JP2001329326A - Fin material for brazing - Google Patents

Fin material for brazing

Info

Publication number
JP2001329326A
JP2001329326A JP2000148775A JP2000148775A JP2001329326A JP 2001329326 A JP2001329326 A JP 2001329326A JP 2000148775 A JP2000148775 A JP 2000148775A JP 2000148775 A JP2000148775 A JP 2000148775A JP 2001329326 A JP2001329326 A JP 2001329326A
Authority
JP
Japan
Prior art keywords
less
fin material
length
brazing
fin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000148775A
Other languages
Japanese (ja)
Inventor
Takenobu Doko
武宜 土公
Akira Kawahara
晃 川原
Atsushi Fukuda
淳 福田
Yoshihiko Kamiya
喜彦 神谷
Maki Shimizu
真樹 清水
Kenji Nekura
健二 根倉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Denso Corp
Original Assignee
Furukawa Electric Co Ltd
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd, Denso Corp filed Critical Furukawa Electric Co Ltd
Priority to JP2000148775A priority Critical patent/JP2001329326A/en
Priority to US09/861,141 priority patent/US6471794B2/en
Priority to KR1020010027208A priority patent/KR100744877B1/en
Priority to DE60114292T priority patent/DE60114292T2/en
Priority to EP01111944A priority patent/EP1156129B1/en
Publication of JP2001329326A publication Critical patent/JP2001329326A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • C22C21/10Alloys based on aluminium with zinc as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/04Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon

Abstract

PROBLEM TO BE SOLVED: To provide an Al-Ni-Fe alloy fin material excellent in strength and thermal conductivity and also having high corrosion resistance. SOLUTION: This aluminum alloy fin material for brazing is composed of an aluminum alloy having a composition containing, by weight, >0.1 to 3% Ni, >1.5 to 2.2% Fe and <=1.2% Si, further containing at least one kind selected from the groups consisting of <=4% Zn, <=0.3% In and <=0.3% Sn, moreover containing, at need, one or more kinds selected from <=3.0% Co, <=0.3% Cr, <=0.3% Zr, <=0.3% Ti, <=1% Cu, <=0.3% Mn and <=1% Mg, and the balance aluminum with inevitable impurities, in which the ratio of the length in the vertical direction to the rolling direction of the crystal grains viewed from the sheet surface to the length in the parallel direction to the rolliig direction (the length in the vertical direction/the length in the parallel direction) is <=1/30, its electrical conductivity is controlled to 50 to 55% IACS, and tensile strength to 170 to 280 MPa.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、耐食性と強度と熱
伝導性に優れたAl−Ni−Fe系合金ブレージング用
フィン材に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a fin material for brazing Al-Ni-Fe alloys having excellent corrosion resistance, strength and thermal conductivity.

【0002】[0002]

【従来の技術】自動車用熱交換器の多くはAlおよびA
l合金が使用されておりろう付法により製造されてい
る。通常ろう付はAl−Si系のろう材が用いられ、そ
のためろう付は600℃程度の高温で行われる。ラジエ
ーター等の熱交換器は例えば図1に示すように複数本の
偏平チューブ(1)の間にコルゲート状に加工した薄肉
フィン(2)を一体に形成し、該偏平チューブ(1)の
両端はヘッダー(3)とタンク(4)とで構成される空
間にそれぞれ開口しており、一方のタンク側の空間から
偏平チューブ(1)内を通して高温冷媒を他方のタンク
(4)側の空間に送り、チューブ(1)およびフィン
(2)の部分で熱交換して低温になった冷媒を再び循環
させるものである。
2. Description of the Related Art Most heat exchangers for automobiles use Al and A.
1 alloy is used and manufactured by the brazing method. Usually, Al-Si-based brazing material is used for brazing, so brazing is performed at a high temperature of about 600 ° C. In a heat exchanger such as a radiator, for example, as shown in FIG. 1, thin fins (2) formed into a corrugated shape are integrally formed between a plurality of flat tubes (1), and both ends of the flat tubes (1) are It is open to the space formed by the header (3) and the tank (4), and sends the high-temperature refrigerant from the space on one tank side to the space on the other tank (4) side through the flat tube (1). The heat exchange between the tubes (1) and the fins (2) causes the low-temperature refrigerant to circulate again.

【0003】ところで、近年、熱交換器は軽量・小型化
の方向にあり、そのためには熱交換器の熱効率の向上が
必要であり、材料の熱伝導性の向上が望まれている。特
に、フィン材の熱伝導性の向上は検討されており、合金
成分を純アルミニウムに近づけた合金のフィン材が熱伝
導フィンとして提案されている。しかしながら、フィン
を薄肉化した場合、フィンの強度が十分でないと熱交換
器の組付け時にフィンが潰れたり、熱交換器として使用
時に破壊してしまうという問題がある。純アルミニウム
系合金フィンの場合、強度が不足してしまう欠点を有し
ており、高強度化にはMn等の合金元素の添加が有効で
あるが、熱交換器を製造する工程に600℃付近まで加
熱されるブレージングがあるため、ブレージング加熱中
に、強度向上の目的で合金に添加した元素が再固溶し熱
伝導性の向上を阻害する問題がある。
In recent years, heat exchangers are becoming lighter and smaller, and for that purpose, it is necessary to improve the heat efficiency of the heat exchanger, and it is desired to improve the heat conductivity of the material. In particular, improvement in the thermal conductivity of the fin material is being studied, and a fin material of an alloy in which the alloy component is close to pure aluminum has been proposed as a heat conductive fin. However, when the fins are thinned, if the fins are not strong enough, there is a problem that the fins are crushed when the heat exchanger is assembled, or broken when used as a heat exchanger. In the case of a pure aluminum alloy fin, there is a drawback that the strength is insufficient, and the addition of an alloy element such as Mn is effective for increasing the strength. However, there is a problem that during brazing heating, elements added to the alloy for the purpose of improving strength are re-dissolved to inhibit the improvement of thermal conductivity during brazing.

【0004】これらを解決したフィン材として、Al−
Si−Fe合金にNiやCoを添加した合金が提案され
ており、優れた強度と熱伝導性を有した特性を示してい
る(特開平7−216485号、特開平8−10493
4号など)。しかし、これらのフィン材で、1.5%
(質量%をいう。以下同様)を越えたFeを、Niを一
緒に添加したアルミニウム合金では、Al−Fe−Ni
系の金属間化合物がフィン内部に生じ、これらは強度と
熱伝導性を向上させる要因ではあるが、フィン材自体の
耐食性を低下させるという問題が発生している。フィン
材は犠牲防食材としてチューブを保護するが、フィン材
自体の耐食性が大きいと早期にフィンが腐食によりなく
なり、長期に渡り、チューブを防食できなくなる。
As a fin material which solves these problems, Al-
An alloy in which Ni or Co is added to a Si-Fe alloy has been proposed, and exhibits properties having excellent strength and thermal conductivity (JP-A-7-216485, JP-A-8-10493).
No. 4). However, with these fin materials, 1.5%
(In the case of an aluminum alloy to which Ni is added together with Fe in excess of (% by mass; the same applies hereinafter), Al-Fe-Ni
Intermetallic compounds of the system are generated inside the fins, and these are factors that improve the strength and the thermal conductivity. However, there is a problem that the corrosion resistance of the fin material itself is reduced. The fin material protects the tube as a sacrificial anticorrosion material. However, if the fin material itself has a high corrosion resistance, the fin is not corroded at an early stage and the tube cannot be protected for a long time.

【0005】[0005]

【発明が解決しようとする課題】従って本発明の目的
は、強度と熱伝導性に優れ、かつ、耐食性の高められた
Al−Ni−Fe系合金フィン材を提供することにあ
る。
SUMMARY OF THE INVENTION Accordingly, an object of the present invention is to provide an Al--Ni--Fe alloy fin material which is excellent in strength and thermal conductivity and has enhanced corrosion resistance.

【0006】[0006]

【課題を解決するための手段】本発明の課題は下記手段
により達成された。すなわち、本発明は、0.1wt%
を越え3wt%以下のNi、1.5wt%を越え2.2
wt%以下のFe、及び1.2wt%以下のSiを含
み、さらに4wt%以下のZn、0.3wt%以下のI
n及び0.3wt%以下のSnからなる群から選ばれる
少なくとも1種を含有し、これに加えて必要により3.
0wt%以下のCo、0.3wt%以下のCr、0.3
wt%以下のZr、0.3wt%以下のTi、1wt%
以下のCu、0.3wt%以下のMn、1wt%以下の
Mgのうち1種または2種以上を含有し、不可避的不純
物と残部アルミニウムよりなるアルミニウム合金からな
り、板表面から見た結晶粒の圧延方向に直角方向の長さ
と圧延方向に並行方向の長さの比(直角方向の長さ/並
行方向の長さ)が1/30以下であり、導電率が50%
IACS以上55%IACS以下であり、引張強さ17
0MPa以上280MPa以下であることを特徴とする
ブレージング用アルミニウム合金フィン材を提供するも
のである。
The object of the present invention has been attained by the following means. That is, the present invention relates to 0.1 wt%
Over 3 wt% Ni, over 1.5 wt% and 2.2
wt% or less Fe and 1.2 wt% or less Si, further 4 wt% or less Zn, 0.3 wt% or less I
2. At least one selected from the group consisting of n and 0.3 wt% or less of Sn, and if necessary, in addition to 3.
0 wt% or less Co, 0.3 wt% or less Cr, 0.3
wt% or less Zr, 0.3 wt% or less Ti, 1 wt%
The following Cu, 0.3 wt% or less Mn, 1 wt% or less Mg, contains one or more kinds, and is made of an aluminum alloy consisting of unavoidable impurities and the balance of aluminum. The ratio of the length in the direction perpendicular to the rolling direction to the length in the direction parallel to the rolling direction (length in the perpendicular direction / length in the parallel direction) is 1/30 or less, and the conductivity is 50%.
Not less than IACS and not more than 55% IACS, and a tensile strength of 17
An object of the present invention is to provide an aluminum alloy fin material for brazing, which is not less than 0 MPa and not more than 280 MPa.

【0007】[0007]

【発明の実施の形態】本発明の特徴は、ろう付後の強度
と導電率に優れることで知られている合金を用い、金属
組織を制御することでフィン材自体の耐食性を高めたも
のである。金属組織の制御について説明する前に本発明
が対象とする合金元素について以下に説明する。ここ
で、0.1wt%を越え3wt%以下のNiおよび1.
5wt%を越え2.2wt%以下のFeを含有するとし
たのは、本発明がFeとNiの添加によりろう付後の強
度と熱伝導性を高めたフィン材の問題点を解決するため
になされたものだからである。特にFe量を1.5wt
%を越える合金に限定したのは、1.5wt%以下であ
れば、フィン材自体の耐食性の低下が少ないので、特に
本発明の金属組織の制御を行わなくともよいからであ
る。また、Feの上限を2.2wt%としたのは上限を
越えると本発明法を用いても、フィン材の耐食性を向上
できないためである。Niの下限は、Feと共存するこ
とで強度と導電率を向上する効果を有する量により定め
た。Niの上限はFeと同様に本発明範囲を越えると本
発明法を用いても、フィン材の耐食性を向上できないた
めである。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The feature of the present invention is that the corrosion resistance of the fin material itself is enhanced by controlling the metal structure using an alloy known to have excellent strength and electrical conductivity after brazing. is there. Before describing the control of the metallographic structure, the alloy elements targeted by the present invention will be described below. Here, more than 0.1 wt% and 3 wt% or less of Ni and 1.
The reason why Fe is contained in an amount of more than 5 wt% and not more than 2.2 wt% is to solve the problems of the fin material in which the strength and thermal conductivity after brazing are increased by adding Fe and Ni. Because it was Especially the amount of Fe is 1.5wt
The reason for limiting the alloy content to more than 1.5% is that if the content is 1.5 wt% or less, the deterioration of the corrosion resistance of the fin material itself is small, so that the metal structure of the present invention need not be particularly controlled. The reason why the upper limit of Fe is set to 2.2 wt% is that if the upper limit is exceeded, even if the method of the present invention is used, the corrosion resistance of the fin material cannot be improved. The lower limit of Ni is determined by the amount having the effect of improving the strength and conductivity by coexisting with Fe. If the upper limit of Ni exceeds the range of the present invention similarly to Fe, even if the method of the present invention is used, the corrosion resistance of the fin material cannot be improved.

【0008】以上によりNiとFeの添加量を定めてい
るが、高強度を確保するために0.6wt%以上のNi
が推奨され、特に0.9wt%以上が推奨される。ま
た、本フィン材を製造する際に、連続鋳造法を用いる場
合その安定性のために2wt%以下のNiが推奨され
る。また、Feは連続鋳造時の安定性を高め、フィン材
の耐食性をより高めるために2.0wt%以下が特に推
奨される。以上のNi、Feの他に、1.2wt%以下
のSi、3.0wt%以下のCo、0.3wt%以下の
Cr、0.3wt%以下のZr、0.3wt%以下のT
i、4wt%以下のZn、0.3wt%以下のIn、
0.3wt%以下のSn、1wt%以下のCu、1.3
wt%以下のMn、1wt%以下のMgのうち1種また
は2種以上および不可避的不純物を含有してもよい。こ
れらの元素は合金をフィン材とする際に特性上重要な働
きを示すものである。以下に各元素毎の作用と限定理由
を述べる。
Although the addition amounts of Ni and Fe are determined as described above, 0.6 wt% or more of Ni is added to secure high strength.
Is recommended, and particularly 0.9 wt% or more is recommended. In the case of using the continuous casting method when manufacturing the present fin material, Ni of 2 wt% or less is recommended for its stability. Further, Fe is particularly recommended to be 2.0 wt% or less in order to enhance the stability during continuous casting and further enhance the corrosion resistance of the fin material. In addition to the above Ni and Fe, 1.2 wt% or less of Si, 3.0 wt% or less of Co, 0.3 wt% or less of Cr, 0.3 wt% or less of Zr, and 0.3 wt% or less of T.
i, 4 wt% or less Zn, 0.3 wt% or less In,
0.3 wt% or less of Sn, 1 wt% or less of Cu, 1.3
It may contain one or more of Mn of 1 wt% or less of Mn of 1 wt% or less and unavoidable impurities. These elements show important functions in properties when the alloy is used as a fin material. The action and the reason for limitation for each element will be described below.

【0009】Siは、その添加により強度を向上させ
る。Siそのものが固溶硬化して強度を向上させるに加
え、特に、FeやNiおよびCoと共存する場合、Fe
やNiおよびCoの析出を促進する作用を有する。本発
明フィン材では、Al−Fe系の金属間化合物を粗大化
させないことが重要である。Siを添加すると金属間化
合物が析出しやすくなり、数多く析出するために、個々
の金属間化合物の大きさはSiを添加しない場合と比較
して小さくなる。このような析出の促進作用はSiが
0.03wt%以下では十分でなく、1.2wt%を越
えるとろう付加熱時にフィンが溶融してしまう。従っ
て、Siを添加する場合は0.03wt%を越え1.2
wt%以下とするが、上記析出の促進作用はSiが0.
3wt%以上で効果が大きくなる。また、Siを増やし
すぎると固溶したSiがフィンの熱伝導性を低下させる
ために0.8wt%以下が望ましい。これらの、0.3
wt%〜0.8wt%の中でも、特に0.4〜0.7w
t%のSiで安定した特性を示す。
[0009] The addition of Si improves the strength. In addition to improving the strength by solid solution hardening of Si itself, especially when coexisting with Fe, Ni and Co,
And has the effect of promoting the precipitation of Ni and Co. In the fin material of the present invention, it is important not to coarsen the Al-Fe intermetallic compound. When Si is added, the intermetallic compound is likely to precipitate, and since a large number of precipitates are deposited, the size of each intermetallic compound is smaller than that in the case where Si is not added. Such an effect of accelerating the precipitation is not sufficient when the content of Si is 0.03% by weight or less, and when the content exceeds 1.2% by weight, the fins are melted at the time of heating by brazing. Therefore, when adding Si, it exceeds 0.03 wt% and exceeds 1.2%.
wt% or less.
The effect increases when the content is 3 wt% or more. Further, when the amount of Si is excessively increased, the content of Si is desirably 0.8 wt% or less because the dissolved Si lowers the thermal conductivity of the fin. These, 0.3
Among 0.4 wt% to 0.8 wt%, especially 0.4 to 0.7 w
It shows stable characteristics with t% of Si.

【0010】CoはNiと同様な働きを有する。従っ
て、Coを添加する場合、添加量は0.1wt%を越え
3.0wt%以下とするが、特に0.3wt%〜2wt
%の範囲で優れた特性を示す。しかし、CoはNiと比
較し、熱伝導性が若干低下することとAl−Fe系の化
合物を分断する効果が弱い。また、Niよりも高価な金
属である。本発明では、Niの代わりにCoを用いた
り、NiとCoの同時添加を行うことは可能であるが、
Niのみの添加の方が特性上、コスト上の効果が大きい
のでNiを添加することを推奨する。Co添加量の下限
は0.1wt%であるが、これは単独に添加する場合
で、Niと複合して添加する場合は、それ以下でも添加
可能である。0.3wt%以下のZrとCrの添加は強
度を向上させることおよびZrはろう付時に生じるフィ
ン材の再結晶粒を粗大化し、フィンの垂下性ならびにフ
ィンへのろうの拡散を防止する働きのために添加する。
しかし、連続鋳造を行う際にZrおよびCrを添加した
合金はノズルの目詰まりを起こし、鋳造ができなくなる
ことがある。従って、ZrおよびCrは添加しない方が
望ましく、添加する場合は0.08wt%以下の添加を
特に推奨する。
Co has the same function as Ni. Therefore, when Co is added, the addition amount is more than 0.1 wt% and not more than 3.0 wt%, but in particular, 0.3 wt% to 2 wt%.
% In the range. However, compared to Ni, Co has a slightly lower thermal conductivity and a weaker effect of dividing Al-Fe-based compounds. It is a metal that is more expensive than Ni. In the present invention, it is possible to use Co instead of Ni or to simultaneously add Ni and Co.
It is recommended to add Ni because adding Ni alone has a greater effect on characteristics and cost. The lower limit of the amount of Co to be added is 0.1 wt%. However, this is the case when adding alone, and when adding in combination with Ni, it is possible to add even less. Addition of 0.3 wt% or less of Zr and Cr improves the strength and Zr coarsens the recrystallized grains of the fin material generated at the time of brazing, and has a function of preventing the fin from drooping and preventing the diffusion of the wax into the fin. To be added.
However, alloys to which Zr and Cr are added during continuous casting may cause clogging of the nozzle, making casting impossible. Therefore, it is desirable not to add Zr and Cr, and when it is added, addition of 0.08 wt% or less is particularly recommended.

【0011】0.3wt%以下のTiの添加は強度を向
上させることを主な目的として添加する。しかし、連続
鋳造を行う際にTiを添加した合金はノズルの目詰まり
を起こし、鋳造ができなくなることがある。従って、T
iは添加しない方が望ましく、添加する場合は0.08
wt%以下の添加を特に推奨する。また、鋳造組織の微
細化を目的として添加することもあるが、その場合、
0.02wt%以下で十分に目的を達成する。4wt%
以下のZn、0.3wt%以下のIn、0.3wt%以
下のSnはフィン材に犠牲防食効果を付与するために添
加する。添加量と添加する元素はそのフィン材に要求さ
れる防食特性や熱伝導性によって決めればよい。Inお
よびSnは少量の添加で十分な犠牲効果を発揮するが、
高価であり、合金の屑を他の合金材料にリサイクルでき
なくなるという問題がある。従って、本発明では特にZ
nの添加を推奨する。Znは添加量を増すとフィン材自
体の腐食性を低下させるために2wt%以下が推奨さ
れ、特に1wt%以下が推奨される。下限は防食を行う
相手の材料により決めればよいが、通常0.3wt%以
上添加することが望ましい。本発明ではさらにCuを添
加する場合がある。Cuは主に強度を向上させるために
添加する。添加する場合、0.05wt%以下では強度
向上の効果がない。また、添加量を増すと犠牲陽極効果
を減じる働きが強くなるため、1wt%以下とするが、
0.3wt%以下が特に推奨される。Cuはフィン材の
電位を貴にし、犠牲陽極効果を減じる働きがあるので、
Cuを添加する場合、Zn、In、Snのいずれかの元
素と一緒に添加する必要がある。
The addition of 0.3 wt% or less of Ti is mainly for improving the strength. However, alloys to which Ti is added during continuous casting may cause clogging of the nozzle, making casting impossible. Therefore, T
It is desirable not to add i.
The addition of not more than wt% is particularly recommended. In addition, it may be added for the purpose of refining the cast structure, in which case,
The objective is sufficiently achieved with 0.02 wt% or less. 4wt%
The following Zn, In of 0.3 wt% or less, and Sn of 0.3 wt% or less are added in order to impart a sacrificial anticorrosion effect to the fin material. The amount to be added and the element to be added may be determined according to the anticorrosion properties and thermal conductivity required for the fin material. In and Sn exhibit a sufficient sacrificial effect with a small amount of addition,
It is expensive and there is a problem that the scrap of the alloy cannot be recycled to other alloy materials. Therefore, in the present invention, Z
The addition of n is recommended. As the amount of Zn added increases, the corrosion of the fin material itself is reduced, so 2 wt% or less is recommended, and in particular, 1 wt% or less is recommended. The lower limit may be determined according to the material of the anticorrosion partner, but it is usually desirable to add 0.3 wt% or more. In the present invention, Cu may be further added in some cases. Cu is added mainly to improve the strength. When it is added, if it is 0.05 wt% or less, there is no effect of improving strength. Further, when the addition amount is increased, the effect of reducing the sacrificial anode effect becomes stronger, so that the content is set to 1 wt% or less.
0.3 wt% or less is particularly recommended. Cu has the function of making the potential of the fin material noble and reducing the sacrificial anode effect,
When adding Cu, it is necessary to add together with any element of Zn, In, and Sn.

【0012】Mnは強度を向上させるために添加する場
合があるがわずかな添加で熱伝導性が大きく低下する。
したがって、Mnの添加は0.3wt%以下とするが、
添加しない方が望ましい。Mgも強度を向上させるため
に添加する場合があるが、NBろう付ではフラックスと
反応し、ろう付性を低下させるために、NBろう付用の
フィン材とする場合にMgを添加してはならない。ま
た、真空ろう付用とする場合、1wt%以下のMgとす
るが、ろう付中に蒸発し、その効果は小さいので添加し
ないことを推奨する。さて、本発明に用いられる合金の
不可避不純物および上記以外の理由で添加される元素で
あるが、鋳塊組織の微細化のためにTiと共に添加され
るB等があり、これらの元素はそれぞれ0.03%以下
であれば含有していても差し支えない。本発明のフィン
材は以上の合金組成で、板表面から見た結晶粒の、圧延
方向に直角方向の長さと圧延方向に並行方向の長さの比
(直角方向の長さ/並行方向の長さ)が1/30以下で
あり、導電率が50%IACS以上55%IACS以下
であり、引張強さ170MPa以上280MPa以下と
したことが一つの特徴である。
Mn may be added to improve the strength, but a small addition significantly reduces the thermal conductivity.
Therefore, the addition of Mn is 0.3 wt% or less,
It is desirable not to add. Mg may also be added to improve the strength, but in the case of NB brazing, it reacts with the flux, and in order to reduce the brazing property, when forming a fin material for NB brazing, Mg is added. No. In the case of vacuum brazing, Mg of 1 wt% or less is used. However, it is recommended not to add Mg because it evaporates during brazing and its effect is small. The inevitable impurities of the alloy used in the present invention and the elements added for reasons other than the above include B added together with Ti for refining the ingot structure, etc. If it is 0.03% or less, it may be contained. The fin material of the present invention has the above alloy composition and the ratio of the length of the crystal grains viewed from the plate surface in the direction perpendicular to the rolling direction to the length in the direction parallel to the rolling direction (length in the perpendicular direction / length in the parallel direction). One characteristic is that the electrical conductivity is 1/30 or less, the electrical conductivity is 50% IACS or more and 55% IACS or less, and the tensile strength is 170 MPa or more and 280 MPa or less.

【0013】まず、板表面から見た結晶粒径について説
明する。通常、フィン材は途中に焼鈍を経ながら冷間圧
延を行うことで所定のフィン材の厚さになるが、焼鈍後
の結晶粒径とその後の冷間圧延により、ろう付前のフィ
ン材の結晶粒径が決まる。フィン材の最終冷間圧延率は
50%以下であることが普通であるので、焼鈍により等
軸な結晶粒径が形成されれば、フィン材となった時の板
表面から見た結晶粒の圧延方向に直角方向の長さと圧延
方向に並行方向の長さの比(直角方向の長さ/並行方向
の長さ)は1/2以上となる。また、焼鈍後の結晶粒の
板表面から見た結晶粒の圧延に直角方向の長さと圧延方
向に並行方向の長さの比(直角方向の長さ/並行方向の
長さ)が1/10となっていたとしても、フィン材にな
った時には1/20以上となる。これに対して、本発明
では、フィン材の板表面から見た結晶粒の圧延方向に直
角方向の長さと圧延方向に並行方向の長さの比(直角方
向の長さ/並行方向の長さ)が1/30以下としてお
り、通常のフィン材の結晶粒組織と大きく異なるもので
ある。実際に、導電率と強度を本発明の範囲にした上で
本発明の結晶粒径のフィン材とするには、結晶粒内部に
微細な析出物を密に分散させて、その析出物により亜結
晶粒界がピン止めされた組織となった場合だけである。
ここで、フィン材の板表面から見た結晶粒の圧延方向に
直角方向の長さと圧延方向に並行方向の長さの比(直角
方向の長さ/並行方向の長さ)が1/30を越える場
合、フィン材中の析出物が比較的粗大で疎に分散した状
態である。そのため、ろう付後のフィン材でも、フィン
材中に粗大な粒子しか残らずに、これを中心に局部電池
が形成されて、フィン材自体の耐食寿命が低下する。さ
らに、この場合、析出物に亜結晶粒界が止められていな
いために、ろう付加熱中に再結晶がすみやかに進行する
ことも、析出粒子を粗大化する要因となる。対して、本
発明の条件であるフィン材の板表面から見た結晶粒の圧
延方向に直角方向の長さと圧延方向に並行方向の長さの
比(直角方向の長さ/並行方向の長さ)が1/30以下
の場合、析出粒子は密に存在している。このような状態
でろう付加熱を行うとろう付加熱時に再結晶粒界に特に
析出粒子が多く存在することがなくなり、局部電池を形
成する大きさの金属間化合物が少なくなるので、フィン
材自体の耐食性が向上する。さらに、析出物に亜結晶粒
界が止められているために、ろう付加熱の500℃付近
に達する前の温度で析出が促進され、析出粒子を微細に
分散させる効果がある。なお、上記結晶粒径はフィン材
をエッチング後に光学顕微鏡で観察して、写真撮影した
り、そのまま画像処理して求めればよいが、直角方向の
長さ/並行方向の長さの比が1/100以下となると、
圧延方向に並行方向の長さが大きくなり、視野を越えて
しまうことがある。その場合は本発明を満たしているの
は明らかであるから、1/100以下になっているとし
て、特に1/100以下の値を問題とする必要はない。
First, the crystal grain size as viewed from the plate surface will be described. Usually, the fin material has a predetermined fin material thickness by performing cold rolling while undergoing annealing in the middle, but the crystal grain size after annealing and the subsequent cold rolling, the fin material before brazing, The crystal grain size is determined. Since the final cold rolling reduction of the fin material is usually 50% or less, if an equiaxed crystal grain size is formed by annealing, the crystal grain as viewed from the plate surface when the fin material is formed is obtained. The ratio of the length in the direction perpendicular to the rolling direction to the length in the direction parallel to the rolling direction (length in the perpendicular direction / length in the parallel direction) is 1 / or more. Further, the ratio of the length in the direction perpendicular to the rolling of the crystal grains as viewed from the plate surface of the annealed crystal grains to the length in the direction parallel to the rolling direction (length in the perpendicular direction / length in the parallel direction) is 1/10. Even if it becomes, it becomes 1/20 or more when it becomes a fin material. On the other hand, in the present invention, the ratio of the length in the direction perpendicular to the rolling direction and the length in the direction parallel to the rolling direction of the crystal grains as viewed from the plate surface of the fin material (length in the perpendicular direction / length in the parallel direction) ) Is 1/30 or less, which is significantly different from the crystal grain structure of a normal fin material. Actually, in order to make the fin material having the crystal grain size of the present invention with the conductivity and the strength within the range of the present invention, fine precipitates are densely dispersed inside the crystal grains, and It is only when the grain boundaries have a pinned structure.
Here, the ratio (length in the perpendicular direction / length in the parallel direction) of the length in the direction perpendicular to the rolling direction and the length in the direction parallel to the rolling direction of the crystal grains as viewed from the plate surface of the fin material is 1/30. If it exceeds, the precipitates in the fin material are relatively coarse and sparsely dispersed. Therefore, even in the fin material after brazing, only coarse particles remain in the fin material, a local battery is formed around the coarse particles, and the corrosion life of the fin material itself is reduced. Further, in this case, since sub-grain boundaries are not stopped in the precipitate, recrystallization proceeds promptly during the heat of brazing, which also becomes a factor of coarsening the precipitated particles. On the other hand, the ratio of the length in the direction perpendicular to the rolling direction of the crystal grains as viewed from the plate surface of the fin material and the length in the direction parallel to the rolling direction (length in the perpendicular direction / length in the parallel direction) as a condition of the present invention. ) Is 1/30 or less, the precipitated particles are densely present. When the brazing heat is applied in such a state, especially when the brazing heat is applied, a large amount of precipitated particles are not present in the recrystallized grain boundaries, and the amount of intermetallic compound having a size that forms a local battery is reduced. The corrosion resistance is improved. Further, since the sub-grain boundaries are stopped in the precipitate, the precipitation is promoted at a temperature before reaching the vicinity of 500 ° C. of the heat of brazing, and the effect of finely dispersing the precipitated particles is obtained. The crystal grain size may be determined by observing the fin material with an optical microscope after etching and taking a photograph or performing image processing as it is. The ratio of the length in the perpendicular direction to the length in the parallel direction is 1 /. When it is less than 100,
The length in the direction parallel to the rolling direction is increased, and may exceed the field of view. In such a case, it is clear that the present invention is satisfied, so that it is not necessary to consider a value of 1/100 or less, especially, assuming that the value is 1/100 or less.

【0014】導電率はアルミニウム合金中の固溶元素量
を示す指標となり、固溶元素量が大きいほど導電率は小
さくなる。導電率が50%IACS未満の場合、フィン
材中へ固溶しているFeおよびNi量が多く、フィン材
をろう付加熱する際に生じる再結晶粒界にFe、Niが
析出する。ろう付後のフィンの再結晶粒界に沿って析出
物が増えると、腐食が生じる際に結晶粒界に沿った腐食
が多くなる。この合金系のフィン材では厚さ方向の結晶
粒は一つであることが多いので、粒界に沿って腐食が進
行するとフィン全体が腐食しなくとも、フィンがぼろぼ
ろと崩れてフィン材自体の耐食寿命が低下するのであ
る。55%IACSを越えるとフィン材中の析出量が多
くなりすぎており、ろう付加熱中に析出粒子が再固溶す
ることとなる。その際に微細な粒子ほど再固溶しやすい
ために、ろう付後のフィン材中に粗大な粒子しか残らな
い。そのため、ろう付後のフィン材では粗大な析出粒子
を中心に局部電池が形成されて、フィン材自体の耐食寿
命が低下する。なお、フィン材の熱伝導性の指標に導電
率が用いられるが、それはろう付後の導電率を問題とし
ている。ろう付加熱は600℃付近の温度で行われるた
めに、ろう付加熱が溶体化処理の働きを示し、ろう付後
のフィン材中の固溶元素量(導電率)はほぼフィン材の
合金組成によって決まる。対して、ろう付前の導電率は
フィン材の製造中の熱処理条件によって大きく変化する
ものであり、ろう付後の導電率と相関はない。引張強さ
はフィン材に導入されている転位量を表す指標となり、
引張り強さが大きいほど転位量は大きい。引張強さが1
70MPa未満の場合、導入されている転位量が少なす
ぎて、再結晶の駆動力が小さくなる。すなわち、ろう付
加熱中の再結晶時に析出粒子によって結晶粒界がピン止
めされやすくなり、結果として、ろう付加熱後のフィン
材の結晶粒界に析出粒子が多く存在することとなり、フ
ィン材の耐食性が低下する。引張強さが280MPaを
越えるとコルゲート成形性が低下し、ブレージング用フ
ィン材として適さなくなる。
The electric conductivity is an index indicating the amount of the solid solution element in the aluminum alloy. The larger the amount of the solid solution element, the lower the electric conductivity. When the electrical conductivity is less than 50% IACS, the amounts of Fe and Ni dissolved in the fin material are large, and Fe and Ni precipitate at the recrystallized grain boundary generated when the fin material is heated by brazing. If the precipitation increases along the recrystallized grain boundaries of the fin after brazing, the corrosion along the crystal grain boundaries increases when corrosion occurs. In this alloy type fin material, there is often one crystal grain in the thickness direction, so if the corrosion progresses along the grain boundaries, the fins will crumble and fall apart even if the entire fin does not corrode. Corrosion life is reduced. If it exceeds 55% IACS, the amount of precipitation in the fin material will be too large, and the precipitated particles will re-dissolve during heat of brazing. At this time, since finer particles are more likely to re-dissolve in solid solution, only coarse particles remain in the fin material after brazing. Therefore, in the fin material after brazing, a local battery is formed mainly on coarse precipitate particles, and the corrosion life of the fin material itself is reduced. The electrical conductivity is used as an index of the thermal conductivity of the fin material, and the problem is the electrical conductivity after brazing. Since the heat of brazing is performed at a temperature of around 600 ° C., the heat of brazing indicates the function of solution treatment, and the amount of solid solution elements (conductivity) in the fin material after brazing is substantially equal to the alloy composition of the fin material. Depends on On the other hand, the conductivity before brazing varies greatly depending on the heat treatment conditions during the production of the fin material, and has no correlation with the conductivity after brazing. Tensile strength is an index indicating the amount of dislocation introduced into the fin material,
The greater the tensile strength, the greater the amount of dislocation. Tensile strength is 1
If it is less than 70 MPa, the introduced dislocation amount is too small, and the driving force for recrystallization becomes small. That is, the crystal grain boundaries are easily pinned by the precipitated particles at the time of recrystallization during the heat of brazing, and as a result, many precipitated particles are present at the crystal grain boundaries of the fin material after the heat of brazing, and the corrosion resistance of the fin material is increased. Decrease. If the tensile strength exceeds 280 MPa, the corrugated formability will be reduced, and it will not be suitable as a brazing fin material.

【0015】以上の結晶粒径、導電率、引張強さの全て
を満たすことで、本発明のブレージング用フィン材はそ
の目的を達成する。これらの一つでも条件を欠くと所望
の金属組織とならないためである。さらに補足すると、
上記限定理由の説明では、他の二つの条件が本発明の範
囲であることを前提としているものであり、他の二つの
条件が本発明の範囲内でない場合は説明と異なる状態が
発生する。本発明の結晶粒径、導電率、引張強さを得る
には、上記合金を連続鋳造圧延法でコイルを作製した上
で、そのコイルを冷間圧延工程にてフィン材の厚さまで
に冷間圧延を行うがその間に最適な熱処理を行えばよ
い。連続鋳造圧延法とはアルミニウム合金溶湯から、厚
さ数mmのストリップを連続的に鋳造し、そのままコイ
ルを作製する方法であり、ハンター法とは3C法等がそ
の代表的な工法として知られている。DC鋳造法でイン
ゴットを作製し、熱間圧延により数mmの板厚のコイル
を製造する場合と比較し、連続鋳造圧延法では鋳造時の
冷却速度が大きいために、鋳造時に金属間化合物を微細
に晶出させることが可能であり、本合金のようにFeを
多く含有している合金の場合、強度の向上効果を有する
方法である。さらに、発明者らが検討を行ったところ、
連続鋳造圧延法ではDC鋳造法と比較して過飽和にFe
およびNiが固溶するために、フィン材自体の耐食性を
高めることが可能なことが判明した。
The fin material for brazing of the present invention achieves its object by satisfying all of the above crystal grain size, electric conductivity and tensile strength. This is because a desired metallographic structure cannot be obtained if any of these conditions is lacking. To add further,
The above explanation of the reason for limitation is based on the premise that the other two conditions are within the scope of the present invention, and if the other two conditions are not within the scope of the present invention, a state different from the description will occur. In order to obtain the crystal grain size, conductivity, and tensile strength of the present invention, after forming a coil of the above alloy by a continuous casting and rolling method, the coil is cold-rolled to a thickness of a fin material in a cold rolling step. Rolling is performed, and an optimal heat treatment may be performed during the rolling. The continuous casting and rolling method is a method of continuously casting a strip having a thickness of several mm from a molten aluminum alloy to produce a coil as it is, and the Hunter method is known as a typical method of the 3C method or the like. I have. Compared to the case of producing an ingot by DC casting and producing a coil with a thickness of several mm by hot rolling, the continuous casting and rolling method has a higher cooling rate during casting, so the intermetallic compounds are finely divided during casting. In the case of an alloy containing a large amount of Fe such as the present alloy, this is a method having an effect of improving strength. Furthermore, when the inventors studied,
In the continuous casting and rolling method, supersaturation of Fe is
It has been found that the corrosion resistance of the fin material itself can be enhanced because Ni and Ni form a solid solution.

【0016】本発明のフィン材組織を得るには、連続鋳
造圧延でコイルを作製し、冷間圧延工程により0.10
mm以下まで圧延しフィン材とするが、その途中で25
0℃以上500℃以下の温度での焼鈍を2回以上行う。
その際に、最後から2番目に行う焼鈍を0.4mm以上
2mm以下で行い、最終の焼鈍を再結晶が完了しない加
熱条件で行うことで目標とする組織を得ることができ
る。以上は本発明のフィン材を説明するための一例であ
り、これに限定するものでない。本発明でのフィン材の
厚さは、通常0.1mm以下の薄肉材とする。本発明は
高強度高熱伝導のブレージングシートフィンに関するも
のであり、0.1mmを越える板厚ではわざわざ高強度
のフィン材とする必要がないためである。本発明のブレ
ージング用アルミニウム合金フィン材は、ブレージング
用フィン材として、特性が向上することが知られている
合金の問題点を解決することができる。ここで、ブレー
ジングとは従来より行われているNB法、VB法等であ
ればよく、特にNB法が推奨される。NB法の方が生産
性がよいためである。
In order to obtain the fin structure of the present invention, a coil is manufactured by continuous casting and rolling, and the coil is manufactured by a cold rolling process to obtain a fin material.
mm to a fin material.
Annealing at a temperature of 0 ° C. or more and 500 ° C. or less is performed twice or more.
At that time, the second annealing from the last is performed at 0.4 mm or more and 2 mm or less, and the final annealing can be performed under heating conditions under which recrystallization is not completed, whereby a target structure can be obtained. The above is one example for explaining the fin material of the present invention, and the present invention is not limited to this. The thickness of the fin material in the present invention is usually a thin material of 0.1 mm or less. The present invention relates to a brazing sheet fin having high strength and high thermal conductivity, and it is not necessary to use a fin material having high strength for a plate thickness exceeding 0.1 mm. The aluminum alloy fin material for brazing of the present invention can solve the problems of alloys known to have improved properties as fin materials for brazing. Here, the brazing may be the NB method, the VB method, or the like that has been conventionally performed, and the NB method is particularly recommended. This is because the NB method has better productivity.

【実施例】【Example】

【0017】以下に実施例により本発明を具体的に説明
する。表1に示す組成のアルミニウム合金を連続鋳造圧
延により幅1000mm、厚さ6mmのコイルを作製し
た。その後、冷間圧延により0.06mm厚のフィン材
としたが、途中の焼鈍条件を種々に変化させることによ
り、表2に示すフィン材を作製した。使用した連続鋳造
圧延機のロール径は618mmである。また、比較とし
て厚さ6mmのコイルをDC鋳造、面削、熱間圧延の工
程で製造した後に、冷間圧延、焼鈍により表2に示すフ
ィン材も製造した。得られたフィン材を600℃にて3
分のNBろう付加熱後CASS試験を1週間行い、フィ
ン材の腐食減量を調査した。結果を表3に示す。
Hereinafter, the present invention will be described specifically with reference to examples. A coil having a width of 1000 mm and a thickness of 6 mm was produced from an aluminum alloy having the composition shown in Table 1 by continuous casting and rolling. Thereafter, a fin material having a thickness of 0.06 mm was formed by cold rolling. By changing various annealing conditions during the process, fin materials shown in Table 2 were produced. The roll diameter of the continuous casting and rolling mill used was 618 mm. As a comparison, a coil having a thickness of 6 mm was manufactured in the steps of DC casting, facing, and hot rolling, and then fin materials shown in Table 2 were also manufactured by cold rolling and annealing. The obtained fin material is heated at 600 ° C. for 3 hours.
After the addition of NB brazing heat for one minute, a CASS test was performed for one week to investigate the corrosion loss of the fin material. Table 3 shows the results.

【0018】[0018]

【表1】 [Table 1]

【0019】[0019]

【表2】 [Table 2]

【0020】[0020]

【表3】 [Table 3]

【0021】上記表の結果より明らかなように、本発明
のフィン材は比較例と比べて腐食減量が非常に少なく、
フィン材自身の耐食性が優れている。
As is evident from the results in the above table, the fin material of the present invention has a very small corrosion weight loss as compared with the comparative example.
The corrosion resistance of the fin material itself is excellent.

【0022】[0022]

【発明の効果】以上のように本発明では高強度、高熱伝
導のフィン材用合金として知られるAl−Ni−Fe系
合金フィン材のフィン材自身の耐食性を著しく高めるこ
とができ、工業上顕著な効果を奏するものである。
As described above, according to the present invention, the corrosion resistance of the fin material itself of the Al-Ni-Fe alloy fin material known as a high strength and high heat conductive fin material alloy can be remarkably increased, which is industrially remarkable. It has a great effect.

【図面の簡単な説明】[Brief description of the drawings]

【図1】図1はラジエータを示す模式図である。FIG. 1 is a schematic diagram showing a radiator.

【符号の説明】[Explanation of symbols]

1 チューブ 2 フィン 3 ヘッダー 4 タンク 1 Tube 2 Fin 3 Header 4 Tank

フロントページの続き (72)発明者 川原 晃 東京都千代田区丸の内2丁目6番1号 古 河電気工業株式会社内 (72)発明者 福田 淳 愛知県刈谷市昭和町1丁目1番地 株式会 社デンソー内 (72)発明者 神谷 喜彦 愛知県刈谷市昭和町1丁目1番地 株式会 社デンソー内 (72)発明者 清水 真樹 愛知県刈谷市昭和町1丁目1番地 株式会 社デンソー内 (72)発明者 根倉 健二 愛知県刈谷市昭和町1丁目1番地 株式会 社デンソー内Continued on the front page (72) Inventor Akira Kawahara 2-6-1, Marunouchi, Chiyoda-ku, Tokyo Inside Furukawa Electric Co., Ltd. (72) Inventor Atsushi Fukuda 1-1-1, Showa-cho, Kariya-shi, Aichi Prefecture DENSO Corporation (72) Inventor Yoshihiko Kamiya 1-1-1, Showa-cho, Kariya-shi, Aichi Prefecture Inside Denso Corporation (72) Inventor Maki Shimizu 1-1-1, Showa-cho, Kariya-shi, Aichi Prefecture Inside Denso Corporation (72) Inventor Kenji Nekura 1-1-1, Showa-cho, Kariya-shi, Aichi Prefecture Inside DENSO Corporation

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 0.1wt%を越え3wt%以下のN
i、1.5wt%を越え2.2wt%以下のFe、及び
1.2wt%以下のSiを含み、さらに4wt%以下の
Zn、0.3wt%以下のIn及び0.3wt%以下の
Snからなる群から選ばれる少なくとも1種を含有し、
これに加えて必要により3.0wt%以下のCo、0.
3wt%以下のCr、0.3wt%以下のZr、0.3
wt%以下のTi、1wt%以下のCu、0.3wt%
以下のMn、1wt%以下のMgのうち1種または2種
以上を含有し、不可避的不純物と残部アルミニウムより
なるアルミニウム合金からなり、板表面から見た結晶粒
の圧延方向に直角方向の長さと圧延方向に並行方向の長
さの比(直角方向の長さ/並行方向の長さ)が1/30
以下であり、導電率が50%IACS以上55%IAC
S以下であり、引張強さ170MPa以上280MPa
以下であることを特徴とするブレージング用アルミニウ
ム合金フィン材。
1. An N content exceeding 0.1 wt% and not more than 3 wt%.
i, containing 1.5 wt% or more and 2.2 wt% or less of Fe and 1.2 wt% or less of Si, and further containing Zn of 4 wt% or less, In of 0.3 wt% or less, and Sn of 0.3 wt% or less. Containing at least one member selected from the group consisting of:
In addition to this, if necessary, 3.0 wt% or less of Co, 0.1 wt% or less.
Cr of 3 wt% or less, Zr of 0.3 wt% or less, 0.3
wt% Ti or less, 1 wt% or less Cu, 0.3 wt%
The following Mn contains one or more kinds of Mg of 1 wt% or less, is made of an aluminum alloy composed of unavoidable impurities and the balance of aluminum, and has a length perpendicular to a rolling direction of crystal grains as viewed from the plate surface. The ratio of the length parallel to the rolling direction (length in the perpendicular direction / length in the parallel direction) is 1/30
Is less than or equal to 50% IACS and 55% IAC
S or less, tensile strength 170 MPa or more and 280 MPa
An aluminum alloy fin material for brazing characterized by the following.
JP2000148775A 2000-05-19 2000-05-19 Fin material for brazing Pending JP2001329326A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2000148775A JP2001329326A (en) 2000-05-19 2000-05-19 Fin material for brazing
US09/861,141 US6471794B2 (en) 2000-05-19 2001-05-18 Fin material for brazing
KR1020010027208A KR100744877B1 (en) 2000-05-19 2001-05-18 A fin material for brazing
DE60114292T DE60114292T2 (en) 2000-05-19 2001-05-18 Cooling rib material for soldering
EP01111944A EP1156129B1 (en) 2000-05-19 2001-05-18 A fin material for brazing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000148775A JP2001329326A (en) 2000-05-19 2000-05-19 Fin material for brazing

Publications (1)

Publication Number Publication Date
JP2001329326A true JP2001329326A (en) 2001-11-27

Family

ID=18654749

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000148775A Pending JP2001329326A (en) 2000-05-19 2000-05-19 Fin material for brazing

Country Status (5)

Country Link
US (1) US6471794B2 (en)
EP (1) EP1156129B1 (en)
JP (1) JP2001329326A (en)
KR (1) KR100744877B1 (en)
DE (1) DE60114292T2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006225719A (en) * 2005-02-17 2006-08-31 Furukawa Sky Kk Fin material for brazing and its manufacturing method
JP2015028192A (en) * 2013-07-30 2015-02-12 株式会社Uacj Al ALLOY SHEET MATERIAL FOR ELECTRICAL CONDUCTION

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3876749B2 (en) * 2002-04-10 2007-02-07 ダイキン工業株式会社 Surface treatment method of plate material and heat radiating fin for heat exchanger
JP2004076145A (en) * 2002-08-22 2004-03-11 Calsonic Kansei Corp Sacrificial material for heat exchanger, and clad material made of aluminum alloy for heat exchanger
US8737810B2 (en) * 2002-11-15 2014-05-27 Thomson Licensing Method and apparatus for cropping of subtitle elements
US20050150642A1 (en) * 2004-01-12 2005-07-14 Stephen Baumann High-conductivity finstock alloy, method of manufacture and resultant product
US20080115493A1 (en) * 2006-11-17 2008-05-22 Wolf Eric P Diesel combustion engine having a low pressure exhaust gas recirculation system employing a corrosion resistant aluminum charge air cooler
CN106498241B (en) * 2016-11-04 2019-07-23 银邦金属复合材料股份有限公司 A kind of fin material and its production method
US20200232070A1 (en) * 2019-01-18 2020-07-23 Divergent Technologies, Inc. Aluminum alloy compositions

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AR206656A1 (en) * 1974-11-15 1976-08-06 Alcan Res & Dev METHOD FOR PRODUCING AN ALUMINUM ALLOY SHEET PRODUCT FROM AL-FE ALLOY
AU663936B2 (en) * 1992-08-05 1995-10-26 Denso Corporation Aluminum alloy fin material for heat-exchanger
AU663819B2 (en) * 1993-08-03 1995-10-19 Denso Corporation A1 alloy brazing material and brazing sheet for heat-exchangers and method for fabricating A1 alloy heat-exchangers
JP3407965B2 (en) 1994-02-02 2003-05-19 古河電気工業株式会社 Aluminum alloy fin material
JPH08104934A (en) 1994-10-06 1996-04-23 Furukawa Electric Co Ltd:The Aluminum alloy fin material
JP2951585B2 (en) 1995-12-11 1999-09-20 古河電気工業株式会社 Manufacturing method of aluminum alloy fin material for brazing
JPH11131166A (en) 1997-10-27 1999-05-18 Denso Corp Thin aluminum alloy fin material excellent for forming and brazing, and its production

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006225719A (en) * 2005-02-17 2006-08-31 Furukawa Sky Kk Fin material for brazing and its manufacturing method
JP4669709B2 (en) * 2005-02-17 2011-04-13 古河スカイ株式会社 Brazing fin material and manufacturing method thereof
JP2015028192A (en) * 2013-07-30 2015-02-12 株式会社Uacj Al ALLOY SHEET MATERIAL FOR ELECTRICAL CONDUCTION

Also Published As

Publication number Publication date
EP1156129A1 (en) 2001-11-21
US6471794B2 (en) 2002-10-29
EP1156129B1 (en) 2005-10-26
US20020000270A1 (en) 2002-01-03
KR20020002202A (en) 2002-01-09
DE60114292D1 (en) 2005-12-01
KR100744877B1 (en) 2007-08-01
DE60114292T2 (en) 2006-07-27

Similar Documents

Publication Publication Date Title
JP4408567B2 (en) Method of manufacturing aluminum alloy fin material
JP2007031778A (en) High strength aluminum alloy fin material and producing method therefor
KR20060123608A (en) High strength aluminum alloy fin material for heat exchanger and method for production thereof
JP2001329326A (en) Fin material for brazing
JPH0811814B2 (en) Rolled aluminum alloy plate for heat exchanger fin and method for manufacturing the same
JP4574036B2 (en) Aluminum alloy for fin material of heat exchanger and manufacturing method of fin material of heat exchanger
EP1136581B1 (en) Method for manufacturing a fin material for brazing
JP3222577B2 (en) Aluminum alloy fin material for heat exchanger
JP3256907B2 (en) Manufacturing method of aluminum alloy fin material for heat exchanger
JP2951585B2 (en) Manufacturing method of aluminum alloy fin material for brazing
JP4536949B2 (en) Manufacturing method of brazing fin material
JP3384835B2 (en) Method for producing aluminum alloy fin material for heat exchanger
JP3735700B2 (en) Aluminum alloy fin material for heat exchanger and method for producing the same
KR100329686B1 (en) Aluminum Alloy Fin Material for Heat Exchanger
JPH08104934A (en) Aluminum alloy fin material
JPH05320798A (en) Extruded aluminum alloy tube for heat exchanger
JPH0598376A (en) Aluminum alloy sacrificial fin material for low temperature brazing and its production
JP3256909B2 (en) Aluminum alloy fin material
JP2846544B2 (en) Aluminum alloy high thermal conductive fin material
JP3256910B2 (en) Aluminum alloy fin material for heat exchanger
JPH10298687A (en) Aluminum alloy high thermal conductivity fin material
JPH11269591A (en) Aluminum alloy fin material
JPH06322495A (en) Production of aluminum alloy fin material for heat exchanger
JPH06136492A (en) Production of aluminum alloy fin material for heat exchanger
JPH06248379A (en) Aluminum alloy fin material for heat exchanger

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20040202

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20040324