする。含有量が1.0%未満では、分散強化と固溶強化が十分ではなく、ろう付け加熱後の強度が低下する。一方、含有量が1.8%を超えると固相線温度が低下し、ろう付け中にフィンが溶融する虞がある。
(Si: 1.0% to 1.8%)
Si is an essential element for improving the strength of the material. Si forms an Al-Fe-Si-based, Al-Mn-Si-based, Al-Fe-Mn-Si-based compound together with Al, Fe, and Mn, thereby causing dispersion strengthening or by dissolving in a matrix. Increases strength by causing solid solution strengthening. In the present invention, the Si content range is 1.0 to 1.8%, preferably 1.2 to 1.5%. If the content is less than 1.0%, dispersion strengthening and solid solution strengthening are not sufficient, and the strength after brazing heating is lowered. On the other hand, if the content exceeds 1.8%, the solidus temperature is lowered and the fins may be melted during brazing.

(Fe:0.3%以上0.9%以下)
Feは材料の強度を向上させるのに必須の元素である。Feは、双ロール式連続鋳造圧延時に、Al−Fe系、Al−Fe−Si系、Al−Fe−Mn系、Al−Fe−Mn−Si系微細化合物として形成されるために、分散強化を起こして材料の強度を向上させる。また、それらの微細化合物はろう付け中に再結晶核を抑制するので、ろう付け後の結晶粒径を粗大にさせ、フィン材へのろう拡散を抑制する。本発明ではFeの含有範囲を0.3〜0.9%、好ましくは0.4〜0.7%とする。含有量が0.3%未満では、上記の効果を十分得ることができない。一方で、含有量が0.9%を超えると鋳造時に粗大晶出物が形成されるので、塑性変形性が低下し、圧延性及びコルゲート成形性が低下してしまう。また、微細化合物によるカソードサイトが増加するために、腐食起点が増加し、自己耐食性が低下する懸念がある。
(Fe: 0.3% to 0.9%)
Fe is an essential element for improving the strength of the material. Since Fe is formed as an Al-Fe-based, Al-Fe-Si-based, Al-Fe-Mn-based, Al-Fe-Mn-Si-based fine compound during twin-roll continuous casting and rolling, dispersion strengthening is performed. Wake up to improve the strength of the material. Moreover, since these fine compounds suppress recrystallization nuclei during brazing, the crystal grain size after brazing is coarsened and brazing diffusion to the fin material is suppressed. In the present invention, the Fe content range is 0.3 to 0.9%, preferably 0.4 to 0.7%. If the content is less than 0.3%, the above effects cannot be obtained sufficiently. On the other hand, if the content exceeds 0.9%, a coarse crystallized product is formed at the time of casting, so that the plastic deformability is lowered, and the rollability and the corrugated formability are lowered. Moreover, since the cathode site by a fine compound increases, there exists a possibility that a corrosion start point may increase and self-corrosion resistance may fall.

(Mn:1.0%以上1.8%以下)
Mnは材料の強度を向上させるのに必須の元素である。MnはAl、Fe、Siと共にAl−Fe−Mn系、Al−Mn−Si系、Al−Fe−Mn−Si系化合物を形成することで分散強化を起こし、又はマトリクス中に固溶することで固溶強化を起こして強度を向上させる。また、Mnは固溶Siが化合して、マトリクスの固溶Si量を低下させるので、材料の融点を向上させ、ろう付け時の溶融を防止することができる。本発明ではMnの含有量を1.0〜1.8%、好ましくは1.2〜1.5%とする。含有量が1.0%未満では上記の効果を十分得ることができない。一方、含有量が1.8%を超えると、鋳造時に粗大晶出物が形成されるので、塑性変形性が低下し、圧延性及びコルゲート成形性が低下してしまう。また、マトリクスへのMn固溶量が多くなり熱伝導率が低下しやすくなる。
(Mn: 1.0% to 1.8%)
Mn is an essential element for improving the strength of the material. Mn causes dispersion strengthening by forming Al—Fe—Mn, Al—Mn—Si, and Al—Fe—Mn—Si compounds together with Al, Fe, and Si, or dissolves in the matrix. Increases strength by causing solid solution strengthening. In addition, Mn combines with solute Si to reduce the amount of solute Si in the matrix, thereby improving the melting point of the material and preventing melting during brazing. In the present invention, the Mn content is 1.0 to 1.8%, preferably 1.2 to 1.5%. If the content is less than 1.0%, the above effect cannot be obtained sufficiently. On the other hand, if the content exceeds 1.8%, a coarse crystallized product is formed at the time of casting, so that the plastic deformability is lowered, and the rollability and the corrugated formability are lowered. In addition, the amount of Mn solid solution in the matrix increases and the thermal conductivity tends to decrease.

(Zn:0.5%以上2.0%以下)
Znは材料の自然電位を卑にし、犠牲防食効果の向上に寄与する。本発明ではZnの含有量を0.5〜2.0%、好ましくは1.0〜1.5%とする。含有量が0.5%未満では上記の効果を十分得ることが出来ない。一方、2.0%を超えると自己腐食速度が増大し、自己耐食性が低下する。
(Zn: 0.5% to 2.0%)
Zn lowers the natural potential of the material and contributes to the improvement of the sacrificial anticorrosive effect. In the present invention, the Zn content is 0.5 to 2.0%, preferably 1.0 to 1.5%. If the content is less than 0.5%, the above effect cannot be obtained sufficiently. On the other hand, if it exceeds 2.0%, the self-corrosion rate increases and the self-corrosion resistance decreases.

以上の各元素の他は、基本的にはAlおよび不可避的不純物とすれば良いが、通常アルミニウム合金に添加される上記以外の元素も、特性に大きな影響を与えない範囲内で許容される。例えば、鋳造時の微細化剤として添加されるTiやBはそれぞれ0.1%以下、0.01%以下であれば支障はなく、また強度向上のために添加されることがあるCrやV、Zrは、それぞれ0.1%以下であれば特に問題はない。   In addition to the above elements, basically, Al and inevitable impurities may be used, but other elements usually added to the aluminum alloy are allowed within a range that does not greatly affect the characteristics. For example, if Ti and B added as a finer during casting are 0.1% or less and 0.01% or less, respectively, there is no problem, and Cr or V that may be added for strength improvement , Zr is not particularly problematic as long as it is 0.1% or less.

[2.製造工程]
次に、本発明の実施形態では、上記組成からなるアルミニウム合金の溶湯を双ロール式連続鋳造圧延法によりアルミニウム合金板状鋳塊とし、このアルミニウム合金板状鋳塊に対して、少なくとも1回以上の焼鈍と1回以上の冷間圧延を施す。以下、工程毎に説明する。
[2. Manufacturing process]
Next, in the embodiment of the present invention, the molten aluminum alloy having the above composition is made into an aluminum alloy plate ingot by a twin roll continuous casting and rolling method, and at least once for the aluminum alloy plate ingot. Annealing and at least one cold rolling. Hereinafter, it demonstrates for every process.

(双ロール式連続鋳造圧延法)
まず、上記組成からなるアルミニウム合金の溶湯を双ロール式連続鋳造圧延法で板状鋳塊にする。双ロール式連続鋳造圧延法は、鋳造時のアルミニウム合金溶湯の冷却速度が100〜1000℃/秒であり、一般的なDC(Direct Chill)法の20〜100℃/秒よりも冷却速度が速い。そのために鋳造時にAl−Fe系、Al−Fe−Mn系、Al−Fe−Mn−Si系などの金属間化合物が微細に分散し易い。微細分散した金属間化合物はマトリクスに固溶したSi、Fe、Mnの析出を促進するので、分散強化により強度が向上しやすく、更には熱伝導率も向上し易い。また、微細化合物が多いためにコルゲート成形型の磨耗が少ない。
(Twin roll continuous casting and rolling method)
First, a molten aluminum alloy having the above composition is formed into a plate-shaped ingot by a twin roll continuous casting and rolling method. In the twin-roll continuous casting and rolling method, the cooling rate of the molten aluminum alloy at the time of casting is 100 to 1000 ° C./second, and the cooling rate is faster than 20 to 100 ° C./second of the general DC (Direct Hill) method. . Therefore, intermetallic compounds such as Al—Fe, Al—Fe—Mn, and Al—Fe—Mn—Si are easily finely dispersed during casting. Since the finely dispersed intermetallic compound promotes the precipitation of Si, Fe, and Mn dissolved in the matrix, the strength is easily improved by dispersion strengthening, and the thermal conductivity is also easily improved. Moreover, since there are many fine compounds, there is little abrasion of a corrugated shaping | molding die.

双ロール連続鋳造圧延法では、溶湯温度を680〜800℃に保持することが好ましい。ここで、溶湯温度とは、給湯ノズル直前にあるヘッドボックスの温度である。溶湯温度が低過ぎると鋳造中に粗大晶出物が形成しやすく、材料の塑性変形性が低下するので、最悪の場合は後の冷間圧延中に板が破断する虞がある。一方、溶湯温度が高過ぎると、鋳造中に溶湯が凝固せず板状鋳塊を得ることができない。   In the twin-roll continuous casting and rolling method, the molten metal temperature is preferably maintained at 680 to 800 ° C. Here, the molten metal temperature is the temperature of the head box immediately before the hot water supply nozzle. If the molten metal temperature is too low, coarse crystals are easily formed during casting, and the plastic deformability of the material is lowered. In the worst case, the plate may be broken during the subsequent cold rolling. On the other hand, if the molten metal temperature is too high, the molten metal does not solidify during casting, and a plate-shaped ingot cannot be obtained.

(焼鈍)
続いて、得られた板状鋳塊に対して、最終板厚にするまでに少なくとも1回以上の焼鈍を行う。ここで、焼鈍における入熱量は、一般的に計算される熱量とは異なる。一般的には、電流、電圧、時間の積で熱量を求められるが、工業的な焼鈍において電流及び電圧の規定をしても意味のある数値とはいえない。本発明では、i回目の一回当たりの焼鈍において、温度と各温度に対応した係数と時間の積を入熱量A(℃・h)と定義し、一回当たりの焼鈍による入熱量Aを10≦A≦40000の範囲と規定する。その入熱量Aは式3により計算される。

Figure 2015199993
(Annealing)
Subsequently, the obtained plate-shaped ingot is annealed at least once before reaching the final thickness. Here, the amount of heat input during annealing is different from the amount of heat generally calculated. In general, the amount of heat can be determined by the product of current, voltage, and time. However, even if current and voltage are defined in industrial annealing, it is not a meaningful numerical value. In the present invention, in the i-th annealing per time, the product of temperature, coefficient corresponding to each temperature and time is defined as heat input A i (° C. · h), and heat input A i by annealing per time Is defined as a range of 10 ≦ A i ≦ 40000. The amount of heat input A i is calculated by Equation 3.
Figure 2015199993

式3の係数αは表1に示すように各焼鈍温度領域で異なっており、各焼鈍温度領域で金属組織に及ぼす影響を示す指標となっている。

Figure 2015199993
As shown in Table 1, the coefficient α k in Equation 3 differs in each annealing temperature region, and is an index indicating the influence on the metal structure in each annealing temperature region.
Figure 2015199993

表1に示すように、式3の係数αは、例えば、250℃以上300℃未満では0.01、300℃以上350℃未満では0.05、350℃以上400℃未満では10、400℃以上450℃未満では20、450℃以上では30とする。 As shown in Table 1, the coefficient α k in Equation 3 is, for example, 0.01 at 250 ° C. or higher and lower than 300 ° C., 0.05 at 300 ° C. or higher and lower than 350 ° C., and 10, 400 ° C. at 350 ° C. or higher and lower than 400 ° C. 20 at less than 450 ° C. and 30 at 450 ° C. or more.

また、本実施形態では入熱の対象とする温度を250℃以上の焼鈍温度とする。250℃未満の焼鈍温度では、材料の金属組織に与える影響は少なく、長時間の焼鈍を行ってもあまり意味はない。一般的に焼鈍温度が高いと、鋳造時の晶出物はマトリクス中の元素の固溶量が低下し、金属間化合物が粗大かつ疎に析出する。係数αはその程度を示す度合となっており、値が大きいほどその程度が強い。一方で、焼鈍温度が低いとマトリクス中の元素の固溶量が高いままで、金属間化合物は微細かつ密に析出する。 In the present embodiment, the temperature to be heat input is set to an annealing temperature of 250 ° C. or higher. When the annealing temperature is less than 250 ° C., there is little influence on the metal structure of the material, and it does not make much sense to perform annealing for a long time. In general, when the annealing temperature is high, the amount of solid solution of elements in the matrix of the crystallized product at the time of casting decreases, and the intermetallic compound precipitates coarsely and loosely. The coefficient α k is a degree indicating the degree, and the larger the value, the stronger the degree. On the other hand, when the annealing temperature is low, the amount of solid solution of elements in the matrix remains high and the intermetallic compound precipitates finely and densely.

式3中のAは、10〜40000とする。Aが10未満では、入熱量が少ないためろう付け加熱後の強度は高いものの、材料の軟化が十分ではなく、ろう付け加熱前の強度が高いために、コルゲート成形性に劣る。一方で、Aが40000を超えると、ろう付け加熱前の強度は低くコルゲート成形性を損なわないが、ろう付け加熱後の強度が大きく下がるために、最終的な熱交換器の耐久性が低下してしまう。 A i in Formula 3 is 10 to 40,000. If A i is less than 10, since the heat input amount is small, the strength after brazing heating is high, but the material is not sufficiently softened and the strength before brazing heating is high, so that the corrugated formability is poor. On the other hand, when A i exceeds 40000, the strength before brazing heating is low and the corrugated formability is not impaired, but the strength after brazing heating is greatly reduced, so the durability of the final heat exchanger is reduced. Resulting in.

図1に、焼鈍時の温度チャートの模式図を示す。
この温度チャートにおける焼鈍一回当たりの入熱量Aは、
A=a+a+a+a+a
=α×S+α×S+α×S+α×S+α×S・・・(式4)と表すことができる。
In FIG. 1, the schematic diagram of the temperature chart at the time of annealing is shown.
The amount of heat input A per annealing in this temperature chart is:
A = a 1 + a 2 + a 3 + a 4 + a 5
= Α 1 × S 1 + α 2 × S 2 + α 3 × S 3 + α 4 × S 4 + α 5 × S 5 (Expression 4).

ここで、a:各温度領域の入熱量、α:各温度領域の係数、S:各温度領域の面積(温度×時間)である。 Here, a k is the amount of heat input in each temperature region, α k is the coefficient of each temperature region, and S k is the area (temperature × time) of each temperature region.

(入熱量Aの計算例)
図2に示す温度フローチャートに基づき、入熱量Aの計算した例を示す。
同図の温度フローチャートとして、昇温速度、降温速度共に50℃/hとし、430℃で2h焼鈍した場合を示し、表1に示した係数と各領域の面積(=温度と時間の積、この場合は台形に相当)の積を足し合わせて、以下のように入熱量Aを算出する。
入熱量A=α×S(430℃から400℃の面積)+α×S(400℃から350℃の面積)+α×S(350℃から300℃の面積)+α×S(300℃から250℃の面積)
=20×(430℃−400℃)×(2h+3.2h)/2
+10×(400℃−350℃)×(3.2h+5.2h)/2
+0.05×(350℃−300℃)×(5.2h+7.2h)/2
+0.01×(300℃−250℃)×(7.2h+9.2h)/2
= 3680(℃・h)
(Calculation example of heat input A)
An example in which the heat input A is calculated based on the temperature flowchart shown in FIG.
The temperature flow chart of the figure shows the case where the heating rate and the cooling rate are both 50 ° C./h and annealing is performed at 430 ° C. for 2 hours. The coefficients shown in Table 1 and the area of each region (= product of temperature and time, this In this case, the amount of heat input A is calculated as follows.
Heat input A = α 4 × S 4 (area from 430 ° C. to 400 ° C.) + Α 3 × S 3 (area from 400 ° C. to 350 ° C.) + Α 2 × S 2 (area from 350 ° C. to 300 ° C.) + Α 1 × S 1 (area from 300 ° C to 250 ° C)
= 20 × (430 ° C.-400 ° C.) × (2h + 3.2h) / 2
+ 10 × (400 ° C.-350 ° C.) × (3.2 h + 5.2 h) / 2
+ 0.05 × (350 ° C.-300 ° C.) × (5.2 h + 7.2 h) / 2
+ 0.01 × (300 ° C.−250 ° C.) × (7.2 h + 9.2 h) / 2
= 3680 (℃ ・ h)

以上は、バッチ炉で焼鈍した場合を想定した場合の計算例である。計算を容易にするために入熱部分の面積を台形としたが、ソルトバスなどのように急速昇温(温度チャートは長方形に近似)した場合でも、入熱量さえ同じであればバッチ炉の場合と同等の性能を得ることができる。更に、実機では一般的に温度チャートは曲線を描くが、この場合でも曲線を積分すれば面積を得られ、入熱量が本発明で規定した範囲を満たしていれば、良好な性能の熱交換器用フィン材を得ることができる。また、入熱量が規定の範囲に入っていれば、温度と時間は自由に選択することが可能であり、どの場合でもコルゲート成形性、ろう付け加熱後強度、耐食性及びろう付け性に優れる熱交換器用フィン材得ることができる。   The above is a calculation example when assuming the case of annealing in a batch furnace. In order to facilitate calculation, the heat input area is trapezoidal, but even if the temperature rises rapidly (temperature chart approximates a rectangle) as in a salt bath, etc. The same performance can be obtained. Furthermore, in actual machines, the temperature chart generally draws a curve, but even in this case, if the curve is integrated, the area can be obtained, and if the heat input satisfies the range specified in the present invention, it is for a heat exchanger with good performance. A fin material can be obtained. If the heat input is within the specified range, the temperature and time can be freely selected. In any case, heat exchange is excellent in corrugating formability, strength after brazing heating, corrosion resistance and brazing. A fin material can be obtained.

(焼鈍全回数の合計の入熱量T)
さらに、焼鈍を複数回行った場合の全回数の合計の入熱量Tは、

Figure 2015199993
で表すことができる。焼鈍全回数の合計の入熱量Tは、以下の実施例の結果を参酌して10〜60000とすることが好ましい。 (Total heat input T of all annealing times)
Furthermore, the total heat input T of all times when annealing is performed a plurality of times,
Figure 2015199993
Can be expressed as The total heat input T of the total number of annealing is preferably 10 to 60000 in consideration of the results of the following examples.

(圧延)
本製造方法では、冷間圧延における最終圧延率を20〜50%と規定する。最終圧延率が20%未満だと、ろう付け加熱中の再結晶の駆動力が低下し、再結晶が十分に起こらずにエロージョンが発生する虞がある。一方、最終圧延率が50%を超えると、ろう付け加熱前の強度が高くなりコルゲート成形性を確保できない虞やろう付け加熱後の再結晶が極めて微細になってろう付け性を確保できない虞がある。
(rolling)
In this manufacturing method, the final rolling reduction in cold rolling is specified as 20 to 50%. If the final rolling rate is less than 20%, the driving force for recrystallization during brazing heating is reduced, and erosion may occur without sufficient recrystallization. On the other hand, if the final rolling ratio exceeds 50%, the strength before brazing heating becomes high, and there is a possibility that corrugated formability cannot be ensured, or that recrystallization after brazing heating becomes extremely fine and brazing property cannot be ensured. is there.

(効果)
本製造方法によれば、個々の焼鈍による入熱量及び合計の焼鈍による入熱量の範囲さえ満足していれば、焼鈍回数によらずコルゲート成形性や犠牲陽極効果に優れ、ろう付け加熱後に高い強度を有し、ろう付け性に優れ、かつ耐食性に優れる熱交換器用アルミニウム合金フィン材を提供することができる。
(effect)
According to this production method, as long as the heat input by individual annealing and the range of heat input by total annealing are satisfied, the corrugated formability and sacrificial anode effect are excellent regardless of the number of annealing, and high strength after brazing heating. Thus, it is possible to provide an aluminum alloy fin material for a heat exchanger that has excellent brazing properties and corrosion resistance.

以下に、本発明の効果を実施例に基づいて詳細に説明する。
まず、表2に示す組成の合金を用い、双ロール式連続鋳造圧延法により板状鋳塊を得た。なお、表2中の(※)は本発明で規定する範囲外であることを示している。

Figure 2015199993
Below, the effect of the present invention is explained in detail based on an example.
First, using the alloy having the composition shown in Table 2, a plate-shaped ingot was obtained by a twin-roll continuous casting and rolling method. In Table 2, (*) indicates that it is outside the range defined in the present invention.
Figure 2015199993

次に、この板状鋳塊に対して、表3に示す条件で焼鈍と冷間圧延を施した。
表3に焼鈍工程における入熱量と圧延工程における最終圧延率を示す。本実施例では焼鈍回数は3回としている。また、最終的なフィン材の板厚は全て0.05mmである。なお、表3中の(※)は本発明で規定する範囲外であることを示している。

Figure 2015199993
Next, the plate-shaped ingot was subjected to annealing and cold rolling under the conditions shown in Table 3.
Table 3 shows the heat input in the annealing process and the final rolling rate in the rolling process. In this embodiment, the number of annealing times is three. Further, the final plate thickness of the fin material is 0.05 mm. Note that (*) in Table 3 indicates that it is outside the range defined in the present invention.
Figure 2015199993

得られたフィン材に対して、フィン材単体でろう付け加熱を600℃で3分間行い、以下のフィン材の性能(a)〜(f)を調査した。このろう付け加熱条件は一般的に行われている条件である。表4にその評価結果を示す。なお、表4中の(※)は本発明で規定する範囲外の組成や工程を含んでいることを示している。

Figure 2015199993
The obtained fin material was brazed and heated at 600 ° C. for 3 minutes with a single fin material, and the following performances (a) to (f) of the fin material were investigated. This brazing heating condition is a commonly performed condition. Table 4 shows the evaluation results. Note that (*) in Table 4 indicates that compositions and processes outside the range defined in the present invention are included.
Figure 2015199993

(a)ろう付け加熱前強度:ろう付け加熱前強度が高すぎると、コルゲート成形性を損なうので、ろう付け加熱前強度は230MPa以下であることが望ましい。このため、230MPaを超えるものについては(×)を付した。 (A) Strength before brazing heating: If the strength before brazing heating is too high, the corrugated formability is impaired. Therefore, the strength before brazing heating is preferably 230 MPa or less. For this reason, (*) was attached | subjected about what exceeds 230 Mpa.

(b)固相線温度:固相線温度が低いと、ろう付け加熱時にフィンが溶融する懸念がある。従って、固相線温度は610℃以上であることが望ましいため、610℃未満のものに(×)を付した。また、固相線温度はDSC測定により求めた。 (B) Solidus temperature: When the solidus temperature is low, there is a concern that the fin melts during brazing heating. Therefore, since it is desirable that the solidus temperature is 610 ° C. or higher, (×) is given to those below 610 ° C. The solidus temperature was determined by DSC measurement.

(c)ろう付け加熱後強度:ろう付け加熱後強度が高いほど、熱交換器の耐久性が向上する。従って、ろう付け加熱後強度が130MPa以上であることが望ましい。このため、130MPa未満のものに(×)を付した。 (C) Strength after brazing heating: The higher the strength after brazing heating, the better the durability of the heat exchanger. Therefore, it is desirable that the strength after brazing heating is 130 MPa or more. For this reason, (x) was attached | subjected to the thing below 130 MPa.

(d)ろう拡散性:フィンへのろう侵食量が多いと、熱交換器の耐久性及び熱交換性能が低下し、ろう付け加熱後の熱交換器の寸法が狙い通りにならないという問題がある。ろう拡散性の評価は以下のように行った。フィン材を幅16mm、山高さ5mm、山間隔3mmにコルゲート成形したフィンと、JIS3003の心材に5%の割合でJIS4045ろう材をクラッドした板厚0.5mmのブレージングシートを用いて評価用コアを組み、ろう付け加熱後に評価用コアの断面を光学顕微鏡によるミクロ観察を行い、ろう侵食の有無を確認した。ろう侵食の無いものは「○」、ろう侵食が起きていたものは「×」とした。 (D) Brazing diffusivity: When the amount of brazing erosion to the fin is large, there is a problem that the durability and heat exchange performance of the heat exchanger are lowered, and the size of the heat exchanger after brazing heating is not as intended. . The evaluation of wax diffusion was performed as follows. A core for evaluation was prepared using a fin material corrugated with a width of 16 mm, a height of 5 mm, and a pitch of 3 mm, and a brazing sheet with a thickness of 0.5 mm clad with JIS4045 brazing material at a ratio of 5% to the core of JIS3003. After the assembly and brazing, the cross section of the evaluation core was micro-observed with an optical microscope to confirm the presence or absence of brazing. Those with no wax erosion were marked with “○”, and those with wax erosion were marked with “x”.

(e)自然電位:自然電位が貴になると犠牲陽極効果が小さく、熱交換器の耐食性を確保することが出来ない。ろう付け加熱後の自然電位が−720mV以下であれば、十分な犠牲陽極効果を有するフィン材であると判断し、表4中では「○」で示した。自然電位が−720mVを超えると、十分な犠牲陽極効果を有さないと判断し、「×」とした。自然電位の測定は、Ag/AgCl(s)を参照電極とし、測定溶液25℃の5%NaCl水溶液中で行った。 (E) Natural potential: When the natural potential becomes noble, the sacrificial anode effect is small, and the corrosion resistance of the heat exchanger cannot be ensured. If the natural potential after brazing heating is −720 mV or less, it is judged that the fin material has a sufficient sacrificial anode effect, and in Table 4, “◯” indicates. When the natural potential exceeded −720 mV, it was determined that the sacrificial anode effect was not sufficient, and “x” was assigned. The measurement of the natural potential was performed in a 5% NaCl aqueous solution at 25 ° C. with the measurement solution at 25 ° C. using Ag / AgCl (s) as a reference electrode.

(f)自己腐食速度:フィン材の自己腐食速度が速いと、熱交換器中でフィンとして形状を維持している時間が短くなるために、熱交換器の耐久性及び耐食性が低下する。JIS Z2371に従って、200時間の塩水噴霧試験を行った後に腐食減少量を測定し、もとのサンプル質量に対する腐食減少量の比率を自己腐食速度の速さの指標(腐食減量)とした。腐食減量が5%未満であれば、実用上において十分な自己腐食速度があると判断した。このため、5%以上のものに(×)を付した。 (F) Self-corrosion rate: When the self-corrosion rate of the fin material is fast, the time for maintaining the shape as fins in the heat exchanger is shortened, so that the durability and corrosion resistance of the heat exchanger are lowered. In accordance with JIS Z2371, a 200 hour salt spray test was performed, and then the corrosion reduction amount was measured, and the ratio of the corrosion reduction amount to the original sample mass was used as an index of the self-corrosion rate (corrosion loss). If the corrosion weight loss was less than 5%, it was judged that there was a practically sufficient self-corrosion rate. For this reason, (x) was given to 5% or more.

表4の結果によれば、発明例No.1〜54は、ろう付け加熱前は強度が低くかつ固相線温度が高いのに対して、ろう付け加熱後は、強度が高く、ろう拡散が少なく、自然電位が卑であり、導電率が高く、腐食減量が少ないことが判明した。これにより、発明例No.1〜54では、コルゲート成形性に優れるとともに、ろう付け加熱中に溶融しにくく、ろう付け加熱後強度が大きいものとなることが確認できた。   According to the results of Table 4, Invention Example No. 1 to 54 have low strength and high solidus temperature before brazing heating, but high strength, low brazing diffusion, low natural potential, and low conductivity after brazing heating. It was found to be high and have little corrosion weight loss. Thereby, invention example No. In 1-54, while being excellent in corrugate moldability, it was difficult to melt during brazing heating, and it was confirmed that the strength after brazing heating was high.

一方、表4の比較例No.55〜70では、いずれも熱交換器用アルミニウム合金フィン材として必要な性能のいずれかが欠落或いは不十分であった。即ち、No.55は、Si含有量が多いため、固相線温度が低下した。
No.56は、Si含有量が少ないため、ろう付け加熱後強度が低かった。
No.57は、Fe含有量が多いため、鋳造時に粗大晶出物が発生した。
No.58は、Fe含有量が少ないため、ろう付け加熱後強度に劣り、ろう付け加熱後の結晶粒が微細になりろう拡散性に劣った。
No.59は、Mn含有量が多いため、鋳造時に粗大晶出物が発生した。
No.60はMn含有量が少ないため、ろう付け加熱後の強度に劣り、ろう付け加熱後の結晶粒が微細になりろう拡散性に劣った。
No.61はZn含有量が多く、自己耐食性に劣った。
No.62はZn含有量が少なく、自然電位が貴になり、十分な犠牲防食効果を確保できなかった。
No.63は一回の焼鈍による入熱量が多すぎたため、ろう付け加熱後の強度が低下した。
No.64は合計の焼鈍による入熱量が多いため、ろう付け加熱後の強度が低下した。
No.65、66は一回の焼鈍による入熱量が少ないため、材料が十分に軟化せずろう付け加熱前強度が高かった。
No.67及びNo.69は最終圧延率が低いため、ろう拡散が発生した。
No.68及びNo.70は最終圧延率が高いため、ろう付け加熱後の結晶粒が微細化し、ろう拡散が発生した。
On the other hand, Comparative Example No. In 55-70, any of the performance required as an aluminum alloy fin material for heat exchangers was missing or insufficient. That is, no. No. 55 had a high Si content, so the solidus temperature decreased.
No. No. 56 had a low Si content, so the strength after brazing heating was low.
No. Since No. 57 had a large Fe content, coarse crystals were generated during casting.
No. No. 58 was inferior in strength after brazing heating because the Fe content was small, and the crystal grains after brazing heating became fine and inferior in wax diffusibility.
No. No. 59 had a large Mn content, so that coarse crystals were generated during casting.
No. Since No. 60 had a low Mn content, the strength after brazing heating was inferior, the crystal grains after brazing heating became fine, and the brazing diffusivity was inferior.
No. 61 had a high Zn content and was inferior in self-corrosion resistance.
No. No. 62 had a small Zn content, and the natural potential became noble, and a sufficient sacrificial anticorrosive effect could not be secured.
No. Since 63 had too much heat input by one annealing, the intensity | strength after brazing heating fell.
No. Since No. 64 has a large amount of heat input due to the total annealing, the strength after brazing heating was lowered.
No. In 65 and 66, since the amount of heat input by one annealing was small, the material was not sufficiently softened and the strength before brazing heating was high.
No. 67 and no. Since No. 69 had a low final rolling rate, brazing diffusion occurred.
No. 68 and no. Since No. 70 had a high final rolling rate, crystal grains after brazing heating were refined and brazing diffusion occurred.

以上の結果より、本発明によれば、ろう付け加熱前強度が低くコルゲート成形性に優れ、固相線温度が高くろう付け加熱中に溶融しにくく、ろう付け加熱後強度が高く熱交換器コアの耐久性を向上させ、ろう拡散が少なく熱交換器コアの性能を低下させにくく、自然電位が卑であり十分な犠牲防食効果を有し、ろう付け後の導電率が高く、腐食減量が少なく自己耐食性に優れる熱交換器用アルミニウム合金フィン材を提供できることが分かった。   From the above results, according to the present invention, the strength before brazing heating is low, the corrugated formability is excellent, the solidus temperature is high, it is difficult to melt during brazing heating, the strength after brazing heating is high, and the heat exchanger core. The heat exchanger core performance is less likely to be reduced due to less brazing diffusion, low natural potential, sufficient sacrificial anti-corrosion effect, high conductivity after brazing, low corrosion loss It turned out that the aluminum alloy fin material for heat exchangers excellent in self-corrosion resistance can be provided.

Claims (4)

mass%でSiを1.0〜1.8%、Feを0.3〜0.9%、Mnを1.0〜1.8%、Znを0.5〜2.0%、残部がAl及び不可避的不純物からなるアルミニウム合金を用いて鋳造したアルミニウム合金鋳塊に対して、少なくとも1回以上の焼鈍と1回以上の冷間圧延を施し、下記式1によって算出されるi回目の焼鈍一回当たりの入熱量Ai(℃・h)が10以上40000以下であり、
Figure 2015199993
かつ、前記冷間圧延における最終圧延率を20〜50%の範囲とすることを特徴とする熱交換器用アルミニウム合金フィン材の製造方法。
In mass%, Si is 1.0 to 1.8%, Fe is 0.3 to 0.9%, Mn is 1.0 to 1.8%, Zn is 0.5 to 2.0%, and the balance is Al. The aluminum alloy ingot cast using an aluminum alloy composed of unavoidable impurities is subjected to at least one annealing and one or more cold rolling, and the i-th annealing calculated by the following formula 1 The heat input Ai (° C./h) per rotation is 10 or more and 40000 or less,
Figure 2015199993
And the final rolling reduction rate in the said cold rolling shall be 20 to 50% of range, The manufacturing method of the aluminum alloy fin material for heat exchangers characterized by the above-mentioned.
さらに、下記式2によって算出される焼鈍全回数の合計の入熱量Tが10以上60000以下であることを特徴とする請求項1記載の熱交換器用アルミニウム合金フィン材の製造方法。
Figure 2015199993
2. The method for producing an aluminum alloy fin material for a heat exchanger according to claim 1, wherein the total heat input T calculated by the following formula 2 is 10 or more and 60000 or less.
Figure 2015199993
前記鋳造は、双ロール式連続鋳造圧延法により行うことを特徴とする請求項1又は2記載の熱交換器用アルミニウム合金フィン材の製造方法。   The said casting is performed by the twin roll type continuous casting rolling method, The manufacturing method of the aluminum alloy fin material for heat exchangers of Claim 1 or 2 characterized by the above-mentioned. 最終板厚が0.04〜0.2mmであることを特徴とする請求項1〜3のいずれか1項記載の熱交換器用アルミニウム合金フィン材の製造方法。   The method for producing an aluminum alloy fin material for a heat exchanger according to any one of claims 1 to 3, wherein the final plate thickness is 0.04 to 0.2 mm.
JP2014080186A 2014-04-09 2014-04-09 Method for producing aluminum alloy fin material for heat exchanger Expired - Fee Related JP6328472B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014080186A JP6328472B2 (en) 2014-04-09 2014-04-09 Method for producing aluminum alloy fin material for heat exchanger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014080186A JP6328472B2 (en) 2014-04-09 2014-04-09 Method for producing aluminum alloy fin material for heat exchanger

Publications (2)

Publication Number Publication Date
JP2015199993A true JP2015199993A (en) 2015-11-12
JP6328472B2 JP6328472B2 (en) 2018-05-23

Family

ID=54551542

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014080186A Expired - Fee Related JP6328472B2 (en) 2014-04-09 2014-04-09 Method for producing aluminum alloy fin material for heat exchanger

Country Status (1)

Country Link
JP (1) JP6328472B2 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005002383A (en) * 2003-06-10 2005-01-06 Nippon Light Metal Co Ltd Method of producing high strength aluminum alloy fin material for heat exchanger
JP2006225724A (en) * 2005-02-17 2006-08-31 Furukawa Sky Kk Fin material for brazing and manufacturing method therefor
JP2014047384A (en) * 2012-08-30 2014-03-17 Denso Corp High strength aluminum alloy fin material and producing method therefor

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005002383A (en) * 2003-06-10 2005-01-06 Nippon Light Metal Co Ltd Method of producing high strength aluminum alloy fin material for heat exchanger
JP2006225724A (en) * 2005-02-17 2006-08-31 Furukawa Sky Kk Fin material for brazing and manufacturing method therefor
JP2014047384A (en) * 2012-08-30 2014-03-17 Denso Corp High strength aluminum alloy fin material and producing method therefor

Also Published As

Publication number Publication date
JP6328472B2 (en) 2018-05-23

Similar Documents

Publication Publication Date Title
JP4725019B2 (en) Aluminum alloy fin material for heat exchanger, manufacturing method thereof, and heat exchanger provided with aluminum alloy fin material
JP6492056B2 (en) Aluminum alloy fin material for heat exchanger, method for producing the same, and heat exchanger
CN101935782A (en) High strength aluminum alloy fin material and method of production of same
JP2014047384A (en) High strength aluminum alloy fin material and producing method therefor
JP6247225B2 (en) Aluminum fin alloy and manufacturing method thereof
JP2013023748A (en) Aluminum alloy brazing sheet and method for manufacturing the same
JP5195837B2 (en) Aluminum alloy fin material for heat exchanger
WO2019244411A1 (en) Aluminum alloy fin material for heat exchangers which has excellent buckling resistance, and method for producing same
JP4667065B2 (en) Brazing fin material and manufacturing method thereof
JP6233916B2 (en) Aluminum alloy brazing material and aluminum alloy composite material
JP5743642B2 (en) Aluminum alloy brazing sheet
CN111057910A (en) Aluminum alloy heat-dissipating component and heat exchanger
JP5762387B2 (en) Manufacturing method of high strength aluminum alloy fin material
JP6328472B2 (en) Method for producing aluminum alloy fin material for heat exchanger
JP6307331B2 (en) Aluminum alloy fin material for heat exchanger excellent in room temperature strength, high temperature strength and corrosion resistance after brazing heat and method for producing the same
JP4669709B2 (en) Brazing fin material and manufacturing method thereof
JP6154224B2 (en) Aluminum alloy fin material for heat exchanger and manufacturing method thereof
JP7226935B2 (en) Fin material for heat exchangers and heat exchangers with excellent formability
JP4669712B2 (en) Brazing fin material and manufacturing method thereof
JP6154225B2 (en) Aluminum alloy fin material for heat exchanger and manufacturing method thereof
JP2011020128A (en) Aluminum alloy-made brazed structure for heat exchanger excellent in high-temperature durability, and method for manufacturing the same
JP4667064B2 (en) Brazing fin material and manufacturing method thereof
JP4669710B2 (en) Brazing fin material and manufacturing method thereof
JP2011190538A (en) Fin material of high strength aluminum alloy for heat exchanger
JP2017145504A (en) Aluminum alloy sheet and manufacturing method therefor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170329

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180119

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180130

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180329

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180410

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180418

R150 Certificate of patent or registration of utility model

Ref document number: 6328472

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees