JP4669709B2 - Brazing fin material and manufacturing method thereof - Google Patents
Brazing fin material and manufacturing method thereof Download PDFInfo
- Publication number
- JP4669709B2 JP4669709B2 JP2005041194A JP2005041194A JP4669709B2 JP 4669709 B2 JP4669709 B2 JP 4669709B2 JP 2005041194 A JP2005041194 A JP 2005041194A JP 2005041194 A JP2005041194 A JP 2005041194A JP 4669709 B2 JP4669709 B2 JP 4669709B2
- Authority
- JP
- Japan
- Prior art keywords
- less
- brazing
- fin material
- rolling
- fin
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Landscapes
- Metal Rolling (AREA)
Description
本発明はブレージング用フィン材およびその製造方法に関し、詳しくは、強度、熱伝導性、耐食性、耐ろう拡散性に優れ、薄肉化が可能で、良好な圧延性を有するブレージング用アルミニウム合金フィン材、およびその製造方法に関するものである。 The present invention relates to a brazing fin material and a method for producing the same. And a manufacturing method thereof.
ブレージングによってラジエータなどの自動車用熱交換器に使用されるフィン材は、従来、コルゲート成形され、チューブ材と組み合わせてろう付接合される。近年熱交換器の軽量化、コスト低減の要求がますます高まり、フィン材はじめ主要部材の薄肉化がさらに進行している。フィン材を薄くする際、熱交換器の特性を維持、向上するため、近年のフィン材はさまざまな元素を添加したり、工程を検討することによって、高強度化を実現している。例えば添加元素を変更した例として、強度と熱伝導性に優れたAl−Fe−Ni系合金フィン材(特許文献1,2参照)が提案されている。しかし、この合金はフィンの薄肉化のためには、自己耐食性に関し課題の残る合金であった。また、工程を検討した例として、連続鋳造圧延での冷却速度を規定して強度および導電性を高めたAl−Fe−Mn−Si系合金フィン材(特許文献3参照)があるが、特許文献3中に記載されているとおり、このフィン材は素材の再結晶粒径が極端に小さい。従ってろう付中にろう拡散によってフィン材が座屈する可能性が高く、薄肉化には適さない。特許文献4ではろう付後強度、熱伝導性、自己耐食性、および耐エロージョン性に優れたフィン材が提案されている。しかしながら、概文献に記載のフィン材の最終冷間圧延率は15〜50%であるが、最終冷間圧延率が15%と50%では、素材強度、結晶組織形状が大きく異なるのは明白であり、これは耐エロージョン性について考慮されていないことを示している。また、概文献の実施例を見ると、全ての実施例における中間焼鈍は1分未満の連続式焼鈍を用いている。最終板厚と最終冷間圧延率から逆算すると、板厚0.11mmにおいて連続式焼鈍を行っており、これは工業用設備においてはかなり困難な、限定された設備でのみ実施可能な条件といえる。一般的な連続式焼鈍炉は、コスト、性能の点から板厚0.3〜1.0mmで実施することが前提とされている。例えば板厚0.3mmにおいて連続焼鈍を行い、その後0.08mmまで冷間圧延するとすると、最終冷間圧延率は70%を超え、エロージョンが発生する可能性が極めて高い。 A fin material used for a heat exchanger for an automobile such as a radiator by brazing is conventionally corrugated and brazed in combination with a tube material. In recent years, the demand for weight reduction and cost reduction of heat exchangers has been increasing, and the thinning of main members such as fin materials has further progressed. In order to maintain and improve the characteristics of the heat exchanger when thinning the fin material, recent fin materials have been improved in strength by adding various elements and studying the process. For example, as an example in which the additive element is changed, an Al—Fe—Ni alloy fin material excellent in strength and thermal conductivity (see Patent Documents 1 and 2) has been proposed. However, this alloy has remained a problem with respect to self-corrosion resistance for fin thinning. Further, as an example of examining the process, there is an Al—Fe—Mn—Si alloy fin material (see Patent Document 3) whose strength and conductivity are increased by specifying a cooling rate in continuous casting and rolling. 3, the fin material has an extremely small recrystallized grain size. Therefore, there is a high possibility that the fin material buckles by brazing diffusion during brazing, and it is not suitable for thinning. Patent Document 4 proposes a fin material having excellent strength after brazing, thermal conductivity, self-corrosion resistance, and erosion resistance. However, although the final cold rolling rate of the fin material described in the general literature is 15 to 50%, it is obvious that the material strength and the crystal structure shape are greatly different between the final cold rolling rates of 15% and 50%. Yes, this indicates that erosion resistance is not considered. Moreover, when the Example of general literature is seen, the intermediate annealing in all the Examples uses the continuous annealing for less than 1 minute. Back-calculating from the final plate thickness and the final cold rolling rate, continuous annealing is performed at a plate thickness of 0.11 mm, which is a condition that can be implemented only with limited facilities, which is quite difficult in industrial facilities. . A general continuous annealing furnace is assumed to be implemented with a plate thickness of 0.3 to 1.0 mm from the viewpoint of cost and performance. For example, when continuous annealing is performed at a plate thickness of 0.3 mm and then cold rolling is performed to 0.08 mm, the final cold rolling rate exceeds 70%, and erosion is extremely likely to occur.
さらに、特許文献5では双ロール連続鋳造圧延を用いることにより、高強度・高熱伝導性を有するフィン材を提案している。このフィン材はろう付加熱まで圧延組織(繊維状組織)を保持することによって耐ろう拡散性を高めている。しかしながら、ろう付加熱まで圧延組織を有する材料の内部にはひずみが残存して、素材の強度が高くなる恐れがある。フィン素材強度が高いと、スプリングバック量が多いことから、フィン材の成形性が低下し、コルゲートやプレス成形を行えない可能性がある。 Furthermore, Patent Document 5 proposes a fin material having high strength and high thermal conductivity by using twin roll continuous casting rolling. This fin material enhances the diffusion resistance of the brazing by holding the rolling structure (fibrous structure) up to the brazing heat. However, strain remains in the material having a rolled structure up to the brazing heat, which may increase the strength of the material. If the strength of the fin material is high, the amount of springback is large, so the moldability of the fin material is reduced, and corrugation or press molding may not be possible.
以上のように、フィン材の薄肉化には、ろう付加熱後の強度、熱伝導性、耐食性が必要なばかりではなく、ろう付加熱前の素材強度、ろう付中の耐ろう拡散性に優れる必要があり、そのためには素材の結晶組織を粗大な再結晶にする必要がある。
本発明は、ろう付加熱後の強度、熱伝導性、耐食性に優れ、ろう付加熱前の素材強度が低くコルゲート形成性に優れ、さらにろう付加熱中の耐ろう拡散性に優れたブレージング用フィン材およびそのフィン材を安定に製造する方法を提供することを目的とする。 The present invention is excellent in strength after brazing heat, heat conductivity and corrosion resistance, low in material strength before brazing heat, excellent in corrugation formation, and excellent in brazing resistance to brazing during brazing heat. And it aims at providing the method of manufacturing the fin material stably.
本発明は、
(1)Fe:1.0%を超え2.2%以下(組成を示す%は「mass%」を意味する。以下同様。)、Si:0.5〜1.5%及びMn:0.4〜1.3%を必須成分として含み、選択成分として、Znを3.0%以下と、さらに下記(a)及び(b)で示された元素群の1つまたは2つ以上の元素とを含有し、残部Al及び不可避的不純物からなるアルミニウム合金を、溶湯の冷却速度10℃/秒以上で鋳造し、板厚0.1mm以下で行う最終の中間焼鈍を300℃〜480℃の範囲で行い、該焼鈍によりアルミニウム合金を再結晶させて形成された、表層から見た表面積の80%以上が圧延方向に長さ10mm以上の径を有する再結晶粒によって占められる結晶組織を持つ圧延材に、圧下率30%以下の最終冷間圧延を行うことを特徴とするブレージング用フィン材の製造方法。
(a)In:0.3%以下(零を含まない)、Sn:0.3%以下(零を含まない)の一方または両者
(b)Ti:0.1%以下(零を含まない)、Zr:0.1%以下(零を含まない)の1種または2種
(2)Fe:1.0%を超え2.2%以下、Si:0.5〜1.5%及びMn:0.4〜1.3%を必須成分として含み、選択成分として、Znを3.0%以下と、下記(a)及び(b)で示された元素群の1つまたは2つ以上の元素とを含有し、残部Al及び不可避的不純物からなるアルミニウム合金を、溶湯の冷却速度10℃/秒以上で鋳造し、板厚0.1mm以下で行う最終の中間焼鈍を300℃〜480℃の範囲で行い、該焼鈍によりアルミニウム合金を再結晶させて形成された、表層から見た表面積の80%以上が圧延方向に長さ10mm以上の径を有する再結晶粒によって占められる結晶組織を持つ圧延材に、圧下率30%以下の最終冷間圧延を行ない製造されたことを特徴とするブレージング用フィン材。
(a)In:0.3%以下(零を含まない)、Sn:0.3%以下(零を含まない)の一方または両者
(b)Ti:0.1%以下(零を含まない)、Zr:0.1%以下(零を含まない)の1種または2種
を提供するものである。
The present invention
(1) Fe: more than 1.0% and 2.2% or less (% indicating composition means “mass%”; the same applies hereinafter), Si: 0.5 to 1.5%, and Mn: 0.00. comprises 4 to 1.3% as essential components, as optional components, and 3.0% or less of Zn, and further one or more elements of the indicated element group by the following (a) and (b) In the range of 300 ° C. to 480 ° C., a final intermediate annealing is performed by casting an aluminum alloy containing the balance Al and inevitable impurities at a cooling rate of 10 ° C./second or more of the molten metal and performing a plate thickness of 0.1 mm or less. Formed into a rolled material having a crystal structure in which 80% or more of the surface area seen from the surface layer is occupied by recrystallized grains having a diameter of 10 mm or more in the rolling direction, formed by recrystallization of an aluminum alloy by the annealing. The final cold rolling is performed at a reduction rate of 30% or less. Method of manufacturing a brazing fin material for.
(A) One or both of In: 0.3% or less (not including zero), Sn: 0.3% or less (not including zero ) (b) Ti: 0.1% or less (not including zero) , Zr: 0.1% or less (excluding zero) or two types (2) Fe: more than 1.0% and 2.2% or less, Si: 0.5 to 1.5% and Mn: 0.4 to 1.3% is contained as an essential component, and as a selective component, Zn is 3.0% or less, and one or more elements of the element group represented by the following (a) and (b) In the range of 300 ° C. to 480 ° C., the final intermediate annealing is carried out at a cooling rate of 10 ° C./second or more of the molten metal, and the thickness is 0.1 mm or less. 80% or more of the surface area seen from the surface layer formed by recrystallizing the aluminum alloy by the annealing is performed in the rolling direction The rolled material having a crystal structure that is occupied by recrystallized grains with a diameter of greater than or equal to the length 10 mm, brazing fin material, characterized by being manufactured performs rolling reduction of 30% or less of the final cold rolling.
(A ) One or both of In: 0.3% or less (not including zero), Sn: 0.3% or less (not including zero ) (b) Ti: 0.1% or less (not including zero) , Zr: one or two of 0.1% or less (excluding zero) .
本発明では合金の組成と、製造工程、さらに結晶組織を規定することによって薄肉化が進むフィン材の特性を改善できる。具体的には、本発明のフィン材は、薄肉化の際に必要である、ろう付加熱後の引張強さ、熱伝導性(熱交換器の耐圧強度、熱性能のため)、垂下量(熱交換器組み付け製造時の強度)、耐フィン溶け性(耐ろう拡散)、耐食性およびコルゲート形成性を改善できる。さらに本発明によれば、これらの高性能フィン材を安定に製造することができる。 In the present invention, by defining the alloy composition, manufacturing process, and crystal structure, it is possible to improve the characteristics of the fin material that is becoming thinner. Specifically, the fin material of the present invention requires the tensile strength after brazing addition heat, thermal conductivity (due to the pressure resistance and heat performance of the heat exchanger), the amount of droop ( Strength during heat exchanger assembly manufacturing), fin melt resistance (wax diffusion resistance), corrosion resistance, and corrugation formation can be improved. Furthermore, according to the present invention, these high-performance fin materials can be manufactured stably.
本発明の一つの実施態様は、上記(1)のブレージング用フィン材の製造方法である。
One embodiment of the present invention is the method for producing a brazing fin material of (1) above .
また、本発明の別の実施態様は、上記(2)のブレージング用フィン材である。
Another embodiment of the present invention is the brazing fin material of (2) above .
本発明において、フィン材に用いられるアルミニウム(Al)合金の組成を上記のように限定した理由を以下に説明する。
必須元素である鉄(Fe)とケイ素(Si)は、ろう付後の強度向上、及び微細な金属間化合物を得て再結晶粒を粗大化する目的で添加する。
Feの含有量が1.0mass%以下では強度の向上が十分ではなく、2.2mass%を超えると本発明で規定する冷却速度であっても晶出相が粗大化し、再結晶の核生成サイトが増すために再結晶組織が微細となる。またフィン材の耐食性が低下する。上記効果の点からFeの含有量は1.2mass%を超え1.8mass%未満の範囲が好ましい。
The reason why the composition of the aluminum (Al) alloy used for the fin material in the present invention is limited as described above will be described below.
Essential elements such as iron (Fe) and silicon (Si) are added for the purpose of improving the strength after brazing and coarsening the recrystallized grains by obtaining fine intermetallic compounds.
If the Fe content is 1.0 mass% or less, the strength is not sufficiently improved. If it exceeds 2.2 mass%, the crystallization phase becomes coarse even at the cooling rate specified in the present invention, and the nucleation site for recrystallization Therefore, the recrystallized structure becomes fine. Further, the corrosion resistance of the fin material is lowered. In view of the above effects, the Fe content is preferably in the range of more than 1.2 mass% and less than 1.8 mass%.
Siの含有量が0.2mass%以下ではろう付加熱後の強度が不足する。また、2.0mass%を超えると合金の融点が低下し、ブレージング用フィン材として用いる場合にろう材の拡散によってフィン材が座屈してしまう。Siの含有量は、0.5mass%以上、1.5mass%以下である。
If the Si content is 0.2 mass% or less, the strength after brazing heat is insufficient. Moreover, when it exceeds 2.0 mass%, melting | fusing point of an alloy will fall, and when using as a brazing fin material, a fin material will buckle by spreading | diffusion of a brazing material . The Si content is 0.5 mass% or more and 1.5 mass% or less.
本発明のフィン材には、ろう付加熱後の強度をさらに向上させるために、さらにマンガン(Mn)を含有させる。さらにニッケル(Ni)を含有させても良い。Mnを加えると晶出する分散相がAl−Fe−Mn−Si系に変化し、ろう付加熱後の強度がさらに向上する。しかし、過度の含有はフィン材の熱伝導性を低下させるので、好ましいMn含有量の上限は1.3mass%である。Niを過度に含有させた場合は熱伝導性が低下する影響はほとんどないが、耐食性が低下することから1.3mass%がNi含有量の上限である。
The fin material of the present invention further contains manganese (Mn) in order to further improve the strength after the brazing heat . Furthermore, nickel (Ni) may be contained. When Mn is added, the disperse phase that crystallizes changes to the Al—Fe—Mn—Si system, and the strength after heat of brazing addition is further improved. However, since excessive inclusion reduces the thermal conductivity of the fin material, the preferable upper limit of the Mn content is 1.3 mass%. When Ni is contained excessively, there is almost no influence that the thermal conductivity is lowered, but 1.3 mass% is the upper limit of the Ni content because the corrosion resistance is lowered.
さらにまた、本発明のフィン材を構成するAl合金には、前記の必須元素に加え、犠牲陽極効果を有する亜鉛(Zn)を含有させてもよい。また、インジウム(In)、スズ(Sn)のうちの1種または2種以上、または/および強度向上に有効な銅(Cu)、チタン(Ti)、ジルコニウム(Zr)を加えても良い。Zn、In、Snの添加は、犠牲陽極効果の付与とともに、フィン材自身の自己耐食性が劣化するので、それぞれの含有量の上限は好ましくはZn;3.0mass%,In;0.3mass%,Sn;0.3mass%である。また、上述の強化元素を多量に加えると、Cu、Tiの場合にはろう付後のフィン材の熱伝導性や、耐食性、犠牲陽極効果が、Zrの場合には圧延性、疲労特性が低下するので、これらの元素を加える場合の好ましい含有量の上限はそれぞれ、Cu;0.25mass%,Ti;0.1mass%,Zr;0.1mass%である。
上述の元素の他に、化合物をさらに微細化する元素(例えばクロム(Cr)、コバルト(Co))を本発明のフィン材に加えても構わない。その場合には、フィン材の耐食性、結晶組織制御の観点から好ましい上限は0.2mass%である。
本発明のフィン材に用いられるアルミニウム合金の組成は、上述の元素の他、残部Alおよび不可避不純物から成るものである。
Furthermore, the Al alloy constituting the fin material of the present invention may contain zinc (Zn) having a sacrificial anode effect in addition to the above essential elements. Further, one or more of indium (In) and tin (Sn), and / or copper (Cu), titanium (Ti), and zirconium (Zr) effective for improving the strength may be added. Addition of Zn, In and Sn, together with the provision of the sacrificial anode effect, deteriorates the self-corrosion resistance of the fin material itself. Therefore, the upper limit of each content is preferably Zn: 3.0 mass%, In: 0.3 mass%, Sn: 0.3 mass%. In addition, when Cu or Ti is added in a large amount, the heat conductivity, corrosion resistance, and sacrificial anode effect of the fin material after brazing are reduced in the case of Cu and Ti, and the rollability and fatigue characteristics are reduced in the case of Zr. Therefore, the upper limit of the preferable content when these elements are added is Cu: 0.25 mass%, Ti: 0.1 mass%, Zr: 0.1 mass%, respectively.
In addition to the elements described above, elements that further refine the compound (for example, chromium (Cr), cobalt (Co)) may be added to the fin material of the present invention. In that case, a preferable upper limit is 0.2 mass% from the viewpoint of the corrosion resistance and crystal structure control of the fin material.
The composition of the aluminum alloy used for the fin material of the present invention is composed of the balance of Al and inevitable impurities in addition to the above-mentioned elements.
次に製造工程において、本発明で規定した条件について説明する。鋳造時の冷却速度を10℃/秒以上と規定することによって、本来は高組成(FeとSiが高濃度)になると粗大化するAl−Fe−Si系金属間化合物を微細に分散させるものである。微細な分散相は、最終の焼鈍時に粒界の移動を妨げる効果によって粗大な再結晶組織を得ることができると同時に、分散硬化によってろう付加熱後のフィン材の強度を向上することができる。冷却速度は15〜5×103℃/秒が好ましい。 Next, the conditions defined in the present invention in the manufacturing process will be described. By prescribing the cooling rate during casting as 10 ° C./second or more, the Al—Fe—Si intermetallic compound that becomes coarse when it has a high composition (Fe and Si in high concentration) is finely dispersed. is there. The fine dispersed phase can obtain a coarse recrystallized structure due to the effect of preventing the movement of grain boundaries during the final annealing, and at the same time, the strength of the fin material after brazing addition heat can be improved by dispersion hardening. The cooling rate is preferably 15 to 5 × 10 3 ° C./second.
最終の中間焼鈍によってアルミニウム合金を再結晶させるのは、本発明が高強度フィンを主な対象にしているためである。再結晶させてO材にせずとも0.1mm以下の板厚で、冷間圧延や、レベリング、スリッティングが容易に行える材料、例えば、フィン材素材強度が170MPa以下のようなフィン材では本発明の製造方法を適用せずとも、容易にフィン材を製造できる。本発明は、中間焼鈍によって軟化させないと、素材強度が170MPa以上となって製造が困難となるような高強度フィン材に好適なものである。 The reason why the aluminum alloy is recrystallized by the final intermediate annealing is that the present invention mainly focuses on high-strength fins. The present invention is applicable to a material that can be easily cold-rolled, leveled, or slitted with a plate thickness of 0.1 mm or less without being recrystallized and made into an O material, for example, a fin material having a fin material strength of 170 MPa or less. The fin material can be easily manufactured without applying the manufacturing method. The present invention is suitable for a high-strength fin material that has a material strength of 170 MPa or more and is difficult to produce unless softened by intermediate annealing.
本発明規定で規定される組成をもつアルミニウム合金には、微細な金属間化合物が密に分散しているため、最終の中間焼鈍後の再結晶粒径は粗大化する。本発明における結晶組織に関する規定は、本発明者らが種々の結晶粒径を持つフィン材を観察した結果得た知見に基づいている。すなわち、圧延方向に10mm未満の長さを持つ粗大な再結晶組織では、各結晶方位によって強度が異なるため、条材のフラットネスが保てず、冷間圧延率の制御やレベリング、スリッティングライン通板が困難になる。フラットネスを保つには、表面積の約80%以上がこのように、繊維組織に近い粗大展伸組織、例えば略楕円形状の再結晶粒を有する必要がある。
本発明においては、最後の中間焼鈍後の圧延材の表層からみた表面積の80%以上を占める再結晶粒の径の長さは、圧延材表面における圧延方向で、10mm以上、好ましくは10〜80mm、さらに好ましくは10〜40mmである。
なお、本発明で、「表層から見た表面積」とは、板厚方向と垂直な面(LT−ST面)から目視で見たときの表面積をいい、その際の圧延材の大きさ(長さおよび幅)はいくつでも良い。スリッターを施した製品条幅でも、スリッター前の圧延全幅でも構わない。測定の便利上、製品条幅が好ましいが、どの大きさで測定しようとも結果は同じである。
In the aluminum alloy having the composition defined in the present invention, fine intermetallic compounds are densely dispersed, so that the recrystallized grain size after the final intermediate annealing becomes coarse. The provisions relating to the crystal structure in the present invention are based on the knowledge obtained by the present inventors as a result of observing fin materials having various crystal grain sizes. That is, in a coarse recrystallized structure having a length of less than 10 mm in the rolling direction, the strength differs depending on each crystal orientation, so the flatness of the strip cannot be maintained, and control of the cold rolling rate, leveling, slitting line, etc. Threading becomes difficult. In order to maintain flatness, it is necessary that about 80% or more of the surface area has a coarse extended structure close to the fiber structure, for example, a substantially elliptical recrystallized grain.
In the present invention, the length of the diameter of the recrystallized grains occupying 80% or more of the surface area as viewed from the surface layer of the rolled material after the final intermediate annealing is 10 mm or more, preferably 10 to 80 mm in the rolling direction on the surface of the rolled material. More preferably, it is 10-40 mm.
In the present invention, the “surface area viewed from the surface layer” refers to the surface area as viewed from the surface perpendicular to the plate thickness direction (LT-ST surface), and the size (long) of the rolled material at that time The width and width) can be any number. It may be the product width subjected to slitting, or the entire rolling width before slitting. For convenience of measurement, the product width is preferable, but the result is the same regardless of the size.
フィン材を再結晶させる最終の中間焼鈍を、板厚0.1mm以下で行なうことに限定したのは、0.1mmを超える厚さの板厚で焼鈍を行った場合、本発明の他の要件を満たしても、0.1mm以下、例えば0.06mmの最終板厚まで圧延すると相当量のひずみが蓄えられ、ろう付加熱の際の再結晶組織が微細になってろう材のエロージョン(浸食)が生じやすくなるためである。また、多量のひずみが蓄えられた高強度フィン材は、素材強度が高くなり、コバ割れなどの不良が生じ、コルゲート形成性が悪くなる。本発明では、最後の中間焼鈍は最終板厚に近い板厚で行うので、最終冷間圧延率が低く、耐ろう材エロージョン性と生産性に優れたフィン材を製造するができる。
0.1mm以下の板厚における最終の中間焼鈍は、300℃から480℃で行うことによって本発明で規定する結晶組織が得られる。本発明では、微細な分散相によって粗大な再結晶組織を得るものであり、従って通常のフィン材用アルミニウム合金よりも再結晶温度は一般に高温になる。よって300℃から480℃という温度範囲は、通常のフィン材用アルミニウム合金を再結晶させるための焼鈍温度より高温である。中間焼鈍の温度が低すぎると十分に強度が低下しないため、得られるフィン材は成形性に劣り、また、高すぎると析出粒子が粗大化し、得られるフィン材のろう付加熱後の強度が低下する。具体的な再結晶温度は、合金組成や工程によって変わるため、それぞれの再結晶温度を評価してから決定するのが好ましい。また、連続式焼鈍では粗大な再結晶組織が得られないことがあるため、バッチ式の焼鈍を行うことが好ましい。焼鈍時間については特に限定はないが、一般的な30分から6時間の範囲で行えば良い。
The final intermediate annealing for recrystallizing the fin material is limited to a thickness of 0.1 mm or less. When annealing is performed with a thickness exceeding 0.1 mm, other requirements of the present invention However, when rolling to a final thickness of 0.1 mm or less, for example, 0.06 mm, a considerable amount of strain is accumulated, and the recrystallized structure becomes fine during brazing heat addition, resulting in erosion (erosion) of the brazing material. This is because it tends to occur. Moreover, the high-strength fin material in which a large amount of strain is stored has a high material strength, causes defects such as edge cracks, and deteriorates corrugate formability. In the present invention, since the final intermediate annealing is performed with a plate thickness close to the final plate thickness, it is possible to manufacture a fin material having a low final cold rolling rate and excellent in brazing material erosion resistance and productivity.
The final intermediate annealing at a plate thickness of 0.1 mm or less is performed at 300 ° C. to 480 ° C. to obtain the crystal structure defined in the present invention. In the present invention, a coarse recrystallized structure is obtained by a fine dispersed phase, and therefore the recrystallization temperature is generally higher than that of a normal aluminum alloy for fin materials. Therefore, the temperature range of 300 ° C. to 480 ° C. is higher than the annealing temperature for recrystallizing a normal aluminum alloy for fin material. If the temperature of the intermediate annealing is too low, the strength is not sufficiently reduced, so that the resulting fin material is inferior in formability, and if it is too high, the precipitated particles are coarsened, and the strength of the resulting fin material after the brazing heat is reduced. To do. Since the specific recrystallization temperature varies depending on the alloy composition and process, it is preferable to determine each recrystallization temperature after evaluating each recrystallization temperature. Moreover, since a coarse recrystallized structure may not be obtained in continuous annealing, it is preferable to perform batch annealing. The annealing time is not particularly limited, but may be performed in a general range of 30 minutes to 6 hours.
最終焼鈍以外の中間焼鈍をバッチ式加熱炉で行う場合には温度範囲を250℃〜450℃が好ましく、かつ再結晶が完了しない温度とする。250℃未満では軟化が不十分のため冷間圧延性に劣り、コバ割れなどが発生する。また450℃以上では析出相が粗大化し冷間圧延性に劣る。焼鈍時間は特に定めないが30分〜4時間が望ましい。30分未満ではコイル全体の温度を安定させるのが難しく、4時間を越えるのはエネルギーが無駄なためである。中間焼鈍を連続式加熱炉で行う場合は、焼鈍温度400〜600℃の範囲で保持時間は20秒以下が好ましい。 When intermediate annealing other than final annealing is performed in a batch-type heating furnace, the temperature range is preferably 250 ° C. to 450 ° C. and a temperature at which recrystallization is not completed. If it is less than 250 ° C., the softening is insufficient and the cold rolling property is inferior, and cracks and the like occur. Moreover, when it is 450 degreeC or more, a precipitation phase will coarsen and it will be inferior to cold rolling property. Although the annealing time is not particularly defined, it is preferably 30 minutes to 4 hours. If it is less than 30 minutes, it is difficult to stabilize the temperature of the entire coil, and if it exceeds 4 hours, energy is wasted. When intermediate annealing is performed in a continuous heating furnace, the holding time is preferably 20 seconds or less within the annealing temperature range of 400 to 600 ° C.
中間焼鈍後の圧延材の結晶組織を観察するには、王水中に浸漬し、板材表面を直接観察すれば良い。本発明のような粗大な結晶組織を観察するには目視で十分である。圧延方向に粗大である結晶粒は、板厚方向に通常1〜2個の結晶粒しか有さないため、表層からの観察を行えば良い。表層における圧延方向に長さ10mm以上である再結晶粒が占める割合は、表面積当たり80%以上であり、好ましくは85〜100%である。
最終の中間焼鈍後のサンプルを採取出来ない場合には、フィン製品を観察しても良い。なぜならば中間焼鈍で粗大な結晶組織になっている場合、その後、本発明で規定されるような低い圧延率で圧延した後の結晶組織もほぼ同等なものとなるためである。
In order to observe the crystal structure of the rolled material after the intermediate annealing, it is sufficient to immerse it in aqua regia and directly observe the surface of the plate material. Visual observation is sufficient to observe a coarse crystal structure as in the present invention. Since the crystal grains that are coarse in the rolling direction usually have only one or two crystal grains in the plate thickness direction, observation from the surface layer may be performed. The ratio of the recrystallized grains having a length of 10 mm or more in the rolling direction in the surface layer is 80% or more per surface area, and preferably 85 to 100%.
If the sample after the final intermediate annealing cannot be collected, the fin product may be observed. This is because, when the crystal structure is coarse due to the intermediate annealing, the crystal structure after rolling at a low rolling rate as defined in the present invention is almost equivalent.
さらに、ろう付後の再結晶組織から加熱前の再結晶組織を推定することも可能である。ろう付加熱後の再結晶粒径が本発明のように粗大であるためには、通常のろう付加熱条件(約600℃×数分)を鑑みると、加熱前の結晶組織は繊維組織か、粗大再結晶組織のどちらかに限定できる。微細な再結晶組織をろう付加熱しても10mm以上に成長するほどろう付による加熱時間は長くはない。
さらに、繊維組織から再結晶した組織と、粗大再結晶組織から再結晶した組織では、結晶粒界の形状が異なる。すなわち図1〜4のろう付け加熱前後におけるフィン材結晶組織の写真に示すように粗大再結晶組織から再結晶した結晶粒界(図1,2:本発明例)は、繊維組織からのそれ(図3,4:比較例)と比較し、鋸歯状になる。これは繊維組織からの再結晶する場合と異なり、一度再結晶することにより歪みが低減したことによって再結晶の駆動力が小さくなっており、さらに中間焼鈍温度が高いため析出が進み、粒界の移動を妨げる分散粒子が多いためである。このような違いに注目すると、ろう付後の再結晶組織から、加熱前の再結晶組織が推定でき、さらに中間焼鈍温度直後の再結晶組織を推測できる。なお、図1〜4において、各上段はろう付け前、各下段はろう付け後を示し、スケールの最小目盛りは図1,2では1mm、図3,4では0.5mmである。また、再結晶粒サイズは、長径(圧延方向。図中左右方向)で測定したものである。図3、4では、上段に示すろう付け前の完全繊維状組織から下段に示すろう付け後の再結晶組織へ再結晶し、結晶粒の形状が大きく変化する。これに対して、図1、2では、上段に示すろう付け前の再結晶組織は、下段に示すろう付け後の図では圧延方向に若干展伸して、異方性の特徴が弱くなっており、結晶組織の短径(巾方向。図中上下方向)が太くなり、再結晶が生じているが、鋸歯状の形状の結晶粒界を維持している。すなわち、ろう付け後において、図1、2に示されるような再結晶組織(圧延方向に長さ10mm以上の径を有する粗大な鋸歯状の再結晶粒が表面積の80%以上を占める組織)であれば、中間焼鈍後の再結晶組織が本発明で規定する再結晶組織であることが推測できる。
Furthermore, it is possible to estimate the recrystallized structure before heating from the recrystallized structure after brazing. In order for the recrystallized grain size after brazing heat to be coarse as in the present invention, in view of normal brazing heat treatment conditions (about 600 ° C. × several minutes), the crystal structure before heating is a fiber structure, It can be limited to either a coarse recrystallized structure. Even if a fine recrystallized structure is heated by brazing, the heating time by brazing is not so long that it grows to 10 mm or more.
Furthermore, the shape of the crystal grain boundary differs between the structure recrystallized from the fiber structure and the structure recrystallized from the coarse recrystallized structure. That is, as shown in the photographs of the fin material crystal structure before and after brazing heating in FIGS. 1 to 4, the crystal grain boundaries recrystallized from the coarse recrystallized structure (FIGS. 1 and 2: Example of the present invention) are those from the fiber structure ( Compared with FIGS. 3 and 4: Comparative Example), it has a sawtooth shape. This is different from the case of recrystallization from the fiber structure, and the recrystallization driving force is reduced due to the reduction of strain by recrystallization once, and further the precipitation proceeds due to the high intermediate annealing temperature. This is because there are many dispersed particles that hinder movement. Paying attention to such a difference, the recrystallized structure before heating can be estimated from the recrystallized structure after brazing, and the recrystallized structure immediately after the intermediate annealing temperature can be estimated. 1-4, each upper stage shows before brazing and each lower stage after brazing, and the minimum scale of the scale is 1 mm in FIGS. 1 and 2 and 0.5 mm in FIGS. Further, the recrystallized grain size is measured by a major axis (rolling direction, left and right direction in the figure). In FIGS. 3 and 4, recrystallization is performed from the complete fibrous structure before brazing shown in the upper stage to the recrystallized structure after brazing shown in the lower stage, and the shape of the crystal grains changes greatly. On the other hand, in FIGS. 1 and 2, the recrystallized structure before brazing shown in the upper part is slightly expanded in the rolling direction in the figure after brazing shown in the lower part, and the anisotropic characteristics are weakened. However, the minor axis (width direction; vertical direction in the figure) of the crystal structure becomes thick and recrystallization occurs, but the crystal grain boundary in a sawtooth shape is maintained. That is, after brazing, a recrystallized structure as shown in FIGS. 1 and 2 (a structure in which coarse sawtooth recrystallized grains having a diameter of 10 mm or more in the rolling direction occupy 80% or more of the surface area). If present, it can be assumed that the recrystallized structure after the intermediate annealing is the recrystallized structure defined in the present invention.
上記に規定された条件以外は、常法によりアルミニウム合金からコイルなどの圧延材を作成することができる。
本発明においては、上記のように作成された圧延材に圧下率30%以下の最終冷間圧延を行ってブレージング用フィン材を製造するものである。圧下率は12〜28%であることが好ましい。また、圧下率以外の条件は、通常の条件に従い冷間圧延を行なうことができる。
Except for the conditions specified above, a rolled material such as a coil can be made from an aluminum alloy by a conventional method.
In the present invention, the final cold rolling with a reduction rate of 30% or less is performed on the rolled material produced as described above to produce a brazing fin material. The rolling reduction is preferably 12 to 28%. Moreover, conditions other than a rolling reduction can perform cold rolling according to a normal condition.
以上説明したように、本発明による合金組成、製造方法によって作製されたフィン材は、ろう付後の特性、特に高強度でありながら、熱伝導性、耐食性、ろう付加熱中の耐ろう拡散性および薄肉時の冷間圧延性、レベリング、スリッティングなどが容易なフィン材生産性、およびコルゲート形成性に優れるものである。 As described above, the fin composition produced by the alloy composition and manufacturing method according to the present invention has characteristics after brazing, in particular, high strength, thermal conductivity, corrosion resistance, resistance to brazing diffusion during brazing addition heat, and It is excellent in fin material productivity and corrugate formability that are easy to cold-roll when thin, leveling, slitting and the like.
以下に本発明を実施例に基づいてさらに詳細に説明する。
実施例
(本発明例)
表1に示す合金No.Aの組成のAl合金を溶解し、得られた溶湯を表2に示される冷却速度により得られた鋳塊を、表2に示す製造工程に従い、ロール径880mmの双ロールを用いた連続鋳造圧延法により幅1000mmの板状鋳塊に鋳造してコイル状に巻き取り、次いでこれを焼鈍、冷間圧延して実施例No.1のフィン材を製造した。中間焼鈍後、表層からみた再結晶粒の圧延方向の径の長さの最大のものは18mmであり、10mm以上の再結晶粒は、表面積の約90%を占めていた。前記連続鋳造圧延法における溶湯の冷却速度は、鋳塊のミクロ観察を行いデントライトアームスペーシングを測定することによって求めた。
次いで、使用合金を表1に示す合金No.B〜Fに代え、溶湯の冷却速度、製造工程を表2に示すように、本発明規定条件内で種々に変化させ、No.2〜6のフィン材を製造した。また、No.1〜6において最終の中間焼鈍後、および圧延完了後の結晶組織を、Al合金フィン材200mm×20mmの表面を王水に浸漬することによりマクロエッチングして、マクロ組織を観察し、結果を表2に示した。表2では表層における再結晶組織が、圧延方向に長さ10mm以上の径である再結晶粒によって表面積の80%以上が占められている場合には○、80%未満60%以上の場合は△、60%未満の場合は×で示した。なお、表面積中の10mm以上の再結晶粒が占める割合は、マクロエッチングしたフィン材表面の写真を画像としてコンピュータに取り込み、画像解析ツールを用いて解析した。
Hereinafter, the present invention will be described in more detail based on examples.
Example (Invention Example)
Alloy No. shown in Table 1 An ingot obtained by melting an Al alloy having the composition of A and cooling the obtained molten metal at a cooling rate shown in Table 2 was continuously cast and rolled using a twin roll having a roll diameter of 880 mm in accordance with the manufacturing process shown in Table 2. The steel plate was cast into a plate-shaped ingot having a width of 1000 mm by the method and wound into a coil shape, which was then annealed and cold-rolled to obtain Example No. 1 fin material was manufactured. After the intermediate annealing, the maximum length of the recrystallized grains in the rolling direction as viewed from the surface layer was 18 mm, and the recrystallized grains of 10 mm or more occupied about 90% of the surface area. The cooling rate of the molten metal in the continuous casting and rolling method was determined by observing the ingot microscopically and measuring the dent light arm spacing.
Subsequently, the alloy No. shown in Table 1 was used. In place of B to F, the cooling rate of the molten metal and the production process are variously changed within the conditions prescribed in the present invention as shown in Table 2, and No. 2-6 fin materials were produced. No. In 1 to 6, the crystal structure after the final intermediate annealing and after the completion of rolling is macro-etched by immersing the surface of the Al alloy fin material 200 mm × 20 mm in aqua regia, the macro structure is observed, and the results are shown. It was shown in 2. In Table 2, the recrystallized structure in the surface layer is ◯ when 80% or more of the surface area is occupied by recrystallized grains having a diameter of 10 mm or more in the rolling direction, and △ when less than 80% and 60% or more. In the case of less than 60%, x is shown. The ratio of the recrystallized grains of 10 mm or more in the surface area was analyzed by using a macro-etched fin material surface image as an image in a computer and using an image analysis tool.
(比較例1)
表1に示す本発明規定外組成である合金No.G〜KのAl合金を用い、表2に示した製造条件を用いてNo.7〜11のフィン材を製造した。最終の中間焼鈍後、および圧延完了後に本発明例と同様に結晶組織を評価した。結果を表2に示す。
(Comparative Example 1)
As shown in Table 1, alloy No. Using Al alloys of G to K, using the production conditions shown in Table 2, No. 7-11 fin materials were produced. After the final intermediate annealing and after completion of rolling, the crystal structure was evaluated in the same manner as in the inventive examples. The results are shown in Table 2.
(比較例2)
フィン材の製造条件を表2に示すように本発明規定外とし、合金No.A〜Eを用いてNo.12〜16のフィン材を製造した。最終の中間焼鈍後、および圧延完了後に本発明例と同様に結晶組織を評価した。結果を表2に示す。
(Comparative Example 2)
As shown in Table 2, the production conditions of the fin material are outside the scope of the present invention. Nos. A to E are used. 12-16 fin materials were manufactured. After the final intermediate annealing and after completion of rolling, the crystal structure was evaluated in the same manner as in the inventive examples. The results are shown in Table 2.
(試験例)
本発明例、比較例1および比較例2で製造されたNo.1〜16のフィン材について、以下の評価試験を行なった。
耐垂下性は、フィン材を突き出し長さが50mmとなるように水平に支持し、600℃で10分間加熱、加熱後の垂下量(mm)を測定し、評価した。
また、前記フィン材をろう付相当条件(600℃×4分)で加熱したのち、引張強さ、および導電率を測定した。引張強さはJIS Z 2241に準じ、導電率はJIS H 0505に準じてそれぞれ評価した。
ここで、導電率は熱伝導性の指標であり、フィンの導電率が5%IACS向上すると、熱交換器の熱効率は1%程度向上する。
一方で、コルゲート状に成形したフィン材を、長さ100mmのチューブ材に組み付け、ろう付けにより5段のミニコアを作製した。このミニコアについてフィン溶けの有無をミクロ観察により調べて評価した。フィン溶けの評価は、特開2003−34851号公報記載の内容と同等の基準で行った。
また、冷間圧延中に破断したか否か、また、レベリングおよびスリッティング工程において通板出来なかった、或いは困難だったか否かを評価した。これら工業的に製造出来なかったものについては、残部をラボ設備を用いてフィン材に冷間圧延して試験した。これらの試験結果を表3に示す。
(Test example)
No. manufactured in Example of the present invention, Comparative Example 1 and Comparative Example 2. The following evaluation tests were performed on 1 to 16 fin materials.
The drooping resistance was evaluated by horizontally supporting the fin material so that the length of the fin material was 50 mm, heating at 600 ° C. for 10 minutes, and measuring the amount of droop (mm) after heating.
Moreover, after heating the said fin material on brazing equivalent conditions (600 degreeC x 4 minutes), the tensile strength and the electrical conductivity were measured. The tensile strength was evaluated according to JIS Z 2241 and the electrical conductivity was evaluated according to JIS H 0505.
Here, the electrical conductivity is an index of thermal conductivity. When the electrical conductivity of the fin is improved by 5% IACS, the thermal efficiency of the heat exchanger is improved by about 1%.
On the other hand, the fin material formed into a corrugated shape was assembled to a tube material having a length of 100 mm, and a five-stage mini-core was produced by brazing. This mini-core was evaluated by examining the presence or absence of fin melting by micro observation. Evaluation of fin melting was performed based on the same standards as described in JP-A-2003-34851.
Further, it was evaluated whether or not it broke during cold rolling, and whether or not it was difficult or difficult to pass through in the leveling and slitting processes. About what could not be manufactured industrially, the remainder was cold-rolled into a fin material using a laboratory facility and tested. These test results are shown in Table 3.
表3から明らかなように、本発明例である実験No.2、3、6においては、製造工程において、いずれも冷間圧延中に破断せず、また、レベリング、スリッティングラインも問題なく通板し、コルゲート状に成形してフィン材を製造することができた。また、フィン材は、耐垂下性に優れ、ろう付加熱後における引張強さと導電率(熱伝導性)が高く、フィン溶けも生じなかった。
一方、No.7は添加Fe量が多いため、晶出相が粗大化した。そのため圧延中に破断した。また、再結晶の核生成サイトが増したため、再結晶が微細となった。その結果、垂下量が増加し、フィン溶けが生じた。
逆にNo.8はFe量が少なく、初晶Siが生成したため、再結晶がミクロンオーダーであった。その結果垂下量が増加し、フィン溶けが生じた。またFe量が少ないため、ろう付加熱後の引張強さ、導電率がともに低下した。
No.9はNo.8にMnを添加した分、引張強さは向上したが、導電率はさらに低下した。Siは初晶ではなく、Al−Mn−Si系の金属間化合物として分散したため、結晶組織が粗大化し、レベリング工程に通板不可であった。耐フィン溶け性は改善された。
No.10は添加Si量が多いため、No.8と同様に初晶Siが生成した。
No.11はSi量が少なく、Al−Fe系の晶出物が粗大化し、再結晶の核生成サイトとなった。従って中間焼鈍後のグレインサイズが圧延方向で4〜5mmとなった。さらに、Si量が不足したため、ろう付加熱後の引張強さが低下した。
No.12は鋳造時の冷却速度が低いため、晶出相が粗大化した。グレインサイズが数μmまで微細化し、またろう付加熱後の引張強さと導電率も低下した。
No.13は最終の冷間圧延率が高く、従ってフィン材まで圧延した際に内部ひずみ量が多く、再結晶の核生成サイトが増した。これによりろう付加熱時の再結晶組織が微細となり、垂下量が増加し、フィン溶けが生じた。また、冷間圧延率が高いことにより、ろう付加熱前のフィン材素板の引張強さが増加し、圧延中に破断した。
No.14は最終の中間焼鈍温度が低く、再結晶が生じず、ファイバー組織を維持した。No.13と同様にろう付加熱前のフィン材素板の引張強さが増加し、圧延中に破断が生じた。
No.15は最終の中間焼鈍温度が高すぎて、金属間化合物の一部が母相に固溶した。これによりろう付加熱後の引張強さ、導電率がともに低下した。サイズの小さい金属間化合物が優先して母相に固溶したため、粒界のピン止め効果が働かず、ろう付加熱後の再結晶粒が微細化した。このため垂下量が増し、フィン溶けが生じた。
No.16は一回目の中間焼鈍を連続式焼鈍で行った。これによって材料内部のひずみ量が減少し、二回目(最終)の中間焼鈍時に再結晶の駆動力が低下した。従って再結晶が生じず、ファイバー組織を維持した。ろう付加熱前のフィン材素板の引張強さが増加し、圧延中に破断が生じた。
As is clear from Table 3, the experiment No. which is an example of the present invention. In 2, 3, and 6, in the production process, none of them breaks during cold rolling, and the leveling and slitting lines pass through without any problem, and the fin material can be produced by forming into a corrugated shape. did it. Further, the fin material was excellent in droop resistance, had high tensile strength and electrical conductivity (heat conductivity) after brazing heat, and did not melt the fin.
On the other hand, no. 7 had a large amount of added Fe, so that the crystallization phase became coarse. Therefore, it broke during rolling. Moreover, since the nucleation site of recrystallization increased, the recrystallization became fine. As a result, the amount of drooping increased and fin melting occurred.
Conversely, no. No. 8 had a small amount of Fe and primary crystal Si was formed, so recrystallization was in the micron order. As a result, the drooping amount increased and fin melting occurred. Moreover, since the amount of Fe was small, both the tensile strength and the conductivity after the brazing heat were reduced.
No. No. 9 is No.9. Although the tensile strength was improved by adding Mn to 8, the electrical conductivity further decreased. Since Si was not a primary crystal but was dispersed as an Al—Mn—Si intermetallic compound, the crystal structure was coarsened, and the plate could not be passed through the leveling process. Fin melt resistance was improved.
No. No. 10 has a large amount of added Si. Similar to 8, primary Si was formed.
No. No. 11 had a small amount of Si, and the Al-Fe-based crystallized material became coarse and became a nucleation site for recrystallization. Therefore, the grain size after the intermediate annealing was 4 to 5 mm in the rolling direction. Furthermore, since the amount of Si was insufficient, the tensile strength after brazing addition heat decreased.
No. No. 12 had a low cooling rate during casting, so that the crystallization phase became coarse. Grain size was refined to several μm, and tensile strength and conductivity after brazing heat were also reduced.
No. No. 13 had a high final cold rolling rate. Therefore, when it was rolled to the fin material, the amount of internal strain was large and the number of recrystallization nucleation sites increased. As a result, the recrystallized structure at the time of brazing addition heat became fine, the drooping amount increased, and fin melting occurred. Moreover, due to the high cold rolling rate, the tensile strength of the fin material base plate before the brazing addition heat increased and broke during rolling.
No. No. 14 had a low final intermediate annealing temperature, no recrystallization occurred, and the fiber structure was maintained. No. As in the case of No. 13, the tensile strength of the fin material base plate before the brazing addition heat increased, and breakage occurred during rolling.
No. In No. 15, the final intermediate annealing temperature was too high, and a part of the intermetallic compound was dissolved in the matrix. As a result, both the tensile strength and conductivity after the brazing heat were reduced. Since the intermetallic compound with a small size preferentially dissolved in the matrix phase, the pinning effect of the grain boundaries did not work, and the recrystallized grains after the brazing heat were refined. For this reason, the amount of drooping increased and fin melting occurred.
No. In No. 16, the first intermediate annealing was performed by continuous annealing. This reduced the amount of strain inside the material and reduced the driving force for recrystallization during the second (final) intermediate annealing. Therefore, recrystallization did not occur and the fiber structure was maintained. The tensile strength of the fin material base plate before the brazing heat increased, and fracture occurred during rolling.
Claims (2)
(a)In:0.3%以下(零を含まない)、Sn:3.0%以下(零を含まない)の一方または両者
(b)Ti:0.1%以下(零を含まない)、Zr:0.1%以下(零を含まない)
の1種または2種 Fe: more than 1.0% and 2.2% or less (% indicating composition means “mass%”, the same applies hereinafter), Si: 0.5 to 1.5% and Mn: 0.4 to 1 comprises .3% as essential components, as optional components, contains one or two or more elements of the indicated element group with a 3.0% or less Zn, further following (a) and (b) The aluminum alloy consisting of the balance Al and unavoidable impurities is cast at a molten metal cooling rate of 10 ° C./second or more, and the final intermediate annealing performed at a plate thickness of 0.1 mm or less is performed in the range of 300 ° C. to 480 ° C., Rolling material formed by recrystallizing an aluminum alloy by annealing and having a crystal structure in which 80% or more of the surface area seen from the surface layer is occupied by recrystallized grains having a diameter of 10 mm or more in the rolling direction. 30% or less final cold rolling is performed. Method of manufacturing a Jingu for the fin material.
(A) One or both of In: 0.3% or less (not including zero), Sn: 3.0% or less (not including zero ) (b) Ti: 0.1% or less (not including zero) , Zr: 0.1% or less (excluding zero)
1 type or 2 types
(a)In:0.3%以下(零を含まない)、Sn:3.0%以下(零を含まない)の一方または両者
(b)Ti:0.1%以下(零を含まない)、Zr:0.1%以下(零を含まない)の1種または2種 Fe: 2.2% greater than 1.0% or less, Si: 0.5 to 1.5% and Mn: includes 0.4 to 1.3% as essential components, as optional components, a Zn 3.0 % or less and, further contain one or more elements of the indicated element group by the following (a) and (b), an aluminum alloy and the balance Al and unavoidable impurities, cooling rate 10 of the molten metal Surface area seen from the surface layer formed by refining the aluminum alloy by performing final annealing in the range of 300 ° C. to 480 ° C., cast at a rate of 0.1 ° C./second or more and performed at a plate thickness of 0.1 mm or less. The rolling material having a crystal structure occupied by 80% or more of the recrystallized grains having a diameter of 10 mm or more in the rolling direction is manufactured by subjecting to a final cold rolling with a reduction rate of 30% or less. Brazing fin material.
(A) One or both of In: 0.3% or less (not including zero), Sn: 3.0% or less (not including zero ) (b) Ti: 0.1% or less (not including zero) , Zr: One or two of 0.1% or less (excluding zero)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005041194A JP4669709B2 (en) | 2005-02-17 | 2005-02-17 | Brazing fin material and manufacturing method thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005041194A JP4669709B2 (en) | 2005-02-17 | 2005-02-17 | Brazing fin material and manufacturing method thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2006225719A JP2006225719A (en) | 2006-08-31 |
JP4669709B2 true JP4669709B2 (en) | 2011-04-13 |
Family
ID=36987341
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2005041194A Expired - Fee Related JP4669709B2 (en) | 2005-02-17 | 2005-02-17 | Brazing fin material and manufacturing method thereof |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4669709B2 (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5186185B2 (en) * | 2006-12-21 | 2013-04-17 | 三菱アルミニウム株式会社 | High-strength aluminum alloy material for automobile heat exchanger fins excellent in formability and erosion resistance used for fin material for high-strength automobile heat exchangers manufactured by brazing, and method for producing the same |
KR102033820B1 (en) | 2011-12-16 | 2019-10-17 | 노벨리스 인코퍼레이티드 | Aluminium fin alloy and method of making the same |
JP6751713B2 (en) | 2014-08-06 | 2020-09-09 | ノベリス・インコーポレイテッドNovelis Inc. | Aluminum alloy for heat exchanger fins |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0328352A (en) * | 1989-06-26 | 1991-02-06 | Furukawa Alum Co Ltd | Production of aluminum alloy fin material for heat exchanger |
JPH04105763A (en) * | 1990-08-27 | 1992-04-07 | Mitsubishi Alum Co Ltd | Production of high-strength sacrificial anode fin material made of al alloy for heat exchanger produced by brazing |
JPH06322494A (en) * | 1993-05-11 | 1994-11-22 | Furukawa Alum Co Ltd | Production of aluminum alloy fin material for heat exchanger |
JP2001329326A (en) * | 2000-05-19 | 2001-11-27 | Furukawa Electric Co Ltd:The | Fin material for brazing |
JP2003520294A (en) * | 2000-01-21 | 2003-07-02 | アルキャン・インターナショナル・リミテッド | High conductivity aluminum fin alloy |
JP2007517986A (en) * | 2004-01-12 | 2007-07-05 | アルコア インコーポレイテッド | Highly conductive finstock alloy, manufacturing method and resulting product |
-
2005
- 2005-02-17 JP JP2005041194A patent/JP4669709B2/en not_active Expired - Fee Related
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0328352A (en) * | 1989-06-26 | 1991-02-06 | Furukawa Alum Co Ltd | Production of aluminum alloy fin material for heat exchanger |
JPH04105763A (en) * | 1990-08-27 | 1992-04-07 | Mitsubishi Alum Co Ltd | Production of high-strength sacrificial anode fin material made of al alloy for heat exchanger produced by brazing |
JPH06322494A (en) * | 1993-05-11 | 1994-11-22 | Furukawa Alum Co Ltd | Production of aluminum alloy fin material for heat exchanger |
JP2003520294A (en) * | 2000-01-21 | 2003-07-02 | アルキャン・インターナショナル・リミテッド | High conductivity aluminum fin alloy |
JP2001329326A (en) * | 2000-05-19 | 2001-11-27 | Furukawa Electric Co Ltd:The | Fin material for brazing |
JP2007517986A (en) * | 2004-01-12 | 2007-07-05 | アルコア インコーポレイテッド | Highly conductive finstock alloy, manufacturing method and resulting product |
Also Published As
Publication number | Publication date |
---|---|
JP2006225719A (en) | 2006-08-31 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20190323788A1 (en) | Method for producing aluminum alloy clad material | |
JP6206322B2 (en) | Aluminum alloy fin material for heat exchanger excellent in brazing and sag resistance and method for producing the same | |
JP6492056B2 (en) | Aluminum alloy fin material for heat exchanger, method for producing the same, and heat exchanger | |
US20160319401A1 (en) | Aluminum-alloy clad material and production method therefor, and heat exchanger using said aluminum-alloy clad material and production method therefor | |
CN105734368B (en) | Aluminum alloy fin material, method for producing same, and heat exchanger provided with same | |
RU2635675C2 (en) | Ribbing material super-resistant to deflection and melting material with very high strength | |
JP5598834B2 (en) | Aluminum alloy brazing sheet for heat exchanger | |
JP4667065B2 (en) | Brazing fin material and manufacturing method thereof | |
JP2010255120A (en) | Aluminum alloy fin material for heat exchanger | |
JP4669711B2 (en) | Aluminum alloy fin material for brazing | |
JP4669709B2 (en) | Brazing fin material and manufacturing method thereof | |
JP5545798B2 (en) | Method for producing aluminum alloy fin material for heat exchanger | |
CN111057910A (en) | Aluminum alloy heat-dissipating component and heat exchanger | |
JP4669712B2 (en) | Brazing fin material and manufacturing method thereof | |
US7850796B2 (en) | Aluminum alloy fin material for brazing | |
JP6154224B2 (en) | Aluminum alloy fin material for heat exchanger and manufacturing method thereof | |
JP4667064B2 (en) | Brazing fin material and manufacturing method thereof | |
JP4669710B2 (en) | Brazing fin material and manufacturing method thereof | |
JP5431046B2 (en) | Manufacturing method of brazing structure made of aluminum alloy for heat exchanger excellent in high temperature durability | |
KR20200034729A (en) | Aluminum alloy plate and its manufacturing method | |
JP6154225B2 (en) | Aluminum alloy fin material for heat exchanger and manufacturing method thereof | |
JP2008161879A (en) | Method for producing magnesium alloy rolled sheet | |
JP5544591B2 (en) | Copper alloy tube | |
CA2597157C (en) | Aluminum alloy fin material for brazing | |
JP6328472B2 (en) | Method for producing aluminum alloy fin material for heat exchanger |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20080205 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20100209 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20100223 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20100426 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20100601 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20100802 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20110111 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20110117 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140121 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 4669709 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |