JPH11343532A - Corrosion resistant and high strength aluminum alloy material, its production, tube for heat exchanger made of aluminum alloy and heat exchanger made of aluminum alloy - Google Patents

Corrosion resistant and high strength aluminum alloy material, its production, tube for heat exchanger made of aluminum alloy and heat exchanger made of aluminum alloy

Info

Publication number
JPH11343532A
JPH11343532A JP14794598A JP14794598A JPH11343532A JP H11343532 A JPH11343532 A JP H11343532A JP 14794598 A JP14794598 A JP 14794598A JP 14794598 A JP14794598 A JP 14794598A JP H11343532 A JPH11343532 A JP H11343532A
Authority
JP
Japan
Prior art keywords
aluminum alloy
heat exchanger
brazing
corrosion
thickness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP14794598A
Other languages
Japanese (ja)
Inventor
Kei Yoshitomi
圭 吉富
Masanori Hamazaki
昌典 濱▲崎▼
Satoru Matsuo
松尾  識
Masayuki Hayakawa
正幸 早川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP14794598A priority Critical patent/JPH11343532A/en
Publication of JPH11343532A publication Critical patent/JPH11343532A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a corrosion resistant and high strength aluminum alloy material free from deterioration in corrosion resistance and strengths even in the case of being subjected to brazing and maintaining characteristics obtd. by rapid solidification at the time of producing a high corrosion resistant aluminum alloy for a heat exchanger by a rapid solidifying method. SOLUTION: This invention is the one having a compsn. contg., by weight, 1.0 to 4.0% Mn, 0.1 to 1.0% Cu and at least one or >= two kinds among Ti, Cr and Zr by <=0.3%, and the balance substantial Al, having a supersaturated FCC single phase structure and having 0.05 to 0.5 mm thickness. Preferably, <=0.2% Fe and/or Si is incorporated therein.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、耐食性に優れ、か
つ強度特性に優れたアルミニウム合金材料に関し、特に
アルミニウム合金製熱交換器用チューブとして最適なア
ルミニウム合金材料に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an aluminum alloy material having excellent corrosion resistance and excellent strength characteristics, and particularly to an aluminum alloy material which is most suitable as a tube for an aluminum alloy heat exchanger.

【0002】[0002]

【従来の技術】従来、自動車用熱交換器はAl−Mn系
合金であるA3003合金を冷媒チューブ材として、ろ
う付け工法にて製造されている。近年、熱交換器の小型
化・軽量化のための部材の薄肉化が進められている。熱
交換器の強度は部材の板厚により所定の強度を確保して
おり、従来のA3003合金では耐食性および強度の面
から板厚の薄肉化による小型化・軽量化は限界に達しつ
つある。
2. Description of the Related Art Conventionally, heat exchangers for automobiles have been manufactured by a brazing method using an A3003 alloy, which is an Al-Mn alloy, as a refrigerant tube material. In recent years, the thickness of members for reducing the size and weight of heat exchangers has been reduced. The strength of the heat exchanger is maintained at a predetermined level by the thickness of the member. In the conventional A3003 alloy, the reduction in size and weight by reducing the thickness of the plate is reaching its limit from the viewpoint of corrosion resistance and strength.

【0003】一般に、アルミニウム合金では母相Al中
にMn,Fe,Ti,Cr,Zr,Cu等を添加するこ
とにより強度は上昇し、添加元素量が多くなるほど添加
元素の固溶、金属間化合物の晶出および析出等により強
度は著しく増大することが知られている。しかし、母相
Al中にAl−Cu等の金属間化合物が晶出および析出
すると、母相と金属間化合物との間に電位差が生じて局
部的なガルバニック電池を形成して腐食が促進されるこ
とが知られている。
[0003] Generally, in an aluminum alloy, the strength is increased by adding Mn, Fe, Ti, Cr, Zr, Cu, etc. to the matrix Al, and as the amount of the added element increases, the added element becomes a solid solution and an intermetallic compound. It is known that the strength is remarkably increased due to crystallization, precipitation and the like. However, when an intermetallic compound such as Al-Cu is crystallized and precipitated in the mother phase Al, a potential difference is generated between the mother phase and the intermetallic compound, forming a local galvanic battery and promoting corrosion. It is known.

【0004】したがって、耐食性および強度を同時に向
上させるには、適切な添加元素を選択し、適切な量だけ
添加して均一に、かつできるだけ多量に固溶させ、それ
に加えて金属間化合物の晶出及び析出を防止することが
必要である。その手段の一つとして急冷凝固法が挙げら
れる。急冷凝固法によれば従来困難とされていた合金元
素の均一な固溶、過飽和固溶体の形成および金属間化合
物の微細分散化が可能であり、更に超微細組織や非晶質
組織の合金が得られる場合があるなど、合金特性を大幅
に向上させることが可能である。
[0004] Therefore, in order to simultaneously improve corrosion resistance and strength, an appropriate additive element is selected, added in an appropriate amount and uniformly and as much as possible as a solid solution, and in addition, crystallization of an intermetallic compound is performed. And to prevent precipitation. One of the means is a rapid solidification method. The rapid solidification method enables uniform solid solution of alloying elements, formation of supersaturated solid solution and fine dispersion of intermetallic compounds, which have been difficult in the past. In some cases, alloy properties can be significantly improved.

【0005】ところが、急冷凝固法によって作製された
合金組織は非平衡状態であり、熱に対して不安定である
ため再加熱等により活性化しやすい傾向がある。現在、
自動車用熱交換器はろう付け工法により製造されてお
り、急冷凝固により形成された好ましい非平衡組織が熱
的活性化により平衡状態に復帰する結果、急冷凝固で得
られた特性の大半が消失する可能性がある。これは、急
冷凝固によって形成された過飽和固溶体が、低濃度の固
溶体と金属間化合物とに熱分解し、また微細結晶組織が
粗大化することによって急冷凝固組織が変質するためで
ある。
However, the alloy structure produced by the rapid solidification method is in a non-equilibrium state and is unstable with respect to heat, so that it tends to be activated by reheating or the like. Current,
Automotive heat exchangers are manufactured by the brazing method, and the preferred non-equilibrium structure formed by rapid solidification returns to an equilibrium state by thermal activation, so that most of the properties obtained by rapid solidification disappear. there is a possibility. This is because a supersaturated solid solution formed by rapid solidification is thermally decomposed into a low-concentration solid solution and an intermetallic compound, and the rapidly solidified structure is deteriorated due to coarsening of the fine crystal structure.

【0006】[0006]

【発明が解決しようとする課題】したがって、本発明の
目的は急冷凝固法により熱交換器用高耐食アルミニウム
合金を製造するに当たり、ろう付け加工を施しても耐食
性及び強度の低下が生じることがなく、急冷凝固によっ
て得られた優れた特性が保持される耐食・高強度アルミ
ニウム合金材料およびその製造方法、ならびにそれを用
いたアルミニウム合金製熱交換器用チューブ、アルミニ
ウム合金製熱交換器を提供することにある。
SUMMARY OF THE INVENTION Accordingly, an object of the present invention is to produce a highly corrosion-resistant aluminum alloy for a heat exchanger by a rapid solidification method without reducing the corrosion resistance and strength even when brazing is performed. An object of the present invention is to provide a corrosion-resistant and high-strength aluminum alloy material which retains excellent characteristics obtained by rapid solidification and a method for producing the same, and a tube for an aluminum alloy heat exchanger and an aluminum alloy heat exchanger using the same. .

【0007】[0007]

【課題を解決するための手段】本発明は、重量%で、M
n1.0〜4.0%、Cu0.1〜1.0%、Ti、C
r、Zrのうち少なくとも1種または2種以上を0.3
%以下含有し、残部が実質的にAlからなり、過飽和の
FCC単相組織であり、厚さが0.05〜0.5mmで
ある耐食・高強度アルミニウム合金材料である。本発明
にかかる耐食・高強度アルミニウム合金材料は、Feお
よび/またはSiを0.2%以下含有しうる。
SUMMARY OF THE INVENTION The present invention relates to a method for preparing M
n 1.0-4.0%, Cu 0.1-1.0%, Ti, C
at least one or more of r and Zr is 0.3
%, The balance being substantially Al, a supersaturated FCC single-phase structure, and a corrosion-resistant and high-strength aluminum alloy material having a thickness of 0.05 to 0.5 mm. The corrosion-resistant and high-strength aluminum alloy material according to the present invention can contain 0.2% or less of Fe and / or Si.

【0008】また本発明は、重量%で、Mn1.0〜
4.0%、Cu0.1〜1.0%、Ti、Cr、Zrの
うち少なくとも1種または2種以上を0.3%以下含有
し、残部が実質的にAlからなる成分組成を有するアル
ミニウム合金溶湯を、冷却速度103℃/sec以上で急冷
凝固することにより厚さ0.05〜0.5mmの板材を
得る耐食・高強度アルミニウム合金材料の製造方法であ
る。
[0008] The present invention also relates to the present invention, wherein
Aluminum containing 4.0%, 0.1 to 1.0% of Cu, 0.3% or less of at least one or more of Ti, Cr, and Zr, with the balance being substantially Al. This is a method for producing a corrosion-resistant and high-strength aluminum alloy material in which a plate material having a thickness of 0.05 to 0.5 mm is obtained by rapidly solidifying an alloy melt at a cooling rate of 10 3 ° C / sec or more.

【0009】さらに本発明は、重量%で、Mn1.0〜
4.0%、Cu0.1〜1.0%、Ti、Cr、Zrの
うち少なくとも1種または2種以上を0.3%以下含有
し、残部が実質的にAlからなり、過飽和のFCC単相
組織であり、厚さが0.05〜0.5mmであるアルミ
ニウム合金材料からなるアルミニウム合金製熱交換器用
チューブである。
Further, the present invention relates to a method for producing a polymer containing Mn of 1.0 to 1.0% by weight.
4.0%, 0.1-1.0% of Cu, 0.3% or less of at least one or more of Ti, Cr and Zr, and the balance substantially consisting of Al, This is a tube for an aluminum alloy heat exchanger made of an aluminum alloy material having a phase structure and a thickness of 0.05 to 0.5 mm.

【0010】またさらに本発明は、ろう材をクラッドし
たアルミニウム合金製ブレージングシートより構成され
るチューブプレートと、アルミニウム合金製フィン材よ
りなる空気側フィンとをろう付けにより一体化してなる
アルミニウム合金製熱交換器において、チューブプレー
トを構成するブレージングシートの芯材を、重量%で、
Mn1.0〜4.0%、Cu0.1〜1.0%、Ti、
Cr、Zrのうち少なくとも1種または2種以上を0.
3%以下含有し、残部が実質的にAlからなり、過飽和
のFCC単相組織であり、厚さが0.05〜0.5mm
であるアルミニウム合金材料としたアルミニウム合金製
熱交換器である。
Further, the present invention relates to a heat treatment made of an aluminum alloy made by integrating a tube plate made of an aluminum alloy brazing sheet clad with a brazing material and an air side fin made of an aluminum alloy fin material by brazing. In the exchanger, the core material of the brazing sheet constituting the tube plate is
Mn 1.0-4.0%, Cu 0.1-1.0%, Ti,
At least one or two or more of Cr and Zr may be used in an amount of 0.1 or more.
3% or less, the balance being substantially composed of Al, a supersaturated FCC single-phase structure having a thickness of 0.05 to 0.5 mm
This is an aluminum alloy heat exchanger using the aluminum alloy material described above.

【0011】本発明にかかるアルミニウム合金材料の組
成限定理由について説明する。本発明にかかるアルミニ
ウム合金材料は、重量%で、Mn1.0〜4.0%、C
u0.1〜1.0%、Ti、Cr、Zrのうち少なくと
も1種または2種以上を0.3%以下含有し、残部が実
質的にAlからなる組成を有する。また、Feおよび/
またはSiは0.2%以下含有しうる。
The reason for limiting the composition of the aluminum alloy material according to the present invention will be described. The aluminum alloy material according to the present invention has an Mn content of 1.0 to 4.0% by weight,
u 0.1 to 1.0%, at least one or more of Ti, Cr and Zr are contained in an amount of 0.3% or less, and the balance is substantially composed of Al. Also, Fe and / or
Alternatively, Si may be contained in an amount of 0.2% or less.

【0012】本発明において、Mnは母相Al中に固溶
して強度を向上させるとともに、Fe,Si等の耐食性
を低下させる不純物が形成する金属間化合物量の低減の
ために添加する。しかし、1.0%未満では効果がな
く、4.0%を越えると冷却速度103℃/sec以上でも
Al−Mn金属間化合物が晶出して耐食性が低下すると
ともに、ろう付け加熱時にAl−Mn金属間化合物の析
出量が著しく増大し、析出物サイズも大きくなり、加工
性も低下する。したがって、 Mnは1.0〜4.0
%、望ましくは2.0〜3.5%とする。
In the present invention, Mn is added as a solid solution in the mother phase Al to improve the strength and to reduce the amount of intermetallic compounds formed by impurities such as Fe and Si which deteriorate the corrosion resistance. However, if it is less than 1.0%, there is no effect, and if it exceeds 4.0%, the Al-Mn intermetallic compound is crystallized even at a cooling rate of 10 3 ° C / sec or more, thereby deteriorating the corrosion resistance. The precipitation amount of the Mn intermetallic compound remarkably increases, the size of the precipitate increases, and the workability also decreases. Therefore, Mn is 1.0 to 4.0.
%, Desirably 2.0 to 3.5%.

【0013】Cuは、母相Al中に固溶して強度を向上
させる。また、チューブプレート材の電気化学的性質を
貴にし、ろう材との電位差を大きくして、防食上有効な
電位分布を形成させることにより腐食の発生を抑制する
効果を有する。0.1%未満ではこの効果が不十分であ
り、また1.0%を越えるとろう付け加熱時にAl−C
u金属間化合物が析出して耐食性が低下するとともに、
融点が低下しろう付け加熱時に溶融してしまう。したが
って、Cuは0.1〜1.0%、望ましくは0.3〜
0.7%とする。
Cu improves the strength by forming a solid solution in the matrix Al. Further, it has the effect of suppressing the occurrence of corrosion by making the electrochemical properties of the tube plate material noble, increasing the potential difference with the brazing material, and forming a potential distribution effective for anticorrosion. If it is less than 0.1%, this effect is insufficient, and if it exceeds 1.0%, Al-C
u intermetallic compound is precipitated and corrosion resistance is reduced,
The melting point is lowered and it melts during brazing. Therefore, Cu is 0.1 to 1.0%, preferably 0.3 to 1.0%.
0.7%.

【0014】Ti,Cr,Zrは、ろう付け加熱に対す
る組織の安定化を図るために必要に応じて添加するが、
0.3%を越えると金属間化合物の析出を促進して耐食
性を低下させるとともに、加工性が低下する。したがっ
て、添加する場合は、Ti,Cr,Zrの1種または2
種以上で0.3%以下とした。望ましくは、0.1〜
0.25%である。
Ti, Cr and Zr are added as necessary to stabilize the structure against brazing heating.
If it exceeds 0.3%, the precipitation of the intermetallic compound is promoted to lower the corrosion resistance and the workability is lowered. Therefore, when adding, one or two of Ti, Cr and Zr are added.
More than the kind and 0.3% or less. Desirably, 0.1 to
0.25%.

【0015】Feおよび/またはSiは、金属間化合物
を形成して耐食性を低下させるため含有量は低い程良い
が、FeおよびSiの合計量で0.2%以下であれば実
用上問題がない。
The content of Fe and / or Si is preferably as low as possible because it forms an intermetallic compound and lowers the corrosion resistance, but there is no practical problem if the total amount of Fe and Si is 0.2% or less. .

【0016】次に、本発明にかかるアルミニウム合金の
組織について説明する。本発明にかかるアルミニウム合
金は、過飽和のFCC(面心立方格子構造)単相組織で
ある。つまり、母相であるFCC構造のAl中にMnが
過飽和に固溶しており、Mnを含む晶出物及び析出物が
ない組織を有している。このように金属組織が極めて均
一であるため、電気化学的にも均一であり、組織中の電
位差が小さいため、孔食(腐食)が発生しにくくなる。
この組織は、本発明にかかる組成を有する合金溶湯を1
3℃/sec以上の冷却速度で急冷することにより得るこ
とができ、結晶粒径は10〜30μm、平均で20μm
程度である。また、得られた組織は安定しており、ろう
付けによる加熱されても晶出物及び析出物はほとんど生
じない。
Next, the structure of the aluminum alloy according to the present invention will be described. The aluminum alloy according to the present invention has a supersaturated FCC (face-centered cubic lattice structure) single-phase structure. In other words, Mn is supersaturated in Al of the FCC structure, which is the parent phase, and has a structure free of crystallized matters and precipitates containing Mn. As described above, since the metal structure is extremely uniform, it is also electrochemically uniform, and since the potential difference in the structure is small, pitting corrosion (corrosion) hardly occurs.
This structure is obtained by mixing an alloy melt having the composition according to the present invention with 1
It can be obtained by quenching at a cooling rate of at least 3 ° C./sec, and has a crystal grain size of 10 to 30 μm, and an average of 20 μm.
It is about. Further, the obtained structure is stable, and hardly any crystallized substance or precipitate is generated even when heated by brazing.

【0017】本発明にかかるアルミニウム合金材料は強
度に優れているため、板厚0.05〜0.5mmとして
も、熱交換器用チューブとして用いることができる。従
来のA3003材では強度の面から板厚は少なくとも
0.5mm程度は必要であり、これ以上の薄肉化は困難
であるが、本発明にかかるアルミニウム合金ではA30
03材に比し強度を1.5倍以上向上することができ、
耐食性も従来の2倍以上優れていることから冷媒チュー
ブを構成するプレート材の板厚を0.05〜0.5m
m、望ましくは0.25〜0.35mmに薄肉化が可能
となり、熱交換器の小型・軽量化に貢献する。
Since the aluminum alloy material according to the present invention has excellent strength, it can be used as a tube for a heat exchanger even when the thickness is 0.05 to 0.5 mm. The conventional A3003 material requires a plate thickness of at least about 0.5 mm from the viewpoint of strength, and it is difficult to further reduce the thickness. However, the aluminum alloy according to the present invention uses A303.
Strength can be improved 1.5 times or more compared to 03 material,
Since the corrosion resistance is more than twice as good as the conventional one, the thickness of the plate material constituting the refrigerant tube is 0.05 to 0.5 m.
m, desirably 0.25 to 0.35 mm, which contributes to the reduction in size and weight of the heat exchanger.

【0018】本発明によれば、重量%で、Mn1.0〜
4.0%、Cu0.1〜1.0%、Ti、Cr、Zrの
うち少なくとも1種または2種以上を0.1〜0.3%
を含有し、残部が実質的にAlからなる成分組成を有す
るアルミニウム合金溶湯を、冷却速度103℃/sec以上
で急冷凝固することにより、添加元素の固溶量を増加さ
せ、かつ金属間化合物の晶出を抑制した0.05〜0.
5mmの厚さの板材が直接得られ、この板材はろう付け
加熱後もAl−Mn系金属間化合物の析出が抑制され
る。なお、急冷凝固時の冷却速度は、3×103℃/sec
以上とするのがより好ましい。
According to the present invention, Mn is 1.0 to 1.0% by weight.
4.0%, 0.1 to 1.0% of Cu, 0.1 to 0.3% of at least one or more of Ti, Cr and Zr
Is rapidly solidified at a cooling rate of 10 3 ° C / sec or more to increase the solid solution amount of the added element, and to increase the intermetallic compound content. In which the crystallization was suppressed.
A plate having a thickness of 5 mm is directly obtained, and the precipitation of the Al-Mn intermetallic compound is suppressed in the plate even after heating by brazing. The cooling rate during rapid solidification is 3 × 10 3 ° C./sec.
It is more preferable to make the above.

【0019】また本発明においては、アルミニウム合金
溶湯を、これが収容されるるつぼの底部に形成されたス
リットからその直下に位置する冷却回転ロール表面に吹
き付けまたは落下させることにより製造するのが望まし
い。
In the present invention, it is preferable that the molten aluminum alloy is produced by spraying or dropping the molten aluminum alloy from a slit formed at the bottom of a crucible in which the molten aluminum alloy is contained, onto the surface of a cooling rotary roll located immediately below the same.

【0020】本発明にかかるアルミニウム合金を熱交換
器用チューブ材として使用した、ろう付け加工により製
造されるアルミニウム合金製熱交換器は、耐食性に優れ
ているので、塩害環境はもとより、SOX、NOX等の排
ガス環境下およびそれらの複合した環境下においても冷
媒チューブの腐食による冷媒漏れ等の問題を抑制するこ
とができる。
[0020] The aluminum alloy according to the present invention is used as a heat exchanger tube material, aluminum alloy heat exchanger manufactured by brazing process is excellent in corrosion resistance, salt damage environment as well, SO X, NO Even under an environment of exhaust gas such as X or a combined environment thereof, it is possible to suppress a problem such as refrigerant leakage due to corrosion of the refrigerant tube.

【0021】[0021]

【発明の実施の形態】次に、本発明を実施の形態に基づ
き説明する。表1に示す本発明例1〜8および比較例1
〜7の成分組成を有する溶湯を溶解るつぼ内で調整した
後、るつぼの底部に設けた0.8×100mmの寸法を
もったスリットから、接線方向速度10m/secで回転
する直径200mmの水冷銅製ロール表面に吹き付け
た。なお、冷却速度は、4×10℃/secである。この
際、精製窒素ガスによりるつぼ内圧を0.1〜104気
圧の間で調整し、スリットから排出される溶湯量を制御
することにより、板厚0.5mmの板材を作製した(以
下、急冷材と記す)。
Next, the present invention will be described based on an embodiment. Inventive Examples 1 to 8 and Comparative Example 1 shown in Table 1
After adjusting the molten metal having the component composition of ~ 7 in a crucible, a 200 mm diameter water-cooled copper rotating at a tangential speed of 10 m / sec through a slit having a size of 0.8 x 100 mm provided at the bottom of the crucible. Sprayed on the roll surface. The cooling rate is 4 × 10 ° C./sec. At this time, the inner pressure of the crucible was adjusted to 0.1 to 104 atm with purified nitrogen gas, and the amount of molten metal discharged from the slit was controlled to produce a plate material having a plate thickness of 0.5 mm (hereinafter, quenched material). Described).

【0022】また、比較のため、表1に示す比較例8〜
13の成分組成の溶湯を用い、水冷金型にて鋳造した鋳
塊に熱間圧延を施し、更に冷間圧延と中間焼鈍を繰り返
して板厚0.5mmの板材を作製した。ただし、圧延に
より得た板材(以下、圧延材と記す)については、Mn
を2%以上添加すると加工が困難となるとともに、粒界
腐食を起こし耐食性が低下することが知られているた
め、Mnの添加量は1%とした。
For comparison, Comparative Examples 8 to 8 shown in Table 1 were used.
Using a molten metal having a component composition of No. 13, hot rolling was performed on an ingot cast with a water-cooled mold, and cold rolling and intermediate annealing were repeated to produce a sheet material having a sheet thickness of 0.5 mm. However, for a sheet material obtained by rolling (hereinafter referred to as a rolled material), Mn
It is known that adding 2% or more of Mn makes it difficult to process and causes intergranular corrosion to lower the corrosion resistance. Therefore, the amount of Mn added was set to 1%.

【0023】なお、本発明例の急冷材、比較例の急冷
材、圧延材の組織を観察したところ、本発明例の急冷材
は、過飽和のFCC単相組織(平均結晶粒径20μ
m)、比較例1,3,4(急冷材)は過飽和のFCC単
相組織(平均結晶粒径20μm)、比較例2,5,6,
7(急冷材)は粒径1〜3μm程度の金属間化合物が晶
出し、圧延材は平均結晶粒径50μmのFCC母相組織
中に5〜15μmの金属間化合物が晶出していた。
Observation of the structures of the quenched material of the present invention, the quenched material of the comparative example, and the rolled material revealed that the quenched material of the present invention had a supersaturated FCC single phase structure (average crystal grain size of 20 μm).
m), Comparative Examples 1, 3, and 4 (quenched material) were supersaturated FCC single-phase structures (average crystal grain size: 20 μm), and Comparative Examples 2, 5, 6,
In No. 7 (quenched material), an intermetallic compound having a particle size of about 1 to 3 μm was crystallized, and in a rolled material, an intermetallic compound having a particle size of 5 to 15 μm was crystallized in an FCC matrix structure having an average crystal particle size of 50 μm.

【0024】[0024]

【表1】 [Table 1]

【0025】次いで、得られた急冷材および圧延材につ
いて、その一部についてろう付け加熱条件に相当する窒
素雰囲気、15分間(最高温度610℃、5分間保持)
の加熱を行った後、腐食試験を行い耐食性を評価した結
果を表2に示す。耐食性の評価は、腐食試験として塩水
噴霧試験(以下、SSTと記す)、および乾湿サイクル
腐食試験(以下、CCTと記す)を適用した。SSTは
主に海浜地域や融雪剤散布地域等の塩害環境下での耐食
性の評価に用い、CCTは主に排ガス等の大気汚染環境
下での耐食性評価に用いられている。なお、SSTはJ
IS Z 2317に基づき、また、CCTは腐食液噴
霧と乾燥・濃縮を繰り返した。
Next, the obtained quenched material and rolled material are partially subjected to a nitrogen atmosphere corresponding to brazing heating conditions for 15 minutes (maximum temperature: 610 ° C., held for 5 minutes).
Table 2 shows the results of the evaluation of the corrosion resistance by performing a corrosion test after heating the sample. For the evaluation of corrosion resistance, a salt spray test (hereinafter, referred to as SST) and a dry / wet cycle corrosion test (hereinafter, referred to as CCT) were applied as corrosion tests. SST is mainly used for evaluation of corrosion resistance under a salt damage environment such as a beach area or a snow melting agent spray area, and CCT is mainly used for evaluation of corrosion resistance under an air pollution environment such as exhaust gas. SST is J
Based on IS Z 2317, CCT repeated spraying of a corrosive liquid and drying / concentration.

【0026】本発明例1〜8は、いずれもろう付け加熱
前後で最大孔食深さが増加せず、耐食性の低下が認めら
れない。さらに、比較例1〜7に比してろう付け加熱前
後いずれの最大孔食深さも大幅に浅く、耐食性は良好で
ある。比較例1〜4は、Ti,Cr,Zrを含有しない
ため、比較例5〜7はTi,Cr,Zrが0.3%を越
えているため、本発明よりろう付け加熱前後のいづれも
最大孔食深さが深い。また、比較例1〜7では、ろう付
け加熱後に最大孔食深さの増加が認められ、耐食性の低
下が認められる。圧延により作製した比較例8〜13で
は、ろう付け加熱前後で最大孔食深さの増加はなく、耐
食性の低下は認められないが、本発明例より最大孔食深
さは深く、耐食性は劣っている。
In all of Examples 1 to 8 of the present invention, the maximum pitting depth does not increase before and after heating by brazing, and no decrease in corrosion resistance is observed. Furthermore, the maximum pit depth before and after the brazing heating was significantly smaller than in Comparative Examples 1 to 7, and the corrosion resistance was good. Comparative Examples 1 to 4 do not contain Ti, Cr, and Zr, and Comparative Examples 5 to 7 have Ti, Cr, and Zr exceeding 0.3%. Pitting depth is deep. In Comparative Examples 1 to 7, an increase in the maximum pit depth after brazing was observed, and a decrease in corrosion resistance was observed. In Comparative Examples 8 to 13 produced by rolling, there was no increase in the maximum pit depth before and after brazing and no decrease in corrosion resistance was observed, but the maximum pit depth was deeper and the corrosion resistance was inferior to those of the present invention. ing.

【0027】なお、ろう付けに相当する前記加熱後の本
発明例の急冷材、比較例の急冷材の組織を観察したとこ
ろ、本発明例ではFCC単相組織が維持されていたのに
対し、比較例では晶出物の粗大化傾向が確認された。
Observation of the structures of the quenched material of the example of the present invention and the quenched material of the comparative example after the heating corresponding to the brazing showed that the FCC single-phase structure was maintained in the example of the present invention. In the comparative example, a tendency of coarsening of the crystallized product was confirmed.

【0028】[0028]

【表2】 [Table 2]

【0029】次に、本発明例1〜8、比較例1〜13に
ついて引張り試験を行い、強度を評価した結果を表3に
示す。本発明例、比較例の急冷材とも、比較例の圧延材
に比して引張り強さが高く、ろう付け加熱前後で強度の
低下は少ないことが確認された。
Next, the results of the tensile tests performed on the inventive examples 1 to 8 and the comparative examples 1 to 13 to evaluate the strength are shown in Table 3. It was confirmed that both the quenched material of the present invention and the quenched material of the comparative example had a higher tensile strength than the rolled material of the comparative example, and the decrease in strength was small before and after brazing.

【0030】[0030]

【表3】 [Table 3]

【0031】さらに、本発明例1〜8、比較例1〜13
の合金材料について、表4に示すろう材およびフィン材
を用い、ろう付けにて製造した熱交換器について腐食試
験を行った。その結果を表5に示すが、本発明例1〜8
の合金を用いた熱交換器は、急冷材の比較例1〜7、圧
延材の比較例8〜13の合金を用いた熱交換器に比し
て、SST,CCTいずれも最大孔食深さが大幅に浅
く、耐食性は良好である。
Further, Examples 1 to 8 of the present invention and Comparative Examples 1 to 13
Using the brazing material and the fin material shown in Table 4, a corrosion test was performed on a heat exchanger manufactured by brazing. Table 5 shows the results.
The heat exchangers using the alloys of Comparative Examples 1 to 7 of the quenched material and the heat exchangers of the alloys of Comparative Examples 8 to 13 of the rolled material both have the maximum pitting depth of SST and CCT. Is significantly shallow, and the corrosion resistance is good.

【0032】[0032]

【表4】 [Table 4]

【0033】[0033]

【表5】 [Table 5]

【0034】表3に示される結果から急冷により製造さ
れるアルミニウム合金は、圧延により製造されるアルミ
ニウム合金に比して強度特性が優れており、また表2に
示される結果から、急冷により製造したアルミニウム合
金であっても、特に本発明にかかるアルミニウム合金
は、比較例のアルミニウム合金に比して耐食性が優れて
いることがわかる。さらに、表5に示される結果から本
発明にかかる熱交換器は、比較例の熱交換器に比して耐
食性が優れていることがわかる。
From the results shown in Table 3, the aluminum alloy produced by quenching has excellent strength properties as compared with the aluminum alloy produced by rolling, and from the results shown in Table 2, the aluminum alloy produced by quenching was produced. Even if it is an aluminum alloy, it turns out that especially the aluminum alloy concerning this invention is excellent in corrosion resistance compared with the aluminum alloy of a comparative example. Further, from the results shown in Table 5, it is understood that the heat exchanger according to the present invention has better corrosion resistance than the heat exchanger of the comparative example.

【0035】[0035]

【発明の効果】本発明により、ろう付け加工を施しても
耐食性及び強度の低下が生じることがなく、急冷凝固に
よって得られた優れた特性が保持される耐食・高強度ア
ルミニウム合金材料およびその製造方法が得られる。ま
た、本発明により、耐食性及び強度特性に優れたアルミ
ニウム製熱交換器を製造することができ、部材薄肉化に
よる更なる小型・軽量化が図れるため、省資源・省エネ
ルギー化が推進できる。
Industrial Applicability According to the present invention, a corrosion-resistant and high-strength aluminum alloy material which does not cause deterioration in corrosion resistance and strength even when subjected to brazing and retains excellent properties obtained by rapid solidification and its production. A method is obtained. Further, according to the present invention, an aluminum heat exchanger having excellent corrosion resistance and strength characteristics can be manufactured, and further reduction in size and weight can be achieved by thinning the members, thereby promoting resource saving and energy saving.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 早川 正幸 愛知県名古屋市中村区岩塚町字高道1番地 三菱重工業株式会社名古屋研究所内 ────────────────────────────────────────────────── ─── Continuing on the front page (72) Inventor Masayuki Hayakawa 1 Nagoya Laboratory, Nagoya-shi, Aichi Prefecture

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 重量%で、Mn1.0〜4.0%、Cu
0.1〜1.0%、Ti、Cr、Zrのうち少なくとも
1種または2種以上を0.3%以下含有し、残部が実質
的にAlからなり、過飽和のFCC単相組織であり、厚
さが0.05〜0.5mmであることを特徴とする耐食
・高強度アルミニウム合金材料。
1. Mn 1.0-4.0% by weight, Cu
0.1 to 1.0%, containing at least one or more of Ti, Cr, and Zr in an amount of 0.3% or less, the balance being substantially Al, and a supersaturated FCC single-phase structure; A corrosion-resistant and high-strength aluminum alloy material having a thickness of 0.05 to 0.5 mm.
【請求項2】 Feおよび/またはSiを0.2%以下
含有する請求項1に記載の耐食・高強度アルミニウム合
金材料。
2. The corrosion-resistant and high-strength aluminum alloy material according to claim 1, containing 0.2% or less of Fe and / or Si.
【請求項3】 重量%で、Mn1.0〜4.0%、Cu
0.1〜1.0%、Ti、Cr、Zrのうち少なくとも
1種または2種以上を0.3%以下含有し、残部が実質
的にAlからなる成分組成を有するアルミニウム合金溶
湯を、冷却速度103℃/sec以上で急冷凝固することに
より厚さ0.05〜0.5mmの板材を得ることを特徴
とする耐食・高強度アルミニウム合金材料の製造方法。
3. Mn 1.0-4.0% by weight, Cu
An aluminum alloy melt containing 0.1 to 1.0%, at least one or more of Ti, Cr, and Zr of 0.3% or less and a balance substantially consisting of Al is cooled. A method for producing a corrosion-resistant and high-strength aluminum alloy material, wherein a plate material having a thickness of 0.05 to 0.5 mm is obtained by rapidly solidifying at a speed of 10 3 ° C / sec or more.
【請求項4】 重量%で、Mn1.0〜4.0%、Cu
0.1〜1.0%、Ti、Cr、Zrのうち少なくとも
1種または2種以上を0.3%以下含有し、残部が実質
的にAlからなり、過飽和のFCC単相組織であり、厚
さが0.05〜0.5mmであるアルミニウム合金材料
からなることを特徴とするアルミニウム合金製熱交換器
用チューブ。
4. Mn 1.0 to 4.0% by weight, Cu
0.1 to 1.0%, containing at least one or more of Ti, Cr, and Zr in an amount of 0.3% or less, the balance being substantially Al, and a supersaturated FCC single-phase structure; A tube for an aluminum alloy heat exchanger, comprising an aluminum alloy material having a thickness of 0.05 to 0.5 mm.
【請求項5】 ろう材をクラッドしたアルミニウム合金
製ブレージングシートより構成されるチューブプレート
と、アルミニウム合金製フィン材よりなる空気側フィン
とをろう付けにより一体化してなるアルミニウム合金製
熱交換器において、チューブプレートを構成するブレー
ジングシートの芯材を、重量%で、Mn1.0〜4.0
%、Cu0.1〜1.0%、Ti、Cr、Zrのうち少
なくとも1種または2種以上を0.3%以下含有し、残
部が実質的にAlからなり、過飽和のFCC単相組織で
あり、厚さが0.05〜0.5mmであるアルミニウム
合金材料としたことを特徴とするアルミニウム合金製熱
交換器。
5. An aluminum alloy heat exchanger in which a tube plate composed of an aluminum alloy brazing sheet clad with a brazing material and an air side fin composed of an aluminum alloy fin material are integrated by brazing. The core material of the brazing sheet constituting the tube plate was Mn 1.0 to 4.0 by weight%.
%, 0.1 to 1.0% of Cu, 0.3% or less of at least one or more of Ti, Cr, and Zr, and the balance is substantially composed of Al. A heat exchanger made of an aluminum alloy, comprising an aluminum alloy material having a thickness of 0.05 to 0.5 mm.
JP14794598A 1998-05-28 1998-05-28 Corrosion resistant and high strength aluminum alloy material, its production, tube for heat exchanger made of aluminum alloy and heat exchanger made of aluminum alloy Withdrawn JPH11343532A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14794598A JPH11343532A (en) 1998-05-28 1998-05-28 Corrosion resistant and high strength aluminum alloy material, its production, tube for heat exchanger made of aluminum alloy and heat exchanger made of aluminum alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14794598A JPH11343532A (en) 1998-05-28 1998-05-28 Corrosion resistant and high strength aluminum alloy material, its production, tube for heat exchanger made of aluminum alloy and heat exchanger made of aluminum alloy

Publications (1)

Publication Number Publication Date
JPH11343532A true JPH11343532A (en) 1999-12-14

Family

ID=15441627

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14794598A Withdrawn JPH11343532A (en) 1998-05-28 1998-05-28 Corrosion resistant and high strength aluminum alloy material, its production, tube for heat exchanger made of aluminum alloy and heat exchanger made of aluminum alloy

Country Status (1)

Country Link
JP (1) JPH11343532A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002348624A (en) * 2001-05-22 2002-12-04 Sumitomo Light Metal Ind Ltd Aluminum alloy pipe material for piping of automobile with excellent corrosion resistance and workability
JP2012112000A (en) * 2010-11-25 2012-06-14 Mitsubishi Alum Co Ltd Flat tube for heat exchanger, and heat exchanger
JP2014224287A (en) * 2013-05-16 2014-12-04 日本軽金属株式会社 Aluminum alloy casting excellent in castability and corrosion resistance, method for producing the same, and heat exchanger
CN107363122A (en) * 2017-06-14 2017-11-21 飞龙精工科技(苏州)有限公司 The preparation technology of aluminum-magnesium alloy wire
JP2020015955A (en) * 2018-07-26 2020-01-30 三菱重工業株式会社 Aluminum alloy material, method for producing aluminum alloy material, cask basket and cask

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002348624A (en) * 2001-05-22 2002-12-04 Sumitomo Light Metal Ind Ltd Aluminum alloy pipe material for piping of automobile with excellent corrosion resistance and workability
JP2012112000A (en) * 2010-11-25 2012-06-14 Mitsubishi Alum Co Ltd Flat tube for heat exchanger, and heat exchanger
JP2014224287A (en) * 2013-05-16 2014-12-04 日本軽金属株式会社 Aluminum alloy casting excellent in castability and corrosion resistance, method for producing the same, and heat exchanger
CN107363122A (en) * 2017-06-14 2017-11-21 飞龙精工科技(苏州)有限公司 The preparation technology of aluminum-magnesium alloy wire
CN107363122B (en) * 2017-06-14 2018-12-14 飞龙精工科技(苏州)有限公司 The preparation process of aluminum-magnesium alloy wire
JP2020015955A (en) * 2018-07-26 2020-01-30 三菱重工業株式会社 Aluminum alloy material, method for producing aluminum alloy material, cask basket and cask

Similar Documents

Publication Publication Date Title
JP4408567B2 (en) Method of manufacturing aluminum alloy fin material
JP2007031778A (en) High strength aluminum alloy fin material and producing method therefor
EP1250468B8 (en) Process of producing aluminum fin alloy
CN103290279A (en) Aluminium alloy fin material for brazing and manufacturing method of same
JP4911657B2 (en) High conductivity aluminum fin alloy
JP2003520295A5 (en)
JP3333600B2 (en) High strength Al alloy fin material and method of manufacturing the same
JP5545798B2 (en) Method for producing aluminum alloy fin material for heat exchanger
JPH11343532A (en) Corrosion resistant and high strength aluminum alloy material, its production, tube for heat exchanger made of aluminum alloy and heat exchanger made of aluminum alloy
JP4574036B2 (en) Aluminum alloy for fin material of heat exchanger and manufacturing method of fin material of heat exchanger
JP2002256402A (en) Method of producing fin material for use in heat exchanger
JP2004523657A (en) DC cast aluminum alloy
JP2001329326A (en) Fin material for brazing
JP3735700B2 (en) Aluminum alloy fin material for heat exchanger and method for producing the same
JP2010270386A (en) Aluminum alloy fin material for heat exchanger
JP2004176091A (en) High strength aluminum alloy fin material for automotive heat exchanger having excellent rollability, and its manufacturing method
JPH11350058A (en) Aluminum alloy sheet excellent in formability and baking hardenability and its production
JP4536949B2 (en) Manufacturing method of brazing fin material
JPH10259464A (en) Production of aluminum alloy sheet for forming
JP3253823B2 (en) Method for producing high strength and high heat resistant fin material made of aluminum alloy for heat exchanger
JPH07179973A (en) Al alloy brazing sheet for vacuum brazing for structural member for heat exchanger, excellent in corrosion resistance
JP2004277756A (en) Aluminum alloy for fin by twin belt casting, and fin material
JP2002256403A (en) Method of producing fin material for use in heat exchanger
JP2002256369A (en) Joint for heat exchanger made of aluminum having high strength and machinability and production method therefor
JPH0931614A (en) Production of aluminum alloy fin material with high strength and high heat resistance for heat exchanger

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20050802