JP3735700B2 - Aluminum alloy fin material for heat exchanger and method for producing the same - Google Patents

Aluminum alloy fin material for heat exchanger and method for producing the same Download PDF

Info

Publication number
JP3735700B2
JP3735700B2 JP30941398A JP30941398A JP3735700B2 JP 3735700 B2 JP3735700 B2 JP 3735700B2 JP 30941398 A JP30941398 A JP 30941398A JP 30941398 A JP30941398 A JP 30941398A JP 3735700 B2 JP3735700 B2 JP 3735700B2
Authority
JP
Japan
Prior art keywords
less
fin material
brazing
strength
hot rolling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP30941398A
Other languages
Japanese (ja)
Other versions
JP2000119783A (en
Inventor
俊樹 村松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Sky Aluminum Corp
Original Assignee
Furukawa Sky Aluminum Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Sky Aluminum Corp filed Critical Furukawa Sky Aluminum Corp
Priority to JP30941398A priority Critical patent/JP3735700B2/en
Publication of JP2000119783A publication Critical patent/JP2000119783A/en
Application granted granted Critical
Publication of JP3735700B2 publication Critical patent/JP3735700B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Laminated Bodies (AREA)

Description

【0001】
【発明の属する技術分野】
この発明は、ベア材(裸材)あるいはブレージングシートの芯材の形態で、自動車用クーラのコンデンサやエバポレータ等の各種の熱交換器のフィンとしてろう付けして用いられるアルミニウム合金フイン材に関するものであり、特に板厚を薄肉化した場合における熱交換器組立時のフィンの変形、座屈を防ぐためにろう付け前の強度(元板強度)を高め、しかもろう付け時の高温による耐座屈性を高めた熱交換器用フィン材およびその製造方法に関するものである。
【0002】
【従来の技術】
一般に自動車のラジエータ、インタークーラ、エバポレータ、コンデンサ、オイルクーラ等の熱交換器としては、従来からアルミニウム合金製の熱交換器が広く使用されている。このようなアルミニウム合金製の熱交換器においては、水等の温度媒体(作動流体)が流通するチューブもしくはコアプレートあるいはパイプにアルミニウム合金からなるフィン材をろう付けして組立てるのが通常であり、この場合のフィン材としては、ブレージングシート、すなわちアルミニウム合金芯材の片面もしくは両面にアルミニウム合金ろう材からなる皮材を予め被着させた合せ板(クラッド板)として用いたり、あるいは裸のままのベア材として用いることが行なわれている。
【0003】
ところで各熱交換器のうちでも、一般に真空ろう付け法によりろう付けされる積層型エバポレータでは、3003合金からなる芯材にろう材として4004合金あるいは4104合金をクラッドしたブレージングシートがコアプレートとして使用されており、またこのコアプレートに真空ろう付けするフィン材としては、Al−Mn−Zn−In系合金あるいはAl−Mn−Zn−Sn系合金を使用するのが一般的である。なおこれらのフィン材用合金において、InやSnは、温度媒体通路(冷媒通路)を構成しているコアプレートよりもフィンの電位を卑にして、コアプレートに対する犠牲陽極効果を作用させるために添加されており、またZnも犠牲陽極効果のために添加されている。
【0004】
【発明が解決しようとする課題】
前述のような真空ろう付けされる積層型エバポーレタに従来使用されているAl−Mn−Zn−In系合金やAl−Mn−Zn−Sn系合金からなるフィン材は、SnやInを添加するため製造コストが高くならざるを得ない問題がある。さらにこの種のフィン材に添加されているInやSnは、一般的な用途のアルミニウム合金ではほとんど添加されることがない元素であるため、この種のフィン材のスクラップや製造工程中の屑などを返り材として再使用するにあたっては、他の一般的な用途に使用することはできず、またそのためこの種のフィン材の返り材が一般的なアルミニウム合金の返り材と混合されることを避けなければならないなど、厳密な返り材管理が必要となる問題もある。
【0005】
ところで近年、積層型エバポレータのコアプレートとしては、3003合金よりも耐食性の優れたAl−Mn−Cu系合金やAl−Mn−Cu−Ti系合金が使用されることが多くなっている。これらの系のコアプレート用合金の場合、Cuが0.2〜0.8%程度添加されるため、コアプレートそのものの電位が3003合金よりもさらに貴となるから、コアプレートにろう付けされるフィン材として、In、Snや多量のZnを添加したものを用いなくても、フィン材の電位をコアプレートよりも充分に卑に保って、コアプレートに対するフィン材による犠牲陽極効果を充分に発揮することが可能となり、そこでこれらの系の合金をコアプレートに用いた場合には、フィン材としてはSnやInを含有しない3003合金を使用することが可能となっている。
【0006】
しかしながら従来の3003合金をそのままフィン材として使用した場合、最近のフィン材薄肉化の要求には充分に応えることができないのが実情である。すなわち従来の自動車用熱交換器フィン材としては、例えば板厚が0.13mm程度のものが一般的であったが、最近の自動車用熱交換器においては、より一層の軽量化、小型化が強く要求されており、そこで熱交換器用フィン材についても従来よりもさらに薄肉化すること、具体的には0.03〜0.10mm程度まで薄肉化することが強く望まれている。そのためフィン材成形時における変形、座屈の発生を防止するべく、ろう付け前のフィン材の元板強度について従来よりも一層の高強度化を図ることが要求され、また高温のろう付け時の座屈変形を防止するべく耐熱性(耐高温座屈性)を向上させることが望まれているが、従来の3003合金では、0.03〜0.10mm程度まで薄肉化した場合、高強度化を図ろうとすれば耐高温座屈性が低下し、そのため熱交換器組立時におけるフィン材の変形や座屈の発生防止と、ろう付け時の高温による座屈の発生防止とを同時に図ることは困難であり、結局Zr等の添加元素を添加して使用せざるを得なかった。しかしながらこのようにZr等の添加元素を添加すれば、既に述べたようにコスト上昇を招くとともに、スクラップ処理に際しては用途範囲が限定されるという問題が生じる。
【0007】
一方、窒素雰囲気中でろう付けされるコンデンサフィン等としてはAl−Mn−Zn系フィン材が主に使用されており、この場合は、薄肉、高強度化を図るべくZr、Co等の再結晶抑制元素が添加されて高温座屈対策とされているのが通常である。しかしながらこれらの元素を添加したフィン材も、既に述べたと同様に、コストが高くならざるを得ず、またスクラップ処理上の問題もある。
【0008】
この発明は以上の事情を背景としてなされたもので、Al−Mn−Cu系合金やAl−Mn−Cu−Ti系合金などを芯材とするブレージングシートからなるコアプレート等の温度媒体通路を用いた積層型エバポレータやコンデンサ用のフィン材、そのほか各種の熱交換器のフィン材として、ろう付け前の熱交換器組立時におけるフィン材強度(元板強度)が高く、しかも耐高温座屈性が優れていてろう付け時の高温による座屈変形も少なく、さらには製造コストも低廉でかつ返り材の管理・処理も容易なアルミニウム合金製フィン材を提供することを目的とするものである。
【0009】
【課題を解決するための手段】
前述のような課題を解決するため、本願発明者等が種々実験・検討を重ねた結果、Al−Mn−Si系合金をベースとしてフィン材の合金成分を適切に調整すると同時に、フィン材製造プロセスを適切に選択しかつ各工程の条件を適切に定めて、合金組織状態を適切に制御することによって、ろう付け前の強度が高くしかもろう付け時の高温による座屈変形も少なく、さらには製造コストも低廉でかつ返り材の管理・処理も容易で、またフィン材として充分な犠牲陽極効果を有していて熱交換器に充分な耐食性を与えることのできるフィン材が得られることを見出し、この発明をなすに至った。
【0010】
具体的には、請求項1の発明の熱交換器用アルミニウム合金製フィン材は、
Mn0.8〜2.0%、Si0.2〜0.6%、Zn0.4〜2.0%を含有し、かつCuが0.03%以下、Feが0.2%以下にそれぞれ規制され、残部がAlおよび不可避的不純物よりなり、しかも0.02〜0.3μmの範囲内の径の金属間化合物を600個/μm3以上含むとともに、3μm以上の径の金属間化合物が500個/mm2以下に規制され、さらに板厚が0.03〜0.10mmの範囲内で、引張強さが200N/mm2以上であることを特徴とするものである。
【0011】
また請求項2の発明の熱交換器用アルミニウム合金製フィン材の製造方法は、Mn0.8〜2.0%、Si0.2〜0.6%、Zn0.4〜2.0%を含有し、かつCuが0.03%以下、Feが0.2%以下にそれぞれ規制され、残部がAlおよび不可避的不純物よりなる合金の鋳塊に対して、均質化熱処理を施すことなく熱間圧延を施すにあたり、熱間圧延前の加熱温度を350〜430℃の範囲内とするとともに、熱間圧延終了温度を300℃以下とし、熱間圧延終了後、50%以上の圧延率で一次冷間圧延を施し、さらに200℃以上350℃以下の温度域で中間焼鈍を施し、その後最終冷間圧延を行なって、板厚が0.03〜0.10mmの範囲内でかつ引張強さが200N/mm2 以上のフィン材を得ることを特徴とするものである。
【0012】
ここで、この発明のフィン材に使用される合金の成分組成の限定理由について説明する。
【0013】
Mn:
Mnはこの発明で用いるフィン材合金の基本的な合金成分であり、Al−Mn−Si系の微細な金属間化合物析出物を生成して、元板(ろう付け前の板)の強度およびろう付け後の強度を向上させ、また成形性も向上させるために有効である。またAl−Mn−Si系の微細な金属間化合物は、ろう付け時の再結晶粒を粗大化させることを通じて、耐高温座屈性の向上にも寄与する。Mn量が0.8%未満ではこれらの効果が充分ではなく、一方2.0%を越えれば、鋳造時に粗大な金属間化合物が生成されて圧延性が劣化し、板材の製造が困難となり、また粗大な金属間化合物数が多くなるためにろう付け加熱時の再結晶粒が微細化して耐高温座屈性が著しく低下する。したがってMn量は0.8〜2.0%の範囲内とした。
【0014】
Si:
Siもこの発明で用いるフィン材合金の基本的な合金成分であり、Al−Mn−Si系の微細な金属間化合物析出物を生成して、元板強度およびろう付け後の強度を向上させるとともに、前述のようにろう付け時の再結晶粒の粗大化を通じて耐高温座屈性を向上させるために有効な元素である。またSiは、Mnの固溶量を減少させて熱伝導性を向上させ、同時に電位を卑にしてフィン材による犠牲陽極効果を高めるために有効である。Si量が0.2%未満ではこれらの効果が充分に得られず、一方0.6%を越えれば、ろう付け時においてろう材成分、特にSiのフィン材中への侵入(一般にはこれをエロージョンと称す)によるフィンの溶損や耐食性低下が発生してしまうおそれがある。したがってSi量は0.2〜0.6%の範囲内とした。
【0015】
Zn:
Znはフィン材の電位を卑にして、犠牲陽極効果を高めるために有効な元素である。Zn量が0.4%未満ではその効果が充分に得られず、一方2.0%を越えれば自己腐食性が増大し、真空ろう付け炉の場合は炉の汚染が激しくなってしまう。したがってZn量は0.4〜2.0%の範囲内とした。
【0016】
Cu:
Cuはフィン材の電位を貴にさせてフィン材による犠牲陽極効果を低下させてしまう元素である。したがってCu量は0.03%以下に規制した。
【0017】
Fe:
FeはFeは通常のアルミニウム合金においても不可避的不純物として含有され、また場合よっては積極添加元素として添加される元素であるが、0.2%を越えて含有されれば、Al−Mn−Fe系の粗大金属間化合物晶出物を形成して、ろう付け時の再結晶粒が微細になり過ぎ、耐高温座屈性が著しく低下する。そこでこの発明の場合、Feは不純物として0.2%以下に規制する必要がある。
【0018】
以上のAlおよび各元素のほかは不可避的不純物とすれば良い。不可避的不純物の合計含有量は0.05%以下が望ましく、0.05%以下であれば、後述の金属間化合物の分布条件を満たす限り、この発明の効果を損なうことはない。なお一般のアルミニウム合金の場合、鋳塊の結晶粒微細化のためにTiを単独でまたはBと組合せて添加することもあり、この発明の場合もTiを0.2%程度以下、Bを0.05%程度以下添加することは差し支えない。
【0019】
この発明では、合金の成分組成を上述のように定めるばかりでなく、合金の金属組織状態を適切な状態に制御しなければ、高強度でかつ耐高温座屈性が優れたフィン材を得ることができない。優れた耐高温座屈性と高強度を得るための金属組織条件としては、金属化合物の粗大な粒子の分布と微細な粒子の分布との両者を制御することが重要である。
【0020】
高温座屈性には材料の再結晶挙動が大きな影響を及ぼすことが判明している。すなわち、再結晶温度がろうの溶け出す温度以下であれば、耐高温座屈性に大きな影響はないが、再結晶粒径が大きいほど耐高温座屈性が良好となる。具体的には、約550℃以下で再結晶し、再結晶粒径が0.4mm以上であればフィンの座屈が発生しないことが判明した。そこでこの発明のフィン材では、耐高温座屈性の具体的な指標として、ろう付け加熱後の表面の平均結晶粒径0.4mm以上となることが必要であり、このようにろう付け加熱後の表面の平均結晶粒径が0.4mm以上となるように、成分組成や金属組織(金属間化合物条件)を適切に規制することとした。
【0021】
再結晶粒径に及ぼす要因としては、冷間加工度とAl−Mn−(Fe)−(Si)系の微細析出物およびAl−Mn−(Fe)−(Si)系の粗大化合物がある。一般に強度向上のためには冷間加工度を大きくすることが有効であるが、再結晶した状態からの冷間圧延による強度向上は再結晶粒径の微細化を招き、耐高温座屈性を損なうおそれがある。一方、中間焼鈍時に再結晶させずに一部回復が発生した組織状態(すなわちサブグレインが若干生成された状態)から、比較的低い冷間圧延率で冷間圧延すれば、再結晶粒はさほど微細化しないことが判明した。但し、この現象を発現させるためには、Al−Mn−(Fe)−(Si)系の微細析出物とAl−Mn−(Fe)−(Si)系の粗大化合物の分布を適切に規制することが必要である。すなわち、再結晶粒径を大きくするためには、粒径(但しここで粒径とは、粒子の最長方向の長さすなわち最大長さを表わすものとする)が0.02〜0.3μmの範囲内のサイズの微細な金属間化合物析出物を1μm3 当り600個以上存在させ、同時に粒径(同じく最大長さ)3μm以上の粗大な金属間化合物の1mm2 当りの数を500個以下に制御する必要があることが判明した。
【0022】
ここで、最大長さが0.02〜0.3μmのサイズの微細な析出物数が600個/μm3 未満では、再結晶抑制能力が少なく、そのためろう付け加熱時の再結晶粒が細かくなって耐高温座屈性が低下する。一方、最大長さ3μm以上の粗大な金属間化合物が500個/mm2 を越えて存在すれば、ろう付け加熱時の再結晶核発生サイト数が増加して結晶粒径が細かくなり、耐高温座屈性が低下する。
【0023】
次にこのような金属組織状態を有するフィン材を得るための製造プロセス、すなわち請求項2の発明で規定するプロセスについて説明する。
【0024】
従来一般に熱交換器用フィン材は、溶解鋳造→均質化熱処理→熱間圧延→冷間圧延→中間焼鈍→最終冷間圧延のプロセスを適用して、H1nの硬質テンパー状態、すなわち加工硬化によって機械的性質を所定の範囲内に調整した状態の製品として製造されるのが通常である。この場合均質化処理は、通常500℃以上で行なわれており、また熱間圧延は通常500℃前後の温度で行なわれている。さらにこの場合の中間焼鈍としては、一般に320〜450℃で0.5〜6時間程度の条件(例えば特開平2−129347号参照)を適用するのが通常であり、その後の最終冷間圧延としては圧延率10%から40%程度の冷間圧延を行なっていた。そしてこのような中間焼鈍を適用した場合、鋳塊に対して均質化熱処理(均熱処理)を行なっているため、材料の再結晶が完全に行なわれて、均一な再結晶組織が得られることが知られている。
【0025】
しかしながら上述のような従来のH1nテンパー材製造プロセスでは、ろう付け前の元板強度、耐高温座屈性の両者を同時に満たすことは困難であった。そこでこの発明では、合金の成分組成を前述のように調整すると同時に、製造プロセス条件、特に加熱条件、中間焼鈍条件および最終冷間圧延条件を適切に設定することによって、前述のような金属組織状態を得、元板強度、耐高温座屈性をともに改善することができたのである。
【0026】
すなわちこの発明の方法の場合、鋳塊に対する均質化熱処理(均熱処理)は行なわず、直ちに350〜430℃の範囲内の温度で熱間圧延のための加熱(熱間圧延前加熱)を行なって熱間圧延を開始し、しかも熱間圧延終了温度を300℃以下とし、熱間圧延終了後50%以上の圧延率で一次冷間圧延を施してから、200℃以上350℃以下の温度域で中間焼鈍を施し、さらに最終冷間圧延を行なうのであり、このような工程を適用することにより、元板強度向上および耐高温座屈性向上を図り得たのである。さらに具体的にこの発明の方法における各プロセスについて説明する。
【0027】
先ず溶解・鋳造工程は従来の通常の方法に従ってDC鋳造法(半連続鋳造法)を適用すれば良い。
【0028】
鋳塊に対しては、優れた耐高温座屈性を確保するため、均質化熱処理(均熱処理)を行なわずに、直ちに熱間圧延温度に加熱(熱間圧延前加熱)して熱間圧延を施す。これは、均質化熱処理を行なった場合には晶出した金属間化合物が粗大化し、また均質化熱処理中にAl−Mn−(Fe)−(Si)系の析出物が析出してそれが粗大化し、そのため再結晶粒核発生サイトが増加してろう付け加熱時の再結晶粒径が小さくなり、耐高温座屈性が低下するからである。このような均質化熱処理の影響は、その温度が高いほど顕著となる。すなわち、均質化熱処理温度が高いほど最大長さ3μm以上の粗大な金属間化合物(晶出物、析出物)の数が多くなって、ろう付け加熱時の結晶粒径が小さくなり、耐高温座屈性が低下する。また均質化熱処理の温度が高いほど0.02〜0.3μmの微細な析出物の数が減少し、これによっても再結晶抑制能力が低下し、再結晶粒径が粗大にならない。
【0029】
熱間圧延前の加熱温度は、良好な圧延加工性および優れた耐高温座屈性を得るためには、350〜430℃とする必要がある。熱間圧延前の加熱温度が350℃未満では、圧延時の材料の熱間強度が高いため、高い出力の熱延機が必要となり、また圧延時の耳割れが激しくなって圧延が困難となる。一方430℃を越えれば、鋳造時に生成された晶出物が粗大化し、また析出物も粗大化し、最大長さ3μm以上の金属間化合物の数が増加してしまう一方、0.02〜0.3μmの微細析出物の数が減少してしまい、ろう付け時の再結晶粒が微細になって耐高温座屈性が低下する。そこで熱間圧延前の加熱温度は350〜430℃とした。
【0030】
なお熱間圧延前の加熱時間は特に限定しないが、析出物や晶出物の粗大化を防止するためには、できる限り短時間が好ましい。具体的には、この発明の場合加熱温度を低く設定していることから、熱間保持時間は15時間以内が望ましく、製造コストを考慮すれば5時間以内がより望ましい。
【0031】
上述のような熱圧延前の加熱によりAl−Mn−(Si)−(Fe)系の微細な析出物が生成されて、再結晶を抑制し、ろう付け加熱時における再結晶粗大化をもたらす。すなわち、上述のように350〜430℃の範囲内の温度での熱間圧延前加熱であれば、晶出物や析出物の粗大化が生じない一方、再結晶を抑制する微細析出が生じるため、耐高温座屈性が向上するのである。
【0032】
熱間圧延終了時の温度は300℃以下とする必要がある。300℃を越える高温で熱間圧延を終了させれば、熱間圧延コイルの冷却中にAl−Mn−(Si)−(Fe)系化合物が析出して粗大化するため、耐高温座屈性が低下してしまう。
【0033】
熱間圧延終了後には一次冷間圧延を施してから中間焼鈍を行なうが、熱間圧延終了後、中間焼鈍までの一次冷間圧延の圧延率は50%以上とする必要がある。この一次冷間圧延率が50%未満では元板強度が充分に高くならない。また冷間加工によって導入された転位を均一に分布させて中間焼鈍でAl−Mn−(Si)−(Fe)系の微細な析出物を転位上に均一に析出させることにより耐高温座屈性を向上させるためには、50%以上の冷間圧延が必要であり、50%未満の一次冷間圧延率では金属間化合物の析出が少なくかつ不均一になり、耐高温座屈性が低下する。
【0034】
中間焼鈍は、再結晶を生じていない組織状態とするため、200℃以上350℃以下の温度域で行なう必要がある。このような200℃以上350℃以下での中間焼鈍により若干回復した組織、すなわち再結晶には至らずにサブグレインが若干生成された組織となり、この状態から最終冷間圧延を施して強度を高めても、ろう付け加熱時の著しい結晶粒径の微細化は生じず、耐高温座屈性は良好となる。
【0035】
この発明の方法の場合、鋳塊に対する均質化熱処理を行なわないため、350℃以下の中間焼鈍温度では再結晶を生じ得ない。350℃を越える温度で中間焼鈍を施した場合は、一部にのみ再結晶が発生するかまたは完全に再結晶が生じてしまう。一部のみ再結晶した場合は板の長手方向、幅方向で強度が不均一になる。完全に再結晶が起った場合には、その後の最終冷間圧延の圧延率を高くしなければ強度向上が望めなくなる。しかしながら最終冷間圧延率を高くすれば、ろう付け加熱時の再結晶粒径が小さくなって耐高温座屈性が低下する。一方、中間焼鈍温度が200℃未満では、冷間圧延で導入された転位上にAl−Mn−Si系化合物が析出するものの、析出物が微細すぎるため耐高温座屈性への寄与は期待できない。
【0036】
なお最終板厚において必要な強度(200N/mm2 以上)を得るためには、上述のような200〜350℃の温度範囲内で中間焼鈍温度を適切に選定すると同時に、その後の最終冷間圧延における冷間圧延率を適切に調整すればよい。
【0037】
中間焼鈍後には最終板厚(0.03〜0.10mm)まで最終冷間を行なうが、この最終冷間圧延の圧延率は、必要強度に応じて調節すれば良い。但し、最終冷間圧延率が5%未満では、冷間圧延を安定に行なうことが難しく、一方95%を越えた高圧延率とすれば、ろう付け加熱後の再結晶粒径が小さくなり易くなって耐高温座屈性が低下する傾向を示すから、最終冷間圧延率は5〜95%の範囲内とすることが望ましい。
【0038】
以上のようなプロセスを経て得られる0.03〜0.10mmの板厚のフィン材は、元板強度として200N/mm2 以上が必要である。元板強度が200N/mm2 未満では、0.03〜0.1mmの薄肉板においてはフィン材成形時における成形不良の発生率が高くなり、また熱交換器の組立時のフィンの座屈が発生しやすくなり、いずれも製品歩留りが低下してしまう。
【0039】
このようにして得られたフィン材は、そのままベア材として熱交換器に用いても良く、あるいはAl−Si−(Mg)系等のろう材とクラッドしてブレージングシートフィン材として用いても良い。またろう付け方法としては、真空ろう付け、不活性雰囲気ろう付けのいずれを適用しても良い。
【0040】
【発明の実施の形態】
【0041】
【実施例】
実施例1:
表1の合金No.1〜No.8に示す成分組成の各合金について、常法に従ってDC鋳造法によって鋳造し、得られた鋳塊の一部は均質化熱処理(均熱処理)を行ない、その後熱間圧延のための加熱を施して熱間圧延し、板厚2.5mmの熱延板を得た。その後、一次冷間圧延、中間焼鈍および最終冷間圧延を施して、板厚0.07mmのベアフィン材とした。このような工程における均質化熱処理(均熱処理)の温度、熱間圧延のための加熱温度、熱間圧延終了温度、熱間圧延上り板厚、中間焼鈍時の板厚(一次冷間圧延後の板厚)、中間焼鈍までの一次冷間圧延率、中間焼鈍温度、最終冷間圧延率を表2の製造条件A〜Jに示す。なおいずれの場合も均質化熱処理の加熱保持時間は10時間、熱間圧延のための加熱保持時間は2時間、中間焼鈍の加熱保持時間は2時間とした。
【0042】
各成分組成の合金No.1〜No.8を用いて、それぞれ製造条件A〜Jのいずれかによって製造した各フィン材につき、引張試験を行なって元板強度(引張強さ)を測定した。
【0043】
また各元板の表面の金属間化合物の分布粒径(最大長さ)0.02〜0.3μmの範囲内の金属間化合物の1μm3 当りの個数と、粒径(最大長さ)3μm以上の金属間化合物の1mm2 当りの個数とを調査した。なお粒径(最大長さ)3μm以上の金属間化合物は光学顕微鏡観察し、画像解析によってその分布を調べ、0.02〜0.3μmの微細な析出物粒子は透過型電子顕微鏡観察によりその分布を調べた。またここで透過型電子顕微鏡観察での試料板厚は等厚干渉縞を用いて計算し、それに基いて1μm3 当りの微細金属間化合物粒子数を算出した。
【0044】
さらに、ろう付け時における耐高温座屈性能を評価するため、エバポレータコアとフィン材をろう付け加熱し、ろう付け加熱後のフィン材表面の圧延方向の平均結晶粒径を測定するとともに、フィン倒れとろう付け加熱後のフィンの表面結晶粒径との関係を調べた。その結果、ろう付け加熱後の表面の圧延方向の結晶粒径が0.4mm以上であれば、フィンが座屈して、フィン倒れが生じるような事態を避け得ることが判明した。なおこの際のろう付け加熱としては、5×10-5Torrの真空中で600℃×3分間の加熱を行なった。
【0045】
また一方、前述のようにして得られたフィン材をコルゲート加工し、一方芯材としてAl−1%Mn−0.5%Cu−0.10%Ti合金を用いかつろう材として4104合金を用いて厚さ0.6mmのブレージングシート(ろう材両面クラッド、両面ともクラッド率15%)を作成し、そのブレージングシートをエバポレータコアプレートに加工し、フィン材とコアプレートを組合わせてろう付け加熱した。この際のろう付けとしては、5×100-5Torrの真空中で600℃×3分間の加熱を行なった。このエバポレータのフィン倒れ状況を観察したところ、前記同様にろう付け加熱後の表面の圧延方向の結晶粒径が0.4mm以上あれば、フィンの座屈によるフィン倒れが生じないことが判明した。さらに、720時間のCASS試験に供し、ブレージングシートコアの最大腐食ピット深さを測定した。この最大腐食ピット深さは、腐食試験後、リン酸−クロム酸混合液で腐食生成物を除去した後、最大孔食深さ部分の断面観察により測定した。
【0046】
以上の各調査結果を表3に示す。
【0047】
【表1】

Figure 0003735700
【0048】
【表2】
Figure 0003735700
【0049】
【表3】
Figure 0003735700
【0050】
表3から、この発明で規定する成分組成の合金について、この発明で規定する製造プロセス条件を適用して金属組織もこの発明で規定する条件を満たすこととなったフィン材(本発明例)では、元板強度として200N/mm2 以上の高強度を有し、かつ耐高温座屈性が優れ、しかもCASS試験によるコア材の腐食深さも小さく、熱交換器としての耐食性にも優れていることが明らかである。これに対して成分組成条件、製造プロセス条件、金属組織条件のいずれかがこの発明で規定する範囲を外れた比較例は、上記のいずれかの性能が劣っていた。
【0051】
【発明の効果】
この発明による熱交換用フィン材は、ろう付け前の強度(元板強度)が高く、板厚が0.1mm以下と薄肉であっても、熱交換器組立時において変形、座屈するおそれが極めて少なく、しかも耐高温座屈性も優れていて、ろう付け時の高温によって座屈するおそれも少ない。そのほか、この発明によるフィン材は、ろう付け後の強度も高く、また熱交換器としてコアプレートやチューブとろう付けした後におけるこれらのチューブやコアプレートに対する犠牲陽極効果も充分に発揮することができる。さにこの発明による熱交換器用フィン材は、SnやIn、Zr、Co等のアルミニウム合金添加元素として特殊な元素を添加しておらず、そのため材料コストが特に高くなることがないとともに、返り材の管理・処理が容易である。したがってこの発明の方法によって得られたフィン材を熱交換器に用いれば、フィン材や熱交換器自体に要求される諸性能を損なったりあるいは高コスト化を招いたりすことなく、実際に0.1mm以下にフィン材を薄肉化して、熱交換器の軽量化、低コスト化を図ることができる。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an aluminum alloy fin material used in brazing as a fin of various heat exchangers such as condensers and evaporators of automobile coolers in the form of a bare material (bare material) or a core material of a brazing sheet. Yes, especially when the plate thickness is reduced, the strength before brazing (strength plate strength) is increased to prevent fin deformation and buckling during heat exchanger assembly, and buckling resistance due to high temperatures during brazing The present invention relates to a fin material for a heat exchanger having an improved height and a manufacturing method thereof.
[0002]
[Prior art]
In general, heat exchangers made of aluminum alloys have been widely used as heat exchangers for automobile radiators, intercoolers, evaporators, condensers, oil coolers, and the like. In such an aluminum alloy heat exchanger, it is usually assembled by brazing a fin material made of an aluminum alloy to a tube or core plate or pipe through which a temperature medium (working fluid) such as water flows, As the fin material in this case, a brazing sheet, that is, a laminated plate (cladding plate) in which a skin material made of an aluminum alloy brazing material is preliminarily applied to one side or both sides of an aluminum alloy core material, or is left bare It is used as a bare material.
[0003]
By the way, in each heat exchanger, in a laminated evaporator generally brazed by a vacuum brazing method, a brazing sheet obtained by clad 4004 alloy or 4104 alloy as a brazing material on a core material made of 3003 alloy is used as a core plate. In addition, as a fin material to be brazed to the core plate in vacuum, an Al—Mn—Zn—In alloy or an Al—Mn—Zn—Sn alloy is generally used. In these fin material alloys, In and Sn are added to make the sacrificial anode effect act on the core plate by making the fin potential lower than the core plate constituting the temperature medium passage (refrigerant passage). Zn is also added for the sacrificial anode effect.
[0004]
[Problems to be solved by the invention]
The fin material made of Al-Mn-Zn-In alloy or Al-Mn-Zn-Sn alloy conventionally used for the laminated evaporator to be vacuum brazed as described above is for adding Sn or In. There is a problem that the manufacturing cost has to be high. Furthermore, since In and Sn added to this kind of fin material are elements that are hardly added in general-purpose aluminum alloys, scrap of this kind of fin material, scraps in the manufacturing process, etc. When reused as a return material, it cannot be used for any other general purpose, and as a result, this type of fin return material should not be mixed with general aluminum alloy return material. There is also a problem that requires strict return material management, such as having to.
[0005]
In recent years, Al-Mn-Cu alloys and Al-Mn-Cu-Ti alloys, which have better corrosion resistance than 3003 alloys, are often used as core plates for laminated evaporators. In the case of these types of core plate alloys, since Cu is added in an amount of about 0.2 to 0.8%, the potential of the core plate itself is more noble than the 3003 alloy, and is brazed to the core plate. Even without using In, Sn, or a large amount of Zn added as the fin material, the potential of the fin material is kept sufficiently lower than the core plate, and the sacrificial anode effect by the fin material on the core plate is fully exhibited. Therefore, when these alloys are used for the core plate, it is possible to use a 3003 alloy containing no Sn or In as the fin material.
[0006]
However, when the conventional 3003 alloy is used as it is as a fin material, the current situation is that it cannot sufficiently meet the recent demand for fin material thinning. That is, as a conventional heat exchanger fin material for automobiles, for example, one having a plate thickness of about 0.13 mm is generally used. However, in recent automobile heat exchangers, further reduction in weight and size has been achieved. There is a strong demand, and it is strongly desired that the fin material for heat exchangers be made thinner than before, more specifically, about 0.03 to 0.10 mm. Therefore, in order to prevent deformation and buckling during the molding of the fin material, it is required to increase the strength of the base plate of the fin material before brazing as compared to the conventional method. Although it is desired to improve heat resistance (high temperature buckling resistance) to prevent buckling deformation, the conventional 3003 alloy has high strength when thinned to about 0.03 to 0.10 mm. Attempting to reduce the buckling resistance at high temperatures will prevent the deformation of the fin material and buckling during heat exchanger assembly, and the simultaneous prevention of buckling due to high temperatures during brazing. After all, it was difficult to use an additive element such as Zr. However, if an additive element such as Zr is added in this way, the cost increases as already described, and the range of application is limited in scrap processing.
[0007]
On the other hand, Al—Mn—Zn fin materials are mainly used as capacitor fins to be brazed in a nitrogen atmosphere, and in this case, recrystallization of Zr, Co, etc. in order to increase the thickness and strength. Usually, a suppression element is added to prevent high temperature buckling. However, the fin material to which these elements are added is also inevitably expensive as described above, and has a problem in scrap processing.
[0008]
The present invention has been made against the background described above, and uses a temperature medium passage such as a core plate made of a brazing sheet having an Al-Mn-Cu alloy or an Al-Mn-Cu-Ti alloy as a core material. As a fin material for laminated evaporators and capacitors, and other heat exchanger fins, the fin material strength (base plate strength) is high when assembling the heat exchanger before brazing, and it has high temperature buckling resistance. An object of the present invention is to provide an aluminum alloy fin material that is excellent in that it has little buckling deformation due to high temperature during brazing, is low in manufacturing cost, and easy to manage and process return materials.
[0009]
[Means for Solving the Problems]
In order to solve the above-described problems, the inventors of the present application have made various experiments and studies, and as a result, the alloy composition of the fin material is appropriately adjusted based on the Al-Mn-Si alloy, and at the same time, the fin material manufacturing process By appropriately selecting the process and appropriately determining the conditions of each process and appropriately controlling the alloy structure state, the strength before brazing is high, and buckling deformation due to high temperature during brazing is small, and further manufacturing is possible. It is found that a fin material can be obtained that is low in cost and easy to manage and process the return material, has a sufficient sacrificial anode effect as a fin material, and can provide sufficient corrosion resistance to the heat exchanger, It came to make this invention.
[0010]
Specifically, the aluminum alloy fin material for a heat exchanger of the invention of claim 1 is:
Containing Mn 0.8-2.0%, Si 0.2-0.6%, Zn 0.4-2.0%, Cu is controlled to 0.03% or less, Fe is controlled to 0.2% or less, respectively. The balance is made of Al and inevitable impurities, and 600 / μm intermetallic compounds having a diameter in the range of 0.02 to 0.3 μm. Three In addition to the above, 500 pieces / mm of intermetallic compounds having a diameter of 3 μm or more 2 Regulated to It is Furthermore, the plate thickness is within a range of 0.03 to 0.10 mm, and the tensile strength is 200 N / mm. 2 It is the above, It is characterized by the above.
[0011]
Moreover, the manufacturing method of the aluminum alloy fin material for heat exchangers of invention of Claim 2 contains Mn0.8-2.0%, Si0.2-0.6%, Zn0.4-2.0%, Further, hot rolling is performed on the ingot of the alloy in which Cu is controlled to 0.03% or less and Fe is controlled to 0.2% or less, and the balance is made of Al and inevitable impurities, without performing homogenization heat treatment. In this case, the heating temperature before hot rolling is set within a range of 350 to 430 ° C., the hot rolling end temperature is set to 300 ° C. or less, and after the hot rolling is finished, primary cold rolling is performed at a rolling rate of 50% or more. Further, intermediate annealing is performed in a temperature range of 200 ° C. or higher and 350 ° C. or lower, and then final cold rolling is performed, and the plate thickness is in the range of 0.03 to 0.10 mm and the tensile strength is 200 N / mm. 2 The above fin material is obtained.
[0012]
Here, the reason for limiting the component composition of the alloy used for the fin material of the present invention will be described.
[0013]
Mn:
Mn is a basic alloy component of the fin material alloy used in the present invention, and produces fine Al-Mn-Si based intermetallic compound precipitates, and the strength and brazing of the base plate (plate before brazing). It is effective for improving the strength after application and for improving moldability. In addition, the Al—Mn—Si-based fine intermetallic compound contributes to the improvement of high temperature buckling resistance by coarsening the recrystallized grains during brazing. If the amount of Mn is less than 0.8%, these effects are not sufficient. On the other hand, if it exceeds 2.0%, a coarse intermetallic compound is produced at the time of casting, the rollability deteriorates, and it becomes difficult to produce a plate material. Further, since the number of coarse intermetallic compounds increases, the recrystallized grains during brazing heating become finer, and the high temperature buckling resistance is significantly lowered. Therefore, the amount of Mn is set within the range of 0.8 to 2.0%.
[0014]
Si:
Si is also a basic alloy component of the fin material alloy used in the present invention, and produces fine Al-Mn-Si based intermetallic compound precipitates to improve the strength of the base plate and the strength after brazing. As described above, it is an effective element for improving the high temperature buckling resistance through the coarsening of recrystallized grains during brazing. Si is effective for reducing the solid solution amount of Mn to improve thermal conductivity, and at the same time, lowering the potential and enhancing the sacrificial anode effect by the fin material. If the amount of Si is less than 0.2%, these effects cannot be obtained sufficiently. On the other hand, if it exceeds 0.6%, the brazing filler metal component, particularly Si penetrates into the fin material at the time of brazing. There is a possibility that the fins may be melted down and the corrosion resistance may be reduced due to erosion. Therefore, the Si content is set in the range of 0.2 to 0.6%.
[0015]
Zn:
Zn is an effective element for reducing the potential of the fin material and enhancing the sacrificial anode effect. If the amount of Zn is less than 0.4%, the effect cannot be obtained sufficiently. On the other hand, if it exceeds 2.0%, the self-corrosion property increases, and in the case of a vacuum brazing furnace, the furnace becomes seriously contaminated. Therefore, the Zn content is set in the range of 0.4 to 2.0%.
[0016]
Cu:
Cu is an element that makes the potential of the fin material noble and lowers the sacrificial anode effect by the fin material. Therefore, the amount of Cu is regulated to 0.03% or less.
[0017]
Fe:
Fe is an element that is included as an unavoidable impurity even in a normal aluminum alloy, and is an element that is added as a positive additive element in some cases, but if it exceeds 0.2%, it is Al—Mn—Fe. A coarse intermetallic compound crystallized product is formed, the recrystallized grains during brazing become too fine, and the high temperature buckling resistance is remarkably lowered. Therefore, in the case of the present invention, Fe must be regulated to 0.2% or less as an impurity.
[0018]
In addition to the above Al and each element, inevitable impurities may be used. The total content of inevitable impurities is preferably 0.05% or less, and if it is 0.05% or less, the effect of the present invention is not impaired as long as the distribution condition of the intermetallic compound described later is satisfied. In the case of a general aluminum alloy, Ti may be added alone or in combination with B for refining ingot crystal grains. In this invention, Ti is about 0.2% or less and B is 0%. Add about 0.05% or less.
[0019]
In the present invention, not only the composition of the alloy is determined as described above, but also a fin material having high strength and excellent high temperature buckling resistance can be obtained unless the metallographic state of the alloy is controlled to an appropriate state. I can't. As a metal structure condition for obtaining excellent high temperature buckling resistance and high strength, it is important to control both the distribution of coarse particles and the distribution of fine particles of the metal compound.
[0020]
It has been found that the recrystallization behavior of the material has a significant effect on high temperature buckling. That is, if the recrystallization temperature is equal to or lower than the temperature at which the wax melts, the high temperature buckling resistance is not greatly affected, but the higher the recrystallization grain size, the better the high temperature buckling resistance. Specifically, it was found that recrystallization was performed at about 550 ° C. or less, and fin buckling did not occur if the recrystallized grain size was 0.4 mm or more. There In the fin material of the present invention, as a specific index of high temperature buckling resistance, Average grain size of the surface after brazing heating But 0.4mm or more It is necessary to properly regulate the component composition and the metal structure (intermetallic compound conditions) so that the average crystal grain size of the surface after brazing heating is 0.4 mm or more. did.
[0021]
Factors affecting the recrystallized grain size include the degree of cold work, Al-Mn- (Fe)-(Si) -based fine precipitates, and Al-Mn- (Fe)-(Si) -based coarse compounds. In general, it is effective to increase the degree of cold work to improve the strength. However, the improvement in strength by cold rolling from the recrystallized state leads to refinement of the recrystallized grain size, and high temperature buckling resistance. There is a risk of damage. On the other hand, if cold rolling is performed at a relatively low cold rolling rate from a structural state in which partial recovery has occurred without recrystallization during intermediate annealing (that is, a state where some subgrains have been generated), the recrystallized grains are not much. It turned out not to be miniaturized. However, in order to express this phenomenon, the distribution of Al—Mn— (Fe) — (Si) -based fine precipitates and Al—Mn— (Fe) — (Si) -based coarse compounds is appropriately regulated. It is necessary. That is, in order to increase the recrystallized particle size, the particle size (where the particle size represents the length in the longest direction of the particle, that is, the maximum length) is 0.02 to 0.3 μm. 1 μm of fine intermetallic compound precipitates with a size within the range Three 1mm of coarse intermetallic compound with more than 600 per particle and at the same time particle size (also maximum length) of 3μm or more 2 It was found that the number per hit needs to be controlled to 500 or less.
[0022]
Here, the number of fine precipitates having a maximum length of 0.02 to 0.3 μm is 600 / μm. Three If it is less than the range, the recrystallization inhibiting ability is small, so that the recrystallized grains become fine during brazing heating and the high temperature buckling resistance is lowered. On the other hand, 500 / mm of coarse intermetallic compounds with a maximum length of 3 μm or more 2 If it exists beyond the range, the number of recrystallization nucleation sites during brazing heating increases, the crystal grain size becomes finer, and the high temperature buckling resistance decreases.
[0023]
Next, a manufacturing process for obtaining the fin material having such a metallographic state, that is, a process defined by the invention of claim 2 will be described.
[0024]
Conventionally, fin materials for heat exchangers are mechanically processed by H1n hard tempered state, that is, work hardening by applying the process of melt casting → homogenization heat treatment → hot rolling → cold rolling → intermediate annealing → final cold rolling. Usually, it is manufactured as a product in which the properties are adjusted within a predetermined range. In this case, the homogenization treatment is usually performed at 500 ° C. or higher, and the hot rolling is usually performed at a temperature around 500 ° C. Further, as the intermediate annealing in this case, generally, conditions of 320 to 450 ° C. for about 0.5 to 6 hours (for example, see JP-A-2-129347) are usually applied. Had been cold rolled at a rolling rate of 10% to 40%. When such an intermediate annealing is applied, the ingot is subjected to a homogenization heat treatment (soaking), so that the material is completely recrystallized and a uniform recrystallized structure can be obtained. Are known.
[0025]
However, in the conventional H1n temper material manufacturing process as described above, it is difficult to satisfy both the strength of the base plate before brazing and the high temperature buckling resistance at the same time. Therefore, in the present invention, by adjusting the alloy composition as described above, and at the same time, by appropriately setting the manufacturing process conditions, particularly heating conditions, intermediate annealing conditions, and final cold rolling conditions, the metallographic state as described above. As a result, both the strength of the base plate and the high temperature buckling resistance could be improved.
[0026]
That is, in the case of the method of the present invention, the ingot is not subjected to homogenization heat treatment (soaking), but immediately heated for hot rolling (heating before hot rolling) at a temperature in the range of 350 to 430 ° C. In the temperature range of 200 ° C. or more and 350 ° C. or less after the hot rolling is started, the hot rolling finish temperature is set to 300 ° C. or less, and the primary cold rolling is performed at a rolling rate of 50% or more after the hot rolling is finished. The intermediate annealing is performed and the final cold rolling is further performed. By applying such a process, the strength of the base plate and the high temperature buckling resistance can be improved. More specifically, each process in the method of the present invention will be described.
[0027]
First, a DC casting method (semi-continuous casting method) may be applied to the melting / casting process according to a conventional ordinary method.
[0028]
In order to ensure excellent high temperature buckling resistance for ingots, hot rolling is performed by immediately heating to the hot rolling temperature (heating before hot rolling) without performing homogenization heat treatment (soaking). Apply. This is because when the homogenization heat treatment is performed, the crystallized intermetallic compound becomes coarse, and during the homogenization heat treatment, an Al-Mn- (Fe)-(Si) -based precipitate is precipitated, which is coarse. For this reason, the number of recrystallized grain nucleation sites increases, the recrystallized grain size during brazing heating decreases, and the high temperature buckling resistance decreases. The influence of such a homogenizing heat treatment becomes more prominent as the temperature is higher. That is, the higher the homogenization heat treatment temperature, the larger the number of coarse intermetallic compounds (crystallized products, precipitates) having a maximum length of 3 μm or more, the crystal grain size during brazing heating is reduced, and the high temperature resistance The flexibility decreases. In addition, the higher the temperature of the homogenization heat treatment, the smaller the number of fine precipitates of 0.02 to 0.3 μm, which also reduces the recrystallization inhibiting ability and does not make the recrystallized grain size coarse.
[0029]
The heating temperature before hot rolling needs to be 350 to 430 ° C. in order to obtain good rolling processability and excellent high temperature buckling resistance. If the heating temperature before hot rolling is less than 350 ° C., the hot strength of the material at the time of rolling is high, so a high output hot rolling machine is required, and the cracks at the time of rolling become intense, making rolling difficult. . On the other hand, if it exceeds 430 ° C., the crystallized product produced at the time of casting becomes coarse and the precipitate becomes coarse, and the number of intermetallic compounds having a maximum length of 3 μm or more increases, while 0.02 to 0. The number of fine precipitates of 3 μm decreases, the recrystallized grains become finer during brazing, and the high temperature buckling resistance decreases. Therefore, the heating temperature before hot rolling was set to 350 to 430 ° C.
[0030]
The heating time before hot rolling is not particularly limited, but is preferably as short as possible in order to prevent coarsening of precipitates and crystallized substances. Specifically, in the present invention, since the heating temperature is set low, the hot holding time is preferably within 15 hours, and more preferably within 5 hours in consideration of the manufacturing cost.
[0031]
By heating before hot rolling as described above, fine Al-Mn- (Si)-(Fe) -based precipitates are generated, which suppresses recrystallization and causes recrystallization coarsening during brazing heating. That is, if heating before hot rolling at a temperature in the range of 350 to 430 ° C. as described above, the crystallized product and precipitates are not coarsened, while fine precipitates that suppress recrystallization occur. The high temperature buckling resistance is improved.
[0032]
The temperature at the end of hot rolling needs to be 300 ° C. or less. If hot rolling is terminated at a high temperature exceeding 300 ° C., an Al—Mn— (Si) — (Fe) -based compound is precipitated and coarsened during cooling of the hot-rolled coil. Will fall.
[0033]
After the hot rolling is finished, the primary cold rolling is performed and then the intermediate annealing is performed. However, after the hot rolling is finished, the rolling ratio of the primary cold rolling up to the intermediate annealing needs to be 50% or more. If the primary cold rolling rate is less than 50%, the strength of the base plate is not sufficiently increased. Also, high temperature buckling resistance is achieved by uniformly distributing the dislocations introduced by cold working and uniformly depositing fine precipitates of Al-Mn- (Si)-(Fe) system on the dislocations by intermediate annealing. In order to improve the strength, cold rolling of 50% or more is necessary. When the primary cold rolling rate is less than 50%, the precipitation of intermetallic compounds is small and non-uniform, and the high temperature buckling resistance decreases. .
[0034]
The intermediate annealing needs to be performed in a temperature range of 200 ° C. or higher and 350 ° C. or lower in order to obtain a structure state in which recrystallization has not occurred. The structure slightly recovered by the intermediate annealing at 200 ° C. or more and 350 ° C. or less, that is, a structure in which subgrains are slightly formed without reaching recrystallization. From this state, final cold rolling is applied to increase the strength. However, the crystal grain size is not remarkably reduced during brazing heating, and the high temperature buckling resistance is good.
[0035]
In the case of the method of the present invention, since the homogenization heat treatment is not performed on the ingot, recrystallization cannot occur at an intermediate annealing temperature of 350 ° C. or lower. When intermediate annealing is performed at a temperature exceeding 350 ° C., recrystallization occurs only partially or completely. When only a part is recrystallized, the strength becomes non-uniform in the longitudinal direction and width direction of the plate. If recrystallization occurs completely, the strength cannot be improved unless the rolling rate of the subsequent final cold rolling is increased. However, if the final cold rolling rate is increased, the recrystallized grain size during brazing heating is reduced and the high temperature buckling resistance is lowered. On the other hand, if the intermediate annealing temperature is less than 200 ° C., an Al—Mn—Si compound is precipitated on dislocations introduced by cold rolling, but the precipitate is too fine to contribute to high temperature buckling resistance. .
[0036]
The strength required for the final plate thickness (200 N / mm 2 In order to obtain the above, the intermediate annealing temperature is appropriately selected within the temperature range of 200 to 350 ° C. as described above, and at the same time, the cold rolling rate in the subsequent final cold rolling may be appropriately adjusted.
[0037]
After the intermediate annealing, the final cold is performed up to the final sheet thickness (0.03 to 0.10 mm). The rolling rate of the final cold rolling may be adjusted according to the required strength. However, if the final cold rolling rate is less than 5%, it is difficult to stably carry out cold rolling. On the other hand, if the high rolling rate exceeds 95%, the recrystallized grain size after brazing heating tends to be small. Since the high temperature buckling resistance tends to decrease, the final cold rolling rate is preferably in the range of 5 to 95%.
[0038]
The fin material having a plate thickness of 0.03 to 0.10 mm obtained through the above process has a base plate strength of 200 N / mm. 2 The above is necessary. Base plate strength is 200 N / mm 2 Is less than 0.03 to 0.1 mm, the rate of occurrence of molding defects during fin material molding increases, and fin buckling easily occurs during assembly of heat exchangers. Yield decreases.
[0039]
The fin material thus obtained may be used as it is in a heat exchanger as a bare material, or may be used as a brazing sheet fin material after being clad with a brazing material such as Al—Si— (Mg). . As a brazing method, either vacuum brazing or inert atmosphere brazing may be applied.
[0040]
DETAILED DESCRIPTION OF THE INVENTION
[0041]
【Example】
Example 1:
Alloy No. 1 in Table 1 1-No. Each alloy having the component composition shown in FIG. 8 is cast by a DC casting method according to a conventional method, and a part of the obtained ingot is subjected to homogenization heat treatment (soaking), and then heated for hot rolling. Hot rolling was performed to obtain a hot rolled sheet having a thickness of 2.5 mm. Thereafter, primary cold rolling, intermediate annealing and final cold rolling were performed to obtain a bare fin material having a plate thickness of 0.07 mm. The temperature of the homogenization heat treatment (soaking) in such a process, the heating temperature for hot rolling, the hot rolling end temperature, the hot rolled up plate thickness, the plate thickness during intermediate annealing (after the primary cold rolling) Sheet thickness), primary cold rolling rate until intermediate annealing, intermediate annealing temperature, and final cold rolling rate are shown in production conditions A to J in Table 2. In either case, the heating and holding time for the homogenization heat treatment was 10 hours, the heating and holding time for hot rolling was 2 hours, and the heating and holding time for intermediate annealing was 2 hours.
[0042]
Alloy No. of each component composition 1-No. 8 was used to measure the strength of the base plate (tensile strength) by performing a tensile test on each fin material manufactured under any of the manufacturing conditions A to J.
[0043]
Further, the intermetallic compound distribution particle size (maximum length) on the surface of each base plate is 1 μm to the intermetallic compound in the range of 0.02 to 0.3 μm. Three 1 mm of intermetallic compound with the number per contact and particle size (maximum length) of 3 μm or more 2 The number of hits was investigated. Intermetallic compounds with a particle size (maximum length) of 3 μm or more are observed with an optical microscope and their distribution is examined by image analysis, and fine precipitate particles with a particle size of 0.02 to 0.3 μm are observed with a transmission electron microscope. I investigated. Also, here, the thickness of the sample in the transmission electron microscope is calculated using a uniform thickness fringe, and 1 μm based on the calculated thickness. Three The number of fine intermetallic compound particles per unit was calculated.
[0044]
Furthermore, in order to evaluate the high temperature buckling resistance during brazing, the evaporator core and fin material are brazed and heated, the average grain size in the rolling direction of the fin material surface after brazing is measured, and the fin collapses. The relationship between the surface crystal grain size of the fin after brazing and heating was investigated. As a result, it has been found that if the crystal grain size in the rolling direction of the surface after brazing heating is 0.4 mm or more, it is possible to avoid a situation in which the fin buckles and the fin collapse occurs. In addition, as brazing heating in this case, 5 × 10 -Five Heating was performed at 600 ° C. for 3 minutes in a Torr vacuum.
[0045]
On the other hand, the fin material obtained as described above is corrugated, while an Al-1% Mn-0.5% Cu-0.10% Ti alloy is used as the core material and a 4104 alloy is used as the brazing material. A brazing sheet with a thickness of 0.6 mm (brazing material double-sided clad, clad rate 15% on both sides) was processed into an evaporator core plate, and the fin material and the core plate were combined and brazed and heated. . As brazing at this time, 5 × 100 -Five Heating was performed at 600 ° C. for 3 minutes in a Torr vacuum. As a result of observing the state of fin collapse of this evaporator, it was found that if the crystal grain size in the rolling direction on the surface after brazing heating was 0.4 mm or more, fin collapse due to fin buckling did not occur. Further, the maximum corrosion pit depth of the brazing sheet core was measured for a 720 hour CASS test. The maximum corrosion pit depth was measured by removing a corrosion product with a phosphoric acid-chromic acid mixed solution after the corrosion test and then observing a cross section of the maximum pitting corrosion depth portion.
[0046]
Table 3 shows the results of the above investigations.
[0047]
[Table 1]
Figure 0003735700
[0048]
[Table 2]
Figure 0003735700
[0049]
[Table 3]
Figure 0003735700
[0050]
From Table 3, for the alloy with the component composition specified in the present invention, the manufacturing process conditions specified in the present invention are applied, and the metal structure also satisfies the conditions specified in the present invention (example of the present invention). The base plate strength is 200 N / mm 2 It is clear that it has the above-mentioned high strength and excellent high-temperature buckling resistance, has a small corrosion depth of the core material by the CASS test, and is excellent in corrosion resistance as a heat exchanger. On the other hand, the comparative example in which any one of the component composition conditions, the manufacturing process conditions, and the metal structure conditions is out of the range defined in the present invention has any of the above performances.
[0051]
【The invention's effect】
The fin material for heat exchange according to the present invention has high strength before brazing (strength plate strength), and even if the plate thickness is as thin as 0.1 mm or less, there is a risk of deformation and buckling during heat exchanger assembly. There is little, and high temperature buckling resistance is also excellent, and there is little possibility of buckling by the high temperature at the time of brazing. In addition, the fin material according to the present invention has high strength after brazing, and can sufficiently exhibit the sacrificial anode effect on these tubes and core plates after brazing to the core plates and tubes as a heat exchanger. . Furthermore, the fin material for heat exchanger according to the present invention does not add any special element as an aluminum alloy additive element such as Sn, In, Zr, Co, etc. Therefore, the material cost is not particularly high, and the return material Is easy to manage and process. Therefore, if the fin material obtained by the method of the present invention is used in a heat exchanger, the performance required for the fin material and the heat exchanger itself is not reduced, or the cost is not increased. By reducing the thickness of the fin material to 1 mm or less, the heat exchanger can be reduced in weight and cost.

Claims (2)

Mn0.8〜2.0%(重量%、以下同じ)、Si0.2〜0.6%、Zn0.4〜2.0%を含有し、かつCuが0.03%以下、Feが0.2%以下にそれぞれ規制され、残部がAlおよび不可避的不純物よりなり、しかも0.02〜0.3μmの範囲内の径の金属間化合物を600個/μm3以上含むとともに、3μm以上の径の金属間化合物が500個/mm2以下に規制され、さらに板厚が0.03〜0.10mmの範囲内で、引張強さが200N/mm2以上であることを特徴とする、高強度・高耐熱性を有する熱交換器用アルミニウム合金製フィン材。Mn 0.8-2.0% (weight%, the same shall apply hereinafter), Si 0.2-0.6%, Zn 0.4-2.0%, Cu is 0.03% or less, Fe is 0.00. 2% or less, each of which is made of Al and inevitable impurities, and contains 600 / μm 3 or more of intermetallic compounds having a diameter in the range of 0.02 to 0.3 μm and a diameter of 3 μm or more. intermetallic compounds is restricted to 500 / mm 2 or less, further within the plate thickness of 0.03~0.10Mm, and a tensile strength is 200 N / mm 2 or more, high strength -High heat resistance aluminum alloy fins for heat exchangers. Mn0.8〜2.0%、Si0.2〜0.6%、Zn0.4〜2.0%を含有し、かつCuが0.03%以下、Feが0.2%以下にそれぞれ規制され、残部がAlおよび不可避的不純物よりなる合金の鋳塊に対して、均質化熱処理を施すことなく熱間圧延を施すにあたり、熱間圧延前の加熱温度を350〜430℃の範囲内とするとともに、熱間圧延終了温度を300℃以下とし、熱間圧延終了後、50%以上の圧延率で一次冷間圧延を施し、さらに200℃以上350℃以下の温度域で中間焼鈍を施し、その後最終冷間圧延を行なって、板厚が0.03〜0.10mmの範囲内でかつ引張強さが200N/mm2 以上のフィン材を得ることを特徴とする、高強度・高耐熱性を有する熱交換器用アルミニウム合金製フィン材の製造方法。Containing Mn 0.8-2.0%, Si 0.2-0.6%, Zn 0.4-2.0%, Cu is controlled to 0.03% or less, Fe is controlled to 0.2% or less, respectively. In addition, when performing hot rolling without performing homogenization heat treatment on the ingot of the alloy consisting of Al and inevitable impurities, the heating temperature before hot rolling is set within a range of 350 to 430 ° C. The hot rolling end temperature is set to 300 ° C. or less, and after the hot rolling is finished, primary cold rolling is performed at a rolling rate of 50% or more, and further intermediate annealing is performed in a temperature range of 200 ° C. or more and 350 ° C. or less, and then the final Cold-rolled to obtain a fin material having a plate thickness in the range of 0.03 to 0.10 mm and a tensile strength of 200 N / mm 2 or more, having high strength and high heat resistance Manufacturing method of fin material made of aluminum alloy for heat exchanger.
JP30941398A 1998-10-15 1998-10-15 Aluminum alloy fin material for heat exchanger and method for producing the same Expired - Fee Related JP3735700B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30941398A JP3735700B2 (en) 1998-10-15 1998-10-15 Aluminum alloy fin material for heat exchanger and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30941398A JP3735700B2 (en) 1998-10-15 1998-10-15 Aluminum alloy fin material for heat exchanger and method for producing the same

Publications (2)

Publication Number Publication Date
JP2000119783A JP2000119783A (en) 2000-04-25
JP3735700B2 true JP3735700B2 (en) 2006-01-18

Family

ID=17992715

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30941398A Expired - Fee Related JP3735700B2 (en) 1998-10-15 1998-10-15 Aluminum alloy fin material for heat exchanger and method for producing the same

Country Status (1)

Country Link
JP (1) JP3735700B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101972926A (en) * 2010-09-30 2011-02-16 无锡银邦铝业有限公司 Multilayer composite belt for brazing type heat exchanger and manufacturing method thereof

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3775302B2 (en) 2002-01-23 2006-05-17 株式会社デンソー Heat exchanger
CN101918601A (en) 2008-02-12 2010-12-15 株式会社神户制钢所 Aluminum alloy laminate
JP5647818B2 (en) * 2009-12-16 2015-01-07 三菱アルミニウム株式会社 Aluminum alloy brazing fin material for heat exchanger and heat exchanger using the fin material
JP5789401B2 (en) * 2011-04-15 2015-10-07 株式会社神戸製鋼所 Aluminum fin material for heat exchanger

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101972926A (en) * 2010-09-30 2011-02-16 无锡银邦铝业有限公司 Multilayer composite belt for brazing type heat exchanger and manufacturing method thereof
CN101972926B (en) * 2010-09-30 2013-06-19 银邦金属复合材料股份有限公司 Multilayer composite belt for brazing type heat exchanger and manufacturing method thereof

Also Published As

Publication number Publication date
JP2000119783A (en) 2000-04-25

Similar Documents

Publication Publication Date Title
JP5371173B2 (en) Manufacturing method of high strength aluminum alloy fin material
JP4408567B2 (en) Method of manufacturing aluminum alloy fin material
JP4911657B2 (en) High conductivity aluminum fin alloy
EP0365367B1 (en) Brazeable aluminum alloy sheet and process for its manufacture
EP3030685B1 (en) High strength aluminum alloy fin stock for heat exchanger
EP2791378A1 (en) Aluminium fin alloy and method of making the same
JP3735700B2 (en) Aluminum alloy fin material for heat exchanger and method for producing the same
JP3333600B2 (en) High strength Al alloy fin material and method of manufacturing the same
JP4574036B2 (en) Aluminum alloy for fin material of heat exchanger and manufacturing method of fin material of heat exchanger
CN111057910A (en) Aluminum alloy heat-dissipating component and heat exchanger
JP2002256402A (en) Method of producing fin material for use in heat exchanger
JPH11241136A (en) High corrosion resistant aluminum alloy, clad material thereof, and its production
EP1136581B1 (en) Method for manufacturing a fin material for brazing
JPH058087A (en) Production of high-strength aluminum brazing sheet
JP3253823B2 (en) Method for producing high strength and high heat resistant fin material made of aluminum alloy for heat exchanger
JP4704557B2 (en) Aluminum alloy fin material excellent in reflaring formability and its manufacturing method
JPH11343532A (en) Corrosion resistant and high strength aluminum alloy material, its production, tube for heat exchanger made of aluminum alloy and heat exchanger made of aluminum alloy
JPS6358217B2 (en)
JP2002256403A (en) Method of producing fin material for use in heat exchanger
JPH0931614A (en) Production of aluminum alloy fin material with high strength and high heat resistance for heat exchanger
JPH06145862A (en) Heat exchanger made of al alloy constituted of high strength fin material
JPH0931613A (en) Production of aluminum alloy fin material with high strength and high heat resistance for heat exchanger
JPH0747802B2 (en) Method for manufacturing vacuum brazed structure
JPH08291377A (en) Production of high strength and high heat resistant fin material for heat exchanger
JPH11269591A (en) Aluminum alloy fin material

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050412

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050613

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050809

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20050908

R155 Notification before disposition of declining of application

Free format text: JAPANESE INTERMEDIATE CODE: R155

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20051019

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20051006

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091104

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091104

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111104

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141104

Year of fee payment: 9

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees