JP3775302B2 - Heat exchanger - Google Patents

Heat exchanger

Info

Publication number
JP3775302B2
JP3775302B2 JP2002014276A JP2002014276A JP3775302B2 JP 3775302 B2 JP3775302 B2 JP 3775302B2 JP 2002014276 A JP2002014276 A JP 2002014276A JP 2002014276 A JP2002014276 A JP 2002014276A JP 3775302 B2 JP3775302 B2 JP 3775302B2
Authority
JP
Japan
Prior art keywords
louver
dimension
fin
heat exchanger
condensed water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2002014276A
Other languages
Japanese (ja)
Other versions
JP2003214790A (en
Inventor
吉毅 加藤
栄一 鳥越
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=27651010&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JP3775302(B2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2002014276A priority Critical patent/JP3775302B2/en
Publication of JP2003214790A publication Critical patent/JP2003214790A/en
Application granted granted Critical
Publication of JP3775302B2 publication Critical patent/JP3775302B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/12Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element
    • F28F1/126Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element consisting of zig-zag shaped fins
    • F28F1/128Fins with openings, e.g. louvered fins

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Geometry (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
  • Air-Conditioning For Vehicles (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、熱交換器に関するもので、空調装置用の蒸発器や冷却器等の空気を冷却する熱交換器に適用して有効である。
【0002】
【従来の技術】
蒸発器や冷却器等の空気を冷却する熱交換器の一般的な構造は、図1に示すように、冷媒等の冷却媒体が流れるチューブ1と、チューブ1の外表面に接合された波状のフィン2とからなる熱交換コア部3を有して構成されており、フィン2の平面部2aには、図2(a)、(b)に示すように、温度境界層の厚さを小さくして空気とフィン2との間の伝熱を促進すべく、平面部2aの一部を鎧窓状に切り起こしたルーバ2cが形成されている。
【0003】
【発明が解決しようとする課題】
ところで、近年、熱交換器の小型化が切望されており、熱交換能力を低下させることなく熱交換器を小型にするには、フィンピッチを小さくする等して熱交換コア部の微細化を図って、空気との伝熱面積が減少することを防止しながら外形寸法を小さくする必要がある。そこで、発明者等は、熱交換コア部の微細化を図ったところ、以下のような問題が顕著になった。
【0004】
すなわち、空気を冷却すると凝縮水が発生して熱交換器の表面に凝縮水が付着するが、フィンピッチが十分に大きい場合には、熱交換器の表面に付着した凝縮水は、表面張力により比較的大きな水滴となって重力により下方側に流れて排水されるのに対して、フィンピッチが小さくなり微細化を進むと、水滴を形成することができる程度の大きさを有する空間を確保することができないため、毛細管現象により凝縮水が膜状に拡がってフィンに付着する。
【0005】
そして、この膜状の凝縮水は、水滴状の凝縮水に比べて流れ難いので、重力により下方側に流れず、図6(a)に示すように、フィン2に拡がるように溜まってしまう。
【0006】
このため、例えば空調装置等において、ユーザが送風量を増大させると、フィン2に拡がるように溜まっていた凝縮水が、図6(b)に示すように、風圧により風下側に集まるように流れていき、その集まった凝縮水が送風空気と共に風下側に飛び散ってしまう。
【0007】
なお、凝縮水は、図7に示すように、風上側で全体発生量の約70〜75%発生しており、送風量が小さいときには、前述のごとく、排水されることなくフィンに凝縮水が保持される。このため、送風量が小さい状態から大きくすると、多量の凝縮水が風下側に集まるので、凝縮水の飛び散りの問題が顕著となる。
【0008】
本発明は、上記点に鑑み、熱交換コア部の微細化を図りつつ、凝縮水の飛び散りを抑制することを目的とする。
【0009】
【課題を解決するための手段】
本発明は、上記目的を達成するために、請求項1に記載の発明では、空気を冷却することにより凝縮水が発生する空気冷却用の熱交換器であって、
内部に空気冷却用の流体が流れるチューブ(1)と、
チューブ(1)の外表面に設けられ、平面部(2a)と隣り合う平面部(2a)とを繋ぐ屈曲部(2b)を有して波状に形成されたフィン(2)を備え、
平面部(2a)に鎧窓状のルーバ(2c)が形成されており、
フィン(2)のピッチ寸法(Fp)は3mm以下であり、
さらに、ルーバ(2c)の先端と、このルーバ(2c)が形成された平面部(2a)と隣り合う平面部(2a)に形成されたルーバ(2c)の先端との間の寸法であるルーバ列間距離(FLp)は、0.86mm以上であることを特徴とする。
【0010】
これにより、後述する図4に示すように、熱交換コア部の微細化を図りつつ、凝縮水の飛び散りを抑制することができる。
【0011】
請求項2に記載の発明では、請求項1に記載の熱交換器において、ルーバ(2c)のピッチ寸法(Lp)は0.5mm以上、1mm以下であることを特徴とする。
【0012】
これにより、後述する図4に示すように、熱交換コア部の微細化を図りつつ、凝縮水の飛び散りを抑制することができる。
【0014】
請求項に記載の発明では、請求項1または2に記載の熱交換器において、チューブ(1)とフィン(2)とを備える熱交換部(3)の外形寸法のうち、空気の流通方向と平行な部位の寸法(D)は50mm以下であり、かつ、フィン(2)の高さ寸法(h)は7mm以下であることを特徴とする。
【0015】
これにより、後述する図4に示すように、熱交換コア部の微細化を図りつつ、凝縮水の飛び散りを抑制することができる。
【0017】
因みに、上記各手段の括弧内の符号は、後述する実施形態に記載の具体的手段との対応関係を示す一例である。
【0018】
【発明の実施の形態】
本実施形態は、本発明に係る熱交換器を車両用空調装置の蒸発器に適用したものであって、その構造は、「従来の技術」の欄で述べたものと同じである。
【0019】
具体的には、図1に示すように、冷媒が流れるチューブ1、及びチューブの外表面に接合された波状のフィン2等からなる熱交換コア部3、並びにチューブ1の長手方向端部に設けられて各チューブ1と連通するヘッダタンク4等を有して構成されたものである。
【0020】
なお、チューブ1、フィン2及びヘッダタンク4は、全てアルミニウム合金製であり、これら1、2、4はろう付けにて一体化されている。
【0021】
また、フィン2は、空気の流通方向から見て、図2(a)に示すように、平面部2aと隣り合う平面部2aとを繋ぐ屈曲部2bを有して矩形波状に形成されたコルゲートフィンであり、平面部2aには、図2(b)に示すように、平面部2aを切り起こすことにより鎧窓状のルーバ2cが一体形成されている。
【0022】
そして、本実施形態に係る蒸発器は、以下の諸元を有することを特徴としている。因みに、括弧内の数字は、本実施形態で採用した具体的な寸法値である。
【0023】
▲1▼熱交換コア部3の厚み寸法Dは50mm以下(38mm)
▲2▼フィン2の高さ寸法hは7mm以下(5mm)
▲3▼フィン2のピッチ寸法Fpは3mm以下(2.6mm)
▲4▼ルーバ2cのピッチ寸法Lpは0.5mm以上、1mm以下(0.8mm)
▲5▼ルーバ列間距離FLpは0.86mm以上(0.86mm)
但し、熱交換コア部3の厚み寸法Dとは、図2(b)に示すように、熱交換コア部3の外形寸法のうち、空気の流通方向と平行な部位の最大寸法を言い、フィン2の高さ寸法hとは、図2(a)に示すように、波状に形成されたフィン2の高低差、つまり波の振幅に相当する寸法を言う。
【0024】
また、フィン2のピッチ寸法Fpとは、波状に形成されたフィン2の1周期分の長さ、つまり波の波長に相当する寸法を言い、ルーバ2cのピッチ寸法Lpとは、図3に示すように、1枚のルーバ2cのうち空気流れ上流端と空気流れ下流端との距離を言い、隣り合うルーバ2c間の中心間距離に等しい。
【0025】
また、ルーバ列間距離FLpとは、ルーバ2cの先端と、このルーバ2cが形成された平面部2aと隣り合う平面部2aに形成されたルーバ2cの先端との間の寸法を言う。
【0026】
なお、本実施形態では、Fp/2−Lp×sin(La)をルーバ列間距離FLpとして採用している。Laはルーバ2cの平面部2aに対する傾斜角度を示す。
【0027】
次に、本実施形態の作用効果を述べる。
【0028】
図4(a)は、熱交換コア部3の厚み寸法Dを38mmとし、熱交換コア部3を空気の流通方向から見たときのコア高さHを211mmとし、熱交換コア部3を空気の流通方向から見たときのコア幅寸法280mmとし、凝縮水の接触角θ(図4(b)参照)が45°±5°となるように表面に劣化処理を施し、フィン2のピッチ寸法Fpを2.4〜3.5mmとしたときの、ルーバ列間距離FLpとフィン2に保持される保水量及び飛び散り開始風速との関係を示す試験結果である。
【0029】
因みに、熱交換コア部3の表面は、通常、排水性の向上させるべく、樹脂により親水性コーティングがされているが、経時的には親水性が劣化し、最終的には、接触角θが約40°となることが経験的に判明している。
【0030】
そして、図4(a)から明らかなように、ルーバ列間距離FLpが0.86mm以上となると、保水量が激減するので、ルーバ列間距離FLpが0.86mm以上とすれば、凝縮水が飛び散ることを未然に防止することができる。
【0031】
また、ルーバ列間距離FLpが0.86mm以上において、凝縮水が飛び散らせるには、風速を3.5m/s以上(風量換算で600m3/h以上)とする必要があるので、風量が増大しても、実用上、凝縮水が飛び散ることはない。
【0032】
なお、フィン2の高さ寸法h、すなわちチューブ1間寸法が変化すると、保水量及び飛び散り開始風速の絶対値が多少変化するものの、ルーバ列間距離FLpに対する保水量及び飛び散り開始風速の増減傾向は図4に示す傾向をほぼ同じである。したがって、フィン2のピッチ寸法Fpを3mm以下として、ルーバ列間距離FLpを0.86mm以上とすれば、凝縮水が飛び散ることを未然に防止することができる。
【0033】
また、ルーバ2cのピッチ寸法Lpを小さくすると、図5に示すように、隣り合うルーバ2c間の中心間距離Lpが小さくなるので、表面張力によるルーバ2c間に保持される凝縮水量が低下する。したがって、ルーバ2cのピッチ寸法Lpを0.5mm以上、1mm以下として、ルーバ列間距離FLpを0.86mm以上とすれば、凝縮水が飛び散ることを未然に防止することができる。
【0034】
また、熱交換コア部3の厚み寸法Dを50mm以下とし、かつ、フィン2の高さ寸法hを7mm以下として、ルーバ列間距離FLpを0.86mm以上とすれば、熱交換コア部3の厚み寸法Dを58mmとし、かつ、フィン2の高さ寸法hを10mmとした熱交換コア部3と同等の熱交換能力を発揮させながら、凝縮水が飛び散ることを未然に防止することができることを確認している。
【0035】
以上に述べたように、本実施形態によれば、熱交換コア部3、すなわち熱交換効率の低下を招くことなく蒸発器の小型化を図りつつ、凝縮水が飛び散ることを未然に防止することができる。
【0036】
(その他の実施形態)
上述の実施形態では、車両用空調装置の蒸発器に本発明を適用したが、本発明の適用はこれに限定されるものではなく、その他の熱交換器にも適用することができる。
【図面の簡単な説明】
【図1】本発明の実施形態に係る蒸発器の正面図である。
【図2】本発明の実施形態に係る蒸発器に採用されるフィンの説明図である。
【図3】本明細に記載した用語の定義を説明するための説明図である。
【図4】(a)はルーバ列間距離FLpとフィン2に保持される保水量及び飛び散り開始風速との関係を示すグラフであり、(b)は接触角θの定義を示す図である。
【図5】「発明が解決しようとする課題」を説明するための説明図である。
【図6】「発明が解決しようとする課題」を説明するための説明図である。
【図7】発生する凝縮水量とコア前面からの寸法との関係を示すグラフである。
【符号の説明】
1…チューブ、2…フィン、3…熱交換コア部。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a heat exchanger, and is effective when applied to a heat exchanger that cools air such as an evaporator or a cooler for an air conditioner.
[0002]
[Prior art]
As shown in FIG. 1, a general structure of a heat exchanger that cools air such as an evaporator and a cooler is a wave-like structure joined to a tube 1 through which a cooling medium such as a refrigerant flows and an outer surface of the tube 1. It has a heat exchange core part 3 composed of the fins 2, and the flat part 2 a of the fins 2 has a small temperature boundary layer thickness as shown in FIGS. 2 (a) and 2 (b). In order to promote heat transfer between the air and the fin 2, a louver 2 c is formed by cutting and raising a part of the flat surface portion 2 a into an armor window shape.
[0003]
[Problems to be solved by the invention]
By the way, in recent years, downsizing of the heat exchanger has been eagerly desired, and in order to reduce the size of the heat exchanger without reducing the heat exchange capacity, the heat exchange core portion can be miniaturized by reducing the fin pitch. Therefore, it is necessary to reduce the outer dimension while preventing the heat transfer area with air from decreasing. Then, when the inventors tried to miniaturize the heat exchange core part, the following problems became remarkable.
[0004]
That is, when the air is cooled, condensed water is generated and the condensed water adheres to the surface of the heat exchanger. However, when the fin pitch is sufficiently large, the condensed water attached to the surface of the heat exchanger is caused by surface tension. While it becomes relatively large water droplets and flows downward due to gravity, it is drained, and when the fin pitch decreases and miniaturization proceeds, a space having a size that can form water droplets is secured. Therefore, the condensed water spreads like a film and adheres to the fins due to capillary action.
[0005]
And since this film-like condensed water is hard to flow compared with water-drop-like condensed water, it does not flow downward due to gravity and accumulates so as to spread on the fins 2 as shown in FIG.
[0006]
For this reason, for example, in an air conditioner or the like, when the user increases the air flow rate, the condensed water accumulated so as to spread on the fins 2 flows so as to gather on the leeward side by the wind pressure as shown in FIG. The collected condensed water scatters to the leeward side with the blast air.
[0007]
In addition, as shown in FIG. 7, about 70 to 75% of the total generation amount is generated on the windward side as shown in FIG. 7, and when the air flow rate is small, the condensed water is not drained as described above. Retained. For this reason, when the air flow rate is increased from a small state, a large amount of condensed water collects on the leeward side, so that the problem of scattering of condensed water becomes significant.
[0008]
An object of this invention is to suppress scattering of condensed water, aiming at refinement | miniaturization of a heat exchange core part in view of the said point.
[0009]
[Means for Solving the Problems]
In order to achieve the above object, the present invention provides an air cooling heat exchanger in which condensed water is generated by cooling air in the invention according to claim 1 ,
A tube (1) through which air cooling fluid flows ;
Provided on the outer surface of the tube (1), and a fin which is formed in a wave shape having bent portion connecting planar portion adjacent the flat section (2a) and (2a) and (2b) (2),
An armor window-like louver (2c) is formed on the flat surface (2a) ,
The pitch dimension (Fp) of the fin (2) is 3 mm or less,
Furthermore, the louver is a dimension between the tip of the louver (2c) and the tip of the louver (2c) formed in the adjacent flat portion (2a) and the flat portion (2a) where the louver (2c) is formed. The inter-column distance (FLp) is 0.86 mm or more.
[0010]
Thereby, as shown in FIG. 4 to be described later, the condensation of the condensed water can be suppressed while miniaturizing the heat exchange core portion.
[0011]
In the invention described in claim 2, in the heat exchanger according to claim 1, louvers (2c) pitch dimension (Lp) of 0.5mm or more, and wherein the at 1mm or less.
[0012]
Thereby, as shown in FIG. 4 to be described later, the condensation of the condensed water can be suppressed while miniaturizing the heat exchange core portion.
[0014]
According to a third aspect of the present invention, in the heat exchanger according to the first or second aspect, of the outer dimensions of the heat exchanging portion (3) including the tubes (1) and the fins (2), the air flow direction. a parallel portion of the dimension (D) is at 50mm or less, and the height of the fin (2) (h) is characterized by at 7mm or less.
[0015]
Thereby, as shown in FIG. 4 to be described later, the condensation of the condensed water can be suppressed while miniaturizing the heat exchange core portion.
[0017]
Incidentally, the reference numerals in parentheses of each means described above are an example showing the correspondence with the specific means described in the embodiments described later.
[0018]
DETAILED DESCRIPTION OF THE INVENTION
In the present embodiment, the heat exchanger according to the present invention is applied to an evaporator of a vehicle air conditioner, and the structure thereof is the same as that described in the section “Prior art”.
[0019]
Specifically, as shown in FIG. 1, a tube 1 through which a refrigerant flows, a heat exchange core portion 3 including a wavy fin 2 joined to the outer surface of the tube, and a longitudinal end portion of the tube 1 are provided. And a header tank 4 and the like communicating with each tube 1.
[0020]
The tube 1, the fin 2 and the header tank 4 are all made of an aluminum alloy, and these 1, 2, and 4 are integrated by brazing.
[0021]
Further, as shown in FIG. 2A, the fin 2 has a bent portion 2b that connects the flat portion 2a and the adjacent flat portion 2a, as viewed from the air flow direction, and is formed in a rectangular corrugated shape. As shown in FIG. 2B, an armor window-like louver 2c is integrally formed on the flat surface portion 2a by cutting and raising the flat surface portion 2a.
[0022]
And the evaporator which concerns on this embodiment has the following specifications, It is characterized by the above-mentioned. Incidentally, the numbers in parentheses are specific dimension values employed in the present embodiment.
[0023]
(1) The thickness dimension D of the heat exchange core part 3 is 50 mm or less (38 mm).
(2) The height dimension h of the fin 2 is 7 mm or less (5 mm)
(3) The pitch dimension Fp of the fin 2 is 3 mm or less (2.6 mm).
(4) The pitch dimension Lp of the louver 2c is 0.5 mm or more and 1 mm or less (0.8 mm).
(5) Distance between louver rows FLp is 0.86mm or more (0.86mm)
However, as shown in FIG. 2B, the thickness dimension D of the heat exchange core portion 3 refers to the maximum dimension of the portion parallel to the air flow direction among the external dimensions of the heat exchange core portion 3. As shown in FIG. 2A, the height dimension h of 2 refers to the height difference of the fins 2 formed in a wave shape, that is, the dimension corresponding to the wave amplitude.
[0024]
Further, the pitch dimension Fp of the fin 2 refers to the length of one cycle of the fin 2 formed in a wave shape, that is, the dimension corresponding to the wavelength of the wave, and the pitch dimension Lp of the louver 2c is shown in FIG. As described above, the distance between the upstream end of the air flow and the downstream end of the air flow in one louver 2c is said to be equal to the center-to-center distance between adjacent louvers 2c.
[0025]
The louver row distance FLp is a dimension between the tip of the louver 2c and the tip of the louver 2c formed on the flat surface portion 2a adjacent to the flat surface portion 2a where the louver 2c is formed.
[0026]
In the present embodiment, Fp / 2−Lp × sin (La) is adopted as the louver row distance FLp. La indicates an inclination angle of the louver 2c with respect to the flat surface portion 2a.
[0027]
Next, the function and effect of this embodiment will be described.
[0028]
FIG. 4A shows that the thickness D of the heat exchange core 3 is 38 mm, the core height H when the heat exchange core 3 is viewed from the air flow direction is 211 mm, and the heat exchange core 3 is air. The core width is 280 mm when viewed from the flow direction of the water, and the surface is subjected to deterioration treatment so that the contact angle θ of the condensed water (see FIG. 4B) is 45 ° ± 5 °, and the pitch dimension of the fin 2 It is a test result which shows the relationship between the louver row | line | column distance FLp, the water retention amount hold | maintained at the fin 2, and the scattering start wind speed when Fp is 2.4-3.5 mm.
[0029]
Incidentally, the surface of the heat exchange core part 3 is usually coated with a hydrophilic coating with a resin in order to improve drainage, but the hydrophilicity deteriorates with time, and finally the contact angle θ is increased. It has been empirically found to be about 40 °.
[0030]
As apparent from FIG. 4 (a), when the inter-louver row distance FLp is 0.86 mm or more, the water retention amount is drastically reduced. Therefore, if the inter-louver row distance FLp is 0.86 mm or more, the condensed water is reduced. Scattering can be prevented in advance.
[0031]
In addition, when the distance between the louver rows FLp is 0.86 mm or more, in order for the condensed water to scatter, it is necessary to set the wind speed to 3.5 m / s or more (600 m 3 / h or more in terms of air volume), so the air volume increases. However, practically, the condensed water does not scatter.
[0032]
Note that when the height h of the fin 2, that is, the dimension between the tubes 1 changes, the water retention amount and the absolute value of the splattering start wind speed slightly change. The tendency shown in FIG. 4 is almost the same. Therefore, if the pitch dimension Fp of the fins 2 is 3 mm or less and the louver row distance FLp is 0.86 mm or more, it is possible to prevent the condensed water from splashing.
[0033]
Further, when the pitch dimension Lp of the louvers 2c is reduced, as shown in FIG. 5, the center-to-center distance Lp between adjacent louvers 2c is reduced, so that the amount of condensed water held between the louvers 2c due to surface tension is reduced. Therefore, if the pitch dimension Lp of the louver 2c is 0.5 mm or more and 1 mm or less and the louver row distance FLp is 0.86 mm or more, it is possible to prevent the condensed water from splashing.
[0034]
Moreover, if the thickness dimension D of the heat exchange core part 3 is 50 mm or less, the height dimension h of the fin 2 is 7 mm or less, and the distance between the louver rows FLp is 0.86 mm or more, the heat exchange core part 3 It is possible to prevent the condensate from splashing while exhibiting a heat exchange capability equivalent to that of the heat exchange core part 3 in which the thickness dimension D is 58 mm and the height dimension h of the fin 2 is 10 mm. I have confirmed.
[0035]
As described above, according to the present embodiment, it is possible to prevent the condensate from splashing while reducing the size of the evaporator without causing a decrease in the heat exchange core 3, that is, the heat exchange efficiency. Can do.
[0036]
(Other embodiments)
In the above-described embodiment, the present invention is applied to the evaporator of the vehicle air conditioner. However, the application of the present invention is not limited to this and can be applied to other heat exchangers.
[Brief description of the drawings]
FIG. 1 is a front view of an evaporator according to an embodiment of the present invention.
FIG. 2 is an explanatory diagram of fins employed in the evaporator according to the embodiment of the present invention.
FIG. 3 is an explanatory diagram for explaining definitions of terms described in the present specification.
4A is a graph showing the relationship between the distance between the louver rows FLp, the amount of water retained in the fins 2 and the scattering start wind speed, and FIG. 4B is a diagram showing the definition of the contact angle θ.
FIG. 5 is an explanatory diagram for explaining a “problem to be solved by the invention”;
FIG. 6 is an explanatory diagram for explaining “the problem to be solved by the invention”;
FIG. 7 is a graph showing the relationship between the amount of condensed water generated and the dimensions from the front surface of the core.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Tube, 2 ... Fin, 3 ... Heat exchange core part.

Claims (3)

空気を冷却することにより凝縮水が発生する空気冷却用の熱交換器であって、
内部に空気冷却用の流体が流れるチューブ(1)と、
前記チューブ(1)の外表面に設けられ、平面部(2a)と隣り合う前記平面部(2a)とを繋ぐ屈曲部(2b)を有して波状に形成されたフィン(2)を備え、
前記平面部(2a)に鎧窓状のルーバ(2c)が形成されており、
前記フィン(2)のピッチ寸法(Fp)は3mm以下であり、
さらに、前記ルーバ(2c)の先端と、このルーバ(2c)が形成された前記平面部(2a)と隣り合う前記平面部(2a)に形成された前記ルーバ(2c)の先端との間の寸法であるルーバ列間距離(FLp)は、0.86mm以上であることを特徴とする熱交換器。
A heat exchanger for air cooling in which condensed water is generated by cooling air,
A tube (1) through which air cooling fluid flows ;
Provided on the outer surface of the tube (1), and a fin which is formed in a wave shape having the planar portion adjacent to the planar portion (2a) (2a) connects the bent portion (2b) (2) ,
An armor window-like louver (2c) is formed on the plane part (2a) ,
The pitch dimension (Fp) of the fin (2) is 3 mm or less,
Furthermore, between the front-end | tip of the said louver (2c), and the front-end | tip of the said louver (2c) formed in the said plane part (2a) adjacent to the said plane part (2a) in which this louver (2c) was formed. A heat exchanger characterized in that a distance between louver rows (FLp) as a dimension is 0.86 mm or more.
前記ルーバ(2c)のピッチ寸法(Lp)は0.5mm以上、1mm以下であることを特徴とする請求項1に記載の熱交換器。 It said louvers (2c) pitch dimension of (Lp) is 0.5mm or more, the heat exchanger according to claim 1, characterized in that it is 1mm or less. 前記チューブ(1)と前記フィン(2)とを備える熱交換部(3)の外形寸法のうち、空気の流通方向と平行な部位の寸法(D)は50mm以下であり、かつ、前記フィン(2)の高さ寸法(h)は7mm以下であることを特徴とする請求項1または2に記載の熱交換器。 Of the external dimensions of the heat exchanging part (3) including the tube (1) and the fin (2), the dimension (D) of the portion parallel to the air flow direction is 50 mm or less, and the fin ( the heat exchanger according to claim 1 or 2, characterized in that second height dimension of) (h) is 7mm or less.
JP2002014276A 2002-01-23 2002-01-23 Heat exchanger Expired - Lifetime JP3775302B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002014276A JP3775302B2 (en) 2002-01-23 2002-01-23 Heat exchanger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002014276A JP3775302B2 (en) 2002-01-23 2002-01-23 Heat exchanger

Publications (2)

Publication Number Publication Date
JP2003214790A JP2003214790A (en) 2003-07-30
JP3775302B2 true JP3775302B2 (en) 2006-05-17

Family

ID=27651010

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002014276A Expired - Lifetime JP3775302B2 (en) 2002-01-23 2002-01-23 Heat exchanger

Country Status (1)

Country Link
JP (1) JP3775302B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009085464A (en) * 2007-09-28 2009-04-23 Denso Corp Unit for ejector type refrigerating cycle
KR101436999B1 (en) 2007-10-15 2014-09-02 한라비스테온공조 주식회사 An Heat Exchanger
DE102009021179A1 (en) * 2009-05-13 2010-11-18 Behr Gmbh & Co. Kg Rib for a heat exchanger
US10309729B2 (en) 2014-05-27 2019-06-04 T.Rad Co., Ltd. Heat exchanger core
JP6520136B2 (en) * 2015-01-19 2019-05-29 株式会社デンソー Heat exchanger
US20180120034A1 (en) * 2016-11-01 2018-05-03 Ingersoll-Rand Company Bar and plate air-oil heat exchanger

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5712296A (en) * 1981-04-27 1982-01-22 Nippon Denso Co Ltd Corrugated fin for heat exchanger
JPH03204595A (en) * 1989-12-28 1991-09-06 Showa Alum Corp Condenser
JP2568968Y2 (en) * 1991-10-25 1998-04-22 昭和アルミニウム株式会社 Heat exchanger
JP3735700B2 (en) 1998-10-15 2006-01-18 古河スカイ株式会社 Aluminum alloy fin material for heat exchanger and method for producing the same
JP2000154989A (en) 1998-11-18 2000-06-06 Daikin Ind Ltd Air heat exchanger
JP2000234892A (en) 1999-02-12 2000-08-29 Zexel Corp Method for reducing heat exchanger and heat exchanger manufactured by that method
JP2001027484A (en) * 1999-07-15 2001-01-30 Zexel Valeo Climate Control Corp Serpentine heat-exchanger

Also Published As

Publication number Publication date
JP2003214790A (en) 2003-07-30

Similar Documents

Publication Publication Date Title
EP0881448B1 (en) Multi-bored flat tube for use in a heat exchanger and heat exchanger including said tubes
JP4952196B2 (en) Heat exchanger
US20070199686A1 (en) Heat exchanger
US4300629A (en) Cross-fin tube type heat exchanger
CN102016482B (en) Heat exchanger and air conditioner using the same
US20100243224A1 (en) Fin for heat exchanger and heat exchanger using the fin
US7299863B2 (en) Louver fin type heat exchanger having improved heat exchange efficiency by controlling water blockage
WO2012027098A2 (en) Microchannel heat exchanger fin
JPS58217195A (en) Heat exchanger
JP3264525B2 (en) Heat exchanger
JP3775302B2 (en) Heat exchanger
WO2005073655A1 (en) Heat exchanger and air-conditioning system employing same
JP4294183B2 (en) Internal grooved heat transfer tube
JP5020886B2 (en) Heat exchanger
JP2003185374A (en) Tube for heat exchanger with optimized plate
JPH10197173A (en) Flat tube for heat exchanger and heat exchanger
JP3446427B2 (en) Heat exchanger
JPH0755380A (en) Heat exchanger
JP3430909B2 (en) Air conditioner
KR20090010308A (en) Fin for heat exchanger
JP2004036938A (en) Heat exchanger and air conditioner comprising the same
JP2003083690A (en) Corrugated fin heat-exchanger
JP2003240470A (en) Heat exchanger
JPS5981472A (en) Heat exchanger
JPS58214783A (en) Heat exchanger

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040604

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051018

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051025

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051222

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060131

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060213

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100303

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110303

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120303

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120303

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130303

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140303

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

RVTR Cancellation of determination of trial for invalidation