JP3525486B2 - Magnesium alloy casting material for plastic working, magnesium alloy member using the same, and methods for producing them - Google Patents

Magnesium alloy casting material for plastic working, magnesium alloy member using the same, and methods for producing them

Info

Publication number
JP3525486B2
JP3525486B2 JP08192594A JP8192594A JP3525486B2 JP 3525486 B2 JP3525486 B2 JP 3525486B2 JP 08192594 A JP08192594 A JP 08192594A JP 8192594 A JP8192594 A JP 8192594A JP 3525486 B2 JP3525486 B2 JP 3525486B2
Authority
JP
Japan
Prior art keywords
mass
magnesium alloy
grain size
crystal grain
plastic working
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP08192594A
Other languages
Japanese (ja)
Other versions
JPH07224344A (en
Inventor
誠 藤田
宣夫 坂手
庄司 平原
幸男 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mazda Motor Corp
Original Assignee
Mazda Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mazda Motor Corp filed Critical Mazda Motor Corp
Priority to JP08192594A priority Critical patent/JP3525486B2/en
Priority to DE69423335T priority patent/DE69423335T2/en
Priority to EP94119977A priority patent/EP0665299B1/en
Priority to KR1019940035461A priority patent/KR100349566B1/en
Publication of JPH07224344A publication Critical patent/JPH07224344A/en
Priority to US08/947,414 priority patent/US6143097A/en
Application granted granted Critical
Publication of JP3525486B2 publication Critical patent/JP3525486B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C23/00Alloys based on magnesium
    • C22C23/02Alloys based on magnesium with aluminium as the next major constituent

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Forging (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は塑性加工用マグネシウム
合金鋳造素材、それを用いたマグネシウム合金部材およ
びそれらの製造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a magnesium alloy casting material for plastic working, a magnesium alloy member using the same, and a manufacturing method thereof.

【0002】[0002]

【従来の技術】マグネシウム合金はその比重が約1.8
とアルミニウム合金の2/3であり、各種部材の軽量化
のための代替材料として有望視されている。しかしなが
ら、部品製造の主流はダイカストであるため、その適用
部品はほとんどケース、カバーなどの低い強度の部品で
ある。従って、安価に高強度部品に適用可能な材料およ
び製造方法が確立されれば、その工業的価値は大きい。
2. Description of the Related Art Magnesium alloy has a specific gravity of about 1.8.
It is 2/3 of aluminum alloy and is promising as an alternative material for reducing the weight of various members. However, since the mainstream of parts production is die casting, most of the applied parts are parts with low strength such as cases and covers. Therefore, if materials and manufacturing methods applicable to high-strength parts at low cost are established, their industrial value will be great.

【0003】現在使用されているマグネシウム合金は一
般に鍛造成形性が悪く、その鍛造には比較的成形性のよ
いZK60合金が用いられている。しかし、この合金は
ジルコニウムを合金元素として多く含有させる必要があ
るため高価であり、かつ耐食性が悪いという欠点を有す
る。
Magnesium alloys currently used generally have poor forgeability, and ZK60 alloy having relatively good formability is used for the forging. However, this alloy is expensive because it needs to contain a large amount of zirconium as an alloying element, and has the disadvantage of poor corrosion resistance.

【0004】他方、耐食性の良好な鍛造用素材としてA
Z80合金の鋳造後押し出しなどの一次塑性加工を施し
た材料などが提供されている。これらは既に強加工を受
け、結晶粒の微細化により鍛造成形性は比較的良好であ
るが、これらも高価であり、またホイールのような強度
部材の合金としては鍛造後の機械的特性は必ずしも適性
とは言えない。しかも、ホイールのような部材には大型
鍛造部品用の押し出し素材を必要とするが、現実的には
困難である。
On the other hand, A is used as a forging material having good corrosion resistance.
Materials that have undergone primary plastic working such as extrusion after casting of Z80 alloy are provided. These have already undergone heavy working and have relatively good forgeability due to the refinement of crystal grains, but they are also expensive, and mechanical properties after forging are not necessarily required for alloys of strength members such as wheels. It cannot be said that it is suitable. Moreover, a member such as a wheel requires an extruded material for a large forged part, which is difficult in reality.

【0005】ホイール等に適用するためには、引張強
度、伸び等に加え、衝撃値が重要であり、この値が低け
ればアルミニウム鍛造部材と同等の強度を確保するため
には厚肉とせざるを得なく、軽量効果を減少とするとい
う状況にある。従って、ホイール等の大型強度部材にマ
グネシウム合金を適用するには、鍛造後の機械特性に優
れる合金を、微細組織に鍛造した大径の連続鍛造材が提
供される必要がある。そこで、マグネシウム合金の鋳造
素材(鋳造ビレット)の平均結晶粒径を微細化する方法が
提案される。この方法の一つとして、特開昭63−28
2232号では、特にAZ31およびAZ80のマグネ
シウム合金の溶湯を25℃/sec以上の凝固速度で連
続鋳造する方法およびマグネシウム合金鋳塊を220〜
450℃の熱下において加工率25%以上の塑性加工を
行う方法が提案されている。
In order to apply it to a wheel or the like, impact value is important in addition to tensile strength, elongation, etc. If this value is low, it must be thick to secure strength equivalent to that of an aluminum forged member. It is in the situation that the light weight effect is reduced. Therefore, in order to apply a magnesium alloy to a large strength member such as a wheel, it is necessary to provide a large-diameter continuous forged material obtained by forging an alloy having excellent mechanical properties after forging into a fine structure. Therefore, a method of refining the average crystal grain size of a magnesium alloy casting material (cast billet) is proposed. As one of the methods, JP-A-63-28
No. 2232, in particular, a method of continuously casting a molten magnesium alloy of AZ31 and AZ80 at a solidification rate of 25 ° C./sec or more and a magnesium alloy ingot of 220 to
A method of performing plastic working at a working rate of 25% or more under heat of 450 ° C has been proposed.

【0006】[0006]

【発明が解決しようとする課題】しかしながら、溶湯を
25℃/sec以上の凝固速度で連続鋳造する場合、ビ
レット外周部と中心部との温度勾配が大きくなる傾向に
あり、所定の目的を安定的に実現できるビレット径は5
〜100mmと大型鍛造部品を製作するには極めて小さ
く、通常の冷却速度でマグネシウム合金の鋳造素材(鋳造
ビレット)の平均結晶粒径を微細化する方法が望まれる。
そこで、本発明はZK60合金鋳造材およびAZ80合
金押し出し材を使用せずとも連続鋳造された素材のまま
で大型鍛造部品であるホイールを所望の物性で製造する
ことができるマグネシウム合金鋳造素材およびその鋳造
方法を提供することを第1の目的とする。
However, when the molten metal is continuously cast at a solidification rate of 25 ° C./sec or more, the temperature gradient between the outer peripheral portion of the billet and the central portion tends to be large, and the predetermined purpose is stable. The billet diameter that can be realized is 5
It is extremely small to produce a large forged part of -100 mm, and a method of refining the average grain size of a magnesium alloy casting material (cast billet) at a normal cooling rate is desired.
Therefore, the present invention is a magnesium alloy casting material capable of producing a wheel, which is a large-sized forged component, with desired physical properties without using the ZK60 alloy casting material and the AZ80 alloy extrusion material, and the casting thereof. A primary object is to provide a method.

【0007】また、本発明はかかる鋳造素材を用いて、
アルミニウム溶湯鍛造部材に匹敵する物性を有するホイ
ール等の大型鍛造部品およびその製造方法を提供するこ
とを第2の目的とする。
Further, the present invention uses such a casting material,
A second object of the present invention is to provide a large-sized forged part such as a wheel having physical properties comparable to those of an aluminum melt forged member and a method for manufacturing the same.

【0008】[0008]

【課題を解決するための手段】本発明は、マグネシウム
合金において、通常の冷却速度で鋳造する場合、鋳造素
材(鋳造ビレット)の平均結晶粒径を制御するのにAl
含有量が重要な役割を果たし、従来のAZ61合金およ
びAZ80合金のほぼ中間の合金組成を選択し、鋳造し
てやると、そのままで鍛造成形性に優れ、鍛造成形して
強度部材としての機械的性質および耐食性に優れた鍛造
部品を製造することができることを見い出して完成した
もので、下記の合金元素を含み、残部がMgと不可避不
純物から成るマグネシウム合金から成り、金属組織の平
均結晶粒径が200μm以下である鍛造成形性に優れる
塑性加工用マグネシウム合金鋳造素材にある。 Al:6.2〜7.6mass% Mn:0.15〜0.5mass% Zn:0.4〜0.8mass% Sr:0.02〜0.5mass%
According to the present invention, when a magnesium alloy is cast at a normal cooling rate, Al is used to control the average grain size of a casting material (cast billet).
When the content plays an important role and an alloy composition that is almost intermediate between the conventional AZ61 alloy and AZ80 alloy is selected and cast, it has excellent forgeability as it is, and it is forged and formed to have mechanical properties as a strength member and It was completed by discovering that it is possible to manufacture forged parts with excellent corrosion resistance. It contains the following alloying elements and the balance is Mg and unavoidable.
The magnesium alloy casting material for plastic working is made of a pure magnesium alloy and has an average crystal grain size of 200 μm or less and is excellent in forgeability. Al: 6.2 to 7.6 mass% Mn: 0.15 to 0.5 mass% Zn: 0.4 to 0.8 mass% Sr: 0.02 to 0.5 mass%

【0009】[0009]

【作用】本発明によれば、少なくともAl、Mn、Z
n、Srを含有する塑性加工用マグネシウム合金鋳造素
材は図22に示すように冷却速度7℃/sec程度の通
常の連続鋳造によって金属組織の平均結晶粒径は200
μm以下となり、鋳造素材に対し60%以上の限界据え
込み率を与え、そのまま鍛造に付することのできる塑性
加工用マグネシウム合金鋳造素材を提供することになる
(図1参照)。特に、平均結晶粒径が80μm以下の鋳
造素材は、高速鍛造成形性に優れる(図9および図10
参照)。そこで、微細化剤としてSrまたはCaNCN
を加えると、冷却速度3℃/sec程度から上記平均結
晶粒径が200μm以下となり、冷却速度7℃/sec
程度から平均結晶粒径が80μm以下となる。したがっ
て、本発明は、金属組織の平均結晶粒径が200μm以
下である塑性加工用マグネシウム合金鋳造素材の製造方
法であって、少なくとも合金元素として、Alを6.2
〜7.6mass%、Mnを0.15〜0.5mass
%、Znを0.4〜0.8mass%含有するマグネシ
ウム合金に微細化剤を添加し、3〜15℃/secの冷
却速度で鋳造することを特徴とする塑性加工用マグネシ
ウム合金鋳造素材の製造方法を提供しようとするもので
もある。微細化剤はSrまたはCaNCNのいずれかで
あり、Srは0.02〜0.5mass%、CaNCN
は0.3〜0.7mass%の添加により微細化に効果
がある。
According to the present invention, at least Al, Mn, Z
As shown in FIG. 22, the magnesium alloy casting material for plastic working containing n and Sr has an average crystal grain size of 200 when subjected to ordinary continuous casting at a cooling rate of about 7 ° C./sec.
It becomes μm or less, and a magnesium alloy casting material for plastic working which gives a limit upsetting rate of 60% or more to the casting material and can be directly subjected to forging (see FIG. 1). In particular, a casting material having an average crystal grain size of 80 μm or less is excellent in high speed forgeability (FIGS. 9 and 10).
reference). Therefore, Sr or CaNCN is used as a refiner.
When the cooling rate is about 3 ° C./sec, the average crystal grain size becomes 200 μm or less, and the cooling rate is 7 ° C./sec.
The average crystal grain size becomes 80 μm or less depending on the degree. Therefore, the present invention is a method for producing a magnesium alloy casting material for plastic working in which the average crystal grain size of the metal structure is 200 μm or less, and at least Al is 6.2 as an alloy element.
~ 7.6mass%, Mn 0.15-0.5mass
%, Zn of 0.4 to 0.8 mass% and a refiner are added to the magnesium alloy to perform casting at a cooling rate of 3 to 15 ° C./sec. It also seeks to provide a method. The refiner is either Sr or CaNCN, Sr is 0.02-0.5 mass%, CaNCN
Is effective for miniaturization by adding 0.3 to 0.7 mass%.

【0010】次に、合金元素の成分限定について説明す
る。マグネシウム合金を強度部品に適用する場合、耐食
性を考慮するとAl−Zn−Mn系合金が優れている。し
かしながら、この合金の結晶粒径と強度特性(引張強
度、伸び、耐食性、衝撃特性)およびAl添加量との間に
は密接な関係があり、適性な値を選定する必要がある。
そこで、Al添加量を低下させてやると、伸び、衝撃値
は向上する反面、耐食性が低下してくる傾向にある。他
方、結晶粒径を微細にする程、溶体化処理後人工時効処
理(例えば、T6処理)によって耐食性が向上するとい
う新しい知見が得られた。そこで、適性な粒径を選択す
ることで、強度、耐食性の向上を図ることにした。本発
明はAl合金(例えば、JIS規格AC4Cの溶湯鍛造
材、JIS規格6061鍛造材)並の強度特性を有して
いる必要があるので、アルミ添加量6〜9重量%の範囲
でAC4C溶湯鍛造材との引張強度および伸びとの比較
を行った。この結果を図3に示す。図3から引張強度の
点においてはAl6〜8.5重量%までに良好な、すな
わちAC4C溶湯鍛造材以上の引張強度が得られること
が分かった。しかしながら、伸びの点においてAC4C
溶湯鍛造材以上の特性を得るためにはAl6.2重量%
以上、8重量%以下である必要があることが分かった。
ここでの特性の比較は通常鍛造において必要とする据え
込み率60%における引張強さおよび伸びの向上特性を
考慮したものである。従って、引張強さおよび伸びの関
係からいうと、Al添加量は6.2重量%以上、8重量
%以下が好ましいことが分かる。
Next, the limitation of the composition of the alloy element will be described. When magnesium alloys are applied to strength parts, Al-Zn-Mn alloys are superior in consideration of corrosion resistance. However, there is a close relationship between the crystal grain size of this alloy and the strength characteristics (tensile strength, elongation, corrosion resistance, impact characteristics) and the amount of Al added, and it is necessary to select an appropriate value.
Therefore, if the amount of Al added is reduced, the elongation and impact value improve, but the corrosion resistance tends to decrease. On the other hand, a new finding was obtained that as the crystal grain size was made finer, the corrosion resistance was improved by the artificial aging treatment after the solution treatment (for example, T6 treatment). Therefore, it was decided to improve the strength and corrosion resistance by selecting an appropriate particle size. Since the present invention needs to have strength characteristics comparable to those of Al alloys (for example, JIS standard AC4C molten metal forgings and JIS standard 6061 forgings), AC4C molten metal forging in the range of 6-9 wt% aluminum addition The tensile strength and elongation of the material were compared. The result is shown in FIG. From FIG. 3, it was found that in terms of tensile strength, Al 6 to 8.5 wt% was good, that is, tensile strength equal to or higher than that of the AC4C molten metal forging was obtained. However, in terms of growth, AC4C
Al 6.2 wt% to obtain the above characteristics
As described above, it has been found that the amount needs to be 8% by weight or less.
The comparison of the properties here takes into consideration the improvement properties of the tensile strength and the elongation at the upsetting ratio of 60%, which are usually required for forging. Therefore, from the relationship between tensile strength and elongation, it is understood that the amount of Al added is preferably 6.2% by weight or more and 8% by weight or less.

【0011】他方、シャルピー衝撃値を検討すると、図
4に示すように、Al添加量が7.6重量%を越えると
AC4Cアルミニウム溶湯鍛造材以下のシャルピー衝撃
値に急激に落ちることが分かった。従って、アルミニウ
ムの成分範囲は上限はシャルピー衝撃値により、下限は
引張特性により規定するのが望ましいことが分かった。
そこで、Al添加量は6.2重量%以上、7.6重量%
以下とした。
On the other hand, when the Charpy impact value was examined, as shown in FIG. 4, it was found that when the Al addition amount exceeds 7.6 wt%, the Charpy impact value sharply falls below the AC4C molten aluminum forging material. Therefore, it was found that it is desirable that the upper limit of the component range of aluminum is defined by the Charpy impact value and the lower limit is defined by the tensile properties.
Therefore, the amount of Al added is 6.2 wt% or more, 7.6 wt%
Below.

【0012】次に、合金元素Znについてであるが、こ
れはAlと同様にマグネシウム合金に強度特性を与える
元素である。大径の鍛造ビレットを得るためには連続鋳
造法による鋳造によるしかない。この場合、結晶粒径は
冷却速度、微細化剤により調製することができるが、1
00μm以下にすることは難しい。そして、通常、大径
連続鋳造材の平均結晶粒径は200μm程度である。こ
のように結晶粒径が比較的大きい鋳造材を鍛造成形する
場合、Znの添加量が成形性に影響してくる。ZnはMg
AlZnの化合物として合金中に晶出し、上述したよう
に、マグネシウム合金の強度向上に寄与するが、多すぎ
ると成形性を悪化し、鍛造加工上好ましくなくなる。そ
こで、必要な強度を得るために下限は0.4重量%以上
とし、上限は鍛造性を考慮として0.8重量%以下とし
た。すなわち、表3の化学成分表についてZn量を0.
25〜1.20重量%の範囲で変化させ、Zn量の変化
に伴う限界据え込み率を考慮すると、図11に示すよう
に、Zn0.8重量%を超えると限界据え込み率は60
%を割ることになるからである。
Next, regarding the alloying element Zn, this is an element which, like Al, gives strength characteristics to the magnesium alloy. Casting by continuous casting is the only way to obtain a large-diameter forged billet. In this case, the crystal grain size can be adjusted by the cooling rate and the refining agent.
It is difficult to make the thickness below 00 μm. The average crystal grain size of the large diameter continuous cast material is usually about 200 μm. When a cast material having a relatively large grain size is forged as described above, the amount of Zn added affects the formability. Zn is Mg
As a compound of AlZn, it crystallizes in the alloy and contributes to the improvement of the strength of the magnesium alloy as described above, but if it is too much, the formability deteriorates and it becomes unfavorable for forging. Therefore, in order to obtain the required strength, the lower limit is set to 0.4% by weight or more, and the upper limit is set to 0.8% by weight or less in consideration of forgeability. That is, the Zn content in the chemical composition table of Table 3 was 0.
Considering the limit upsetting rate due to the change of the Zn amount by changing the range of 25 to 1.20% by weight, as shown in FIG. 11, when Zn exceeds 0.8% by weight, the limiting upsetting rate is 60%.
This is because it will be divided by%.

【0013】合金元素Mnについては次の通りである。
Mnは主にFe分を抑制する作用があり、素材の耐食性構
造に有効であるが、0.15重量%未満では効果はな
く、0.5重量%を超えると鍛造性に影響を与えるから
である。他の元素として微細化剤として添加するSrお
よびCaNCNの残留があるが、特にSrは図23に示
すように、添加量の大小に関わらず80%前後が残留す
る。その残留量が0.02重量%以上でマグネシウム合
金の鋳造組織の微細化効果が現れるが、0.5重量%以
上ではMg、Al、Zn等と化合物を形成し、鍛造性を
悪化させるとともに鍛造後の機械的性質に悪影響を及ぼ
すからである。
The alloying element Mn is as follows.
Mn mainly has an action of suppressing Fe content and is effective for the corrosion resistant structure of the material, but if it is less than 0.15% by weight, it has no effect, and if it exceeds 0.5% by weight, the forgeability is affected. is there. As other elements, Sr and CaNCN added as a refining agent remain, but especially Sr remains around 80% regardless of the amount of addition, as shown in FIG. When the residual amount is 0.02% by weight or more, the refinement effect of the cast structure of the magnesium alloy appears, but when it is 0.5% by weight or more, it forms a compound with Mg, Al, Zn, etc., which deteriorates the forgeability and forging. This is because it has an adverse effect on the later mechanical properties.

【0014】上記の合金成分からなる鋳造素材を塑性加
工した後の、材料組織の平均結晶粒径が100μm以下
の場合は、伸び10%以上、引張強度300MPa以上
の引張特性を有するマグネシウム合金部材を提供するこ
とができることになる。特に、材料組織の平均結晶粒径
が50μm以下であると、AC4C溶湯鍛造材以上のシ
ャルピー衝撃値(50J/cm2)を有することにな
る。
When the average crystal grain size of the material structure is 100 μm or less after plastic working of the casting material composed of the above alloy components, a magnesium alloy member having tensile properties of elongation 10% or more and tensile strength 300 MPa or more is obtained. Will be able to provide. In particular, when the average crystal grain size of the material structure is 50 μm or less, the Charpy impact value (50 J / cm 2 ) is equal to or higher than that of the AC4C molten metal forging material.

【0015】上記鍛造部材を製造するにあたっては、上
記の合金元素成分からなるマグネシウム合金素材を平均
結晶粒径200μm以下となるように鋳造し、該鋳造素
材を塑性加工に付し平均結晶粒径100μm以下の組織
を有するものとなし、最終製品形状となした後溶体化処
理とともに人工時効処理、特にT6熱処理を施すのが好
ましい。これにより金属組織の平均結晶粒径が50μm
以下である場合はAZ91D以上の耐食性を有すること
になる。なお、塑性加工を350℃以上で行う場合は最
終製品は人工時効処理のみを施せば、同様の効果を得る
ことができる。
In producing the forged member, a magnesium alloy material composed of the above alloy element components is cast so that the average crystal grain size is 200 μm or less, and the casting material is subjected to plastic working to obtain an average crystal grain size of 100 μm. It is preferable to carry out artificial aging treatment, especially T6 heat treatment together with solution treatment after forming the final product shape without having the following structure. As a result, the average crystal grain size of the metal structure is 50 μm.
When it is below, it will have corrosion resistance of AZ91D or more. When the plastic working is performed at 350 ° C. or higher, the same effect can be obtained by subjecting the final product to artificial aging treatment only.

【0016】上記鋳造は半溶融状態から行うのが好まし
い。鍛造加工後の機械的性質の向上を図ることができる
からである。
The above casting is preferably carried out from a semi-molten state. This is because the mechanical properties after forging can be improved.

【0017】塑性加工として、鍛造成形を行うにあたっ
ては、限界据え込み率60%を越える歪み速度が平均結
晶粒径200μm近傍では比較的低速である必要がある
ため、1回目は低速で、2回目以後の工程を1回目の工
程に比し高速で行うようにするのがよい。
When performing forging as plastic working, the strain rate exceeding the critical upsetting ratio of 60% needs to be relatively low in the vicinity of the average crystal grain size of 200 μm, so the first time is low and the second time is It is preferable that the subsequent steps be performed at a higher speed than the first step.

【0018】[0018]

【実施例】実施例1(結晶粒径と鍛造成形性との関係) 下記表1に示す化学成分(重量%)のMg合金を用いて
鍛造用素材(H42mm、φ28mm)を鋳造し、図2
に示す試験装置により素材温度350℃において据え込
み加工(歪み速度:低速、10%/sec程度)を施
し、結晶粒径と限界据え込み率(=元の高さH−クラッ
ク発生時の高さH’/H×100)との関係を求めた。
結果を図1に示す。これにより鍛造に必要な限界据え込
み率60%を越える鍛造成形性を得るためには結晶粒径
200μm以下である必要があることがわかった。
EXAMPLE Example 1 (Relationship between grain size and forgeability) A forging material (H42 mm, φ28 mm) was cast using a Mg alloy having the chemical composition (wt%) shown in Table 1 below, and FIG.
Upsetting (strain rate: low speed, about 10% / sec) was performed at the material temperature of 350 ° C by the test device shown in Fig. 3, and the crystal grain size and the limit upsetting rate (= original height H-height at the time of crack occurrence) H ′ / H × 100) was obtained.
The results are shown in Fig. 1. From this, it was found that the grain size needs to be 200 μm or less in order to obtain the forge formability that exceeds the critical upsetting ratio of 60% required for forging.

【表1】 [Table 1]

【0019】実施例2(歪み速度と成形性の関係) 下記表2に示す化学成分(重量%)のMg合金を鍛造用
素材(H42mm、φ28mm)を平均結晶粒径200
μmに鋳造し、図2に示す試験装置により素材温度25
0から400℃において60%の据え込み加工を歪み速
度:低速、100%/secと高速103%/secで行
い、限界据え込み率の変化を求めた。結果を図8に示
す。この結果から、Mg合金の鍛造成形性は歪み速度
(加工速度に関係)の影響を受け、平均結晶粒径が20
0μm以下の場合でも高速の場合は成形性が劣り、鍛造
温度などの製造条件が制限されることがわかる。
Example 2 (Relationship between strain rate and formability) Forging material (H42 mm, φ28 mm) of Mg alloy having chemical composition (% by weight) shown in Table 2 below has an average crystal grain size of 200.
It was cast to a diameter of μm and the material temperature was 25
0 strain of 60% of the upsetting at 400 ° C. from the speed: slow, carried out at 10 0% / sec and a high-speed 10 3% / sec, was determined the change in the critical upsetting ratio. The results are shown in Fig. 8. From this result, the forgeability of the Mg alloy is affected by the strain rate (related to the working rate), and the average grain size is 20
It can be seen that even when the thickness is 0 μm or less, the formability is poor at high speeds and the manufacturing conditions such as forging temperature are limited.

【0020】そこで、鍛造温度350℃における平均結
晶粒径125μm、200μmおよび250μmの試料
A、B、Cにおいて歪み速度と成形性(限界据え込み
率)との関係を見ると、図9に示す通りである。かかる
結果から、平均結晶粒径200μm近傍では歪み速度を
低速にする必要があり、200μmを越えると低速でも
所定の成形性を得ることができず、反対に125μm程
度になると、高速でも十分に所定の成形性(限界据え込
み率60%以上)を得ることができる。したがって、連
続鋳造材を使用して大型鍛造部品を製造しようとする場
合は200μmとする必要があることがわかる。
Therefore, looking at the relationship between the strain rate and the formability (limit upsetting ratio) in Samples A, B and C having average crystal grain sizes of 125 μm, 200 μm and 250 μm at a forging temperature of 350 ° C., as shown in FIG. Is. From these results, it is necessary to slow down the strain rate in the vicinity of the average crystal grain size of 200 μm, and if it exceeds 200 μm, it is impossible to obtain a predetermined formability even at a low speed. Moldability of (upper limit upsetting ratio of 60% or more) can be obtained. Therefore, it is necessary to set the thickness to 200 μm when manufacturing a large forged part using a continuous cast material.

【表2】 [Table 2]

【0021】実施例3(高歪み速度下での結晶粒径と成
形性の関係) 上記表2に示す化学成分(重量%)のMg合金を鍛造用
素材(H42mm、φ28mm)を平均結晶粒径50な
いし250μmに鋳造し、図2に示す試験装置により素
材温度350℃において据え込み加工を歪み速度:10
3%/secで行い、平均結晶粒径と限界据え込み率と
の関係を求めた。結果を図10に示す。この結果から、
Mg合金の鍛造成形性は高歪み速度においては、平均結
晶粒径が80μm以下の場合で限界据え込み率60%を
越えることがわかった。この粒径は鋳造素材として20
0μmの素材を使用すると1回の鍛造(約50%の加工
率)で達成しうるものである。
Example 3 (Relationship between Crystal Grain Size and Formability at High Strain Rate) Mg alloys having the chemical composition (wt%) shown in Table 2 above were used as a forging material (H42 mm, φ28 mm) in average crystal grain size. Casting to 50 to 250 μm, and upsetting at a material temperature of 350 ° C. using a test apparatus shown in FIG.
It carried out at 3 % / sec, and the relationship between the average grain size and the limit upsetting rate was determined. The results are shown in Fig. 10. from this result,
It was found that the forging formability of the Mg alloy exceeds the critical upsetting ratio of 60% when the average crystal grain size is 80 μm or less at a high strain rate. This grain size is 20 as a casting material
When a material of 0 μm is used, it can be achieved by one forging (processing rate of about 50%).

【0022】実施例4(Zn添加量と成形性との関係) 下記表3に示す化学成分(重量%)のMg合金から鍛造
用素材(H42mm、φ28mm)を平均結晶粒径20
0μmに鋳造し、図2に示す試験装置により素材温度3
50℃において据え込み加工を歪み速度:103%/s
ecで行い、Zn添加量と限界据え込み率との関係を求
めた。結果を図11に示す。この結果から、Mg合金は
0.8mass%を越えると限界据え込み率60%を確
保できないので、0.8mass%以下に抑える必要が
あることがわかる。
Example 4 (Relationship between Zn Addition Amount and Formability) A forging material (H42 mm, φ28 mm) was made from a Mg alloy having the chemical composition (% by weight) shown in Table 3 below to have an average crystal grain size of 20.
It is cast to 0 μm and the material temperature is 3 by the test equipment shown in FIG.
Upsetting at 50 ° C Strain rate: 103% / s
ec was performed to determine the relationship between the Zn addition amount and the limit upsetting rate. The results are shown in Fig. 11. From these results, it is understood that the Mg alloy cannot secure the critical upsetting ratio of 60% when it exceeds 0.8 mass%, and therefore it is necessary to suppress it to 0.8 mass% or less.

【表3】 [Table 3]

【0023】実施例5 上記表2に示す化学成分(重量%)のMg合金と下記表
4に示す従来のAZ80合金から鍛造用素材(H42m
m、φ28mm)を平均結晶粒径200μmに鋳造し、
図2に示す試験装置により素材温度250℃および35
0℃において据え込み加工を歪み速度:48mm/se
cで行い、歪みと変形抵抗との関係を求めた。結果を図
13に示す。この結果から、本発明Mg合金は従来のA
Z80合金に比し、鍛造荷重が低く、鍛造成形性に優れ
ることがわかる。
Example 5 A Mg alloy having the chemical composition (% by weight) shown in Table 2 above and a conventional AZ80 alloy shown in Table 4 below were used as a forging material (H42m).
m, φ28 mm) with an average crystal grain size of 200 μm,
Material temperature of 250 ° C and 35
Strain rate of upsetting at 0 ° C: 48 mm / se
Then, the relationship between strain and deformation resistance was obtained. The results are shown in Fig. 13. From these results, the Mg alloy of the present invention is
It can be seen that the forging load is lower and the forgeability is superior to the Z80 alloy.

【表4】 [Table 4]

【0024】実施例6(Al添加量と機械的性質との関
係) 上記表1に示すMg合金Aの鍛造用素材に図2に示す試
験装置により素材温度300℃において据え込み加工
(歪み速度:低速、10%/sec程度)を施し、60
%の据え込み率で加工後T6処理(400℃×15時間
空冷後、175℃×16時間空冷)を施し、Al添加量
と据え込み前後の引張強度および伸びの変化の関係を求
めた。結果を図3に示す。これよりAl6.2重量%か
ら8.0重量%まではAC4C溶湯鍛造材以上の物性が
得られることが判明した。なお、Al添加量9.0重量
%のものは60%までの据え込みが不可能であった。
Example 6 (Relationship Between Al Addition Amount and Mechanical Properties) Forging material of Mg alloy A shown in Table 1 above was subjected to upsetting at a material temperature of 300 ° C. by a test apparatus shown in FIG. 2 (strain rate: Low speed, 10% / sec), 60
After processing at a upsetting rate of%, T6 treatment (400 ° C. × 15 hours air cooling, then 175 ° C. × 16 hours air cooling) was performed, and the relationship between the Al addition amount and changes in tensile strength and elongation before and after upsetting was determined. The results are shown in Fig. 3. From this, it was found that from 6.2% by weight to 8.0% by weight of Al, the physical properties equal to or higher than those of the AC4C molten metal forging material can be obtained. It should be noted that upsetting up to 60% was impossible with an Al addition of 9.0% by weight.

【0025】実施例7(Al添加量とシャルピー衝撃値
との関係) 上記表1に示すMg合金の鍛造用素材に図2に示す試験
装置により素材温度300℃において据え込み加工(歪
み速度:低速、10%/sec程度)を施し、60%の
据え込み率で加工後T6処理(400℃×15時間空冷
後、175℃×16時間空冷)を施し、、T6処理後の
Mg合金のAl添加用量とシャルピー衝撃特性との関係
を求めると、図4に示す通りであった。この時の平均結
晶粒径は約50μmであるが、AC4C溶湯鍛造材以上
のシャルピー衝撃値50J/cm2を有するにはAl添
加量は7.6重量%以下である必要があることがわか
る。以上の結果から、Al7.0重量%で引張強度、伸
びおよびシャルピー衝撃値が最高の結果が得られること
がわかる。
Example 7 (Relationship between Al Addition Amount and Charpy Impact Value) Upsetting of Mg alloy forging materials shown in Table 1 above at a material temperature of 300 ° C. by a test apparatus shown in FIG. 2 (strain rate: low speed) 10% / sec), and after processing at an upsetting rate of 60%, perform T6 treatment (400 ° C. × 15 hours air cooling, then 175 ° C. × 16 hours air cooling), and add Al to the Mg alloy after T6 treatment. The relationship between the dose and the Charpy impact property was determined and was as shown in FIG. The average crystal grain size at this time is about 50 μm, but it is understood that the amount of Al added must be 7.6% by weight or less in order to have a Charpy impact value of 50 J / cm 2 which is equal to or higher than that of the AC4C molten metal forging material. From the above results, it can be seen that the highest tensile strength, elongation, and Charpy impact value can be obtained at 7.0% by weight of Al.

【0026】実施例8(結晶粒径と機械的性質との関
係) 下記表5に示す化学成分(重量%)のMg合金を鍛造用
素材(H42mm、φ28mm)を鋳造し、図2に示す
試験装置により素材温度350℃において60%の据え
込み加工(歪み速度:低速、100%/sec程度)を
施し、上記実施例1と同様のT6処理の施した後、小野
式回転曲げ疲労試験に付して回転曲げ疲労特性を求め
た。その結果を図5に示す。これはAC4C溶湯鍛造材
を上回ることを示す。
Example 8 (Relationship between crystal grain size and mechanical properties) Mg alloys having the chemical composition (% by weight) shown in Table 5 below were cast into a forging material (H42 mm, φ28 mm) and tested as shown in FIG. 60% of upsetting the stock temperature 350 ° C. the apparatus (strain rate: slow, 10 0% / about sec) charity, after performing the same T6 treatment as in example 1, the fatigue test Ono-type rotating bending Then, the rotational bending fatigue property was obtained. The result is shown in FIG. This is superior to the AC4C molten metal forging.

【0027】また、T6処理後の平均結晶粒径と引張強
度(MPa)、耐力及び伸び(%)の関係を図6に示
す。ここから、AC4C溶湯鍛造材と同等以上の機械的
性質を備えるには、特に耐力の変曲点を考慮すると、平
均結晶粒径で100μm以下である必要があることがわ
かる。
FIG. 6 shows the relationship between the average crystal grain size after T6 treatment, tensile strength (MPa), yield strength and elongation (%). From this, it can be seen that in order to provide the same or higher mechanical properties as the AC4C molten metal forging material, the average crystal grain size needs to be 100 μm or less, especially in consideration of the inflection point of the proof stress.

【表5】 [Table 5]

【0028】実施例9(結晶粒径とシャルピー衝撃値と
の関係) 上記表2に示す化学成分(重量%)のMg合金から鍛造
用素材(H42mm、φ28mm)を鋳造し、図2に示
す試験装置により素材温度350℃において60%の据
え込み加工(歪み速度:低速、100%/sec程度)
を施し、T6処理(400℃×10時間空冷後、175
℃×16時間空冷)の施した後、平均結晶粒径(μm)
とシャルピー衝撃値(J/cm2)との関係を求める
と、図7に示す通りである。ここから、AC4C溶湯鍛
造材以上の衝撃値を得るためには結晶粒径が50μm以
下である必要があることがわかる。
Example 9 (Relationship between grain size and Charpy impact value) A forging material (H42 mm, φ28 mm) was cast from a Mg alloy having the chemical composition (% by weight) shown in Table 2 above, and the test shown in FIG. 60% upsetting of the material temperature 350 ° C. the apparatus (strain rate: slow, about 10 0% / sec)
And T6 treatment (after air cooling at 400 ° C for 10 hours, 175
Average crystal grain size (μm)
The relationship between the Charpy impact value (J / cm 2 ) and the Charpy impact value is shown in FIG. 7. From this, it is understood that the crystal grain size needs to be 50 μm or less in order to obtain an impact value higher than that of the AC4C molten metal forging material.

【0029】実施例10(結晶粒径と耐食性の関係) 上記表2に示すAl添加量上限値Mg合金と下記表6に
示すAl添加量下限値Mg合金から鍛造用素材(H42
mm、φ28mm)を鋳造し、図2に示す試験装置によ
り素材温度350℃において60%の据え込み加工(歪
み速度:低速、100%/sec程度)を施し、T6処
理(400℃×10時間空冷後、175℃×16時間空
冷)の施した後、平均結晶粒径(μm)と耐食性(mill
s/year)との関係を求めると、図12に示す通りであ
る。ここから、結晶粒径を微細にしていくと、200μ
m近傍からマグネシウム合金中最も耐食性が良好とされ
るAZ91D合金F(無熱処理)材に匹敵する特性が得
られることがわかる。
Example 10 (Relationship between Crystal Grain Size and Corrosion Resistance) From the Al addition amount upper limit Mg alloy shown in Table 2 above and the Al addition amount lower limit Mg alloy shown in Table 6 below, a forging material (H42
mm, φ28 mm), subjected to 60% upsetting at a material temperature of 350 ° C. (strain rate: low speed, about 100% / sec) by the test device shown in FIG. 2, and T6 treatment (400 ° C. × 10 hours air cooling). Then, after air cooling at 175 ° C. for 16 hours), the average crystal grain size (μm) and corrosion resistance (mill
s / year) is as shown in FIG. From here, if the crystal grain size is made finer, it becomes 200μ
It can be seen from the vicinity of m that characteristics comparable to those of the AZ91D alloy F (non-heat treated) material, which has the best corrosion resistance among magnesium alloys, can be obtained.

【表6】 ここで、腐食試験は塩水噴霧試験で耐食性を評価した。
試験条件は温度35℃、試験時間240時間、塩水濃度
5mass%で、テストピース形状は表面をエメリー♯
600研磨した50×90×5mmで、腐食量は下記式
により求めた。
[Table 6] Here, the corrosion test evaluated the corrosion resistance by the salt spray test.
The test conditions are a temperature of 35 ° C., a test time of 240 hours, a salt water concentration of 5 mass%, and the test piece shape has an emery surface.
The amount of corrosion was determined by the following formula with 600 × 50 × 90 × 5 mm.

【数1】 [Equation 1]

【0030】実施例11(鋳造冷却速度、塑性加工率と
結晶粒径との関係) 上記表5に示す化学成分のMg合金から鍛造用素材(H
42mm、φ28mm)を鋳造するに際し、微細化材C
aNCNを0.5重量%添加し、冷却速度と鋳造素材の
平均結晶粒径との関係を求めると、図14に示す通りで
あった。次に図2に示す試験装置により素材温度350
℃において据え込み加工(歪み速度:低速、100%/
sec程度)を施し、その塑性加工率と結晶粒径の変化
の関係と求めた。結果を図15に示す。塑性加工率が大
きくなるほど本発明のMg合金は結晶粒径が小さくなる
ことがわかる。
Example 11 (Relationship Between Casting Cooling Rate, Plastic Working Rate and Crystal Grain Size) From the Mg alloys having the chemical components shown in Table 5 above, a forging material (H
42 mm, φ28 mm) when casting
When 0.5% by weight of aNCN was added and the relationship between the cooling rate and the average crystal grain size of the casting material was determined, it was as shown in FIG. Next, using the test device shown in FIG.
℃ upsetting in the processing (strain rate: slow, 10 0% /
(about sec.), and the relationship between the plastic working rate and the change in crystal grain size was determined. The results are shown in Fig. 15. It can be seen that the larger the plastic working ratio, the smaller the crystal grain size of the Mg alloy of the present invention.

【0031】実施例12(鍛造ホイールの製造) 上記表2の化学成分のMg合金を使用して連続鋳造法に
より柱状のビレットを製造し、これを図16に示すよう
に荒地鍛造に付する。次にブロッカー鍛造に付し、さら
にフィニッシャー鍛造に付してホイール素材を鍛造し、
最後にスピニング加工を施してT6処理(400℃×1
0時間空冷後、175℃×16時間空冷)に付し、最終
製品とする。その結晶粒度分布を見ると、図17に示す
通りであって表面領域に細かい結晶粒度が分布してい
る。これに対し、上記スピニング加工を行わず、鍛造の
みによって最終製品形状に形成することもできる。この
際に、図19に示すように表面領域に比較的大きい結晶
粒度が分布する場合は予め図18に示すように鍛造用ビ
レットにローラ加工などの塑性加工を施しておくのが好
ましい。また、上記ローラ加工の代わりに、鍛造工程に
おける冷却速度を速めることにより表面領域の結晶粒度
を微細化するようにしてもよい。
Example 12 (Production of Forged Wheel) A columnar billet was produced by continuous casting using the Mg alloy having the chemical composition shown in Table 2 above, and this was subjected to rough forging as shown in FIG. Next, it is subjected to blocker forging, and then finisher forging to forge the wheel material,
Finally, spinning processing is applied and T6 treatment (400 ° C x 1
After air-cooling for 0 hours, air-cool for 16 hours x 175 ° C) to obtain the final product. Looking at the grain size distribution, it is as shown in FIG. 17, and fine grain sizes are distributed in the surface region. On the other hand, it is also possible to form the final product shape only by forging without performing the above spinning process. At this time, when a relatively large grain size is distributed in the surface region as shown in FIG. 19, it is preferable to subject the forging billet to plastic working such as roller working in advance as shown in FIG. Further, instead of the roller processing, the grain size of the surface region may be made finer by increasing the cooling rate in the forging step.

【0032】実施例13(半溶融鋳造鍛造法) 先ず、図20の(A)〜(G)は本願発明の実施例に係るマ
グネシウム合金製自動車部品(ホイール)の鋳造鍛造法に
よる製造方法の各工程を示している。先ず最初に、るつ
ぼ1内に軽合金材料である上記(表5)の組成のマグネシ
ウム合金材2を入れてヒータにより周囲から加熱して半
溶融状態にし、撹拌プレート3を有する撹拌棒4をモー
タ5により回転駆動することによって次の(表7)に示す
製造条件の下で混合撹拌する。
Embodiment 13 (Semi-melt casting and forging method) First, FIGS. 20 (A) to 20 (G) show each method of manufacturing a magnesium alloy automobile part (wheel) according to the embodiment of the present invention by the casting / forging method. The process is shown. First, a magnesium alloy material 2 having a composition of the above (Table 5), which is a light alloy material, is placed in a crucible 1 and heated from the surroundings by a heater to be in a semi-molten state, and a stirring rod 4 having a stirring plate 3 is placed on a motor. The mixture is agitated under the production conditions shown in the following (Table 7) by rotating and driving by No. 5.

【表7】 この工程における上記るつぼ1内のマグネシウム合金材
2に対する加熱および撹拌は、先ず初期の段階では同材
料2が固相(α相)と液相との中間状態となるような温度
に加熱する。その後、同状態で撹拌板3により上記(表
7)の条件で強制的に撹拌する(図20のA)。その結
果、樹脂状晶(デンドライト)の固相が破砕されて球状に
なる。この時の固相率は、60%以下になるようにする
ことが好ましい。次に、上記のようにして固相率60%
以下とされたるつぼ1内の半溶融状態の合金材2をプラ
ンジャ9を備えたダイキャスト用のスリーブ8内に図2
0の(B)から同(C)の状態になるように注入する(図2
0の(B),(C))。その後、上記スリーブ8をダイキャス
ト金型20の注入口に嵌合し、プランジャ9を作動させ
て上記半溶融状態の合金材2をダイキャスト金型20内
に注入することによって鋳造する(ブランク製造)(図2
0の(D))。上記のようにして半溶融鋳造が完了した中
間成形品としての合金材2をダイキャスト金型20より
取り出す(図20の(E))。上記のようにして鋳造形成
された中間成形品たる合金材2を鋳造素材として鍛造用
の下型11上にセットし、上型10との間で鍛造成型
(1回)することにより最終成形するとともに機械的強度
を向上させる(図20の(F))。その後、例えば400℃
で4時間の空冷による溶体化処理、180℃で15時間
の空冷による人工時効処理を内容とするJIS.T6熱
処理を行った上で治具12,13に支持させて細部のス
ピンフォージ(スピニング加工)を実行し、最終成形品2
を得る(図20の(G))。
[Table 7] In the heating and stirring of the magnesium alloy material 2 in the crucible 1 in this step, first, in the initial stage, the material 2 is heated to a temperature at which the material 2 is in an intermediate state between a solid phase (α phase) and a liquid phase. Then, in the same state, the stirring plate 3 is forcibly stirred under the above conditions (Table 7) (A in FIG. 20). As a result, the solid phase of the resinous crystals (dendrites) is crushed and becomes spherical. The solid fraction at this time is preferably 60% or less. Next, the solid phase ratio is 60% as described above.
The alloy material 2 in the semi-molten state in the crucible 1 as described below is placed in a sleeve 8 for die casting equipped with a plunger 9.
Inject from 0 (B) to 0 (B) (Fig. 2)
0 (B), (C)). Then, the sleeve 8 is fitted into the injection port of the die-casting die 20, and the plunger 9 is operated to inject the semi-molten alloy material 2 into the die-casting die 20 for casting (blank production). ) (Fig. 2
0 (D)). The alloy material 2 as an intermediate molded product, which has completed the semi-melt casting as described above, is taken out from the die-casting mold 20 ((E) in FIG. 20). The alloy material 2 which is an intermediate molded product formed by casting as described above is set as a casting material on the lower die 11 for forging, and forged with the upper die 10.
By performing (once), the final molding is performed and the mechanical strength is improved ((F) in FIG. 20). Then, for example, 400 ℃
Solution treatment by air-cooling for 4 hours at 180 ° C. and artificial aging treatment by air-cooling at 180 ° C. for 15 hours. After the T6 heat treatment, the jigs 12 and 13 are supported to perform detailed spin forge (spinning), and the final molded product 2
Is obtained ((G) in FIG. 20).

【0033】実施例14(微細化剤の添加効果) 下記表8に示す組成のマグネシウム合金を調製して溶解
し、約780℃まで昇温して試料1では微細化剤を添加
せず、試料2ではSrが0.02mass%残留するよ
うにSr−Al合金を添加し、試料3ではCaNCNを
0.5mass%添加して撹拌し、連続鋳造法により冷
却速度を変化させ、鋳造後の金属組織の平均結晶粒径と
の関係を検討した。
Example 14 (Effect of addition of refiner) A magnesium alloy having the composition shown in Table 8 below was prepared and melted, and the temperature was raised to about 780 ° C. Sample 1 was added with no refiner. In No. 2, Sr-Al alloy was added so that Sr remained 0.02 mass%, in Sample 3, 0.5 mass% of CaNCN was added and stirred, and the cooling rate was changed by the continuous casting method, and the metal structure after casting was changed. The relationship with the average crystal grain size of was investigated.

【表8】 結果を図22に示す。微細化剤無添加の場合は、冷却速
度7℃/sec程度の通常の連続鋳造によって金属組織
の平均結晶粒径は200μm以下となり、他方、微細化
剤としてSrまたはCaNCNを加えると、冷却速度3
℃/sec程度から上記平均結晶粒径が200μm以下
となり、冷却速度7℃/sec程度から平均結晶粒径が
80μm以下となる。
[Table 8] The results are shown in Fig. 22. In the case where no refining agent is added, the average crystal grain size of the metal structure becomes 200 μm or less by ordinary continuous casting at a cooling rate of about 7 ° C./sec. On the other hand, when Sr or CaNCN is added as a refining agent, the cooling rate becomes 3
The average crystal grain size is about 200 μm or less from about C / sec, and the average crystal grain size is about 80 μm or less from about 7 ° C./sec.

【0034】実施例15(Srの残留) 下記表9の条件下にAl:6.9mass%,Zn:
0.7mass%,Mn:0.38mass%,残部M
gの鋳造材を溶解し、約780℃まで昇温した時、アル
ミ箔に包んだ状態のSr−10%Al合金を溶湯中に投
入し、撹拌後降温しながら鎮静させ、溶湯温度が約70
0℃に達したときに70〜85℃に余熱した金型内に鋳
造し、鋳造材中のSr含有量を調査した。結果を図23
に示す。添加したSrは合金中に残留し再溶解した際に
も微細化の効果を持続する。また、添加したSrの一部
はMgあるいはAlなどの他の合金元素と合金物を形成
して晶出する。
Example 15 (Residual Sr) Under the conditions shown in Table 9 below, Al: 6.9 mass% and Zn:
0.7 mass%, Mn: 0.38 mass%, balance M
When the casting material of g was melted and the temperature was raised to about 780 ° C., the Sr-10% Al alloy wrapped in aluminum foil was put into the molten metal, and after stirring, the temperature was lowered while cooling and the molten metal temperature was about 70.
When it reached 0 ° C, it was cast in a mold preheated to 70 to 85 ° C, and the Sr content in the cast material was investigated. The result is shown in FIG.
Shown in. The added Sr remains in the alloy and maintains the effect of refining even when it is redissolved. Further, a part of the added Sr forms an alloy with another alloy element such as Mg or Al and crystallizes.

【表9】 [Table 9]

【0035】[0035]

【発明の効果】以上の説明で明らかなように、本発明に
よれば、大型鍛造品に対して図21に示すように、アル
ミA6061鍛造材と同等の引張強度と伸びを与え、従
来のMg合金AZ80を越える引張強度と伸びを有す
る。また、かかるMg合金素材は連続鋳造法により供給
することができるので、自動車用ホイールなど大型鍛造
品に適用するのに好適なMg合金が提供されることにな
る。
As is apparent from the above description, according to the present invention, as shown in FIG. 21, a large-sized forged product is given the same tensile strength and elongation as the aluminum A6061 forged material, and the conventional Mg It has tensile strength and elongation exceeding that of alloy AZ80. Moreover, since such a Mg alloy material can be supplied by a continuous casting method, a Mg alloy suitable for application to large forged products such as automobile wheels can be provided.

【図面の簡単な説明】[Brief description of drawings]

【図1】 Mg合金鋳造素材の結晶粒径と限界据え込み
率との関係を示すグラフである。
FIG. 1 is a graph showing a relationship between a crystal grain size of a Mg alloy casting material and a critical upsetting rate.

【図2】 鋳造素材の据え込み試験の説明図である。FIG. 2 is an explanatory view of an upsetting test of a casting material.

【図3】 本発明合金の鍛造品におけるAl添加量と引
張強度および伸びとの関係を示すグラフである。
FIG. 3 is a graph showing the relationship between the amount of Al added and the tensile strength and elongation in a forged product of the alloy of the present invention.

【図4】 本発明合金の鍛造品におけるAl添加量とシ
ャルピー衝撃値との関係を示すグラフである。
FIG. 4 is a graph showing the relationship between the amount of Al added and the Charpy impact value in a forged product of the alloy of the present invention.

【図5】 本発明合金の鍛造品における回転曲げ疲労特
性を示すグラフである。
FIG. 5 is a graph showing rotary bending fatigue characteristics of a forged product of the alloy of the present invention.

【図6】 本発明合金の鍛造品における平均結晶粒径と
引張強度、耐力、伸びとの関係を示すグラフである。
FIG. 6 is a graph showing the relationship between the average crystal grain size and tensile strength, proof stress, and elongation in a forged product of the alloy of the present invention.

【図7】 本発明合金の鍛造品における平均結晶粒径と
シャルピー衝撃値との関係を示すグラフである。
FIG. 7 is a graph showing the relationship between the average grain size and the Charpy impact value in a forged product of the alloy of the present invention.

【図8】 本発明鋳造素材の平均結晶粒径200μmに
おける低速および高速歪み速度の加工による素材加熱温
度と限界据え込み率との関係を示すグラフである。
FIG. 8 is a graph showing the relationship between the material heating temperature and the critical upsetting rate due to low speed and high strain rate processing at an average crystal grain size of 200 μm of the casting material of the present invention.

【図9】 本発明鋳造素材の平均結晶粒径125、20
0、250μmにおける歪み速度と限界据え込み率との
関係を示すグラフである。
FIG. 9: Average crystal grain size 125, 20 of the casting material of the present invention
It is a graph which shows the relationship between the strain rate at 0 and 250 μm, and the critical upsetting rate.

【図10】 高歪み速度下での結晶粒径と生計性の関係
を示すグラフである。
FIG. 10 is a graph showing the relationship between crystal grain size and livelihood under high strain rate.

【図11】 本発明鋳造素材のZn量と限界据え込み率
との関係を示すグラフである。
FIG. 11 is a graph showing the relationship between the Zn content and the critical upsetting ratio of the casting material of the present invention.

【図12】 Mg合金鍛造品の結晶粒径と耐食性との関
係を示すグラフである。
FIG. 12 is a graph showing the relationship between the crystal grain size and the corrosion resistance of a forged Mg alloy product.

【図13】 本発明鋳造素材と従来のAZ80合金鋳造
素材の歪みと変形抵抗との関係を示すグラフである。
FIG. 13 is a graph showing the relationship between strain and deformation resistance of the casting material of the present invention and the conventional AZ80 alloy casting material.

【図14】 本発明鋳造素材の鋳造時における冷却速度
と結晶粒径との関係を示すグラフである。
FIG. 14 is a graph showing the relationship between the cooling rate and the crystal grain size during casting of the casting material of the present invention.

【図15】 本発明鋳造素材の塑性加工率と結晶粒径と
の関係を示すグラフである。
FIG. 15 is a graph showing the relationship between the plastic working rate and the crystal grain size of the casting material of the present invention.

【図16】 本発明合金の連続鋳造材からホイールを成
形する場合の工程を示す工程図である。
FIG. 16 is a process drawing showing a process for forming a wheel from a continuously cast material of the alloy of the present invention.

【図17】 図16で製造されたMg合金ホイールの結
晶粒度分布図である。
FIG. 17 is a grain size distribution chart of the Mg alloy wheel manufactured in FIG. 16.

【図18】 本発明鋳造素材に対して予め塑性加工を施
す場合の1例を示す概略図である。
FIG. 18 is a schematic view showing an example of the case where the casting material of the present invention is plastically processed in advance.

【図19】 本発明合金を用い、従来方法で成形した場
合のホイールの結晶粒度分布図である。
FIG. 19 is a crystal grain size distribution chart of a wheel formed using the alloy of the present invention by a conventional method.

【図20】 本発明合金を用い、半溶融鍛造法によりホ
イールを製造する場合の工程図である。
FIG. 20 is a process diagram in the case of manufacturing a wheel by a semi-melt forging method using the alloy of the present invention.

【図21】 本発明鍛造品の従来製品との引張強度およ
び伸びとの対比を示すグラフである。
FIG. 21 is a graph showing a comparison between tensile strength and elongation of a forged product of the present invention and a conventional product.

【図22】 本発明に係る鋳造材の微細化剤添加効果を
示す冷却速度−平均結晶粒径の関係を示すグラフであ
る。
FIG. 22 is a graph showing the relationship between cooling rate and average crystal grain size, which shows the effect of adding a refining agent to the cast material according to the present invention.

【図23】 本発明に係る鋳造材のSr添加量と鋳造材
中の含有量を示すグラフである。
FIG. 23 is a graph showing the Sr addition amount of the cast material and the content in the cast material according to the present invention.

【符号の説明】[Explanation of symbols]

1…るつぼ 2…本発明合金材 3…撹拌プレート 4…撹拌棒 20…ダイキャスト金型 1 ... crucible 2 ... The alloy material of the present invention 3 ... Stirrer plate 4 ... Stir bar 20 ... Die cast mold

───────────────────────────────────────────────────── フロントページの続き (72)発明者 山本 幸男 広島県安芸郡府中町新地3番1号 マツ ダ株式会社内 (56)参考文献 特開 昭63−282232(JP,A) 特開 平6−279889(JP,A) 特開 平7−109538(JP,A) (58)調査した分野(Int.Cl.7,DB名) C22C 1/00 - 49/14 C22F 1/00 - 3/02 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Yukio Yamamoto 3-3 Shinchi, Fuchu-cho, Aki-gun, Hiroshima Mazda Co., Ltd. (56) References JP-A-63-282232 (JP, A) JP-A-6 -279889 (JP, A) JP-A-7-109538 (JP, A) (58) Fields investigated (Int.Cl. 7 , DB name) C22C 1/00-49/14 C22F 1/00-3/02

Claims (18)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 下記の合金元素を含み、残部がMgと不
可避不純物から成るマグネシウム合金から成り、金属組
織の平均結晶粒径が200μm以下である鍛造成形性に
優れる塑性加工用マグネシウム合金鋳造素材。 Al:6.2〜7.6mass% Mn:0.15〜0.5mass% Zn:0.4〜0.8mass% Sr:0.02〜0.5mass%
1. A magnesium alloy casting material for plastic working, which is made of a magnesium alloy containing the following alloy elements, the balance being Mg and inevitable impurities, and having an average crystal grain size of a metal structure of 200 μm or less and excellent in forgeability. Al: 6.2 to 7.6 mass% Mn: 0.15 to 0.5 mass% Zn: 0.4 to 0.8 mass% Sr: 0.02 to 0.5 mass%
【請求項2】 上記の平均結晶粒径が80μm以下であ
る請求項1記載の塑性加工用マグネシウム合金鋳造素
材。
2. The magnesium alloy casting material for plastic working according to claim 1, wherein the average crystal grain size is 80 μm or less.
【請求項3】 上記Srが金属間化合物として含有され
る請求項1又は2に記載の塑性加工用マグネシウム合金
鋳造素材。
3. The magnesium alloy casting material for plastic working according to claim 1, wherein the Sr is contained as an intermetallic compound.
【請求項4】 下記の合金元素を含み、残部がMgと不
可避不純物から成る鋳造素材を塑性加工してなり、金属
組織の平均結晶粒径が100μm以下で、伸び10%以
上、引張強度300MPa以上の引張り特性を有するマ
グネシウム合金部材。 Al:6.2〜7.6mass% Mn:0.15〜0.5mass% Zn:0.4〜0.8mass% Sr:0.02〜0.5mass%
4. A casting material containing the following alloy elements, the balance of which is Mg and inevitable impurities, is plastically worked. The average crystal grain size of the metal structure is 100 μm or less, the elongation is 10% or more, and the tensile strength is 300 MPa or more. A magnesium alloy member having the tensile properties of. Al: 6.2 to 7.6 mass% Mn: 0.15 to 0.5 mass% Zn: 0.4 to 0.8 mass% Sr: 0.02 to 0.5 mass%
【請求項5】 上記金属組織の平均結晶粒径が50μm
以下である請求項4記載のマグネシウム合金部材。
5. The average crystal grain size of the metal structure is 50 μm.
The magnesium alloy member according to claim 4, which is as follows.
【請求項6】 塑性加工後、溶体化処理と人工時効処理
を施した後の上記の平均結晶粒径が50μm以下である
請求項5記載のマグネシウム合金部材。
6. The magnesium alloy member according to claim 5, wherein the average grain size is 50 μm or less after being subjected to solution treatment and artificial aging treatment after plastic working.
【請求項7】 シャルピー衝撃値が50J/cm 以上
である請求項5又は6に記載のマグネシウム合金部材。
7. The magnesium alloy member according to claim 5 or 6, which has a Charpy impact value of 50 J / cm 2 or more .
【請求項8】 金属組織の平均結晶粒径が200μm以
下である塑性加工用マグネシウム合金鋳造素材の製造方
法であって、 下記の合金元素を含み、残部がMgと不可避不純物から
成るマグネシウム合金に、微細化剤としてSrを0.0
2〜0.5mass%添加し、3〜15℃/secの冷
却速度で鋳造することを特徴とする塑性加工用マグネシ
ウム合金鋳造素材の製造方法。 Al:6.2〜7.6mass% Mn:0.15〜0.5mass% Zn:0.4〜0.8mass%
8. A method for producing a magnesium alloy casting material for plastic working, wherein the average crystal grain size of the metal structure is 200 μm or less, wherein the magnesium alloy contains the following alloy elements and the balance is Mg and inevitable impurities, Sr as a refiner is 0.0
A method for producing a magnesium alloy casting material for plastic working, comprising adding 2 to 0.5 mass% and casting at a cooling rate of 3 to 15 ° C./sec. Al: 6.2-7.6 mass% Mn: 0.15-0.5 mass% Zn: 0.4-0.8 mass%
【請求項9】 金属組織の平均結晶粒径が200μm以
下である塑性加工用マグネシウム合金鋳造素材の製造方
法であって、 下記の合金元素を含み、残部がMgと不可避不純物から
成るマグネシウム合金に、微細化剤としてCaNCNを
0.3〜0.7mass%添加し、3〜15℃/sec
の冷却速度で鋳造することを特徴とする塑性加工用マグ
ネシウム合金鋳造素材の製造方法。 Al:6.2〜7.6mass% Mn:0.15〜0.5mass% Zn:0.4〜0.8mass%
9. A method for producing a magnesium alloy casting material for plastic working, wherein the average crystal grain size of the metal structure is 200 μm or less, wherein the magnesium alloy contains the following alloy elements and the balance is Mg and inevitable impurities: Add 0.3-0.7 mass% of CaNCN as a refiner and add 3-15 ° C / sec
A method for producing a magnesium alloy casting material for plastic working, which comprises casting at a cooling rate of. Al: 6.2-7.6 mass% Mn: 0.15-0.5 mass% Zn: 0.4-0.8 mass%
【請求項10】 上記の鋳造に連続鋳造法を用いる請求
項8又は9に記載の塑性加工溶マグネシウム合金鋳造素
材の製造方法。
10. The method for producing a plastically worked molten magnesium alloy casting material according to claim 8 or 9, wherein a continuous casting method is used for the casting.
【請求項11】 上記の鋳造を半溶融状態から行う請求
項8又は9に記載の塑性加工用マグネシウム合金鋳造素
材の製造方法。
11. The method for producing a magnesium alloy casting material for plastic working according to claim 8 or 9, wherein the casting is performed in a semi-molten state.
【請求項12】 最終製品の金属組織の平均結晶粒径が
100μm以下であるマグネシウム合金部材の製造方法
であって、 下記の合金元素を含み、残部がMgと不可避不純物から
成る、金属組織の平均結晶粒径が200μm以下のマグ
ネシウム合金鋳造素材を塑性加工に付すことを特徴とす
るマグネシウム合金部材の製造方法。 Al:6.2〜7.6mass% Mn:0.15〜0.5mass% Zn:0.4〜0.8mass% Sr:0.02〜0.5mass%
12. A method for producing a magnesium alloy member, wherein the final product has an average crystal grain size of 100 μm or less, wherein the average metallographic structure contains the following alloy elements and the balance is Mg and inevitable impurities. A method for producing a magnesium alloy member, which comprises subjecting a magnesium alloy casting material having a crystal grain size of 200 μm or less to plastic working. Al: 6.2 to 7.6 mass% Mn: 0.15 to 0.5 mass% Zn: 0.4 to 0.8 mass% Sr: 0.02 to 0.5 mass%
【請求項13】 最終製品の金属組織の平均結晶粒径が
100μm以下であるマグネシウム合金部材の製造方法
であって、 下記の合金元素及び化合物を含み、残部がMgと不可避
不純物から成る、金属組織の平均結晶粒径が200μm
以下であるマグネシウム合金鋳造素材を塑性加工に付す
ことを特徴とするマグネシウム合金部材の製造方法。 Al:6.2〜7.6mass% Mn:0.15〜0.5mass% Zn:0.4〜0.8mass% CaNCN:0.3〜0.7mass%
13. A method for producing a magnesium alloy member, wherein the final product has a metal structure having an average crystal grain size of 100 μm or less, which comprises the following alloy elements and compounds, and the balance is Mg and inevitable impurities. Average grain size of 200μm
A method for producing a magnesium alloy member, which comprises subjecting the following magnesium alloy casting material to plastic working. Al: 6.2-7.6 mass% Mn: 0.15-0.5 mass% Zn: 0.4-0.8 mass% CaNCN: 0.3-0.7 mass%
【請求項14】 上記最終製品をさらに溶体化処理およ
び人工時効処理に付する請求項12又は13に記載のマ
グネシウム合金部材の製造方法。
14. The method for producing a magnesium alloy member according to claim 12, wherein the final product is further subjected to solution treatment and artificial aging treatment.
【請求項15】 下記の合金元素を含み、残部がMgと
不可避不純物から成る、金属組織の平均結晶粒径が20
0μm以下のマグネシウム合金鋳造素材を350℃以上
で塑性加工に付して、平均結晶粒径が100μm以下の
最終製品形状となし、さらに人工時効処理に付すことを
特徴とするマグネシウム合金部材の製造方法。 Al:6.2〜7.6mass% Mn:0.15〜0.5mass% Zn:0.4〜0.8mass% Sr:0.02〜0.5mass%
15. An average crystal grain size of a metal structure comprising the following alloy elements, the balance being Mg and unavoidable impurities, and having an average crystal grain size of 20:
A method for producing a magnesium alloy member, characterized by subjecting a magnesium alloy casting material of 0 μm or less to plastic working at 350 ° C. or more to form a final product shape having an average crystal grain size of 100 μm or less, and further subjecting it to artificial aging treatment. . Al: 6.2 to 7.6 mass% Mn: 0.15 to 0.5 mass% Zn: 0.4 to 0.8 mass% Sr: 0.02 to 0.5 mass%
【請求項16】 下記の合金元素及び化合物を含み、残
部がMgと不可避不純物から成る、金属組織の平均結晶
粒径が200μm以下であるマグネシウム合金鋳造素材
を350℃以上で塑性加工に付して、平均結晶粒径が1
00μm以下の最終製品形状となし、さらに人工時効処
理に付すことを特徴とするマグネシウム合金部材の製造
方法。 Al:6.2〜7.6mass% Mn:0.15〜0.5mass% Zn:0.4〜0.8mass% CaNCN:0.3〜0.7mass%
16. A magnesium alloy casting material containing the following alloy elements and compounds, the balance of which consists of Mg and unavoidable impurities, and whose average crystal grain size of the metal structure is 200 μm or less, is subjected to plastic working at 350 ° C. or more. , The average grain size is 1
A method for producing a magnesium alloy member, which is characterized in that a final product shape of 00 μm or less is formed, and further artificial aging treatment is performed. Al: 6.2-7.6 mass% Mn: 0.15-0.5 mass% Zn: 0.4-0.8 mass% CaNCN: 0.3-0.7 mass%
【請求項17】 上記塑性加工が鍛造加工である請求項
12から16のいずれか一つに記載のマグネシウム合金
部材の製造方法。
17. The method for manufacturing a magnesium alloy member according to claim 12, wherein the plastic working is forging.
【請求項18】 上記鍛造加工は少なくとも2回の鍛造
工程を有し、2回目以後の工程を1回目の工程に比し高
速で行う請求項17記載のマグネシウム合金部材の製造
方法。
18. The method for producing a magnesium alloy member according to claim 17, wherein the forging process includes at least two forging steps, and the second and subsequent steps are performed at a higher speed than the first step.
JP08192594A 1993-12-17 1994-04-20 Magnesium alloy casting material for plastic working, magnesium alloy member using the same, and methods for producing them Expired - Fee Related JP3525486B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP08192594A JP3525486B2 (en) 1993-12-17 1994-04-20 Magnesium alloy casting material for plastic working, magnesium alloy member using the same, and methods for producing them
DE69423335T DE69423335T2 (en) 1993-12-17 1994-12-16 Plastically deformable cast material made of magnesium alloy, workpieces made from this alloy and method of manufacture
EP94119977A EP0665299B1 (en) 1993-12-17 1994-12-16 Magnesium alloy cast material for plastic processing, magnesium alloy member using the same, and manufacturing method thereof
KR1019940035461A KR100349566B1 (en) 1993-12-17 1994-12-17 Magnesium alloy casting material for plastic processing, magnesium alloy member using the same and manufacturing method thereof
US08/947,414 US6143097A (en) 1993-12-17 1997-10-08 Magnesium alloy cast material for plastic processing, magnesium alloy member using the same, and manufacturing method thereof

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP31807693 1993-12-17
JP5-318076 1993-12-17
JP08192594A JP3525486B2 (en) 1993-12-17 1994-04-20 Magnesium alloy casting material for plastic working, magnesium alloy member using the same, and methods for producing them

Publications (2)

Publication Number Publication Date
JPH07224344A JPH07224344A (en) 1995-08-22
JP3525486B2 true JP3525486B2 (en) 2004-05-10

Family

ID=26422904

Family Applications (1)

Application Number Title Priority Date Filing Date
JP08192594A Expired - Fee Related JP3525486B2 (en) 1993-12-17 1994-04-20 Magnesium alloy casting material for plastic working, magnesium alloy member using the same, and methods for producing them

Country Status (1)

Country Link
JP (1) JP3525486B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110785505A (en) * 2017-06-22 2020-02-11 住友电气工业株式会社 Magnesium alloy plate

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11104800A (en) 1997-09-29 1999-04-20 Mazda Motor Corp Material for plastic working light metal alloy and manufacture of plastic working member
JP2000104137A (en) * 1998-09-30 2000-04-11 Mazda Motor Corp Magnesium alloy forging stock, forged member and production of the forged member
JP2001073059A (en) * 1999-09-06 2001-03-21 Mazda Motor Corp Magnesium alloy formed member
US6808679B2 (en) * 1999-12-15 2004-10-26 Noranda, Inc. Magnesium-based casting alloys having improved elevated temperature performance, oxidation-resistant magnesium alloy melts, magnesium-based alloy castings prepared therefrom and methods for preparing same
US6322644B1 (en) * 1999-12-15 2001-11-27 Norands, Inc. Magnesium-based casting alloys having improved elevated temperature performance
JP2001316753A (en) * 2000-05-10 2001-11-16 Japan Steel Works Ltd:The Magnesium alloy and magnesium alloy member excellent in corrosion resistance and heat resistance
JP3592659B2 (en) * 2001-08-23 2004-11-24 株式会社日本製鋼所 Magnesium alloys and magnesium alloy members with excellent corrosion resistance
JP2004027300A (en) * 2002-06-26 2004-01-29 Daido Steel Co Ltd Method of producing magnesium alloy bar wire rod
DE202004009409U1 (en) * 2004-06-15 2004-08-12 Böllhoff Verbindungstechnik GmbH Wire thread insert made of magnesium or aluminum alloy
JP4849377B2 (en) * 2006-01-13 2012-01-11 住友電気工業株式会社 Magnesium alloy screw manufacturing method and magnesium alloy screw
JP5215710B2 (en) 2008-04-01 2013-06-19 株式会社神戸製鋼所 Magnesium alloy with excellent creep characteristics at high temperature and method for producing the same
KR101139879B1 (en) 2009-07-17 2012-05-02 포항공과대학교 산학협력단 Method for manufacturing wrought magnesium alloy having improved low-cycle fatigue life using pre-straining
JP5522400B2 (en) 2009-12-11 2014-06-18 住友電気工業株式会社 Magnesium alloy material
JPWO2011071023A1 (en) 2009-12-11 2013-04-22 住友電気工業株式会社 Magnesium alloy parts
JP5637386B2 (en) 2010-02-08 2014-12-10 住友電気工業株式会社 Magnesium alloy plate
JP5348624B2 (en) * 2011-01-24 2013-11-20 住友電気工業株式会社 Magnesium alloy screw
CN103447433B (en) * 2013-09-04 2015-09-09 中南大学 A kind of preparation method of large scale magnesium alloy forging cake

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110785505A (en) * 2017-06-22 2020-02-11 住友电气工业株式会社 Magnesium alloy plate

Also Published As

Publication number Publication date
JPH07224344A (en) 1995-08-22

Similar Documents

Publication Publication Date Title
KR100349566B1 (en) Magnesium alloy casting material for plastic processing, magnesium alloy member using the same and manufacturing method thereof
JP3525486B2 (en) Magnesium alloy casting material for plastic working, magnesium alloy member using the same, and methods for producing them
US10612116B2 (en) Increasing strength of an aluminum alloy
JP2676466B2 (en) Magnesium alloy member and manufacturing method thereof
CA2574962C (en) An al-si-mg-zn-cu alloy for aerospace and automotive castings
US5902424A (en) Method of making an article of manufacture made of a magnesium alloy
CN1283822C (en) Method for making magnesium alloy product
NO143166B (en) PROCEDURE FOR MANUFACTURING DISPERSION-STRENGTHED ALUMINUM ALLOY PRODUCTS
US5800640A (en) Method of producing a light alloy product
WO2009096622A1 (en) Magnesium alloy panel having high strength and manufacturing method thereof
JP3684313B2 (en) High-strength, high-toughness aluminum alloy forgings for automotive suspension parts
JP2010018875A (en) High strength aluminum alloy, method for producing high strength aluminum alloy casting, and method for producing high strength aluminum alloy member
CN112126808B (en) Production process of hypoeutectic aluminum-silicon alloy hub with spheroidized and refined silicon phase
CN115433856B (en) Cast aluminum alloy and preparation method thereof
WO2016145644A1 (en) Alloy composition
JP5575028B2 (en) High strength aluminum alloy, high strength aluminum alloy casting manufacturing method and high strength aluminum alloy member manufacturing method
JP3467824B2 (en) Manufacturing method of magnesium alloy member
CN114150237B (en) High-toughness structural part precision forming aluminum alloy material suitable for new energy automobile and preparation method thereof
Ivanchev et al. Rheo-processing of semi-solid metal alloys: a new technology for manufacturing automotive and aerospace components: research in action
JP2003147498A (en) Method for producing semi-molten cast billet of aluminum alloy for transport apparatus
JP3509163B2 (en) Manufacturing method of magnesium alloy member
JPH07258784A (en) Production of aluminum alloy material for forging excellent in castability and high strength aluminum alloy forging
JPH093581A (en) Forged aluminum product with high fatigue strength and its production
JP2003147496A (en) Method for producing semi-molten cast billet of aluminum alloy for transport apparatus
JP2003136198A (en) Method of manufacturing half-melted molding billet of aluminum alloy for transportation machine

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20031125

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20031218

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040127

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040209

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080227

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090227

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100227

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100227

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110227

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120227

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130227

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140227

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees