WO2005073655A1 - Heat exchanger and air-conditioning system employing same - Google Patents

Heat exchanger and air-conditioning system employing same Download PDF

Info

Publication number
WO2005073655A1
WO2005073655A1 PCT/JP2005/001243 JP2005001243W WO2005073655A1 WO 2005073655 A1 WO2005073655 A1 WO 2005073655A1 JP 2005001243 W JP2005001243 W JP 2005001243W WO 2005073655 A1 WO2005073655 A1 WO 2005073655A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat exchanger
tubes
tube
refrigerant
heat
Prior art date
Application number
PCT/JP2005/001243
Other languages
French (fr)
Japanese (ja)
Inventor
Shiro Ikuta
Syouzou Hataya
Nobuhide Kasagi
Yuji Suzuki
Naoki Shikazono
Daisuke Ookawa
Original Assignee
Calsonic Kansei Corporation
The University Of Tokyo
Iwamoto Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Calsonic Kansei Corporation, The University Of Tokyo, Iwamoto Co., Ltd. filed Critical Calsonic Kansei Corporation
Priority to JP2005517524A priority Critical patent/JPWO2005073655A1/en
Publication of WO2005073655A1 publication Critical patent/WO2005073655A1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/02Tubular elements of cross-section which is non-circular
    • F28F1/022Tubular elements of cross-section which is non-circular with multiple channels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B39/00Evaporators; Condensers
    • F25B39/02Evaporators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2500/00Problems to be solved
    • F25B2500/01Geometry problems, e.g. for reducing size

Definitions

  • the present invention relates to, for example, an evaporator / condenser heat exchanger and an air conditioner including the same. More specifically, the present invention relates to a technology for further improving the heat exchange efficiency, reducing the size, and reducing the weight.
  • a heat exchanger used in a vehicle air conditioner includes a plurality of tubes for circulating a refrigerant, a tank for distributing the refrigerant to each of the tubes, and a cooling fin provided between the tubes.
  • the heat exchanger having this configuration includes cooling fins that are in contact with each tube in order to increase the area of the heat transfer surface in order to supplement the heat transfer performance on the air side with a small heat transfer coefficient.
  • the tube defines a plurality of refrigerant flow paths through which the refrigerant flows in order to improve the heat transfer performance on the refrigerant side and to have mechanical strength capable of withstanding high refrigerant pressure in the tube.
  • This tube is manufactured, for example, by extrusion or by brazing these three plates with an inner fin sandwiched between two plates.
  • this type of heat exchanger has a small heat transfer coefficient and a large thermal resistance on the air side, the fin pitch is reduced, or the cooling fins are provided with fine cut-and-raised slits. Improve thermal performance.
  • the air side heat transfer coefficient is improved, the heat transfer performance is reduced due to the heat conduction in the cooling fins, the so-called fin efficiency.
  • An object of the present invention is to provide a heat exchanger that achieves higher performance, smaller size, and lighter weight of the heat exchange efficiency of the heat exchanger, and an air conditioner including the same.
  • a feature of the invention provides the following heat exchanger.
  • the heat exchanger includes first and second tubes having a refrigerant passage through which the refrigerant flows.
  • the heat exchanger includes tanks attached to both ends of the first and second tubes, respectively, for distributing the refrigerant to the first and second tubes.
  • the first and second tubes have outer surfaces that act as heat transfer surfaces and exchange heat with the refrigerant.
  • the pitch between the first and second tubes is two to four times the thickness of each of the first and second tubes.
  • Each thickness of the first and second tubes may be 1 mm or less.
  • At least one of the first and second tubes may have an outer peripheral surface having an uneven portion.
  • the convex portion of the concave-convex portion may have a coolant channel.
  • the concave portion of the concave-convex portion may have a coolant channel.
  • the refrigerant flow path may be similar in cross section to the convex portion.
  • the pitch of the uneven portions may be three times or less the thickness of each of the first and second tubes.
  • a ratio of a length of the concave portion of the uneven portion to a length of the convex portion of the uneven portion may be W2 / W1 ⁇ 2.
  • the heat exchanger may be applied to an air conditioner.
  • the heat transfer surface that exchanges heat with the refrigerant without using the cooling fins is formed by the outer surface of the tube. This eliminates the problems of heat exchangers using cooling fins, such as fin efficiency, increased contact heat resistance, increased ventilation resistance, clogging due to dust, dew, and frost, and fin corrosion. . In addition, by optimizing the pitch between tubes, the heat transfer coefficient on the air side is further improved, and extremely high heat exchange efficiency is exhibited. Therefore, the heat exchanger of the present invention achieves higher performance, smaller size, and lighter weight because no cooling fin is used.
  • each tube Since the thickness of each tube is set to lmm or less, the thickness of the tube becomes larger than when the thickness exceeds 1mm.
  • the number of buses increases. Due to this increase, the total cross-sectional area of the refrigerant flow path formed in this tube is sufficiently ensured, and the flow path resistance of the refrigerant is greatly reduced.
  • the concave portion enlarges the flow path, reduces the wind speed, and reduces the ventilation resistance.
  • the uneven portion slightly reduces the heat transfer on the air side, the ratio of the heat transfer coefficient on the air side to the pressure coefficient is larger in a tube having unevenness than in a tube having no unevenness. This enables the heat exchanger to have higher performance, smaller size and lighter weight.
  • the heat exchanger of the invention is used as an evaporator, the condensed water is drawn into the recess and easily drained. This suppresses an increase in ventilation resistance, and does not cause a problem that water droplets scatter due to an increase in wind speed. Further, since this heat exchanger has a tube having an uneven outer surface, the mechanical strength is also greatly improved.
  • the cross section of the refrigerant flow path is made sufficiently large.
  • the total cross-sectional area of the refrigerant flow path is secured to such an extent that an increase in pressure loss in the pipe can be saved.
  • the tube has an outer peripheral surface having an uneven portion with a pitch (Wl + W2) that is three times or more the thickness (T), the flow separated from the upstream convex portion adheres to the downstream convex portion again. Weakens the effect of As a result, the rate of improvement in the heat transfer performance at the point of reattachment of the downstream convex portion where the heat transfer coefficient is improved is reduced. Pitches less than three times eliminate those problems.
  • a high-performance, small-sized and lightweight heat exchanger is used as an air conditioner for vehicles such as an evaporator, a radiator, an oil cooler, and a heater core. This will reduce the weight and energy consumption of the vehicle and increase the passenger's living space.
  • FIG. 1 is a perspective view showing a heat exchanger according to a first embodiment.
  • FIG. 2 is a sectional view taken along the line II-II in FIG. 1.
  • FIG. 3 is an enlarged sectional view of a main part of the tube shown in FIG. 2.
  • FIG. 4 shows the heat release and power (PT) obtained by dividing the tube spacing by the tube thickness (PT).
  • FIG. 4 is a characteristic diagram showing a change in the ratio with respect to (fan power).
  • FIG. 5 is a perspective view showing a heat exchanger according to a second embodiment.
  • FIG. 6 is a sectional view taken along the line VI-VI in FIG. 5.
  • FIG. 7 is an enlarged sectional view of a main part of the tube shown in FIG. 6.
  • FIG. 8 is a characteristic diagram showing a change in a ratio between a heat release amount and power (fan power) with respect to a value (PL) obtained by dividing a distance between uneven portions formed on a tube surface by a tube thickness (PL).
  • FIG. 9 is a diagram showing an example in which a heat exchanger to which the invention is applied is applied to an air conditioner.
  • FIG. 10 is a cross-sectional view of a tube showing another example of the tube of the present invention.
  • heat exchanger 1 of the embodiment includes a plurality of tubes 2 and a pair of tanks 3 and 4 for distributing a refrigerant to each tube 2.
  • the tanks 3 and 4 are arranged at predetermined intervals in parallel and facing each other. Both ends of each tube 2 are inserted, brazed, and integrally joined to the tanks 3 and 4 at a predetermined pitch interval.
  • the heat exchanger 1 has no cooling fins between the tubes 2, but has an air-side heat transfer surface that exchanges heat with the refrigerant on the outer surface of the tubes 2. That is, the heat exchanger 1 forms the air-side heat transfer surface on the outer surface of the tube 2.
  • the tube 2 functions as a long heat transfer tube having a flat cross section.
  • the tube 2 has a plurality of refrigerant flow paths 5 through which the refrigerant flows.
  • each refrigerant flow path 5 has holes penetrating at the upper and lower ends in the longitudinal direction of the tube 2.
  • the plurality of refrigerant channels 5 are positioned at predetermined pitch intervals in the lateral direction of the tube 2.
  • the tank 3 functions as a supply tank that supplies a refrigerant.
  • the tank 4 functions as a collection tank that collects the refrigerant that has passed through the tubes 2 and has undergone heat exchange.
  • the tanks 3 and 4 are closed at both ends in the longitudinal direction and formed as cylindrical bodies.
  • Tanks 3 and 4 are
  • the tube 2 has a tube insertion hole (not shown) for inserting the end of the tube 2 into the tank.
  • the tank 3 is attached to a refrigerant introduction pipe (not shown) for supplying the refrigerant into the tank 3.
  • the tank 4 is attached to a refrigerant discharge pipe (not shown) for collecting the refrigerant flowing through each tube 2.
  • the heat transfer surface that exchanges heat with the refrigerant without using cooling fins is constituted by the outer surface 2 a of the tube 2.
  • This outer surface 2a exchanges heat with the air flows Fl, F2.
  • This structure has problems with a heat exchanger using cooling fins, such as increased fin efficiency, contact heat resistance, increased ventilation resistance, clogging due to dust, dew, and frost, and fin corrosion. To eliminate.
  • a pitch interval (hereinafter simply referred to as a pitch P) for disposing each tube 2 is provided.
  • the thickness is set to 2 to 4 times the thickness T of the tube 2.
  • the pitch P at which the tubes 2 are arranged is set to be 2 to 4 times the thickness T of the tubes 2, the air-side heat transfer coefficient is further improved, and extremely high heat exchange efficiency is exhibited.
  • FIG. 4 is a characteristic showing a change in a ratio of heat release amount to power (fan power) (heat release amount / power) with respect to a value (PT) obtained by dividing a tube interval (pitch P) by a thickness T of the tube 2 (PT).
  • FIG. The vertical axis shows the ratio of heat release to power, and the larger the number, the better the heat exchange rate.
  • the horizontal axis shows PT. As can be seen from this characteristic diagram, setting PT between 2 and 4 greatly increases the heat exchange efficiency.
  • the thickness T of the tube 2 is set to lmm or less. Tubes 2 having a thickness T of 1 mm or less have more tubes 2 than those having a thickness of more than 1 mm. As a result, the total cross-sectional area of the refrigerant flow path 5 formed in the tube 2 can be sufficiently ensured, and the flow resistance of the refrigerant is greatly reduced.
  • the heat exchanger 1 of the present embodiment does not use cooling fins, so that higher performance, smaller size, and lighter weight can be realized.
  • the heat exchanger 10 of this embodiment basically has a plurality of tubes 20 and a refrigerant distributed to each tube 20, similarly to the heat exchanger 1 of the first embodiment.
  • one It consists of a pair of tanks 30, 40.
  • the air-side heat transfer surface that exchanges heat with the refrigerant is constituted by the outer surface 20a of the tube 20 (see FIG. 6).
  • the heat exchanger 10 has the same configuration as the heat exchanger 1 of the first embodiment, except for a tube 20 having a different shape, and a description of the same components will be omitted.
  • the pitch P at which the tubes are arranged is set to be two to four times the thickness of the tubes, similarly to the heat exchanger 1 of the first embodiment.
  • each tube 20 of the heat exchanger 10 has undulations 60a and 60b formed on its outer peripheral surface 20a. That is, the outer peripheral surface 20a of the tube 20 has a raised portion 60a and a recessed portion 60b formed on the front surface and the rear surface, respectively, and the concave portion 60b is formed between the adjacent refrigerant passages 50. Formed. As a result, the tube 20 becomes corrugated, and the irregular shape of the outer peripheral surface 20a matches each refrigerant flow path 50.
  • the coolant channels 50 are respectively positioned inside the convex portions 60a.
  • the coolant channel 50 is similar in cross section to the convex portion 60a.
  • the uneven portions 60a and 60b have a pitch (W1 + W2) that is three times or less the thickness T of the tube 20.
  • the thickness T of the tube 20 is defined as the maximum thickness of the tube.
  • the pitch (Wl + W2) of the uneven portions 60a and 60b, which is three times or less the thickness T of the tube 20, increases the heat exchange efficiency.
  • the pitch W of the uneven portions 60a and 60b more than three times the thickness T weakens the effect of the flow separated from the upstream convex portion to re-attach to the downstream convex portion, and improves the heat transfer coefficient. Reduce the rate of improvement in heat transfer performance at the point of side protrusion reattachment
  • FIG. 8 shows the ratio of the amount of heat radiation to the power (fan power) to the value (PL) obtained by dividing the pitch W of the uneven portions 60a and 60b formed on the surface of the tube 20 by the thickness T of the tube 20 (heat radiation).
  • FIG. 6 is a characteristic diagram showing a change in (/ power). The vertical axis is the ratio of heat release to power, the larger the number, the better the horizontal axis is PL. As can be seen from this characteristic diagram, a PL of 3 or less increases the heat exchange efficiency.
  • the concave and convex portions 60a and 60b formed on the outer peripheral surface 20a of the tube 20 expand the flow path by the concave portion 60b, reduce the wind speed, and reduce the ventilation resistance.
  • the unevenness 60a, 60b slightly reduces the heat transfer on the air side.
  • the ratio of the air-side heat transfer coefficient to the pressure coefficient is larger for a tube with irregularities than for a tube without irregularities. As a result, the performance, size, and weight of the heat exchanger 10 can be improved.
  • the heat exchanger 10 is used as an evaporator, condensed water is drawn into the recess 60b and easily drained. As a result, an increase in ventilation resistance can be suppressed, and the problem of water droplets scattering when the wind speed is increased is eliminated. Furthermore, in the heat exchanger 10, the mechanical strength of the tube 20 is greatly increased by making the outer shape of the tube 20 uneven.
  • the refrigerant flow path 50 was formed in accordance with the concave and convex portions 60a and 60b formed on the outer peripheral surface 20a of the tube 20. That is, the positions of the refrigerant passage 50 and the protrusion 60a coincide with each other, and are similar in cross section. Thereby, the cross section of the refrigerant flow path 50 can be made sufficiently large, and the total cross-sectional area of the refrigerant flow path 50 is set to such an extent that the heat exchange performance is enhanced.
  • the ratio of the length W1 of the convex portion 60a to the length W2 of the concave portion 60b is set to W2ZW1 ⁇ 2, a sufficient cross-sectional area inside the tube is ensured. In addition, the refrigerant side pressure loss is suppressed.
  • FIG. 9 shows an example in which the heat exchangers 1 and 10 to which the present invention is applied are applied to an air conditioner.
  • the heat exchangers 1 and 10 of the present embodiment were applied to the radiator 71, the evaporator 72, the heater core 73, and the like.
  • the heat exchangers 1 and 10 of the present invention may be applied to an oil cooler.
  • the heat exchanger of the present invention is not limited to a vehicle air conditioner, and may be applied to a home, business or portable air conditioner to achieve a significant compactness.
  • a high-performance, small-sized, and lightweight heat exchanger may be used as an air conditioner used for a vehicle such as an evaporator, a radiator, an oil cooler, and a heater core. This achieves weight reduction and energy saving of the vehicle and expansion of the passenger's living space.
  • the coolant channel 50 is formed in accordance with the concave and convex portions 60a and 60b formed on the outer peripheral surface 20a of the tube 20.
  • the air-side heat transfer performance is basically irrelevant to the coolant channel 50, and therefore, as shown in FIG. 10, the coolant channel 50 does not have to be formed in accordance with the uneven portions 60a and 60b. That is, the refrigerant passage 50 having a circular cross section is positioned in both the convex portion 60a and the concave portion 60b.
  • This structure is the same as the heat exchanger 10 of the second embodiment. The same effect is obtained.
  • the heat exchanger or air conditioner of the present invention is used, for example, in vehicles and homes, and is useful in achieving higher performance, smaller size, and lighter weight.

Abstract

Disclosed is a heat exchanger comprising first and second tubes (2) respectively having a refrigerant channel for flowing a refrigerant. The heat exchanger further comprises tanks (3, 4) respectively attached to either ends of the first and second tubes (2) for distributing the refrigerant to the first and second tubes (2). The first and second tubes (2) respectively have an outer surface which serves as a heat transfer surface and exchanges heat with the refrigerant. The pitch (P) between the first and second tubes (2) is two to four times as wide as the thickness of the first and second tubes (2).

Description

明 細 書  Specification
熱交換器及びこれを含む空調装置  Heat exchanger and air conditioner including the same
技術分野  Technical field
[0001] 本発明は、例えば、エバポレータゃコンデンサの熱交換器及びこれを含む空調装 置に関する。本発明は、詳細には、熱交換効率のより一層の高性能化、小型化並び に軽量ィ匕を図る技術に関する。  The present invention relates to, for example, an evaporator / condenser heat exchanger and an air conditioner including the same. More specifically, the present invention relates to a technology for further improving the heat exchange efficiency, reducing the size, and reducing the weight.
背景技術  Background art
[0002] 例えば、車両用空調装置に使用される熱交換器は、冷媒を流通させる複数本のチ ユーブと、これら各チューブに冷媒を分配するタンクと、各チューブ間に設けられる冷 却フィンと、を含む(例えば、特開 2001-167782号公報参照)。  [0002] For example, a heat exchanger used in a vehicle air conditioner includes a plurality of tubes for circulating a refrigerant, a tank for distributing the refrigerant to each of the tubes, and a cooling fin provided between the tubes. (See, for example, JP-A-2001-167782).
[0003] この構成の熱交換器は、熱伝達率の小さい空気側の伝熱性能を補う目的で伝熱 面の面積を増大させるために、各チューブ間に接した冷却フィンを含む。  [0003] The heat exchanger having this configuration includes cooling fins that are in contact with each tube in order to increase the area of the heat transfer surface in order to supplement the heat transfer performance on the air side with a small heat transfer coefficient.
[0004] チューブは、冷媒側伝熱性能を向上させると共に管内の高い冷媒圧力に耐え得る 機械的強度を持たせるために、内部に冷媒を流通させる複数の冷媒流路を画成す る。このチューブは、例えば、押し出し成形、又は 2枚の板の間にインナーフィンを挟 みこれら 3枚の板をろう付けして作製される。  [0004] The tube defines a plurality of refrigerant flow paths through which the refrigerant flows in order to improve the heat transfer performance on the refrigerant side and to have mechanical strength capable of withstanding high refrigerant pressure in the tube. This tube is manufactured, for example, by extrusion or by brazing these three plates with an inner fin sandwiched between two plates.
[0005] ところで、この種の熱交換器は、空気側で小さな熱伝達率、大きな熱抵抗を有する ので、フィンピッチを小さくし、或いは、冷却フィンに微細な切り起こしゃスリットを設け て、伝熱性能を向上させる。し力、しながら、空気側熱伝達率を向上させるにつれて、 冷却フィン内の熱伝導、いわゆるフィン効率により、伝熱性能が低下する。  [0005] By the way, since this type of heat exchanger has a small heat transfer coefficient and a large thermal resistance on the air side, the fin pitch is reduced, or the cooling fins are provided with fine cut-and-raised slits. Improve thermal performance. However, as the air side heat transfer coefficient is improved, the heat transfer performance is reduced due to the heat conduction in the cooling fins, the so-called fin efficiency.
[0006] 冷却フィンの表面上の微細な切り起こしゃスリットは、その端部で流れの剥離を発 生させる。この剥離は熱伝達を向上させる以上に通風抵抗を増大させる。さらに、切 り起こし部やスリットは、ゴミ,結露,着霜による目詰まりや、保持された結露水の水飛 び、端部からの腐食によって、冷却フィンの耐久性が低下し易いといった問題を発生 させる。また、チューブと冷却フィンとの接合部における不十分なろう付けは、接触熱 抵抗を増大させる。これらの理由から、従来の熱交換器にとって、より一層の高性能 ィ匕、小型化並びに軽量化は、困難である。 発明の開示 [0006] The fine cut and raised slits on the surface of the cooling fins cause flow separation at the ends. This delamination increases ventilation resistance beyond improving heat transfer. Furthermore, the cut-and-raised portions and slits have the problem that the durability of the cooling fins is liable to be reduced due to clogging due to dust, dew condensation, or frost formation, or the retained condensate being splashed or corroded from the ends. generate. Insufficient brazing at the junction between the tube and the cooling fins also increases the contact thermal resistance. For these reasons, it is difficult for conventional heat exchangers to achieve higher performance, smaller size, and lighter weight. Disclosure of the invention
[0007] 本発明の目的は、熱交換器の熱交換効率のより一層の高性能化、小型化並びに 軽量化を達成する熱交換器及びこれを含む空調装置を提供することである。  [0007] An object of the present invention is to provide a heat exchanger that achieves higher performance, smaller size, and lighter weight of the heat exchange efficiency of the heat exchanger, and an air conditioner including the same.
[0008] 発明の特徴は、次の熱交換器を提供する。熱交換器は、冷媒を流通させる冷媒流 路を有する第 1及び第 2のチューブを含む。熱交換器は、前記第 1及び第 2のチュー ブの両端にそれぞれ取り付けられ、第 1及び第 2のチューブに冷媒を分配するタンク を含む。前記第 1及び第 2のチューブは、伝熱面として作用して前記冷媒と熱交換す る外面を有する。前記第 1及び第 2のチューブの間のピッチは、第 1及び第 2のチュ 一ブの各厚みの 2倍から 4倍である。  [0008] A feature of the invention provides the following heat exchanger. The heat exchanger includes first and second tubes having a refrigerant passage through which the refrigerant flows. The heat exchanger includes tanks attached to both ends of the first and second tubes, respectively, for distributing the refrigerant to the first and second tubes. The first and second tubes have outer surfaces that act as heat transfer surfaces and exchange heat with the refrigerant. The pitch between the first and second tubes is two to four times the thickness of each of the first and second tubes.
[0009] 前記第 1及び第 2のチューブの各厚みは、 1mm以下でもよい。  [0009] Each thickness of the first and second tubes may be 1 mm or less.
[0010] 前記第 1及び第 2のチューブの少なくとも 1つは、凹凸部を形成した外周面を有して あよい。  [0010] At least one of the first and second tubes may have an outer peripheral surface having an uneven portion.
[0011] 前記凹凸部の凸部は、冷媒流路を有してもよい。  [0011] The convex portion of the concave-convex portion may have a coolant channel.
[0012] 前記凹凸部の凹部は、冷媒流路を有してもよい。 [0012] The concave portion of the concave-convex portion may have a coolant channel.
[0013] 前記冷媒流路は、前記凸部対して横断面において相似してもよい。 [0013] The refrigerant flow path may be similar in cross section to the convex portion.
前記凹凸部のピッチは、前記第 1及び第 2のチューブの各厚みの 3倍以下としても よい。  The pitch of the uneven portions may be three times or less the thickness of each of the first and second tubes.
[0014] 前記凹凸部の凸部の長さに対する前記凹凸部の凹部の長さの比は、 W2/W1≤ 2としてもよい。  [0014] A ratio of a length of the concave portion of the uneven portion to a length of the convex portion of the uneven portion may be W2 / W1≤2.
[0015] 前記熱交換器は、空調装置に適用してもよい。  [0015] The heat exchanger may be applied to an air conditioner.
[0016] 発明の熱交換器によれば、冷却フィンを使用せずに冷媒と熱交換する伝熱面をチ ユーブの外面で構成している。これにより、冷却フィンを用いた熱交換器に対して問 題となっていたフィン効率、接触熱抵抗、通風抵抗の増大、ゴミ、露、霜による目詰ま り、フィンの腐食といった問題を解消する。また、チューブを配置させるピッチ間隔を 最適化することで、空気側熱伝達率をより一層向上させ、極めて高い熱交換効率を 発揮させる。したがって、発明の熱交換器は、冷却フィンを使用しないことから、より一 層の高性能化、小型化及び軽量化を達成する。  According to the heat exchanger of the present invention, the heat transfer surface that exchanges heat with the refrigerant without using the cooling fins is formed by the outer surface of the tube. This eliminates the problems of heat exchangers using cooling fins, such as fin efficiency, increased contact heat resistance, increased ventilation resistance, clogging due to dust, dew, and frost, and fin corrosion. . In addition, by optimizing the pitch between tubes, the heat transfer coefficient on the air side is further improved, and extremely high heat exchange efficiency is exhibited. Therefore, the heat exchanger of the present invention achieves higher performance, smaller size, and lighter weight because no cooling fin is used.
[0017] チューブの各厚みを lmm以下としているので、 1mm超とした場合に比べてチュー ブ本数が増える。この増加により、このチューブに形成された冷媒流路の総断面積を 充分に確保し、冷媒の流路抵抗を大幅に低減させる。 [0017] Since the thickness of each tube is set to lmm or less, the thickness of the tube becomes larger than when the thickness exceeds 1mm. The number of buses increases. Due to this increase, the total cross-sectional area of the refrigerant flow path formed in this tube is sufficiently ensured, and the flow path resistance of the refrigerant is greatly reduced.
[0018] チューブは、外周面に凹凸部を形成しているので、この凹部は流路を拡大して風 速を下げ、通風抵抗を減少させる。また、発明の熱交換器では、凹凸部が空気側熱 伝達を僅かに低下させるので、空気側熱伝達率と圧力係数の比は凹凸が無いチュ ーブよりも凹凸があるものの方が大きい。これにより、熱交換器の高性能化、小型化 及び軽量化を可能にする。また、発明の熱交換器を蒸発器として使用した場合、凝 縮水が凹部に引き込まれ容易に排水される。これにより、通風抵抗の増加を抑制し、 風速の増加によって水滴が飛散する問題も生じない。さらに、この熱交換器は、凹凸 形状とした外面形状を備えたチューブを有するので、機械的な強度も大幅に向上さ せる。  [0018] Since the tube has an uneven portion on the outer peripheral surface, the concave portion enlarges the flow path, reduces the wind speed, and reduces the ventilation resistance. Further, in the heat exchanger of the invention, since the uneven portion slightly reduces the heat transfer on the air side, the ratio of the heat transfer coefficient on the air side to the pressure coefficient is larger in a tube having unevenness than in a tube having no unevenness. This enables the heat exchanger to have higher performance, smaller size and lighter weight. When the heat exchanger of the invention is used as an evaporator, the condensed water is drawn into the recess and easily drained. This suppresses an increase in ventilation resistance, and does not cause a problem that water droplets scatter due to an increase in wind speed. Further, since this heat exchanger has a tube having an uneven outer surface, the mechanical strength is also greatly improved.
[0019] 熱交換器は、チューブの外周面に形成した凹凸部に合わせて冷媒流路を形成した ので、冷媒流路の断面を充分大きくする。これにより、冷媒流路の総断面積を管内圧 力損失の増大を節約できる程度に確保する。  [0019] In the heat exchanger, since the refrigerant flow path is formed in accordance with the concave and convex portions formed on the outer peripheral surface of the tube, the cross section of the refrigerant flow path is made sufficiently large. As a result, the total cross-sectional area of the refrigerant flow path is secured to such an extent that an increase in pressure loss in the pipe can be saved.
[0020] チューブが、厚み (T)の 3倍以上のピッチ (Wl +W2)を備えた凹凸部を有した外 周面を有すると、上流凸部から剥離した流れが下流凸部へ再付着する効果を弱める 。これにより、熱伝達率の向上する下流側凸部の再付着点における伝熱性能の向上 率を小さくする。 3倍以下のピッチは、それらの問題を解消する。  [0020] If the tube has an outer peripheral surface having an uneven portion with a pitch (Wl + W2) that is three times or more the thickness (T), the flow separated from the upstream convex portion adheres to the downstream convex portion again. Weakens the effect of As a result, the rate of improvement in the heat transfer performance at the point of reattachment of the downstream convex portion where the heat transfer coefficient is improved is reduced. Pitches less than three times eliminate those problems.
[0021] 凹部の長さと凸部の長さの 2倍以下としているので、管内側の断面積を十分確保し 、冷媒側圧力損失を抑制する。  [0021] Since the length of the concave portion and the length of the convex portion are not more than twice, the cross-sectional area inside the pipe is sufficiently ensured, and the pressure loss on the refrigerant side is suppressed.
[0022] 高性能、小型並びに軽量の熱交換器は、エバポレータ,ラジェータ,オイルクーラ, ヒーターコアなどの車両用空調装置として用いられる。これにより、車両の軽量化、省 エネルギー化及び搭乗者の居住空間拡大を図る。  [0022] A high-performance, small-sized and lightweight heat exchanger is used as an air conditioner for vehicles such as an evaporator, a radiator, an oil cooler, and a heater core. This will reduce the weight and energy consumption of the vehicle and increase the passenger's living space.
図面の簡単な説明  Brief Description of Drawings
[0023] [図 1]図 1は、第 1の実施の形態の熱交換器を示す斜視図である。  FIG. 1 is a perspective view showing a heat exchanger according to a first embodiment.
[図 2]図 2は図 1の II一 IIに沿った断面図である。  FIG. 2 is a sectional view taken along the line II-II in FIG. 1.
[図 3]図 3は図 2に示すチューブの要部拡大断面図である。  FIG. 3 is an enlarged sectional view of a main part of the tube shown in FIG. 2.
[図 4]図 4はチューブ間隔をチューブの厚さで割った値 (PT)に対する放熱量と動力( ファン動力)との比の変化を示す特性図である。 [Fig. 4] Fig. 4 shows the heat release and power (PT) obtained by dividing the tube spacing by the tube thickness (PT). FIG. 4 is a characteristic diagram showing a change in the ratio with respect to (fan power).
[図 5]図 5は、第 2の実施の形態の熱交換器を示す斜視図である。  FIG. 5 is a perspective view showing a heat exchanger according to a second embodiment.
[図 6]図 6は、図 5の VI-VIに沿った断面図である。  FIG. 6 is a sectional view taken along the line VI-VI in FIG. 5.
[図 7]図 7は、図 6に示すチューブの要部拡大断面図である。  FIG. 7 is an enlarged sectional view of a main part of the tube shown in FIG. 6.
[図 8]図 8は、チューブ表面に形成された凹凸部の間隔をチューブの厚みで割った値 (PL)に対する放熱量と動力(ファン動力)との比の変化を示す特性図である。  FIG. 8 is a characteristic diagram showing a change in a ratio between a heat release amount and power (fan power) with respect to a value (PL) obtained by dividing a distance between uneven portions formed on a tube surface by a tube thickness (PL).
[図 9]図 9は、発明を適用した熱交換器を空調装置に適用した例を示す図である。  FIG. 9 is a diagram showing an example in which a heat exchanger to which the invention is applied is applied to an air conditioner.
[図 10]図 10は、発明のチューブの他の例を示すチューブの断面図である。  FIG. 10 is a cross-sectional view of a tube showing another example of the tube of the present invention.
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0024] 以下、発明を適用した具体的な実施の形態について図面を参照して詳細に説明 する。 Hereinafter, specific embodiments to which the present invention is applied will be described in detail with reference to the drawings.
[0025] 第 1の実施の形態  [0025] First embodiment
実施の形態の熱交換器 1は、図 1に示すように、複数本のチューブ 2と、各チューブ 2に冷媒を分配する一対のタンク 3、 4とを含む。タンク 3, 4は、所定間隔を置いて平 行に且つ対向して配置される。タンク 3、 4に対して、所定のピッチ間隔で各チューブ 2の両端部は、揷入され、ろう付けされ、一体に接合される。この熱交換器 1は、各チ ユーブ 2間に冷却フィンを有しておらず、チューブ 2の外面で冷媒と熱交換する空気 側伝熱面を有する。つまり、熱交換器 1は、チューブ 2の外表面で空気側伝熱面を構 成する。  As shown in FIG. 1, heat exchanger 1 of the embodiment includes a plurality of tubes 2 and a pair of tanks 3 and 4 for distributing a refrigerant to each tube 2. The tanks 3 and 4 are arranged at predetermined intervals in parallel and facing each other. Both ends of each tube 2 are inserted, brazed, and integrally joined to the tanks 3 and 4 at a predetermined pitch interval. The heat exchanger 1 has no cooling fins between the tubes 2, but has an air-side heat transfer surface that exchanges heat with the refrigerant on the outer surface of the tubes 2. That is, the heat exchanger 1 forms the air-side heat transfer surface on the outer surface of the tube 2.
[0026] 前記チューブ 2は、図 2に示すように、断面偏平形状とした長尺状をなす伝熱管とし て作用する。このチューブ 2は、その内部に、冷媒を流通させる複数の冷媒流路 5を 有する。冷媒側伝熱性能を向上させると共に管内の高い冷媒圧力に耐え得る機械 的強度を持たせるために、各冷媒流路 5は、チューブ 2の長手方向である上下端に 貫通する孔を有する。複数の冷媒流路 5は、チューブ 2の横方向に所定のピッチ間 隔を置レヽて位置決めされる。  As shown in FIG. 2, the tube 2 functions as a long heat transfer tube having a flat cross section. The tube 2 has a plurality of refrigerant flow paths 5 through which the refrigerant flows. In order to improve the heat transfer performance on the refrigerant side and to have mechanical strength capable of withstanding the high refrigerant pressure in the tube, each refrigerant flow path 5 has holes penetrating at the upper and lower ends in the longitudinal direction of the tube 2. The plurality of refrigerant channels 5 are positioned at predetermined pitch intervals in the lateral direction of the tube 2.
[0027] タンク 3は、冷媒を供給する供給タンクとして作用する。タンク 4は、各チューブ 2を 流通して熱交換された後の冷媒を回収する回収用タンクとして働く。タンク 3、 4は、そ の長手方向の両端部で閉塞して、円筒体として形成される。タンク 3、 4は、各チュー ブ 2の端部をタンク内部に挿入させるチューブ挿入穴(図示省略)を有している。タン ク 3は、冷媒をタンク 3内に供給するための冷媒導入パイプ(図示省略)に取り付けら れている。タンク 4は、各チューブ 2を流れた冷媒を回収する冷媒排出パイプ(図示省 略)に取り付けられている。 [0027] The tank 3 functions as a supply tank that supplies a refrigerant. The tank 4 functions as a collection tank that collects the refrigerant that has passed through the tubes 2 and has undergone heat exchange. The tanks 3 and 4 are closed at both ends in the longitudinal direction and formed as cylindrical bodies. Tanks 3 and 4 are The tube 2 has a tube insertion hole (not shown) for inserting the end of the tube 2 into the tank. The tank 3 is attached to a refrigerant introduction pipe (not shown) for supplying the refrigerant into the tank 3. The tank 4 is attached to a refrigerant discharge pipe (not shown) for collecting the refrigerant flowing through each tube 2.
[0028] 特に、熱交換器 1においては、冷却フィンを使用せずに前記冷媒と熱交換する伝 熱面は、チューブ 2の外面 2aで構成する。この外面 2aは、空気流れ Fl、 F2と熱交換 する。 In particular, in the heat exchanger 1, the heat transfer surface that exchanges heat with the refrigerant without using cooling fins is constituted by the outer surface 2 a of the tube 2. This outer surface 2a exchanges heat with the air flows Fl, F2.
[0029] この構造は、冷却フィンを用いた熱交換器に対して問題となっていたフィン効率、接 触熱抵抗、通風抵抗の増大、ゴミ,露,霜による目詰まり、フィンの腐食といった問題 を解消する。  [0029] This structure has problems with a heat exchanger using cooling fins, such as increased fin efficiency, contact heat resistance, increased ventilation resistance, clogging due to dust, dew, and frost, and fin corrosion. To eliminate.
[0030] 熱交換器 1は、伝熱面をチューブ 2の外面 2aで構成したことに加えて、図 3に示す ように、各チューブ 2を配置させるピッチ間隔(以下、単にピッチ Pという)を、該チュー ブ 2の厚み Tの 2倍から 4倍に設定する。チューブ 2を配置させるピッチ Pを該チュー ブ 2の厚み Tの 2倍から 4倍とすると、空気側熱伝達率をより一層向上させ、極めて高 い熱交換効率を発揮させる。  [0030] In the heat exchanger 1, in addition to the heat transfer surface being constituted by the outer surface 2a of the tube 2, as shown in Fig. 3, a pitch interval (hereinafter simply referred to as a pitch P) for disposing each tube 2 is provided. The thickness is set to 2 to 4 times the thickness T of the tube 2. When the pitch P at which the tubes 2 are arranged is set to be 2 to 4 times the thickness T of the tubes 2, the air-side heat transfer coefficient is further improved, and extremely high heat exchange efficiency is exhibited.
[0031] 図 4は、チューブ間隔(ピッチ P)をチューブ 2の厚さ Tで割った値(PT)に対する放 熱量と動力(ファン動力)との比 (放熱量/動力)の変化を示す特性図である。縦軸は 放熱量と動力の比で、数字が大きいほど熱交換率良ぐ横軸は PTを示す。この特性 図から分かるように、 PTを 2から 4の間に設定すれば、熱交換効率を大幅に高める。  [0031] FIG. 4 is a characteristic showing a change in a ratio of heat release amount to power (fan power) (heat release amount / power) with respect to a value (PT) obtained by dividing a tube interval (pitch P) by a thickness T of the tube 2 (PT). FIG. The vertical axis shows the ratio of heat release to power, and the larger the number, the better the heat exchange rate. The horizontal axis shows PT. As can be seen from this characteristic diagram, setting PT between 2 and 4 greatly increases the heat exchange efficiency.
[0032] 熱交換器 1においては、チューブ 2の厚み Tを lmm以下としている。 1mm以下の 厚み Tを有したチューブ 2は、 1mm超の厚みのものに比べてチューブ 2の本数を増 やす。これにより、該チューブ 2に形成された冷媒流路 5の総断面積を充分に確保で き、冷媒の流通抵抗を大幅に低減する。  [0032] In the heat exchanger 1, the thickness T of the tube 2 is set to lmm or less. Tubes 2 having a thickness T of 1 mm or less have more tubes 2 than those having a thickness of more than 1 mm. As a result, the total cross-sectional area of the refrigerant flow path 5 formed in the tube 2 can be sufficiently ensured, and the flow resistance of the refrigerant is greatly reduced.
[0033] したがって、本実施の形態の熱交換器 1は、冷却フィンを使用しないので、一層の 高性能化、小型化及び軽量化を実現できる。  [0033] Therefore, the heat exchanger 1 of the present embodiment does not use cooling fins, so that higher performance, smaller size, and lighter weight can be realized.
[0034] 第 2の実施の形態  [0034] Second embodiment
この実施の形態の熱交換器 10は、図 5に示すように、基本的には第 1の実施形態 の熱交換器 1と同様、複数本のチューブ 20と、各チューブ 20に冷媒を分配させる一 対のタンク 30、 40とで構成される。冷媒と熱交換する空気側伝熱面は、チューブ 20 の外面 20a (図 6参照)で構成される。 As shown in FIG. 5, the heat exchanger 10 of this embodiment basically has a plurality of tubes 20 and a refrigerant distributed to each tube 20, similarly to the heat exchanger 1 of the first embodiment. one It consists of a pair of tanks 30, 40. The air-side heat transfer surface that exchanges heat with the refrigerant is constituted by the outer surface 20a of the tube 20 (see FIG. 6).
[0035] この熱交換器 10では、異なる形状のチューブ 20の他は、第 1の実施の形態の熱交 換器 1と同一の構成であるので、同一の構成部分に関してはその説明を省略する。こ の熱交換器 10では、第 1の実施の形態の熱交換器 1と同様、チューブを配置させる ピッチ Pが、該チューブの厚みの 2倍から 4倍に設定される。  The heat exchanger 10 has the same configuration as the heat exchanger 1 of the first embodiment, except for a tube 20 having a different shape, and a description of the same components will be omitted. . In this heat exchanger 10, the pitch P at which the tubes are arranged is set to be two to four times the thickness of the tubes, similarly to the heat exchanger 1 of the first embodiment.
[0036] 熱交換器 10の各チューブ 20は、図 6に示すように、その外周面 20aに凹凸部( undulations) 60a, 60bを开成してレ、る。すなわち、このチューブ 20の外周面 20aは、 表面と裏面にそれぞれ凸部 (raised portion) 60aと凹咅 lUrecessed portionリ 60bを父 互に形成しており、その凹部 60bは隣接する冷媒流路 50間に形成される。これにより 、チューブ 20は、波形となり、その外周面 20aの凹凸形状が各冷媒流路 50と一致す る。冷媒流路 50は、それぞれ、凸部 60aの内部に位置決めされる。冷媒流路 50は、 凸部 60aに対して横断面にっレ、て相似である。  As shown in FIG. 6, each tube 20 of the heat exchanger 10 has undulations 60a and 60b formed on its outer peripheral surface 20a. That is, the outer peripheral surface 20a of the tube 20 has a raised portion 60a and a recessed portion 60b formed on the front surface and the rear surface, respectively, and the concave portion 60b is formed between the adjacent refrigerant passages 50. Formed. As a result, the tube 20 becomes corrugated, and the irregular shape of the outer peripheral surface 20a matches each refrigerant flow path 50. The coolant channels 50 are respectively positioned inside the convex portions 60a. The coolant channel 50 is similar in cross section to the convex portion 60a.
[0037] この実施形態では、凹凸部 60a, 60bは、チューブ 20の厚み Tに対して 3倍以下の ピッチ (W1 +W2)を有する。チューブ 20の厚み Tは、管の最大厚みとして定義され る。チューブ 20の厚み Tに対して 3倍以下の凹凸部 60a, 60bのピッチ(Wl +W2) は、熱交換効率を高める。これに対して、厚み Tに対して 3倍超の凹凸部 60a, 60b のピッチ Wは、上流凸部から剥離した流れが下流凸部へ再付着する効果を弱め、熱 伝達率の向上する下流側凸部の再付着点における伝熱性能の向上率を小さくする  In this embodiment, the uneven portions 60a and 60b have a pitch (W1 + W2) that is three times or less the thickness T of the tube 20. The thickness T of the tube 20 is defined as the maximum thickness of the tube. The pitch (Wl + W2) of the uneven portions 60a and 60b, which is three times or less the thickness T of the tube 20, increases the heat exchange efficiency. On the other hand, the pitch W of the uneven portions 60a and 60b more than three times the thickness T weakens the effect of the flow separated from the upstream convex portion to re-attach to the downstream convex portion, and improves the heat transfer coefficient. Reduce the rate of improvement in heat transfer performance at the point of side protrusion reattachment
[0038] 図 8は、チューブ 20の表面に形成した凹凸部 60a, 60bのピッチ Wをチューブ 20の 厚み Tで割った値 (PL)に対する放熱量と動力(ファン動力)との比(放熱量/動力) の変化を示す特性図である。縦軸は放熱量と動力の比で、数字が大きいほど良ぐ 横軸は PLを示す。この特性図からわかるように、 3以下の PLは、熱交換効率を高め る。 [0038] Fig. 8 shows the ratio of the amount of heat radiation to the power (fan power) to the value (PL) obtained by dividing the pitch W of the uneven portions 60a and 60b formed on the surface of the tube 20 by the thickness T of the tube 20 (heat radiation). FIG. 6 is a characteristic diagram showing a change in (/ power). The vertical axis is the ratio of heat release to power, the larger the number, the better the horizontal axis is PL. As can be seen from this characteristic diagram, a PL of 3 or less increases the heat exchange efficiency.
[0039] このように構成した熱交換器 10によれば、チューブ 20の外周面 20aに形成した凹 凸部 60a, 60bは、凹部 60bで流路を拡大し風速を下げ、通風抵抗を減少させる。こ の熱交換器 10では、凹凸部 60a、 60bが空気側熱伝達を僅かに低下させるため、空 気側熱伝達率と圧力係数の比は凹凸の無いチューブよりも凹凸のあるものの方が大 きい。これにより、熱交換器 10の高性能化、小型化及び軽量化を可能にする。 [0039] According to the heat exchanger 10 configured as described above, the concave and convex portions 60a and 60b formed on the outer peripheral surface 20a of the tube 20 expand the flow path by the concave portion 60b, reduce the wind speed, and reduce the ventilation resistance. . In the heat exchanger 10, the unevenness 60a, 60b slightly reduces the heat transfer on the air side. The ratio of the air-side heat transfer coefficient to the pressure coefficient is larger for a tube with irregularities than for a tube without irregularities. As a result, the performance, size, and weight of the heat exchanger 10 can be improved.
[0040] 特に、この熱交換器 10を蒸発器として使用すれば、凝縮水が凹部 60bに引き込ま れて容易に排水される。これにより、通風抵抗の増加を抑制でき、風速を上げた場合 の水滴が飛散する問題を解消する。さらに、この熱交換器 10では、チューブ 20の外 面形状を凹凸形状とすることで、チューブ 20の機械的な強度も大幅にアップさせる。 [0040] In particular, if the heat exchanger 10 is used as an evaporator, condensed water is drawn into the recess 60b and easily drained. As a result, an increase in ventilation resistance can be suppressed, and the problem of water droplets scattering when the wind speed is increased is eliminated. Furthermore, in the heat exchanger 10, the mechanical strength of the tube 20 is greatly increased by making the outer shape of the tube 20 uneven.
[0041] 熱交換器 10では、チューブ 20の外周面 20aに形成した凹凸部 60a, 60bに合わせ て冷媒流路 50を形成した。つまり、冷媒通路 50と凸部 60aとは、位置について互い に一致し、横断面で相似である。これにより、冷媒流路 50の断面を充分大きくでき、 冷媒流路 50の総断面積を熱交換性能を高める程度に設定する。 [0041] In the heat exchanger 10, the refrigerant flow path 50 was formed in accordance with the concave and convex portions 60a and 60b formed on the outer peripheral surface 20a of the tube 20. That is, the positions of the refrigerant passage 50 and the protrusion 60a coincide with each other, and are similar in cross section. Thereby, the cross section of the refrigerant flow path 50 can be made sufficiently large, and the total cross-sectional area of the refrigerant flow path 50 is set to such an extent that the heat exchange performance is enhanced.
[0042] さらに、実施形態の熱交換器 10では、前記凸部 60aの長さ W1と前記凹部 60bの 長さ W2の比を、 W2ZW1≤2としたので、管内側の断面積を十分確保し、冷媒側圧 力損失を抑制する。 Further, in the heat exchanger 10 of the embodiment, since the ratio of the length W1 of the convex portion 60a to the length W2 of the concave portion 60b is set to W2ZW1 ≦ 2, a sufficient cross-sectional area inside the tube is ensured. In addition, the refrigerant side pressure loss is suppressed.
[0043] 図 9は、本発明を適用した熱交換器 1、 10を空調装置に適用した例を示す。ここで は、ラジェータ 71、エバポレータ 72、ヒーターコア 73などに本実施の形態の熱交換 器 1、 10を適用した。この他、本発明の熱交換器 1、 10をオイルクーラに適用してもよ レ、。車両用空調器に限らず、本発明の熱交換器を家庭用、業務用或いは携帯用の 空調装置に適用して大幅なコンパクトィ匕を達成してもよい。  FIG. 9 shows an example in which the heat exchangers 1 and 10 to which the present invention is applied are applied to an air conditioner. Here, the heat exchangers 1 and 10 of the present embodiment were applied to the radiator 71, the evaporator 72, the heater core 73, and the like. In addition, the heat exchangers 1 and 10 of the present invention may be applied to an oil cooler. The heat exchanger of the present invention is not limited to a vehicle air conditioner, and may be applied to a home, business or portable air conditioner to achieve a significant compactness.
[0044] このように、高性能、小型並びに軽量である熱交換器を、エバポレータ,ラジェータ ,オイルクーラ,ヒーターコアなどの車両に使用される空調装置として用いてもよい。 これは、車両の軽量化、省エネルギー化及び搭乗者の居住空間拡大を達成する。  As described above, a high-performance, small-sized, and lightweight heat exchanger may be used as an air conditioner used for a vehicle such as an evaporator, a radiator, an oil cooler, and a heater core. This achieves weight reduction and energy saving of the vehicle and expansion of the passenger's living space.
[0045] 以上、本発明を適用した具体的な実施の形態について説明したが、本発明は、上 述の実施の形態に制限されることなく種々の変更をしてもよい。  As described above, specific embodiments to which the present invention is applied have been described. However, the present invention may be variously modified without being limited to the above-described embodiments.
[0046] 例えば、上述の実施の形態では、チューブ 20の外周面 20aに形成した凹凸部 60a , 60bに合わせて冷媒流路 50を形成した。一方、空気側伝熱性能は基本的には冷 媒流路 50とは無関係なので、図 10に示すように、凹凸部 60a, 60bに合わせて冷媒 流路 50を形成しなくてもよい。つまり、断面円形の冷媒通路 50は、凸部 60a及び凹 部 60bの両方に位置決めされる。この構造は、第 2の実施の形態の熱交換器 10と同 様の効果を得る。 For example, in the above-described embodiment, the coolant channel 50 is formed in accordance with the concave and convex portions 60a and 60b formed on the outer peripheral surface 20a of the tube 20. On the other hand, the air-side heat transfer performance is basically irrelevant to the coolant channel 50, and therefore, as shown in FIG. 10, the coolant channel 50 does not have to be formed in accordance with the uneven portions 60a and 60b. That is, the refrigerant passage 50 having a circular cross section is positioned in both the convex portion 60a and the concave portion 60b. This structure is the same as the heat exchanger 10 of the second embodiment. The same effect is obtained.
産業上の利用の可能性 Industrial potential
この発明の熱交換器又は空調装置は、例えば、車両、家庭で利用され、一層の高 性能化、小型化及び軽量化を達成する点で有用である。  INDUSTRIAL APPLICABILITY The heat exchanger or air conditioner of the present invention is used, for example, in vehicles and homes, and is useful in achieving higher performance, smaller size, and lighter weight.

Claims

請求の範囲 The scope of the claims
熱交換器(1)であって、 A heat exchanger (1),
冷媒を流通させる冷媒流路(5)を有する第 1及び第 2のチューブ(2)と、 前記第 1及び第 2のチューブ(2)の両端にそれぞれ取り付けられ、第 1及び第 2の チューブ(2)に冷媒を分配するタンク(3, 4)と、を含み、  First and second tubes (2) having a refrigerant flow path (5) through which a refrigerant flows, and first and second tubes (2) attached to both ends of the first and second tubes (2), respectively. 2) a tank (3, 4) for distributing the refrigerant to the
前記第 1及び第 2のチューブ(2)は、伝熱面として作用して前記冷媒と熱交換する 外面を有し、  The first and second tubes (2) have outer surfaces that act as heat transfer surfaces and exchange heat with the refrigerant,
前記第 1及び第 2のチューブ(2)の間のピッチ(P)は、第 1及び第 2のチューブ(2) の各厚みの 2倍から 4倍である、熱交換器。  A heat exchanger, wherein a pitch (P) between the first and second tubes (2) is two to four times a thickness of each of the first and second tubes (2).
クレーム 1の熱交換器(1)であって、 Claim 1 of the heat exchanger (1),
前記第 1及び第 2のチューブ(1)の各厚みは、 1mm以下である熱交換器。  The heat exchanger wherein each of the first and second tubes (1) has a thickness of 1 mm or less.
クレーム 1の熱交換器(10)であって、 Claim 1 of the heat exchanger (10),
前記第 1及び第 2のチューブ(20)の少なくとも 1つは、凹凸部(60a, 60b)を形成し た外周面を有する熱交換器。  A heat exchanger in which at least one of the first and second tubes (20) has an outer peripheral surface on which uneven portions (60a, 60b) are formed.
クレーム 3の熱交換器(10)であって、 Claim 3 of the heat exchanger (10),
前記凹凸部(60a, 60b)の凸部(60a)は、冷媒流路(50)を有する熱交換器。 クレーム 4の熱交換器であって、  The protrusion (60a) of the uneven portion (60a, 60b) is a heat exchanger having a refrigerant flow path (50). Claim 4 wherein the heat exchanger is
前記凹凸部(60a, 60b)の凹部(60b)は、冷媒流路(50)を有する熱交換器。 クレーム 4の熱交換器(10)であって、  A concave part (60b) of the concave-convex part (60a, 60b) is a heat exchanger having a refrigerant flow path (50). Claim 4 of the heat exchanger (10),
前記冷媒流路(50)は、前記凸部(60a)対して横断面において相似である熱交換 クレーム 3の熱交換器(10)であって、  The refrigerant flow path (50) is a heat exchanger (10) of the heat exchange claim 3, which is similar in cross section to the projection (60a),
前記凹凸部(60a, 60b)のピッチ(W1 +W2)は、前記第 1及び第 2のチューブ(20 )の各厚み (T)の 3倍以下とした熱交換器。  A heat exchanger wherein a pitch (W1 + W2) of the uneven portions (60a, 60b) is three times or less of each thickness (T) of the first and second tubes (20).
クレーム 3の熱交換器(10)であって、 Claim 3 of the heat exchanger (10),
前記凹凸部の凸部(60a)の長さ(W1)に対する前記凹凸部の凹部(60b)の長さ( W2)の比は、 W2/W1≤ 2とした熱交換器。  A heat exchanger, wherein the ratio of the length (W2) of the concave portion (60b) of the uneven portion to the length (W1) of the convex portion (60a) of the uneven portion is W2 / W1≤2.
クレーム 1の熱交換器(1 , 10)が適用された空調装置。 An air conditioner to which the heat exchanger (1, 10) of claim 1 is applied.
PCT/JP2005/001243 2004-01-29 2005-01-28 Heat exchanger and air-conditioning system employing same WO2005073655A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005517524A JPWO2005073655A1 (en) 2004-01-29 2005-01-28 Heat exchanger and air conditioner including the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004-021386 2004-01-29
JP2004021386 2004-01-29

Publications (1)

Publication Number Publication Date
WO2005073655A1 true WO2005073655A1 (en) 2005-08-11

Family

ID=34823788

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/001243 WO2005073655A1 (en) 2004-01-29 2005-01-28 Heat exchanger and air-conditioning system employing same

Country Status (2)

Country Link
JP (1) JPWO2005073655A1 (en)
WO (1) WO2005073655A1 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010008018A (en) * 2008-06-30 2010-01-14 Showa Denko Kk Heat exchange pipe with inner fin and heat exchanger using it
JP2011506903A (en) * 2007-12-18 2011-03-03 アー − ヒート アライド ヒート イクスチェンジ テクノロジー アクチェンゲゼルシャフト Heat exchanger
JP2011508865A (en) * 2007-12-18 2011-03-17 アー − ヒート アライド ヒート イクスチェンジ テクノロジー アクチェンゲゼルシャフト Heat exchanger
WO2015005352A1 (en) * 2013-07-08 2015-01-15 三菱電機株式会社 Heat exchanger, and heat pump device
WO2017159726A1 (en) * 2016-03-16 2017-09-21 三菱電機株式会社 Finless-type heat exchanger, outdoor unit of air conditioner provided with finless-type heat exchanger, and indoor unit of air conditioner provided with finless-type heat exchanger
WO2018168759A1 (en) * 2017-03-16 2018-09-20 ダイキン工業株式会社 Heat exchanger having heat transfer tube unit
CN110392814A (en) * 2017-03-16 2019-10-29 大金工业株式会社 Heat exchanger with heat transfer pipe unit
WO2022014515A1 (en) 2020-07-17 2022-01-20 ダイキン工業株式会社 Heat exchanger
WO2023105703A1 (en) * 2021-12-09 2023-06-15 三菱電機株式会社 Dehumidifying device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001165532A (en) * 1999-12-09 2001-06-22 Denso Corp Refrigerant condenser
EP1248063A1 (en) * 2001-03-28 2002-10-09 Behr GmbH & Co. Heat exchanger

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001165532A (en) * 1999-12-09 2001-06-22 Denso Corp Refrigerant condenser
EP1248063A1 (en) * 2001-03-28 2002-10-09 Behr GmbH & Co. Heat exchanger

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011506903A (en) * 2007-12-18 2011-03-03 アー − ヒート アライド ヒート イクスチェンジ テクノロジー アクチェンゲゼルシャフト Heat exchanger
JP2011508865A (en) * 2007-12-18 2011-03-17 アー − ヒート アライド ヒート イクスチェンジ テクノロジー アクチェンゲゼルシャフト Heat exchanger
JP2010008018A (en) * 2008-06-30 2010-01-14 Showa Denko Kk Heat exchange pipe with inner fin and heat exchanger using it
WO2015005352A1 (en) * 2013-07-08 2015-01-15 三菱電機株式会社 Heat exchanger, and heat pump device
CN105452794A (en) * 2013-07-08 2016-03-30 三菱电机株式会社 Heat exchanger, and heat pump device
JPWO2015005352A1 (en) * 2013-07-08 2017-03-02 三菱電機株式会社 Heat pump equipment
WO2017159726A1 (en) * 2016-03-16 2017-09-21 三菱電機株式会社 Finless-type heat exchanger, outdoor unit of air conditioner provided with finless-type heat exchanger, and indoor unit of air conditioner provided with finless-type heat exchanger
JPWO2017159726A1 (en) * 2016-03-16 2018-10-04 三菱電機株式会社 Finless type heat exchanger, outdoor unit of air conditioner equipped with the finless type heat exchanger, and indoor unit of air conditioner equipped with the finless type heat exchanger
US10648742B2 (en) 2016-03-16 2020-05-12 Mitsubishi Electric Corporation Finless heat exchanger, outdoor unit of an air-conditioning apparatus including the finless heat exchanger, and indoor unit of an air-conditioning apparatus including the finless heat exchanger
WO2018168759A1 (en) * 2017-03-16 2018-09-20 ダイキン工業株式会社 Heat exchanger having heat transfer tube unit
CN110392814A (en) * 2017-03-16 2019-10-29 大金工业株式会社 Heat exchanger with heat transfer pipe unit
WO2022014515A1 (en) 2020-07-17 2022-01-20 ダイキン工業株式会社 Heat exchanger
EP4184105A4 (en) * 2020-07-17 2023-12-06 Daikin Industries, Ltd. Heat exchanger
US11913729B2 (en) 2020-07-17 2024-02-27 Daikin Industries, Ltd. Heat exchanger
WO2023105703A1 (en) * 2021-12-09 2023-06-15 三菱電機株式会社 Dehumidifying device

Also Published As

Publication number Publication date
JPWO2005073655A1 (en) 2007-09-13

Similar Documents

Publication Publication Date Title
WO2005073655A1 (en) Heat exchanger and air-conditioning system employing same
JP4122578B2 (en) Heat exchanger
US7635019B2 (en) Heat exchanger
US7882708B2 (en) Flat pipe-shaped heat exchanger
KR100486923B1 (en) Heat exchanger
EP2236972B1 (en) Fin for heat exchanger and heat exchanger using the fin
US7992401B2 (en) Evaporator
JP4946348B2 (en) Air heat exchanger
JP2006322698A (en) Heat exchanger
JP2004144460A (en) Heat exchanger
JP2000179988A (en) Refrigerant evaporator
JPH05196383A (en) Corrugated fin type heat-exchanger
JP2007178015A (en) Heat exchanger
JP4930413B2 (en) Heat exchanger
JP3855346B2 (en) Heat exchanger
JP2007093023A (en) Heat exchanger
JP4122670B2 (en) Heat exchanger
JPH0829016A (en) Outdoor heat exchanger for heat pump
JP2003185374A (en) Tube for heat exchanger with optimized plate
US20070267187A1 (en) Heat Exchanger
US20060266503A1 (en) Heat transfer fin, heat exchanger, evaporator and condenser for use in car air-conditioner
AU2004239162A1 (en) Heat exchanger fin, heat exchanger, condensers, and evaporators
JP3674120B2 (en) Heat exchanger
JP2002048491A (en) Heat exchanger for cooling
JP2624336B2 (en) Finned heat exchanger

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2005517524

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Country of ref document: DE

122 Ep: pct application non-entry in european phase