JP2004277756A - Aluminum alloy for fin by twin belt casting, and fin material - Google Patents

Aluminum alloy for fin by twin belt casting, and fin material Download PDF

Info

Publication number
JP2004277756A
JP2004277756A JP2003066872A JP2003066872A JP2004277756A JP 2004277756 A JP2004277756 A JP 2004277756A JP 2003066872 A JP2003066872 A JP 2003066872A JP 2003066872 A JP2003066872 A JP 2003066872A JP 2004277756 A JP2004277756 A JP 2004277756A
Authority
JP
Japan
Prior art keywords
fin
aluminum alloy
brazing
less
fin material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003066872A
Other languages
Japanese (ja)
Other versions
JP3916577B2 (en
Inventor
Yoshito Oki
義人 沖
Toshiya Anami
敏也 穴見
Ichiro Okamoto
一郎 岡本
Tomohiro Sasaki
智浩 佐々木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NIKKEI TECHNO CAST KK
Original Assignee
NIKKEI TECHNO CAST KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NIKKEI TECHNO CAST KK filed Critical NIKKEI TECHNO CAST KK
Priority to JP2003066872A priority Critical patent/JP3916577B2/en
Publication of JP2004277756A publication Critical patent/JP2004277756A/en
Application granted granted Critical
Publication of JP3916577B2 publication Critical patent/JP3916577B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To obtain an aluminum alloy for a fin by twin belt casting, which is suitable for a twin belt casting process, can be easily twin-belt-cast though having a wide solid-liquid coexistence range, and provides a fin material having high conductivity, high strength and further high erosion resistance after being brazed, and superior solderability; and to obtain the fin material. <P>SOLUTION: The aluminum alloy comprises, by wt%, 0.7 to 1.3% Si, exceeding 2.0% but 2.8% or less Fe, exceeding 0.6% but 1.2% or less Mn, exceeding 0.02% but 1.5% or less Zn and the balance Al with unavoidable impurities. The fin material made of the aluminum alloy has the same composition as the above, 110,000 pieces/mm<SP>2</SP>or more of intermetallic compounds with the maximum diameter of 0.1 to 1.0 μm, and the crystal grain sizes of 150μm or larger after being brazed. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、双ベルト鋳造用フィン用アルミニウム合金およびフィン材に関する。
【0002】
【従来の技術】
車両にはフィンと通液管がろう付接合された各種のアルミニウム製熱交換器が装着されており、軽量化のために熱交換器を構成する各部材は年々薄肉化する傾向にある。そのため、薄肉でも十分な強度を維持できるように、ろう付後において高強度である部材が求められている。
【0003】
また、フィン材は強度ばかりでなく耐エロージョン性も必要である。すなわち、標準的なろう付け温度は590〜600℃であるが、実際のろう付温度が下方に外れるとろう付不良となるので、これを避けるために高めに設定する傾向がある。しかし、ろう付け温度が高めに外れると、Al−Si系ろう材によって侵食されやすくなる。従って、ろう付け温度が高めに外れても、ろう材に侵食され難い良好な耐エロージョン性が望まれる。
【0004】
従来、このような特性を持つフィン材は合金組成と製造方法の両面から検討されている。
【0005】
例えば、特許文献1(WO 01/53553 A1公報)の請求項1には、Fe:1.2〜2.4wt%、Si:0.5〜1.1wt%、Mn:0.3〜0.6wt%およびZn:0〜1.0wt%を含有するAl合金を溶湯冷却速度を少なくとも300℃/sec 以上で凝固させ、その後、圧延と熱処理を施して製造されるフィン材が開示されている。
【0006】
また、特許文献2(特開2002−256402号公報)には、Mn:0.3〜2.0wt%、Si:0.5を超え1.5wt%以下、Fe:0.7〜2.0wt%を含有するAl合金溶湯を鋳造時の冷却速度を15〜1000℃/sec で鋳造し、熱延、冷延して製造されるフィン材が開示されている。
【0007】
【特許文献1】
WO 01/53553 A1 請求項1〜12、第6頁上1〜9行。
【0008】
【特許文献2】
特開2002−256402 請求項1、第6頁段落(0041)、
第7頁第4〜5行。
【0009】
【発明が解決しようとする課題】
連続鋳造(CC)はDC鋳造と異なって鋳造スラブ厚さも薄く、DC鋳造の場合に必須の均熱処理やその後の厚さ10mm程度までの熱延が省略できる等の生産上の利点があって、各種材料の製造に利用されている。
【0010】
例えばCC鋳造法には、相対峙する回転ロール間に溶湯を注湯し、強制冷却されているロール面で溶湯を急冷し、反注湯側より厚さの薄いスラブを連続的に取り出す双ロール鋳造法や、相対峙する回転ベルト間に溶湯を注湯し、強制冷却されているベルト面で溶湯を急冷し、反注湯側より厚さの薄いスラブを連続的に取り出す双ベルト鋳造法等が知られている。
【0011】
前記特許文献1(WO 01/53553 A1公報)記載の技術は、明細書の記載(第6頁上1〜9行)によれば、その鋳造方法は前記の双ロール鋳造法である。本発明者らの知見によれば、同公報請求項記載の上記合金組成範囲では、各元素含有量の上限値近傍域ではFe,Si,Mnの含有量が多く固液共存範囲が広いために、双ロール鋳造法で鋳造するには高度なテクニックが必要である。これに対して、同公報第10頁記載の実施例における組成は、Fe1.52wt%、Mn0.36wt%、Si0.83wt%、Zn0.48wt%であって、上記合金組成範囲のうちでも元素含有量の少ない固液共存範囲の狭い範囲で試験をしている。またこのような実施例の組成では、ろう付後に高強度材(140MPa 以上)とならない。
【0012】
前記特許文献2(特開2002−256402号公報)記載の技術もまた、明細書の記載(第6頁段落0041)によれば前記の双ロール鋳造法を挙げている。しかし、同公報第6頁記載の実施例では、双ロール鋳造法に替えて、第7頁第4〜5行に示されているように、幅:200mm×長さ:500mm×厚さ:7mmの鋳型に鋳造している。また実施例記載の組成では、ろう付後に高導電率材(50%IACS以上)とならない。ここで、導電率は、フィン材の重要な性質である熱伝導率の指標である。
【0013】
本発明の目的は、固液共存範囲が広くても容易に鋳造でき、ろう付後の強度と導電率が高く、しかも耐エロージョン性が高くろう付性に優れたフィン材の得られる双ベルト鋳造用フィン用アルミニウム合金と前記特性を有するフィン材を提供することである。
【0014】
【課題を解決するための手段】
本発明者らは、双ベルト鋳造法は固液共存範囲が広くても容易に鋳造でき、しかも得られたフィン材は上記の諸特性を備えたものであるとの知見を得て、本発明を完成したものである。
【0015】
即ち本発明は、Si:0.7〜1.3wt%、Fe:2.0を超え2.8wt%以下、Mn:0.6を超え1.2wt%以下、およびZn:0.02wt%を超え1.5wt%以下を含有し、残部Alおよび不可避的不純物からなることを特徴とする双ベルト鋳造用フィン用アルミニウム合金を提供する。元素含有量が多くても双ベルト鋳造法で容易に鋳造ができ、ろう付後の強度と導電率が高く、自然電位も低くしかもろう付性に優れたフィン材とすることができる。
【0016】
更に結晶粒微細化剤を0.2wt%以下含有することにより、鋳造時の鋳造割れを防止できる。
【0017】
また、本発明は、前記各組成からなり、最大径で0.1〜1.0μm以下の金属間化合物が11万個/mm 以上存在し、ろう付後の結晶粒径が150μm以上であることを特徴とするアルミニウム合金フィン材をも提供する。このような化合物および結晶粒とすることで、フィン材は上記諸特性を備えることができる。
【0018】
【発明の実施の形態】
本発明において採用する鋳造方法について説明する。
【0019】
双ベルト鋳造法は、上下に対峙し水冷されている回転ベルト間に溶湯を注湯してベルト面からの冷却で溶湯を凝固させてスラブとし、ベルトの反注湯側より該スラブを連続して引き出してコイル状に巻き取る連続鋳造方法である。溶湯の凝固時の溶湯冷却速度は40〜80℃/sec (板厚の1/4位置)であることが好ましく、ベルト接触領域内でスラブ厚さ全体にわたって凝固が完了することが望ましい。得られるスラブの厚さは5〜8mmであることが好ましく、この厚さであると板厚中央部の凝固速度も速く、均一組織でしかも本発明範囲の組成であると微細な化合物の多いおよびろう付後において結晶粒径の大きい優れた諸性質を有するフィン材とすることができる。
【0020】
DC鋳造法は凝固時の溶湯冷却速度が遅く晶出物が粗大化して薄板圧延を妨げ、化合物数も8万個/mm 以下と少くなり、十分な粒子分散強化作用が得られないため、ろう付後の強度が低下する。
【0021】
次にアルミニウム合金組成について説明する。
【0022】
〔Si:0.7〜1.3wt%〕
〔Fe:2.0wt%を超え2.8wt%以下〕
〔Mn:0.6wt%を超え1.2wt%以下〕
Si,FeおよびMnは、固溶強化と共に、Al−Fe,Al−(Fe,Mn)−Si,Al−Mn系等の化合物粒子を晶出することにより分散強化の作用がある。また前記の条件で双ベルト鋳造し、冷間圧延して0.1mm以下、好ましくは0.04〜0.08mmに圧延することによって晶出物が分断し、最大径で0.1〜1.0μmの金属間化合物を11万個/mm 以上存在させることができ、またろう付後の再結晶粒径を150μm以上とすることができる。
【0023】
Si含有量が下限値以下および/またはMn含有量が下限値以下であると、固溶強化による強度の向上作用が得られない。Fe含有量が下限値以下であると前記の化合物条件が得られないため、晶出する化合物粒子数が減少し、ろう付後の分散粒子による強度の向上作用が得られない。Fe含有量の好ましい下限値は2.07wt%である。
【0024】
一方、Si含有量が上限値を超えると、ろう材に対する耐エロージョン性が劣化し、導電率も低下する。Fe含有量が上限値を超えると晶出物が粗大化して薄板圧延を妨げ、Mn含有量が上限値を超えると導電率が低下する。
【0025】
〔Zn:0.02wt%を超え1.5wt%以下〕
Znは、フィン材の自然電位を卑に移行させ、アルミニウム製通液管と組み合わせた際に犠牲電極として作用することにより、通液管の耐食性を確保できる。
【0026】
この犠牲電極作用を得るには、Zn含有量が0.02wt%を超える必要がある。通常、フィン材にはZnを不可避的不純物として0.02wt%以下含有しているので、犠牲電極作用による耐食性向上効果を顕在化させるには0.02wt%を超えて含有させる。一方、Zn含有量が上限値を超えると導電率が低下してフィン材として好ましくない。好ましくは1.2wt%以下、更に好ましくは1.0wt%以下である。
【0027】
〔ろう付後の結晶粒径:150μm以上〕
ろう付温度が高めに外れたときに問題となるエロージョンによるフィン溶けおよび座屈は、溶融ろうがフィン材の結晶粒界を侵食することにより生ずる。これを防ぐには、ろう材が溶融する直前の温度において、フィン材の結晶粒界の数を少なくする必要がある。具体的には、中間焼鈍後の最終冷延率を適宜選択してろう付後の結晶粒径を150μm以上とすることにより、これを達成できる。ろう付後の結晶粒径が150μmより小さいと、フィン溶けおよび座屈の危険性が増大する。
【0028】
〔結晶粒微細化剤:0.2wt%以下〕
結晶粒微細化剤を必要に応じて含有させると鋳造割れを確実に防止し、安定して鋳造することができる。結晶粒微細化剤としてはTi,B等があり、Tiの0.2wt%以下またはTiとBの合計で0.2wt%以下含有させる。上限値を超えても顕著な効果の向上は得られない。
【0029】
上記組成の他Cu,Mg,Cr,Ni,Ga,V等が地金や返り材等から不可避的不純物として混入するが、各々0.2wt%以下、合計で0.3wt%以下までは本発明の効果を妨げないので許容できる。
【0030】
以上説明した組成のアルミニウム合金溶湯を脱酸化物、除滓、鎮静等の溶湯処理を施した後、必要に応じてフィルターを通過させ、上記した条件で双ベルト鋳造し、得られたスラブを連続、または一旦コイルにしリコイルして圧延して薄板を得る。この薄板は焼鈍と圧延を施して0.1mm以下、好ましくは0.04〜0.08mmに圧延して所定厚さのフィン材とする。
【0031】
このようにして作製されたフィン材はアルミニウム製通液管と組み合わせてろう付される。ろう付けは公知の方法でよく、限定するものではないが、例えば弗化物系のフラックスを用いるろう付法が適している。この弗化物系のフラックスを用いる場合は、ろう材がクラッドされている通液管にベアのフィン材を組付けた後フラックスを塗布してろう付温度に加熱保持してろう付けする方法と、ベアの通液管に弗化物系のフラックス粉末と金属Si粉末のスラリーを塗布し、ベアのフィン材を組付けてろう付温度に加熱保持して金属Siと通液管の極表面層とが反応してろう材を形成させてろう付けする方法等がある。
【0032】
【実施例】
表1に示した各種組成の合金溶湯を溶製し、セラミックス製フィルターを通過させて双ベルト鋳造鋳型に注湯し、引出速度8メートル/分で厚さ7mmのスラブを得た。溶湯の凝固時冷却速度は50℃/sec であった。また、合金番号1の組成の合金溶湯については、引出速度6メートル/分での双ベルト鋳造も行い、厚さ7mmのスラブを得た。このときの溶湯の凝固時冷却速度は70℃/sec であった。該スラブは連続して巻き取ってコイルとし、このコイルを表2に示した厚さ(「中間焼鈍板厚」と表示)まで冷間圧延し、400℃で焼鈍して軟化させた。その後更に冷延して厚さ0.06mmのフィン材とした。
【0033】
得られたフィン材について、下記の測定および試験を行なった。
【0034】
〔1〕圧延方向に平行な断面を走査型電子顕微鏡(反射電子像)で観察し、画像解析装置を用いて、各化合物の直径で最大の長さが0.1〜1.0μmの範囲に入る金属間化合物の個数(個/mm )を測定した。
【0035】
〔2〕ろう付温度を想定して595〜600℃×3分間加熱し、冷却後下記項目を測定した。
【0036】
(1)引張強度(N/mm
(2)表面を電解研磨してバーカー法で結晶粒組織を現出後、切断法で圧延方向に平行な結晶粒径(μm)
(3)JIS−H0505記載の導電率試験法で導電率(%IACS)
(4)銀塩化銀電極を照合電極として、5%食塩水に60分浸漬後の自然電位(mV)
〔3〕弗化物系のノコロック(Nocolok:登録商標)フラックスを使用(塗布量5〜7g/m )し、ろう材クラッドアルミニウム通液管を想定して、厚さ0.25mmのブレージングシート(ろう材4045合金クラッド率8%)のろう材面上にコルゲート状に加工した前記フィン材を載置し、その上に厚さ1mmの3003合金片とダミーフィンと錘(合計132g)を載せてろう付試験体とした。この試験体を605℃で5分保持し、冷却後ろう付断面を観察し、溶融ろうによって生じるフィン材結晶粒界のエロージョンが一部でもフィン材厚さを貫通したものは座屈する知見があるので耐エロージョン性不良(×印)とし、フィン材厚さまで達していなかったものを良(○印)とした。なお、コルゲート形状は、高さ2.3mm×幅21mm×ピッチ3.4mmとした。
【0037】
上記の測定および試験の結果を表2に示す。
【0038】
表2の結果から、本発明例(試料番号1,2,3,4および5)はろう付後の引張強度、導電率、自然電位および耐エロージョン性がバランスよく良好であるのに対して、組成範囲の外れている比較例(試料番号6,7,8,9,10および11)は、上記特性のいずれかが劣っていることが判る。
【0039】
【表1】

Figure 2004277756
【0040】
【表2】
Figure 2004277756
【0041】
【発明の効果】
上述の如く本発明は、ろう付後の引張強度、導電率、自然電位およびろう材による耐エロージョン性が良好であるから、性能の良いろう付品が安定して得られる等の優れた効果のある発明である。なお、塩水噴霧試験による腐食減量が少なく、良好なフィン寿命を有する効果もある。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to an aluminum alloy for a fin for twin belt casting and a fin material.
[0002]
[Prior art]
Vehicles are equipped with various aluminum heat exchangers in which fins and liquid passage pipes are brazed and joined, and the members constituting the heat exchanger tend to become thinner year by year for weight reduction. Therefore, a member having high strength after brazing is required so that sufficient strength can be maintained even with a thin wall.
[0003]
Further, the fin material needs not only strength but also erosion resistance. In other words, the standard brazing temperature is 590 to 600 ° C., but if the actual brazing temperature falls below, brazing failure will occur. Therefore, there is a tendency that the brazing temperature is set higher to avoid this. However, if the brazing temperature is too high, it is likely to be eroded by the Al-Si-based brazing material. Therefore, even if the brazing temperature is deviated to a high level, good erosion resistance which is hardly eroded by the brazing material is desired.
[0004]
Hitherto, fin materials having such characteristics have been studied from both the alloy composition and the manufacturing method.
[0005]
For example, in claim 1 of Patent Document 1 (WO 01/53553 A1), Fe: 1.2 to 2.4 wt%, Si: 0.5 to 1.1 wt%, Mn: 0.3 to 0. A fin material manufactured by solidifying an Al alloy containing 6 wt% and Zn: 0 to 1.0 wt% at a molten metal cooling rate of at least 300 ° C./sec, and then performing rolling and heat treatment is disclosed.
[0006]
Patent Document 2 (JP-A-2002-256402) discloses that Mn: 0.3 to 2.0 wt%, Si: more than 0.5 and 1.5 wt% or less, and Fe: 0.7 to 2.0 wt%. A fin material manufactured by casting a molten aluminum alloy containing 0.1% at a cooling rate of 15 to 1000 ° C./sec at the time of casting, hot rolling and cold rolling.
[0007]
[Patent Document 1]
WO 01/53553 A1 13. Lines 1 to 9 on page 6, 1 to 12.
[0008]
[Patent Document 2]
JP-A-2002-256402, Claim 1, page 6 paragraph (0041),
Page 7, lines 4-5.
[0009]
[Problems to be solved by the invention]
Continuous casting (CC) is different from DC casting in that the thickness of the casting slab is also thin, and there are advantages in production such as the necessity of soaking heat treatment and the subsequent hot rolling to a thickness of about 10 mm in the case of DC casting. Used in the manufacture of various materials.
[0010]
For example, in the CC casting method, a twin roll in which molten metal is poured between rotating rolls facing each other, the molten metal is rapidly cooled on a roll surface that is forcibly cooled, and a slab thinner than the anti-poured side is continuously taken out. Casting method or twin belt casting method in which molten metal is poured between rotating belts facing each other, the molten metal is quenched on the belt surface that has been forcibly cooled, and a slab thinner than the anti-pouring side is continuously removed. It has been known.
[0011]
According to the technology described in Patent Document 1 (WO 01/53553 A1), according to the description (1st to 9th lines on page 6), the casting method is the twin roll casting method. According to the findings of the present inventors, in the alloy composition range described in the same gazette, the contents of Fe, Si, and Mn are large and the solid-liquid coexistence range is wide near the upper limit of the content of each element. Advanced techniques are required for casting by twin roll casting. On the other hand, the composition in the example described on page 10 of the publication is 1.52 wt% of Fe, 0.36 wt% of Mn, 0.83 wt% of Si, and 0.48 wt% of Zn. The test is carried out in a small solid-liquid coexistence range. In addition, the composition of the embodiment does not become a high-strength material (140 MPa or more) after brazing.
[0012]
The technique described in Patent Document 2 (Japanese Patent Application Laid-Open No. 2002-256402) also mentions the twin-roll casting method according to the description (page 6, paragraph 0041). However, in the example described on page 6 of the publication, instead of the twin roll casting method, as shown on page 7, lines 4 to 5, the width: 200 mm × length: 500 mm × thickness: 7 mm Casting into a mold. Further, the composition described in the examples does not become a high conductivity material (50% IACS or more) after brazing. Here, the electrical conductivity is an index of the thermal conductivity, which is an important property of the fin material.
[0013]
An object of the present invention is to provide a twin-belt casting which can be easily cast even if the solid-liquid coexistence range is wide, has high strength and electrical conductivity after brazing, and has high erosion resistance and excellent brazing properties. An object of the present invention is to provide a fin aluminum alloy and a fin material having the above characteristics.
[0014]
[Means for Solving the Problems]
The present inventors have obtained the knowledge that the twin belt casting method can be easily cast even if the solid-liquid coexistence range is wide, and the obtained fin material has the above-mentioned various properties. Is completed.
[0015]
That is, in the present invention, Si: 0.7 to 1.3 wt%, Fe: more than 2.0 and 2.8 wt%, Mn: more than 0.6 and 1.2 wt%, and Zn: 0.02 wt% The present invention provides an aluminum alloy for twin belt casting fins, containing more than 1.5 wt% or less and the balance being Al and inevitable impurities. Even if the element content is large, casting can be easily performed by the twin belt casting method, and a fin material having high strength and electrical conductivity after brazing, a low natural potential, and excellent brazing properties can be obtained.
[0016]
Further, by containing the crystal grain refiner in an amount of 0.2 wt% or less, casting cracks during casting can be prevented.
[0017]
Further, the present invention is the result from the composition, there following the intermetallic compound 0.1~1.0μm 110,000 pieces / mm 2 or more in maximum diameter, the crystal grain size after brazing is at 150μm or more An aluminum alloy fin material characterized by the above feature is also provided. By using such compounds and crystal grains, the fin material can have the above-mentioned various properties.
[0018]
BEST MODE FOR CARRYING OUT THE INVENTION
The casting method employed in the present invention will be described.
[0019]
In the twin belt casting method, molten metal is poured between rotating belts that are vertically opposed and water-cooled, and the molten metal is solidified by cooling from the belt surface to form a slab. This is a continuous casting method that draws out and winds it in a coil shape. The cooling rate of the molten metal during solidification is preferably 40 to 80 ° C./sec (1 / position of the plate thickness), and solidification is preferably completed over the entire slab thickness in the belt contact area. The thickness of the obtained slab is preferably 5 to 8 mm, and when the slab has this thickness, the solidification rate at the center of the plate thickness is high, and when the composition is within the range of the present invention, it has many fine compounds. After brazing, a fin material having a large crystal grain size and excellent properties can be obtained.
[0020]
In the DC casting method, the cooling rate of the molten metal at the time of solidification is slow, and the crystallized material is coarsened to hinder sheet rolling, and the number of compounds is reduced to 80,000 / mm 2 or less, and a sufficient particle dispersion strengthening effect cannot be obtained. The strength after brazing decreases.
[0021]
Next, the aluminum alloy composition will be described.
[0022]
[Si: 0.7 to 1.3 wt%]
[Fe: more than 2.0 wt% and 2.8 wt% or less]
[Mn: more than 0.6 wt% and 1.2 wt% or less]
Si, Fe and Mn have the effect of strengthening dispersion by crystallizing compound particles such as Al-Fe, Al- (Fe, Mn) -Si, and Al-Mn, together with solid solution strengthening. Further, under the above conditions, twin belt casting, cold rolling, and rolling to 0.1 mm or less, preferably 0.04 to 0.08 mm separate crystallized substances, and the maximum diameter is 0.1 to 1. The intermetallic compound of 0 μm can be present in an amount of 110,000 / mm 2 or more, and the recrystallized particle size after brazing can be made 150 μm or more.
[0023]
When the Si content is equal to or less than the lower limit and / or the Mn content is equal to or less than the lower limit, the effect of improving strength by solid solution strengthening cannot be obtained. If the Fe content is less than the lower limit, the above-mentioned compound conditions cannot be obtained, so that the number of compound particles to be crystallized decreases, and the effect of improving the strength by the dispersed particles after brazing cannot be obtained. A preferred lower limit of the Fe content is 2.07 wt%.
[0024]
On the other hand, when the Si content exceeds the upper limit, the erosion resistance to the brazing material is deteriorated, and the conductivity is also reduced. If the Fe content exceeds the upper limit, the crystallized material becomes coarse and hinders sheet rolling, and if the Mn content exceeds the upper limit, the electrical conductivity decreases.
[0025]
[Zn: more than 0.02 wt% and 1.5 wt% or less]
Zn shifts the natural potential of the fin material to a low value and acts as a sacrificial electrode when combined with an aluminum liquid passage tube, thereby ensuring the corrosion resistance of the liquid passage tube.
[0026]
To obtain this sacrificial electrode function, the Zn content needs to exceed 0.02 wt%. Usually, the fin material contains 0.02 wt% or less of Zn as an unavoidable impurity. Therefore, in order to make the corrosion resistance improving effect by the sacrificial electrode effect apparent, Zn is added in excess of 0.02 wt%. On the other hand, when the Zn content exceeds the upper limit, the conductivity is lowered, which is not preferable as a fin material. It is preferably at most 1.2 wt%, more preferably at most 1.0 wt%.
[0027]
[Crystal grain size after brazing: 150 µm or more]
Melting and buckling of the fins due to erosion, which are problematic when the brazing temperature is too high, are caused by the molten braze eroding the grain boundaries of the fin material. To prevent this, it is necessary to reduce the number of crystal grain boundaries of the fin material at a temperature immediately before the brazing material melts. Specifically, this can be achieved by appropriately selecting the final cold rolling ratio after the intermediate annealing and setting the crystal grain size after brazing to 150 μm or more. If the crystal grain size after brazing is smaller than 150 μm, the risk of fin melting and buckling increases.
[0028]
[Grain refiner: 0.2 wt% or less]
When a crystal grain refiner is contained as required, casting cracks can be reliably prevented, and casting can be performed stably. Examples of the crystal grain refiner include Ti, B, and the like. The content is 0.2 wt% or less of Ti or 0.2 wt% or less in total of Ti and B. Even if it exceeds the upper limit, no remarkable improvement in effect is obtained.
[0029]
In addition to the above composition, Cu, Mg, Cr, Ni, Ga, V and the like are mixed as unavoidable impurities from the base metal and the return material, etc., respectively. Is acceptable because it does not hinder the effect of
[0030]
After subjecting the molten aluminum alloy having the composition described above to deoxidation, slagging, calming, etc., it is allowed to pass through a filter as necessary, and is subjected to twin belt casting under the above conditions, and the obtained slab is continuously cast. Or, it is once coiled and recoiled and rolled to obtain a thin plate. This thin plate is annealed and rolled to 0.1 mm or less, preferably 0.04 to 0.08 mm, to obtain a fin material having a predetermined thickness.
[0031]
The fin material thus produced is brazed in combination with an aluminum flow pipe. The brazing may be performed by a known method, and is not limited. For example, a brazing method using a fluoride-based flux is suitable. When using this fluoride-based flux, a method of brazing by applying a flux after assembling a bare fin material to a flow pipe in which a brazing material is clad, heating and maintaining the brazing temperature, A slurry of a fluoride-based flux powder and a metal Si powder is applied to the flow pipe of the bare, and the fin material of the bare is assembled and heated and maintained at a brazing temperature, so that the metal Si and the extreme surface layer of the flow pipe are formed. There is a method of forming a brazing material by reacting and brazing.
[0032]
【Example】
Molten alloys of various compositions shown in Table 1 were melted, passed through a ceramic filter, and poured into a twin-belt casting mold to obtain a slab having a thickness of 7 mm at a drawing speed of 8 m / min. The cooling rate during solidification of the molten metal was 50 ° C./sec. Further, with respect to the molten alloy having the composition of alloy number 1, twin belt casting was performed at a drawing speed of 6 m / min to obtain a slab having a thickness of 7 mm. At this time, the cooling rate during solidification of the molten metal was 70 ° C./sec. The slab was continuously wound into a coil, and the coil was cold-rolled to a thickness shown in Table 2 (indicated as “intermediate annealed plate thickness”) and annealed at 400 ° C. to soften. Thereafter, it was further cold-rolled to obtain a fin material having a thickness of 0.06 mm.
[0033]
The following measurements and tests were performed on the obtained fin material.
[0034]
[1] Observe the cross section parallel to the rolling direction with a scanning electron microscope (backscattered electron image), and use an image analyzer to set the maximum length in the range of 0.1 to 1.0 μm in diameter of each compound. The number (pieces / mm 2 ) of the intermetallic compound that entered was measured.
[0035]
[2] Assuming the brazing temperature, heating was performed at 595 to 600 ° C. for 3 minutes, and after cooling, the following items were measured.
[0036]
(1) Tensile strength (N / mm 2 )
(2) After the surface is electrolytically polished to reveal a crystal grain structure by a Barker method, a crystal grain size (μm) parallel to a rolling direction is obtained by a cutting method.
(3) Conductivity (% IACS) by the conductivity test method described in JIS-H0505
(4) Spontaneous potential (mV) after immersion in a 5% saline solution for 60 minutes using a silver-silver chloride electrode as a reference electrode
[3] A brazing sheet having a thickness of 0.25 mm, using a fluoride-based Nocolok (registered trademark) flux (application amount: 5 to 7 g / m 2 ) and assuming a brazing material-clad aluminum flow pipe. The fin material processed into a corrugated shape is placed on the brazing material surface having a brazing material 4045 alloy cladding ratio of 8%), and a 3003 alloy piece having a thickness of 1 mm, a dummy fin, and a weight (132 g in total) are placed thereon. A brazing specimen was used. The specimen was held at 605 ° C. for 5 minutes, and after cooling, the brazing cross section was observed, and it was found that the erosion of the fin material crystal grain boundaries caused by the molten solder partially penetrated the fin material thickness, causing buckling. Therefore, the erosion resistance was poor (marked by x), and the one that did not reach the fin material thickness was evaluated as good (marked by ○). The corrugated shape was 2.3 mm in height × 21 mm in width × 3.4 mm in pitch.
[0037]
Table 2 shows the results of the above measurements and tests.
[0038]
From the results shown in Table 2, the inventive examples (Sample Nos. 1, 2, 3, 4 and 5) had good balance in tensile strength, electrical conductivity, natural potential and erosion resistance after brazing. It can be seen that the comparative examples (sample numbers 6, 7, 8, 9, 10, and 11) out of the composition range are inferior in any of the above characteristics.
[0039]
[Table 1]
Figure 2004277756
[0040]
[Table 2]
Figure 2004277756
[0041]
【The invention's effect】
As described above, since the present invention has good tensile strength after brazing, electrical conductivity, natural potential and erosion resistance due to brazing material, excellent effects such as stably obtaining a brazed product having high performance can be obtained. An invention. In addition, there is an effect that the corrosion weight loss by the salt spray test is small and a good fin life is provided.

Claims (4)

下記組成:
Si:0.7〜1.3wt%、
Fe:2.0wt%を超え2.8wt%以下、
Mn:0.6wt%を超え1.2wt%以下、
Zn:0.02wt%を超え1.5wt%以下、および
残部:Alおよび不可避的不純物
から成ることを特徴とする双ベルト鋳造用フィン用アルミニウム合金。
The following composition:
Si: 0.7-1.3 wt%,
Fe: more than 2.0 wt% and not more than 2.8 wt%,
Mn: more than 0.6 wt% and 1.2 wt% or less,
Zn: an aluminum alloy for fins for twin belt casting, characterized by comprising more than 0.02 wt% and not more than 1.5 wt% and the balance: Al and unavoidable impurities.
更に結晶粒微細化剤を0.2wt%以下含有することを特徴とする請求項1に記載の双ベルト鋳造用フィン用アルミニウム合金。The fin aluminum alloy for twin belt casting according to claim 1, further comprising a crystal grain refiner of 0.2 wt% or less. 下記組成:
Si:0.7〜1.3wt%、
Fe:2.0wt%を超え2.8wt%以下、
Mn:0.6wt%を超え1.2wt%以下、
Zn:0.02wt%を超え1.5wt%以下、および
残部:Alおよび不可避的不純物
から成り、最大径で0.1〜1.0μmの金属間化合物が11万個/mm 以上存在し、ろう付後の結晶粒径が150μm以上であることを特徴とするアルミニウム合金フィン材。
The following composition:
Si: 0.7-1.3 wt%,
Fe: more than 2.0 wt% and not more than 2.8 wt%,
Mn: more than 0.6 wt% and 1.2 wt% or less,
Zn: more than 0.02 wt% and 1.5 wt% or less, and the balance: Al and an unavoidable impurity, at least 110,000 intermetallic compounds having a maximum diameter of 0.1 to 1.0 μm / mm 2 , An aluminum alloy fin material having a crystal grain size of 150 μm or more after brazing.
更に結晶粒微細化剤を0.2wt%以下含有することを特徴とする請求項3に記載のアルミニウム合金フィン材。The aluminum alloy fin material according to claim 3, further comprising 0.2 wt% or less of a grain refiner.
JP2003066872A 2003-03-12 2003-03-12 Aluminum alloy and fin material for twin belt casting fins Expired - Fee Related JP3916577B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003066872A JP3916577B2 (en) 2003-03-12 2003-03-12 Aluminum alloy and fin material for twin belt casting fins

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003066872A JP3916577B2 (en) 2003-03-12 2003-03-12 Aluminum alloy and fin material for twin belt casting fins

Publications (2)

Publication Number Publication Date
JP2004277756A true JP2004277756A (en) 2004-10-07
JP3916577B2 JP3916577B2 (en) 2007-05-16

Family

ID=33284646

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003066872A Expired - Fee Related JP3916577B2 (en) 2003-03-12 2003-03-12 Aluminum alloy and fin material for twin belt casting fins

Country Status (1)

Country Link
JP (1) JP3916577B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006176850A (en) * 2004-12-24 2006-07-06 Mitsubishi Alum Co Ltd High-strength aluminum alloy fin material for heat exchanger having excellent erosion resistance, and heat exchanger
JP2007517986A (en) * 2004-01-12 2007-07-05 アルコア インコーポレイテッド Highly conductive finstock alloy, manufacturing method and resulting product
JP2009162450A (en) * 2008-01-09 2009-07-23 Sumitomo Light Metal Ind Ltd Aluminum heat exchanger and its manufacturing method
US10280495B2 (en) 2012-08-30 2019-05-07 Denso Corporation High-strength aluminum alloy fin material and production method thereof
CN112439879A (en) * 2020-11-12 2021-03-05 成都阳光铝制品有限公司 Production process of aluminum profile for automobile battery end plate
CN114871418A (en) * 2015-09-10 2022-08-09 南线有限责任公司 Ultrasonic grain refinement and degassing procedure and system for metal casting

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007517986A (en) * 2004-01-12 2007-07-05 アルコア インコーポレイテッド Highly conductive finstock alloy, manufacturing method and resulting product
JP2006176850A (en) * 2004-12-24 2006-07-06 Mitsubishi Alum Co Ltd High-strength aluminum alloy fin material for heat exchanger having excellent erosion resistance, and heat exchanger
JP4566729B2 (en) * 2004-12-24 2010-10-20 三菱アルミニウム株式会社 High strength aluminum alloy fin material and heat exchanger for heat exchanger with excellent erosion resistance
JP2009162450A (en) * 2008-01-09 2009-07-23 Sumitomo Light Metal Ind Ltd Aluminum heat exchanger and its manufacturing method
US10280495B2 (en) 2012-08-30 2019-05-07 Denso Corporation High-strength aluminum alloy fin material and production method thereof
DE112013004245B4 (en) 2012-08-30 2024-01-04 Denso Corporation High strength aluminum alloy fin material and manufacturing method thereof
CN114871418A (en) * 2015-09-10 2022-08-09 南线有限责任公司 Ultrasonic grain refinement and degassing procedure and system for metal casting
CN112439879A (en) * 2020-11-12 2021-03-05 成都阳光铝制品有限公司 Production process of aluminum profile for automobile battery end plate

Also Published As

Publication number Publication date
JP3916577B2 (en) 2007-05-16

Similar Documents

Publication Publication Date Title
KR101455874B1 (en) Process for manufacturing aluminum alloy fin material for heat exchanger, and process for manufacturing heat exchanger through brazing of the fin material
JP5371173B2 (en) Manufacturing method of high strength aluminum alloy fin material
TWI557234B (en) Aluminum alloy fin sheet for heat exchangers with excellent weldability and sag resistance and its manufacturing method
EP1100975B1 (en) High conductivity aluminum fin alloy
JP2005254329A (en) Clad material, manufacturing method thereof and equipment for manufacturing clad material
JP2005220375A (en) High strength aluminum alloy fin material for heat exchanger, and its production method
CN113329842B (en) Aluminum brazing sheet for fluxless brazing
EP1250468B8 (en) Process of producing aluminum fin alloy
JP2019094517A (en) Aluminum alloy material for monolayer heating joint, excellent in deformation resistance
JP3916577B2 (en) Aluminum alloy and fin material for twin belt casting fins
JP5537256B2 (en) Aluminum alloy brazing sheet
JP2005002383A (en) Method of producing high strength aluminum alloy fin material for heat exchanger
JP5545798B2 (en) Method for producing aluminum alloy fin material for heat exchanger
CA2440691A1 (en) Dc cast ai alloy
JP2017025378A (en) Al-Mn BASED ALUMINUM ALLOY MATERIAL FOR HEAT EXCHANGER AND METHOD FOR PRODUCING THE SAME
JP5466080B2 (en) Aluminum alloy brazing sheet
CN110139940B (en) Aluminum alloy fin material for heat exchanger and manufacturing method thereof
JP5576662B2 (en) Aluminum alloy brazing sheet and method for producing aluminum alloy brazing sheet
WO2022176420A1 (en) Aluminum alloy sheet and method for producing same, and heat exchanger
JP7429153B2 (en) Aluminum alloy clad material
JP5959191B2 (en) Brazing sheet for flux-free brazing and method for producing the same
JP5506732B2 (en) High strength aluminum alloy fin material for heat exchanger
CN117139911A (en) Single-layer aluminum alloy fin material with brazing function

Legal Events

Date Code Title Description
A625 Written request for application examination (by other person)

Free format text: JAPANESE INTERMEDIATE CODE: A625

Effective date: 20050614

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061113

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061121

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061205

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070109

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070206

R150 Certificate of patent or registration of utility model

Ref document number: 3916577

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110216

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120216

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120216

Year of fee payment: 5

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120216

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120216

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130216

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130216

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140216

Year of fee payment: 7

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees