JP2006176850A - High-strength aluminum alloy fin material for heat exchanger having excellent erosion resistance, and heat exchanger - Google Patents

High-strength aluminum alloy fin material for heat exchanger having excellent erosion resistance, and heat exchanger Download PDF

Info

Publication number
JP2006176850A
JP2006176850A JP2004372924A JP2004372924A JP2006176850A JP 2006176850 A JP2006176850 A JP 2006176850A JP 2004372924 A JP2004372924 A JP 2004372924A JP 2004372924 A JP2004372924 A JP 2004372924A JP 2006176850 A JP2006176850 A JP 2006176850A
Authority
JP
Japan
Prior art keywords
fin material
heat exchanger
strength
alloy
composition ratio
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004372924A
Other languages
Japanese (ja)
Other versions
JP4566729B2 (en
Inventor
Shu Kuroda
周 黒田
Kazuyuki Sakata
和幸 坂田
Masazo Asano
雅三 麻野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MA Aluminum Corp
Original Assignee
Mitsubishi Aluminum Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Aluminum Co Ltd filed Critical Mitsubishi Aluminum Co Ltd
Priority to JP2004372924A priority Critical patent/JP4566729B2/en
Publication of JP2006176850A publication Critical patent/JP2006176850A/en
Application granted granted Critical
Publication of JP4566729B2 publication Critical patent/JP4566729B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide an aluminum alloy fin material for a heat exchanger having excellent erosion resistance and further having high strength, and to provide a heat exchanger. <P>SOLUTION: The high-strength aluminum alloy fin material for the heat exchanger having excellent erosion resistance containing, by mass, 0.0001 to 1.0% Sc, 0.005 to 3.0% Mn and 0.01 to 8.0% Zn, and further comprising one or more elements selected from 0.05 to 2.5% Fe, 0.05 to 1.5% Si, 0.05 to 0.8% Cu, 0.01 to 0.5% Mg and 0.001 to 0.3% Zr, and the balance Al with inevitable impurities, is adopted. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、耐エロージョン性に優れた熱交換器用の高強度アルミニウム合金フィン材および熱交換器に関する。   The present invention relates to a high-strength aluminum alloy fin material and a heat exchanger for heat exchangers excellent in erosion resistance.

一般に、自動車のラジエータ等に用いられている熱交換器においては、チューブ材やヘッダープレートにクラッド材が使用されている。このクラッド材は、例えば、AA3003合金などのAl−Mn合金芯材の一面に、AA4343ろう材やAA4045ろう材が貼り合わされるとともに、他面にAA7072合金が貼り合わされて構成されている。
また、熱交換器の剛性を高めるためにコア最外部に取付けられるサイドサポート材には、A3003合金の片面にAl−Si系合金ろう材を貼り合わせたクラッド材が使用されている。
更に、熱交換器用のフィン材は、チューブ材のAl−Si系合金ろう材によってチューブ材にろう付されるものであり、伝熱面積を広くすることで熱交換効率の向上を図っている。このようなフィン材には、AA1050合金などの純Al系合金や、AA3003合金などのAl−Mn合金やAl−Fe系合金などが用いられている。
In general, in a heat exchanger used for an automobile radiator or the like, a clad material is used for a tube material or a header plate. For example, the clad material is configured such that an AA4343 brazing material or an AA4045 brazing material is bonded to one surface of an Al-Mn alloy core material such as an AA3003 alloy, and an AA7072 alloy is bonded to the other surface.
In addition, a clad material in which an Al-Si alloy brazing material is bonded to one side of an A3003 alloy is used as a side support material attached to the outermost part of the core in order to increase the rigidity of the heat exchanger.
Further, the fin material for the heat exchanger is brazed to the tube material by the Al—Si alloy brazing material of the tube material, and the heat exchange area is widened to improve the heat exchange efficiency. As such a fin material, a pure Al alloy such as AA1050 alloy, an Al-Mn alloy such as AA3003 alloy, an Al-Fe alloy, or the like is used.

ところで、近年の自動車の軽量化により自動車用の熱交換器もまた軽量化が求められており、これに対応すべくフィン材の薄肉化、高強度化が求められている。一方、フィン材の薄肉化により発生する問題としては、溶融したろうによる侵食(エロージョン)がある。エロージョンによってフィン材などに貫通孔が生じてしまうと、熱交換器として必要な強度が得られなくなったり、ひいては熱交換器としての構造が保てなくなったりするなどの問題が生じていた。   By the way, with the recent reduction in weight of automobiles, heat exchangers for automobiles are also required to be reduced in weight, and in order to cope with this, the fin material is required to be thinner and higher in strength. On the other hand, as a problem caused by thinning of the fin material, there is erosion due to molten wax. If a through-hole is generated in the fin material or the like due to erosion, there is a problem that the strength required for the heat exchanger cannot be obtained, and that the structure as the heat exchanger cannot be maintained.

前述のように、フィン材にはAA1050合金、AA3003合金などが用いられている。また、高強度化を達成するために、例えば、チューブ材やヘッダープレート、サイドサポート材、あるいは両面にろう材を貼り合わせてなるクラッドフィン材等には、Al−Mn−Si−Cu系合金芯材が使用されたり、Al−Zn−Mg系犠牲材を貼り合わせた高強度材が開発されている。
また、ベアフィン材用のアルミニウム合金として、Mn:0.8−1.3%、Si:0.2−0.7%からなる組成で熱間圧延温度や中間焼鈍温度あるいは最終冷間圧延率を規定した合金も開発されており、耐垂下性や犠牲陽極効果に優れているとのことである(特許文献1)。
このほか、MnやSiを含有した合金には、特許文献2−5に記載された合金があり、強度や耐垂下性に優れると言われている。
特許第2786640号公報 特開平11−256261号公報 特開平4−247841号公報 特開平5−43999号公報 特開平4−371369号公報
As described above, AA1050 alloy, AA3003 alloy or the like is used for the fin material. In order to achieve high strength, for example, a tube material, a header plate, a side support material, or a clad fin material in which a brazing material is bonded to both surfaces, an Al-Mn-Si-Cu alloy core material is used. Have been used, and high strength materials in which an Al—Zn—Mg-based sacrificial material is bonded have been developed.
Moreover, as an aluminum alloy for bare fin materials, a hot rolling temperature, an intermediate annealing temperature, or a final cold rolling rate with a composition of Mn: 0.8-1.3% and Si: 0.2-0.7%. The specified alloy has also been developed, and is said to be excellent in droop resistance and sacrificial anode effect (Patent Document 1).
In addition, as an alloy containing Mn or Si, there is an alloy described in Patent Document 2-5, which is said to be excellent in strength and sag resistance.
Japanese Patent No. 2786640 Japanese Patent Laid-Open No. 11-256261 JP-A-4-247784 JP-A-5-43999 JP-A-4-371369

しかし、従来の熱交換器用のアルミニウム合金材料では、強度が不足したり、耐エロージョン性が不足するものであった。
本発明は、上記事情に鑑みてなされたものであって、耐エロージョン性に優れるとともに高強度な熱交換器用のアルミニウム合金フィン材および熱交換器を提供することを目的とする。
However, conventional aluminum alloy materials for heat exchangers are insufficient in strength or erosion resistance.
This invention is made | formed in view of the said situation, Comprising: It aims at providing the aluminum alloy fin material and heat exchanger for heat exchangers which are excellent in erosion resistance and are high intensity | strength.

上記の目的を達成するために、本発明は以下の構成を採用した。
本発明の耐エロージョン性に優れた熱交換器用の高強度アルミニウム合金フィン材は、質量%で、Sc:0.0001%以上1.0%以下、Mn:0.005%以上3.0以下、Zn:0.01%以上8.0%以下を含有し、更に、Fe:0.05%以上2.5%以下、Si:0.05%以上1.5%以下、Cu:0.05%以上0.8%以下、Mg:0.01%以上0.5%以下、Zr:0.001%以上0.3%以下、のうちの1種または2種以上の元素を含有し、残部がAlおよび不可避的不純物からなることを特徴とする。
また、上記のフィン材においては、更に、Ti:0.01%以上0.25%以下、Cr:0.01%以上0.1%以下、V:0.01%以上0.1%以下、Ni:0.01%以上2.0%以下、のうちの1種または2種以上の元素を含有することが好ましい。
また、本発明の熱交換器は、先のいずれかに記載のフィン材が備えられていることを特徴とする。
In order to achieve the above object, the present invention employs the following configuration.
The high-strength aluminum alloy fin material for heat exchangers excellent in erosion resistance of the present invention is, by mass%, Sc: 0.0001% to 1.0%, Mn: 0.005% to 3.0%, Zn: 0.01% to 8.0%, Fe: 0.05% to 2.5%, Si: 0.05% to 1.5%, Cu: 0.05% 0.8% or less, Mg: 0.01% or more and 0.5% or less, Zr: 0.001% or more and 0.3% or less, containing one or more elements, and the balance being It consists of Al and inevitable impurities.
In the fin material, Ti: 0.01% to 0.25%, Cr: 0.01% to 0.1%, V: 0.01% to 0.1%, Ni: It is preferable to contain one or more elements of 0.01% or more and 2.0% or less.
Moreover, the heat exchanger of this invention is equipped with the fin material in any one of the above, It is characterized by the above-mentioned.

上記のアルミニウム合金フィン材によれば、添加されたScがろう付け熱処理によって合金組織中に固溶するとともに、Scの一部がAlScなる組成の金属間化合物を形成してこの微細なAlScが時効析出するので、フィン材の強度を高めることができる。また、ろう付け熱処理の昇温過程において再結晶粒径が粗大化して結晶粒界が減少し、これにより溶融ろうによるエロージョンの発生を抑制することができる。
また、添加されたMnが他の合金成分と化合して金属間化合物を形成、晶出若しくは析出するので、フィン材の強度を高めることができる。
更に、Znを添加することにより、Scの添加によって貴側に上昇した電位を卑にすることができ、チューブ材等とともに当該フィン材を用いて熱交換器を組み立てた場合にフィン材を他の部材の犠牲陽極材として用いることができる。
According to the aluminum alloy fin material, the added Sc is dissolved in the alloy structure by brazing heat treatment, and a part of Sc forms an intermetallic compound having a composition of Al 3 Sc to form this fine Al Since 3 Sc age-precipitates, the strength of the fin material can be increased. In addition, the recrystallized grain size becomes coarse in the temperature rising process of the brazing heat treatment, and the crystal grain boundaries are reduced, thereby suppressing the occurrence of erosion due to melting brazing.
Further, since the added Mn combines with other alloy components to form, crystallize or precipitate an intermetallic compound, the strength of the fin material can be increased.
Furthermore, by adding Zn, the potential raised to the noble side by the addition of Sc can be reduced, and when the heat exchanger is assembled using the fin material together with the tube material or the like, the fin material It can be used as a sacrificial anode material for members.

本発明によれば、耐エロージョン性に優れるとともに高強度な熱交換器用のアルミニウム合金フィン材および熱交換器を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, it is excellent in erosion resistance, and can provide the high intensity | strength aluminum alloy fin material for heat exchangers, and a heat exchanger.

以下、本発明の実施形態について詳細に説明する。
本実施形態の耐エロージョン性に優れた熱交換器用の高強度アルミニウム合金フィン材(以下、フィン材と表記)は、ScとMnとZnとが含有され、更に、Fe、Si、Cu、Mg、Zr、のうちの1種または2種以上の元素が含有され、更に残部がAlおよび不可避的不純物が含有されて構成されている。また必要に応じて、Ti、Cr、V、Niのうちの1種または2種以上の元素が含有されていても良い。
以下、フィン材の合金組成の限定理由について説明する。
Hereinafter, embodiments of the present invention will be described in detail.
The high-strength aluminum alloy fin material (hereinafter referred to as fin material) for heat exchangers excellent in erosion resistance according to the present embodiment contains Sc, Mn, and Zn, and further includes Fe, Si, Cu, Mg, One or two or more elements of Zr are contained, and the balance is further comprised of Al and inevitable impurities. Moreover, 1 type, or 2 or more types of elements among Ti, Cr, V, and Ni may be contained as needed.
Hereinafter, the reason for limiting the alloy composition of the fin material will be described.

「Sc」
スカンジウム(Sc)はフィン材の必須元素であり、ろう材熱処理の際に合金組織中に固溶してフィン材の機械的強度を向上させる。また、一部がAlScなる組成の金属間化合物を形成してこの微細なAlScが時効析出してフィン材の機械的強度を向上させる。更に、ろう付熱処理の昇温過程においてこのScの作用により再結晶粒径が粗大化するため、溶融ろうによる侵食(エロージョン)が抑制される。Scの組成比は質量%で0.0001%以上1.0%以下の範囲が好ましく、0.0001%以上0.2%未満の範囲がより好ましい。Scの組成比が0.0001%未満になると機械的強度の向上効果およびエロージョンの抑制効果が得られない。またScの組成比が1.0%を越えると機械的強度の向上効果およびエロージョンの抑制効果が飽和してしまい、添加する効果が得られない。更に、Scの添加量が0.2%以上になると、冷間圧延時にクラックが発生しやすくなる等の問題が発生する。
"Sc"
Scandium (Sc) is an essential element of the fin material, and is dissolved in the alloy structure during the heat treatment of the brazing material to improve the mechanical strength of the fin material. Further, an intermetallic compound having a composition of part Al 3 Sc is formed, and the fine Al 3 Sc is aged to improve the mechanical strength of the fin material. Furthermore, since the recrystallized grain size becomes coarse due to the action of Sc in the temperature rising process of the brazing heat treatment, erosion due to the molten brazing is suppressed. The composition ratio of Sc is preferably in the range of 0.0001% to 1.0% by mass%, and more preferably in the range of 0.0001% to less than 0.2%. If the Sc composition ratio is less than 0.0001%, the effect of improving mechanical strength and the effect of suppressing erosion cannot be obtained. On the other hand, when the composition ratio of Sc exceeds 1.0%, the effect of improving the mechanical strength and the effect of suppressing erosion are saturated, and the effect of adding cannot be obtained. Furthermore, when the added amount of Sc is 0.2% or more, there arises a problem that cracks are likely to occur during cold rolling.

「Mn」
マンガン((Mn)はScとともにフィン材の必須元素であり、他の合金成分(具体的にはSi)と化合してAl−Mn−Si化合物を形成し、この金属間化合物が晶出若しくは析出されて、ろう付け後のフィン材の機械的強度が向上される。また、金属間化合物の形成によって合金組織中のSiの固溶度が相対的に低下し、これによりフィン材の融点を向上させることができ、フィン材の耐熱性を高めることができる。Mnの組成比は質量%で0.005%以上3.0%以下の範囲が好ましく、0.3%以上2.0%以下の範囲がより好ましい。Mnの組成比が0.005%未満になると機械的強度の向上効果が得られない。またMnの組成比が3.0%を越えると機械的強度が高くなりすぎて鋳造性や圧延加工性が低下するので好ましくない。
"Mn"
Manganese ((Mn) is an essential element of the fin material together with Sc, and combines with other alloy components (specifically, Si) to form an Al—Mn—Si compound, which is crystallized or precipitated. As a result, the mechanical strength of the fin material after brazing is improved, and the solid solubility of Si in the alloy structure is relatively lowered due to the formation of intermetallic compounds, thereby improving the melting point of the fin material. The composition ratio of Mn is preferably 0.005% or more and 3.0% or less, and preferably 0.3% or more and 2.0% or less. If the Mn composition ratio is less than 0.005%, an effect of improving the mechanical strength cannot be obtained, and if the Mn composition ratio exceeds 3.0%, the mechanical strength becomes too high and casting is performed. Is preferable because of its reduced properties and rolling processability. There.

「Zn」
亜鉛(Zn)はSc及びMnとともにフィン材の必須元素であり、Scの添加によって上昇した電位を卑にさせて、フィン材をチューブ材やクラッド材の芯材に対する犠牲陽極材として利用することを可能にする。Znの組成比は質量%で0.01%以上8.0%以下の範囲が好ましく、0.2%以上8.0%以下の範囲がより好ましい。Znの組成比が0.01%未満になると、電位を卑にする効果が得られない。またZnの組成比が8.0%を越えると、フィン材の自己耐食性が低下してしまう。一方、Znの組成比を0.2%以上にすることで、より十分に電位を卑にできる。
"Zn"
Zinc (Zn) is an essential element of the fin material together with Sc and Mn. The potential increased by the addition of Sc is reduced, and the fin material is used as a sacrificial anode material for the core material of the tube material or the clad material. enable. The composition ratio of Zn is preferably in the range of 0.01% to 8.0% by mass%, and more preferably in the range of 0.2% to 8.0%. When the composition ratio of Zn is less than 0.01%, the effect of lowering the potential cannot be obtained. On the other hand, if the Zn composition ratio exceeds 8.0%, the self-corrosion resistance of the fin material is lowered. On the other hand, when the composition ratio of Zn is 0.2% or more, the potential can be sufficiently reduced.

「Fe」
鉄(Fe)は、Al、Mn、Siとともに金属間化合物を形成して合金組織中に晶出または析出し、ろう付後のフィン材の強度を向上させる。金属間化合物としては、Al−Mn−Fe、Al−Fe−Si、Al−Mn−Fe−Si系化合物を例示できる。また、これらの金属間化合物の形成によって、合金組織中におけるMnやSiの固溶度を低下させ、フィン材の融点を向上させることができる。Feの組成比は質量%で0.05%以上2.5%以下の範囲が好ましく、0.2%以上1.8%以下の範囲がより好ましい。Feの組成比が0.05%未満では、フィン材の強度向上及び融点上昇の効果が得られない。またFeの組成比が2.5%を越えると、フィン材の腐食速度が高くなり、また巨大な晶出物が出現してフィン材の鋳造性や圧延性が低下する。
"Fe"
Iron (Fe) forms an intermetallic compound with Al, Mn, and Si and crystallizes or precipitates in the alloy structure, thereby improving the strength of the fin material after brazing. Examples of intermetallic compounds include Al—Mn—Fe, Al—Fe—Si, and Al—Mn—Fe—Si compounds. Moreover, the formation of these intermetallic compounds can reduce the solid solubility of Mn and Si in the alloy structure and improve the melting point of the fin material. The composition ratio of Fe is preferably in the range of 0.05% to 2.5% by mass%, and more preferably in the range of 0.2% to 1.8%. If the composition ratio of Fe is less than 0.05%, the effects of improving the strength of the fin material and increasing the melting point cannot be obtained. On the other hand, if the Fe composition ratio exceeds 2.5%, the corrosion rate of the fin material is increased, and a large crystallized product appears to deteriorate the castability and rollability of the fin material.

「Si」
ケイ素(Si)は、AlおよびMnとともに、金属間化合物であるAl−Mn−Si化合物を形成して合金組織中に析出し、ろう付後のフィン材の強度を向上させる。またSiは、その一部が合金組織中に固溶してフィン材の強度を向上させる。Siの組成比は質量%で0.05%以上1.5%以下の範囲が好ましく、0.4%以上1.2%以下の範囲がより好ましい。Siの組成比が0.05%未満では、フィン材の強度向上の効果が得られない。またSiの組成比が1.5%を越えると、フィン材の融点が低下してろう付け時に溶融してしまい、更にフィン材の熱伝導性を低下させる。
"Si"
Silicon (Si), together with Al and Mn, forms an Al—Mn—Si compound, which is an intermetallic compound, and precipitates in the alloy structure, improving the strength of the fin material after brazing. A part of Si is dissolved in the alloy structure to improve the strength of the fin material. The composition ratio of Si is preferably in the range of 0.05% to 1.5% by mass%, and more preferably in the range of 0.4% to 1.2%. If the Si composition ratio is less than 0.05%, the effect of improving the strength of the fin material cannot be obtained. On the other hand, if the Si composition ratio exceeds 1.5%, the melting point of the fin material is lowered and melted at the time of brazing, and the thermal conductivity of the fin material is further lowered.

「Cu」
銅(Cu)は、合金組織中に固溶してフィン材の強度を向上させる。Cuの組成比は質量%で0.05%以上0.8%以下の範囲が好ましく、0.07%以上0.2%以下の範囲がより好ましい。Cuの組成比が0.05%未満では、フィン材の強度向上の効果が得られない。またCuの組成比が0.8%を越えると、フィン材の融点が低下してろう付け時に溶融してしまう。
"Cu"
Copper (Cu) is dissolved in the alloy structure to improve the strength of the fin material. The composition ratio of Cu is preferably in the range of 0.05% to 0.8% by mass%, and more preferably in the range of 0.07% to 0.2%. If the composition ratio of Cu is less than 0.05%, the effect of improving the strength of the fin material cannot be obtained. On the other hand, if the Cu composition ratio exceeds 0.8%, the melting point of the fin material is lowered and melts during brazing.

「Mg」
マグネシウム(Mg)は、Cuと同様に合金組織中に固溶してフィン材の強度を向上させる。Mgの組成比は質量%で0.01%以上0.5%以下の範囲が好ましく、0.05%以上0.2%以下の範囲がより好ましい。Mgの組成比が0.01%未満では、フィン材の強度向上の効果が得られない。またMgの組成比が0.5%を越えると、フィン材の融点が低下してろう付け時に溶融してしまうとともに、Mgとフラックスとの反応によりろう付け性が低下する。
"Mg"
Magnesium (Mg), like Cu, is dissolved in the alloy structure to improve the strength of the fin material. The composition ratio of Mg is preferably in the range of 0.01% to 0.5% by mass%, and more preferably in the range of 0.05% to 0.2%. If the composition ratio of Mg is less than 0.01%, the effect of improving the strength of the fin material cannot be obtained. On the other hand, if the Mg composition ratio exceeds 0.5%, the melting point of the fin material is lowered and melted at the time of brazing, and the brazing property is lowered due to the reaction between Mg and the flux.

「Zr」
ジルコニウム(Zr)は、ろう付の際の加熱によって微細な金属間化合物として分散析出して強度を向上させる。また、Scの添加効果を一層を高める作用がある。Zrの組成比は質量%で0.001%以上0.3%以下の範囲が好ましく、0.05%以上0.15%以下の範囲がより好ましい。Zrの組成比が0.001%未満では、フィン材の強度向上の効果が得られない。またZrの組成比が0.3%を越えると、フィン材の強度が高くなりすぎて成形性が低下したり、自己耐食性が低下したり、熱伝導性が低下したりする。
"Zr"
Zirconium (Zr) is dispersed and precipitated as a fine intermetallic compound by heating at the time of brazing and improves the strength. Moreover, there exists an effect | action which raises the addition effect of Sc further. The composition ratio of Zr is preferably in the range of 0.001% to 0.3% by mass%, and more preferably in the range of 0.05% to 0.15%. If the composition ratio of Zr is less than 0.001%, the effect of improving the strength of the fin material cannot be obtained. On the other hand, if the composition ratio of Zr exceeds 0.3%, the strength of the fin material becomes so high that the moldability is lowered, the self-corrosion resistance is lowered, or the thermal conductivity is lowered.

以上のように、Fe、Si、Cu、Mg、Zrはいずれも、フィン材の強度を向上させる元素なので、これらの内の1種または2種以上の元素を添加すれば良い。   As described above, since Fe, Si, Cu, Mg, and Zr are all elements that improve the strength of the fin material, one or more of these elements may be added.

「Ti、Cr、V」
チタン(Ti)、クロム(Cr)、バナジウム(V)はいずれも、ろう付の際の加熱によって微細な金属間化合物として分散析出して強度を向上させる。Tiの組成比は質量%で0.01%以上0.25%以下の範囲が好ましく、0.05%以上0.15%以下の範囲がより好ましい。また、Crの組成比は質量%で0.01%以上0.1%以下の範囲が好ましく、0.02%以上0.07%以下の範囲がより好ましい。更に、Vの組成比は質量%で0.01%以上0.1%以下の範囲が好ましく、0.02%以上0.07%以下の範囲がより好ましい。各元素の組成比が下限未満になると、フィン材の強度向上の効果が得られない。また、各元素の組成比が上限を超えると、フィン材の強度が高くなりすぎて成形性が低下してしまう。
"Ti, Cr, V"
Titanium (Ti), chromium (Cr), and vanadium (V) are all dispersed and precipitated as fine intermetallic compounds by heating during brazing to improve strength. The composition ratio of Ti is preferably in the range of 0.01% to 0.25% by mass%, and more preferably in the range of 0.05% to 0.15%. Further, the Cr composition ratio is preferably in the range of 0.01% to 0.1% by mass%, and more preferably in the range of 0.02% to 0.07%. Furthermore, the composition ratio of V is preferably in the range of 0.01% to 0.1% by mass%, and more preferably in the range of 0.02% to 0.07%. If the composition ratio of each element is less than the lower limit, the effect of improving the strength of the fin material cannot be obtained. Moreover, when the composition ratio of each element exceeds the upper limit, the strength of the fin material becomes too high and the moldability is lowered.

「Ni」
ニッケル(Ni)は、金属間化合物として合金組織中に晶出または析出して、ろう付後のフィン材の強度を向上させる。Niの組成比は質量%で0.01%以上2.0%以下の範囲が好ましく、0.2%以上1.1%以下の範囲がより好ましい。Niが0、01%未満になると、フィン材の強度向上の効果が得られない。また、Niが2.0%を越えると、自己耐食性が低下する。
"Ni"
Nickel (Ni) crystallizes or precipitates in the alloy structure as an intermetallic compound, and improves the strength of the fin material after brazing. The composition ratio of Ni is preferably in the range of 0.01% to 2.0% by mass%, and more preferably in the range of 0.2% to 1.1%. When Ni is less than 0, 01%, the effect of improving the strength of the fin material cannot be obtained. On the other hand, if Ni exceeds 2.0%, the self-corrosion resistance decreases.

以上のように、Ti,Cr,V及びNiはいずれも、フィン材の強度を向上させる元素なので、必要に応じてこれらの内の1種または2種以上の元素を添加すれば良い。   As described above, since Ti, Cr, V, and Ni are all elements that improve the strength of the fin material, one or more of these elements may be added as necessary.

本実施形態のフィン材は、例えば、上記適正範囲の組成を有するアルミニウム合金を溶解、鋳造してインゴットを得、このインゴットに対して均質化を施す。続いて、熱間圧延、冷間圧延、中間焼鈍および冷間圧延を行なってフィン材とする。焼鈍温度は300℃ないし450℃程度が好ましい。また最終冷間圧延率は10%ないし40%程度が好ましい。また連続鋳造法を採用しても良い。   For example, the fin material of the present embodiment is obtained by melting and casting an aluminum alloy having a composition in the appropriate range to obtain an ingot, and homogenizing the ingot. Subsequently, hot rolling, cold rolling, intermediate annealing, and cold rolling are performed to obtain a fin material. The annealing temperature is preferably about 300 ° C to 450 ° C. The final cold rolling rate is preferably about 10% to 40%. Moreover, you may employ | adopt a continuous casting method.

図1には、本発明の実施形態である自動車用のラジエータ(熱交換器)の分解斜視図を示す。図1において、符号11はフィン(フィン材)、符号12はチューブ、符号13はヘッダー、符号14はサイドサポートである。図1に示すラジエータは、フッ化物系フラックスを用いたろう付接合によってチューブ12、フィン11およびヘッダー13が各々一体化され、更に樹脂タンクが機械的接合(かしめ加工)により取り付けられて製造される。ろう付け時の熱処理温度は、590℃ないし610℃程度が好ましく、保持時間は3分ないし10分程度が好ましい。このときの熱処理によって、フィン材の合金組織中に各種の金属間化合物が生成するので、フィン材の強度を向上できるとともに耐エロージョン特性を向上させることができる。   FIG. 1 is an exploded perspective view of an automobile radiator (heat exchanger) according to an embodiment of the present invention. In FIG. 1, reference numeral 11 is a fin (fin material), reference numeral 12 is a tube, reference numeral 13 is a header, and reference numeral 14 is a side support. The radiator shown in FIG. 1 is manufactured by integrating the tube 12, the fin 11 and the header 13 by brazing joint using a fluoride-based flux, and further attaching a resin tank by mechanical joining (caulking). The heat treatment temperature during brazing is preferably about 590 ° C. to 610 ° C., and the holding time is preferably about 3 minutes to 10 minutes. By the heat treatment at this time, various intermetallic compounds are generated in the alloy structure of the fin material, so that the strength of the fin material can be improved and the erosion resistance can be improved.

下記表1に示す成分組成のアルミニウム合金を溶解鋳造してインゴットを製造し、このインゴットを均質化処理した後、熱間圧延及び冷間圧延を行い、更に昇温速度2℃/分、焼鈍温度350℃、焼鈍時間60分の条件で中間焼鈍を行い、続いて最終冷間圧延率が35%となる条件で冷間圧延を行なって、厚み0.08mmの圧延材(フィン材)を作製した。   An aluminum alloy having the composition shown in Table 1 below is melt-cast to produce an ingot. After homogenizing the ingot, hot rolling and cold rolling are performed, and the heating rate is 2 ° C./min, and the annealing temperature. Intermediate annealing was performed under the conditions of 350 ° C. and annealing time of 60 minutes, and then cold rolling was performed under the condition that the final cold rolling rate was 35%, thereby producing a rolled material (fin material) having a thickness of 0.08 mm. .

得られたフィン材について、耐エロージョン性の評価を行った。対エロージョン評価は、3003合金からなる心材の片面にAl−Si系ろう材(Siの含有率10%)が貼り合わされてなるブレージングシートに、コルゲート加工したフィン材を組み付け、これにフラックスとしてK1−3AlF4−6を塗布した後、ろう付けに相当する熱処理(窒素ガス雰囲気中600℃で3分保持し、100℃/分で室温まで冷却)を行ない、その後、フィン材とブレージングシートの接合部分の断面観察を行なうことにより、ろうによるフィン材の最大侵食深さについて測定した。
また、フィン材の強度は、フィン材に対して、ろう付けに相当する熱処理(600℃、3分)を行ない、その後、引張試験を行って評価した。
最大侵食深さおよび引張強度を表2に示す。
The obtained fin material was evaluated for erosion resistance. For erosion evaluation, corrugated fin material was assembled into a brazing sheet in which an Al—Si brazing material (Si content: 10%) was bonded to one side of a core material made of 3003 alloy, and K 1 was used as a flux. -3 After applying AlF 4-6 , heat treatment corresponding to brazing (holding at 600 ° C. for 3 minutes in a nitrogen gas atmosphere and cooling to room temperature at 100 ° C./minute) is performed, and then the fin material and brazing sheet The maximum erosion depth of the fin material by brazing was measured by observing the cross section of the joint.
The strength of the fin material was evaluated by performing a heat treatment (600 ° C., 3 minutes) corresponding to brazing on the fin material, and then performing a tensile test.
Table 2 shows the maximum erosion depth and tensile strength.

Figure 2006176850
Figure 2006176850

Figure 2006176850
Figure 2006176850

表2に示すように、本発明のフィン材は、比較例のフィン材と比べて、侵食深さが小さく、また引張強度にも優れていることがわかる。   As shown in Table 2, it can be seen that the fin material of the present invention has a smaller erosion depth and excellent tensile strength than the fin material of the comparative example.

図1は、本発明の実施形態である自動車用のラジエータ(熱交換器)を示す分解斜視図。FIG. 1 is an exploded perspective view showing an automotive radiator (heat exchanger) according to an embodiment of the present invention.

符号の説明Explanation of symbols

11…フィン(フィン材)、12…チューブ、13…ヘッダー、14…サイドサポート

11 ... Fin (fin material), 12 ... Tube, 13 ... Header, 14 ... Side support

Claims (3)

質量%で、Sc:0.0001%以上1.0%以下、Mn:0.005%以上3.0以下、Zn:0.01%以上8.0%以下を含有し、
更に、Fe:0.05%以上2.5%以下、Si:0.05%以上1.5%以下、Cu:0.05%以上0.8%以下、Mg:0.01%以上0.5%以下、Zr:0.001%以上0.3%以下、のうちの1種または2種以上の元素を含有し、残部がAlおよび不可避的不純物からなることを特徴とする耐エロージョン性に優れた熱交換器用の高強度アルミニウム合金フィン材。
Sc: 0.0001% or more and 1.0% or less, Mn: 0.005% or more and 3.0 or less, Zn: 0.01% or more and 8.0% or less,
Further, Fe: 0.05% to 2.5%, Si: 0.05% to 1.5%, Cu: 0.05% to 0.8%, Mg: 0.01% to 0. 5% or less, Zr: 0.001% or more and 0.3% or less, containing one or more elements, with the balance being made of Al and inevitable impurities, erosion resistance High-strength aluminum alloy fin material for excellent heat exchangers.
更に、Ti:0.01%以上0.25%以下、Cr:0.01%以上0.1%以下、V:0.01%以上0.1%以下、Ni:0.01%以上2.0%以下、のうちの1種または2種以上の元素を含有することを特徴とする請求項1に記載の耐エロージョン性に優れた熱交換器用の高強度アルミニウム合金フィン材。   Further, Ti: 0.01% to 0.25%, Cr: 0.01% to 0.1%, V: 0.01% to 0.1%, Ni: 0.01% to 2. The high-strength aluminum alloy fin material for heat exchangers with excellent erosion resistance according to claim 1, comprising one or more elements of 0% or less. 請求項1または請求項2に記載のフィン材を備えたことを特徴とする熱交換器。

A heat exchanger comprising the fin material according to claim 1.

JP2004372924A 2004-12-24 2004-12-24 High strength aluminum alloy fin material and heat exchanger for heat exchanger with excellent erosion resistance Expired - Fee Related JP4566729B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004372924A JP4566729B2 (en) 2004-12-24 2004-12-24 High strength aluminum alloy fin material and heat exchanger for heat exchanger with excellent erosion resistance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004372924A JP4566729B2 (en) 2004-12-24 2004-12-24 High strength aluminum alloy fin material and heat exchanger for heat exchanger with excellent erosion resistance

Publications (2)

Publication Number Publication Date
JP2006176850A true JP2006176850A (en) 2006-07-06
JP4566729B2 JP4566729B2 (en) 2010-10-20

Family

ID=36731215

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004372924A Expired - Fee Related JP4566729B2 (en) 2004-12-24 2004-12-24 High strength aluminum alloy fin material and heat exchanger for heat exchanger with excellent erosion resistance

Country Status (1)

Country Link
JP (1) JP4566729B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103060622A (en) * 2012-12-31 2013-04-24 江阴新仁科技有限公司 Method for producing Al-Mn-Zn-Sc aluminum alloy foil for automobile radiating fin by continuous roll casting
CN104233006A (en) * 2014-07-14 2014-12-24 江苏格林威尔金属材料科技有限公司 Novel aluminum alloy internal groove circular tube
CN105274405A (en) * 2015-11-04 2016-01-27 绍兴市质量技术监督检测院 Rare earth aluminum alloy and preparation method thereof
CN106282696A (en) * 2015-05-19 2017-01-04 沈阳万龙源冶金新材料科技有限公司 A kind of high-strength/tenacity aluminum alloy
WO2020064291A1 (en) 2018-09-24 2020-04-02 Aleris Rolled Products Germany Gmbh Aluminium alloy fin stock material
CN111534723A (en) * 2020-05-14 2020-08-14 宁波华源精特金属制品有限公司 Generator base

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11172355A (en) * 1997-12-11 1999-06-29 Mitsubishi Alum Co Ltd Al alloy fin material for heat exchanger excellent in erosion resistance and having high strength and high thermal conductivity
JP2000303132A (en) * 1999-04-20 2000-10-31 Kobe Steel Ltd Aluminum alloy brazing sheet excellent in erosion characteristic
JP2002256403A (en) * 2001-02-28 2002-09-11 Mitsubishi Alum Co Ltd Method of producing fin material for use in heat exchanger
JP2004176091A (en) * 2002-11-25 2004-06-24 Mitsubishi Alum Co Ltd High strength aluminum alloy fin material for automotive heat exchanger having excellent rollability, and its manufacturing method
JP2004277756A (en) * 2003-03-12 2004-10-07 Nikkei Techno Cast:Kk Aluminum alloy for fin by twin belt casting, and fin material

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11172355A (en) * 1997-12-11 1999-06-29 Mitsubishi Alum Co Ltd Al alloy fin material for heat exchanger excellent in erosion resistance and having high strength and high thermal conductivity
JP2000303132A (en) * 1999-04-20 2000-10-31 Kobe Steel Ltd Aluminum alloy brazing sheet excellent in erosion characteristic
JP2002256403A (en) * 2001-02-28 2002-09-11 Mitsubishi Alum Co Ltd Method of producing fin material for use in heat exchanger
JP2004176091A (en) * 2002-11-25 2004-06-24 Mitsubishi Alum Co Ltd High strength aluminum alloy fin material for automotive heat exchanger having excellent rollability, and its manufacturing method
JP2004277756A (en) * 2003-03-12 2004-10-07 Nikkei Techno Cast:Kk Aluminum alloy for fin by twin belt casting, and fin material

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103060622A (en) * 2012-12-31 2013-04-24 江阴新仁科技有限公司 Method for producing Al-Mn-Zn-Sc aluminum alloy foil for automobile radiating fin by continuous roll casting
CN103060622B (en) * 2012-12-31 2015-06-10 江阴新仁科技有限公司 Method for producing Al-Mn-Zn-Sc aluminum alloy foil for automobile radiating fin by continuous roll casting
CN104233006A (en) * 2014-07-14 2014-12-24 江苏格林威尔金属材料科技有限公司 Novel aluminum alloy internal groove circular tube
CN106282696A (en) * 2015-05-19 2017-01-04 沈阳万龙源冶金新材料科技有限公司 A kind of high-strength/tenacity aluminum alloy
CN105274405A (en) * 2015-11-04 2016-01-27 绍兴市质量技术监督检测院 Rare earth aluminum alloy and preparation method thereof
WO2020064291A1 (en) 2018-09-24 2020-04-02 Aleris Rolled Products Germany Gmbh Aluminium alloy fin stock material
CN112752856A (en) * 2018-09-24 2021-05-04 爱励轧制产品德国有限责任公司 Aluminum alloy fin blank
US20210310754A1 (en) * 2018-09-24 2021-10-07 Aleris Rolled Products Germany Gmbh Aluminium alloy fin stock material
CN111534723A (en) * 2020-05-14 2020-08-14 宁波华源精特金属制品有限公司 Generator base

Also Published As

Publication number Publication date
JP4566729B2 (en) 2010-10-20

Similar Documents

Publication Publication Date Title
JP4166613B2 (en) Aluminum alloy fin material for heat exchanger and heat exchanger formed by assembling the fin material
JP4702797B2 (en) Manufacturing method of aluminum alloy clad material excellent in surface bondability by brazing of sacrificial anode material surface
JP4623729B2 (en) Aluminum alloy clad material and heat exchanger excellent in surface bonding by brazing of sacrificial anode material surface
JP5079198B2 (en) Aluminum brazing alloy
JP4993440B2 (en) High strength aluminum alloy clad material for heat exchangers with excellent brazeability
JP4963627B2 (en) Aluminum brazing structure for heat exchanger, clad material used therefor, and method for producing aluminum brazing structure for heat exchanger
JP5441209B2 (en) Aluminum alloy heat exchanger with excellent corrosion resistance and durability
JP2006250413A (en) Aluminum alloy fin material for heat exchanger and heat exchanger
JP4807826B2 (en) Aluminum alloy clad material with excellent surface bonding by brazing sacrificial anode material
JP5279277B2 (en) Brazing sheet for tube material of heat exchanger, heat exchanger and manufacturing method thereof
JP5279278B2 (en) Brazing sheet for tube material of heat exchanger and method of manufacturing heat exchanger using the same
JP2005232506A (en) Aluminum alloy clad material for heat exchanger
JP4220411B2 (en) Aluminum alloy clad material for heat exchanger
JP4993439B2 (en) High strength aluminum alloy clad material for heat exchangers with excellent brazeability
JP5578702B2 (en) Aluminum alloy fin material for heat exchanger and heat exchanger
JP4566729B2 (en) High strength aluminum alloy fin material and heat exchanger for heat exchanger with excellent erosion resistance
JP2004017116A (en) Aluminum alloy brazing sheet for brazed pipe making tubes, and its producing method
JP2006176852A (en) High-strength aluminum alloy cladding material for heat exchanger having excellent erosion resistance, heat exchanger and method for producing high-strength aluminum alloy cladding material
JP2007146264A (en) Aluminum alloy fin material
JPH1088265A (en) Aluminum alloy fin material for heat exchanger, excellent in sacrificial anode effect as well as in strength after brazing
JP4263160B2 (en) Aluminum alloy clad material and heat exchanger tube and heat exchanger using the same
JP2004176091A (en) High strength aluminum alloy fin material for automotive heat exchanger having excellent rollability, and its manufacturing method
JP3916020B2 (en) Al alloy fin material for heat exchangers with high erosion resistance and high strength and high thermal conductivity
JP2006176851A (en) High-strength aluminum alloy plate material for heat exchanger having excellent erosion resistance, heat exchanger and method for producing high-strength aluminum alloy plate material
JP3753669B2 (en) Aluminum alloy composite for brazing

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20071212

Free format text: JAPANESE INTERMEDIATE CODE: A621

A977 Report on retrieval

Effective date: 20100721

Free format text: JAPANESE INTERMEDIATE CODE: A971007

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Effective date: 20100727

Free format text: JAPANESE INTERMEDIATE CODE: A01

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Effective date: 20100804

Free format text: JAPANESE INTERMEDIATE CODE: A61

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130813

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees