JP2003147498A - Method for producing semi-molten cast billet of aluminum alloy for transport apparatus - Google Patents

Method for producing semi-molten cast billet of aluminum alloy for transport apparatus

Info

Publication number
JP2003147498A
JP2003147498A JP2001338928A JP2001338928A JP2003147498A JP 2003147498 A JP2003147498 A JP 2003147498A JP 2001338928 A JP2001338928 A JP 2001338928A JP 2001338928 A JP2001338928 A JP 2001338928A JP 2003147498 A JP2003147498 A JP 2003147498A
Authority
JP
Japan
Prior art keywords
temperature
aluminum alloy
semi
less
billet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001338928A
Other languages
Japanese (ja)
Other versions
JP3852915B2 (en
Inventor
Shigeru Mikubo
滋 三久保
Masafumi Mizouchi
政文 溝内
Yasuyuki Murayama
康幸 村山
Tsunaki Iwashita
綱樹 岩下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyushu Mitsui Aluminum Industries Inc
Original Assignee
Kyushu Mitsui Aluminum Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyushu Mitsui Aluminum Industries Inc filed Critical Kyushu Mitsui Aluminum Industries Inc
Priority to JP2001338928A priority Critical patent/JP3852915B2/en
Publication of JP2003147498A publication Critical patent/JP2003147498A/en
Application granted granted Critical
Publication of JP3852915B2 publication Critical patent/JP3852915B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Forging (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for producing a semi-molten billet of an aluminum alloy for a transport apparatus in a simple process by which the cost reduction is promoted, and the product becomes homogeneous. SOLUTION: An aluminum alloy containing, by weight, 3.5 to 7.5% Zn, 0.50 to 4.0% Mg, <=0.50% Si, <=0.55% Fe, at least one or more kinds selected from 0.001 to 0.50% Ti and 0.0001 to 0.5% B, and at least one or more kinds selected from 0.30 to 3.0% Cu, 0.03 to 0.80% Mn, 0.03 to 0.35% Zr, 0.03 to 0.35% Cr, and 0.03 to 0.2% V, and the balance substantially Al, and in which the intervals of dendrites are <=200 μm is produced. Next, working strains are introduced at a strain ratio of 5 to 50%, at a working introduction rate of <=50 mm/sec., and, at less than a recrystallization temperature by cold frame mold forging. After that, the temperature of the alloy is raised to a solidus temperature or higher, and is held to a temperature in which a liquid phase ratio reaches 20 to 80%, and semi-molten working is performed.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、輸送機器用として
用いるアルミニウム合金の半溶融成型ビレットの製造方
法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a semi-molten molded billet of an aluminum alloy used for transportation equipment.

【0002】[0002]

【従来の技術】半溶融ビレットを用いるチクソキャスト
法は、従来の金型鋳造法と比較し鋳造偏析・欠陥が少な
く、金型寿命が長いなどの利点があり最近注目されてい
る技術である。これに用いるビレットの鋳造方法として
は、ペネシー・アルマックス方式として知られているビ
レット段階で初晶α(Al)相を球状化するため、半溶
融温度域で電磁・機械撹拌を行う方法(方式A)や、鋳
造時に通常添加されている量よりも多量のAl−Ti−
Bを添加し、その後半溶融温度域まで昇温し初晶α(A
l)相を球状化させる方法(方式B)がある。また、押
出・圧延にて歪みを導入後、方式Bのように昇温し球状
化させる方法(方式C)が広く知られている。
2. Description of the Related Art The thixocasting method using a semi-molten billet has recently attracted attention because it has advantages such as less casting segregation / defects and longer die life than the conventional die casting method. As a billet casting method used for this, in order to make the primary α (Al) phase into a spherical shape at the billet stage known as the Pennesey Almax method, a method of performing electromagnetic / mechanical stirring in the semi-melting temperature range (method A) or a larger amount of Al-Ti- than is usually added during casting.
B was added, and the temperature was raised to the melting temperature range in the latter half and the primary crystal α (A
1) There is a method of making the phase spherical (method B). Further, a method (method C) in which the temperature is raised to spherical as in method B after introducing strain by extrusion / rolling is widely known.

【0003】[0003]

【発明が解決しようとする課題】従来の半溶融製造法の
場合、方式Aでは工程が非常に煩雑で、製造コストが高
くつく不具合があった。また、方式Bでは、多量のAl
−Ti−Bを添加するため溶融炉内でのTiB 沈降に
よる品質不安定が発生し、更に方式Cの圧延により歪み
を導入する方法は均一な歪みの導入が難しく、また押出
では常温押出により作業工程が煩雑で、しかも均一な歪
み導入が難しいし、両歪み導入法とも加工後の製品加工
が必要となり、量産化や低コスト化が図れないという問
題があった。
[Problems to be Solved by the Invention]
In case of method A, the process is very complicated and the manufacturing cost is high.
There was a problem of sticking. In the method B, a large amount of Al
-TiB in the melting furnace to add Ti-B TwoFor settling
Quality instability occurs, and distortion occurs due to rolling of method C.
It is difficult to introduce uniform strain in the method of introducing
At room temperature extrusion, the work process is complicated, and the strain is uniform.
It is difficult to introduce only the product, and both strain introduction methods are product processing after processing
Is required, and mass production and cost reduction cannot be achieved.
There was a problem.

【0004】特許第2976073号には、改良された
方法が開示されている。即ち、そこには第1項中に「完
全に固化した金属または金属合金材料をその再結晶温度
未満の温度で変形する工程、該材料の微小構造の再結晶
を起こさせるために変形材料を加熱する工程、および該
材料の温度をその固相線温度を上回る温度に上昇させる
ことによりチキソトロピック的な挙動を呈する液状マト
リックス中に独立した粒子を形成させるために、再結晶
構造を部分的に融解させる工程を備えた方法」である。
この方法は、該材料の微小構造の再結晶を起こさせるた
めに変形材料を加熱する工程、および該材料の温度をそ
の固相線温度を上回る温度に上昇させるといういわば2
段階加熱とも言うべき加熱が行われる。このような方法
は、従来の技術に比べれば、改善された技術と言える
が、やはり2段階の加熱を必要とし、工程が複雑で加熱
制御が難しいという問題があった。
Japanese Patent No. 2976073 discloses an improved method. That is, there is a step in the first paragraph "a step of deforming a completely solidified metal or metal alloy material at a temperature lower than its recrystallization temperature, and heating the deformable material to cause recrystallization of the microstructure of the material. And partially melting the recrystallized structure to form free-standing particles in a liquid matrix that behaves thixotropically by raising the temperature of the material above its solidus temperature. A method including a step of
This method comprises heating a deformed material to cause recrystallization of the microstructure of the material, and raising the temperature of the material above its solidus temperature, so to speak 2.
The heating which should be called stepwise heating is performed. Although such a method can be said to be an improved technique as compared with the conventional technique, it still requires two steps of heating, and has a problem that the process is complicated and heating control is difficult.

【0005】本発明は、上記従来技術の欠点を解消し、
工程が簡素で低コスト化を促進でき、得られる製品が均
質な輸送機器用アルミニウム合金の半溶融成型ビレット
の製造方法を提供することを目的とするものである。
The present invention solves the above-mentioned drawbacks of the prior art,
It is an object of the present invention to provide a method for manufacturing a semi-molten cast billet of an aluminum alloy for transportation equipment, which has a simple process, can promote cost reduction, and has a homogeneous product.

【0006】[0006]

【課題を解決するための手段】上記目的を達成するため
に、本願の輸送機器用アルミニウム合金の半溶融成型ビ
レットの製造方法は、Zn3.5〜7.5wt%、Mg
0.50〜4.0wt%、Si0.50wt%以下、F
e0.55wt%以下と、Ti0.001〜0.50w
t%及びB0.0001〜0.5wt%の少なくとも1
種以上と、Cu0.30〜3.0wt%、Mn0.03
〜0.80wt%、Zr0.03〜0.35wt%、C
r0.03〜0.35wt%及びV0.03〜0.2w
t%の中の少なくとも1種以上を含み、残部が実質的に
Alの組成から成り、デンドライト枝間隔が200μm
以下であるアルミニウム合金を製造し、次いで歪み率5
〜50%、加工導入速度50mm/sec.以下で再結
晶温度未満の温度で、冷間型枠鍛造にて加工歪みを導入
し、その後固相線温度以上に昇温し、液相率が20〜8
0%となる温度で保持して半溶融加工する方法である。
In order to achieve the above object, a method for producing a semi-molten cast billet of an aluminum alloy for transportation equipment of the present invention is Zn 3.5 to 7.5 wt%, Mg.
0.50 to 4.0 wt%, Si 0.50 wt% or less, F
e 0.55 wt% or less and Ti 0.001 to 0.50 w
t% and B 0.0001 to 0.5 wt% of at least 1
Species or more, Cu 0.30 to 3.0 wt%, Mn 0.03
~ 0.80wt%, Zr0.03-0.35wt%, C
r0.03 to 0.35 wt% and V0.03 to 0.2w
At least one of t% is included, and the balance is substantially composed of Al, and the dendrite branch spacing is 200 μm.
The following aluminum alloy is manufactured and then strain rate 5
˜50%, processing introduction speed 50 mm / sec. At a temperature below the recrystallization temperature, a working strain is introduced by cold die forging, and then the temperature is raised to above the solidus temperature to obtain a liquid phase ratio of 20 to 8
This is a method of holding at a temperature of 0% and performing semi-melt processing.

【0007】この場合に、成分偏析の均質化及び鋳造応
力の解放のために、加工歪みを導入する前に、400〜
520℃の温度で1〜24時間の均質化処理を行うと好
ましい。
[0007] In this case, in order to homogenize the segregation of the components and release the casting stress, 400-
It is preferable to perform the homogenization treatment at a temperature of 520 ° C. for 1 to 24 hours.

【0008】[0008]

【発明の実施の形態】以下本発明で用いるアルミニウム
合金成分量の数値限定等種々の数値限定理由について詳
述する。
BEST MODE FOR CARRYING OUT THE INVENTION Various reasons for limiting numerical values such as limiting the numerical values of the amounts of aluminum alloy components used in the present invention will be described in detail below.

【0009】Zn成分は、Mg成分と共存することによ
り、機械的性質や機械加工性の向上に寄与するが、3.
5wt%未満ではその効果は小さく、一方7.5wt%
を越えると冷間鍛造加工性が悪くなり、耐食性を劣化さ
せるため、3.5〜7.5wt%とした。
When the Zn component coexists with the Mg component, it contributes to the improvement of mechanical properties and machinability.
If it is less than 5 wt%, the effect is small, while on the other hand, 7.5 wt%
If it exceeds the range, the cold forgeability deteriorates and the corrosion resistance deteriorates, so the content was made 3.5 to 7.5 wt%.

【0010】Mg成分は、Zn成分と共存することによ
り、機械的性質の向上に寄与するが、0.50wt%未
満ではその効果は小さく、一方4.0wt%を越えると
冷間鍛造加工性が悪くなるため、0.50〜4.0wt
%とした。
The Mg component, when coexisting with the Zn component, contributes to the improvement of mechanical properties, but if it is less than 0.50 wt%, its effect is small, while if it exceeds 4.0 wt%, cold forgeability is poor. 0.50 to 4.0 wt because it gets worse
%.

【0011】Si成分は、その量が0.50wt%を越
えると伸び・靭性が劣化し、冷間鍛造加工性が悪くなる
ので、0.50wt%以下とした。
If the amount of the Si component exceeds 0.50 wt%, the elongation and toughness deteriorate and the cold forgeability deteriorates, so the content was made 0.50 wt% or less.

【0012】Fe成分は、Al成分と金属間化合物を作
り、多く含有されるとAl−Fe−Si系化合物となり
伸び・靭性・耐食性に悪影響を及ぼすため、0.55w
t%以下とした。
The Fe component forms an intermetallic compound with the Al component, and if it is contained in a large amount, it becomes an Al-Fe-Si type compound, which adversely affects elongation, toughness and corrosion resistance.
It was set to t% or less.

【0013】Ti成分は、鋳塊の組織を微細化し、鋳塊
割れの発生を防止するが、0.001wt%未満ではそ
の効果は小さく、一方0.5wt%を越えるとTiAl
の巨大な晶出物の発生を促進させ、冷間鍛造加工時の
割れや輸送機器部品の機械的性質の低下をまねくので、
0.001〜0.5wt%とした。
The Ti component refines the structure of the ingot and prevents the occurrence of ingot cracking. However, if it is less than 0.001 wt%, its effect is small, while if it exceeds 0.5 wt%, TiAl.
3 It promotes the generation of huge crystallized substances, leading to cracking during cold forging and deterioration of mechanical properties of transportation equipment parts.
It was set to 0.001 to 0.5 wt%.

【0014】B成分は、Ti成分と共に鋳塊の組織を微
細化し、鋳塊割れの発生を防止するが、0.0001w
t%未満ではその効果は小さく、一方0.5wt%を越
えると冷間鍛造加工時の割れや輸送機器部品の機械的性
質の低下をまねくので、0.0001〜0.5wt%と
した。
The B component, together with the Ti component, refines the structure of the ingot and prevents the occurrence of ingot cracks.
If it is less than t%, the effect is small, while if it exceeds 0.5% by weight, cracking during cold forging and deterioration of mechanical properties of parts for transportation equipment are caused, so 0.0001 to 0.5% by weight is set.

【0015】Cu成分は、機械的性質の向上のみなら
ず、耐応力腐食割れ性の改善や耐疲労特性を高めるが、
0.30wt%未満ではその効果は小さく、一方3.0
wt%を超えると冷間鍛造加工時の割れや耐食性の低下
をまねくので、0.30〜3.0wt%とした。
The Cu component improves not only mechanical properties but also stress corrosion cracking resistance and fatigue resistance.
If it is less than 0.30 wt%, the effect is small, while it is 3.0.
If it exceeds 0.3 wt%, cracking during cold forging and deterioration of corrosion resistance will occur, so the content was made 0.30 to 3.0 wt%.

【0016】Mn成分は、再結晶の抑制や再結晶粒の微
細化による機械的性質の向上のみならず、耐応力腐食割
れ性の改善や耐疲労特性を高めるが、0.03wt%未
満ではその効果は小さく、一方0.80wt%を越える
と延性の低下をまねくので、0.03〜0.80wt%
とした。
The Mn component improves not only mechanical properties by suppressing recrystallization and refining recrystallized grains but also improving stress corrosion cracking resistance and fatigue resistance, but if it is less than 0.03 wt%, The effect is small, while on the other hand, if it exceeds 0.80 wt%, the ductility will decrease, so 0.03 to 0.80 wt%
And

【0017】Cr、Zr、V成分は、Mn成分と同様に
再結晶粒の微細化あるいは再結晶を抑制し、強度・伸び
・靭性を向上させると同時に耐応力腐食割れ性の改善に
寄与する。Cr0.03wt%未満、Zr0.03wt
%未満、V0.03wt%未満ではその効果が小さく、
Cr0.35wt%、Zr0.35wt%、V0.2w
t%をそれぞれ越えると、延性に悪影響を及ぼすので、
Cr0.03〜0.35wt%、Zr0.03〜0.3
5wt%、V0.03〜0.2wt%とした。
The Cr, Zr, and V components suppress the refinement or recrystallization of recrystallized grains similarly to the Mn component, improve strength, elongation, and toughness, and at the same time contribute to the improvement of stress corrosion cracking resistance. Cr less than 0.03 wt%, Zr 0.03 wt
%, Less than V0.03 wt%, the effect is small,
Cr 0.35 wt%, Zr 0.35 wt%, V0.2w
If it exceeds t%, ductility is adversely affected.
Cr 0.03 to 0.35 wt%, Zr 0.03 to 0.3
5 wt% and V0.03-0.2 wt%.

【0018】デンドライト枝間隔(DAS)が200μ
m以下であるビレットを鋳造するが、デンドライト枝間
隔(DAS)が200μmを越えると、半溶融温度域に
加熱した際に初晶α(Al)相の均一微細球状化が難し
くなるし、また均質化処理を行う場合には均質化処理に
時間を要するのでデンドライト枝間隔(DAS)を20
0μm以下とした。
The dendrite branch spacing (DAS) is 200μ
Although the billet having a diameter of m or less is cast, if the dendrite branch spacing (DAS) exceeds 200 μm, it becomes difficult to make the primary α (Al) phase into a uniform fine spheroid when heated to the semi-melting temperature range, and the homogeneous When the homogenization treatment is performed, it takes time to perform the homogenization treatment, so the dendrite branch interval (DAS) is set to 20
It was set to 0 μm or less.

【0019】鋳造で得られたビレットを均質化処理する
ことにより、鋳造時に結晶粒界に晶出したMgZn
MgSi等の晶出物がマトリックスに固溶する。均質
化処理温度が400℃未満や1時間に達しない加熱時間
では、固溶化が充分得られず、鋳造歪の除去も不充分で
ある。しかし520℃を越える処理温度では、共晶融解
が発生し、鍛造時の加工性を損う。また、24時間を越
える加熱時間では、加熱時間の長時間に見合った均質化
の効果上昇が見られず、加熱エネルギーの損失となる。
このため、均質化処理条件は400〜520℃の温度で
1〜24時間加熱とした。
By homogenizing the billet obtained by casting, MgZn 2 crystallized at the grain boundaries during casting,
Crystallized substances such as MgSi 2 form a solid solution in the matrix. When the homogenization treatment temperature is lower than 400 ° C. or the heating time is shorter than 1 hour, solid solution cannot be sufficiently obtained and casting strain is not sufficiently removed. However, at a processing temperature higher than 520 ° C., eutectic melting occurs and the workability during forging is impaired. Further, when the heating time exceeds 24 hours, the effect of homogenization corresponding to the long heating time is not increased, and the heating energy is lost.
Therefore, the homogenization treatment condition was heating at a temperature of 400 to 520 ° C. for 1 to 24 hours.

【0020】次に加工歪みの導入は、工程が簡素化で
き、かつ少ない加工率で歪みが有効に導入されるように
冷間鍛造で行い、なおかつ鍛造用ビレットの全体に均一
に歪みが導入されるように型枠鍛造とする。歪み率は、
5%未満の場合には歪み導入が少ないため半溶融温度域
まで昇温しても初晶α(Al)相の均一な球状化は図れ
ず、一方50%を越えると初晶α(Al)相サイズに変
化は見られないのみならず冷間鍛造時に割れが発生する
ため、5〜50%とした。ここでの歪み率は、鍛造用ビ
レットの元の長さをLとし、鍛造後のビレットの長さ
をLとした時、(L−L)/L×100(%)
で定義した。
Next, the working strain is introduced by cold forging so that the process can be simplified and the strain can be effectively introduced with a small working rate, and the strain is uniformly introduced to the entire forging billet. The frame is forged so that The distortion rate is
If it is less than 5%, the introduction of strain is small, and even if the temperature is raised to the semi-melting temperature range, the primary spheroidal α (Al) phase cannot be made uniform spheroidization, while if it exceeds 50%, the primary crystal α (Al) is spheroidized. The phase size does not change, and cracks occur during cold forging, so the content was set to 5 to 50%. The strain rate here is (L 1 −L 2 ) / L 1 × 100 (%) when the original length of the forging billet is L 1 and the length of the forged billet is L 2.
Defined in.

【0021】加工導入速度は、ビレット鋳塊の結晶粒微
細化と均質化処理を加えることにより大幅にアップでき
る。生産性から言えば加工導入速度はできるだけ早いほ
うが好ましい。しかしながら50mm/sec.を越え
ると鍛造時に割れが生じたり、鍛造デッドゾーンが発生
し、歪みが均一に導入されないため50mm/sec.
以下とした。また冷間型枠鍛造の際のビレット温度は、
再結晶温度以上では所定の加工率に対する歪み導入が不
充分となり、半溶融温度に昇温しても初晶α(Al)相
が粒状組織とならないため再結晶温度未満とした。
The processing introduction speed can be greatly increased by adding crystal grain refining and homogenizing treatment to the billet ingot. From the viewpoint of productivity, it is preferable that the processing introduction speed is as fast as possible. However, 50 mm / sec. If it exceeds 50 mm / sec., Cracks may occur during forging, or forging dead zones may occur, and strain may not be uniformly introduced.
Below. Also, the billet temperature during cold formwork forging is
Above the recrystallization temperature, the introduction of strain for a predetermined processing rate was insufficient, and the primary crystal α (Al) phase did not have a granular structure even when the temperature was raised to the semi-melting temperature, so the temperature was set below the recrystallization temperature.

【0022】その後ビレットを固相線温度以上に昇温
し、液相率が20〜80%となる温度で保持して半溶融
成型するが、液相率が20%未満では初晶α(Al)相
の均一な球状化は図れず、半溶融成型の変形抵抗が大き
く加圧成型が困難となる。また80%を越えると均一な
組織を有する成型品が得られない。このため、固相線温
度以上での半溶融温度域での液相率は20〜80%とし
た。
After that, the billet is heated to a temperature above the solidus temperature and held at a temperature at which the liquid phase ratio is 20 to 80% for semi-melt molding, but when the liquid phase ratio is less than 20%, the primary crystal α (Al ) A uniform spheroidization of the phase cannot be achieved, and the deformation resistance of the semi-molten molding is large, making pressure molding difficult. Further, if it exceeds 80%, a molded product having a uniform structure cannot be obtained. Therefore, the liquid phase ratio in the semi-melting temperature range above the solidus temperature is set to 20 to 80%.

【0023】[0023]

【実施例】以下本発明の具体的な実施例を示す。図1は
本発明方法で用いる冷間型枠鍛造の模式図であり、図中
符号1は鍛造用金型、2は鍛造用金型ポンチ、3はアル
ミニウム合金ビレットを示す。
EXAMPLES Specific examples of the present invention will be described below. FIG. 1 is a schematic view of cold formwork forging used in the method of the present invention. In the figure, reference numeral 1 is a forging die, 2 is a forging die punch, and 3 is an aluminum alloy billet.

【0024】Si、Mg、Zn、Fe、Ti、B、C
u、Cr及びZrをそれぞれ下記表1に示すような組成
となるように溶湯を調製し、連続鋳造にてアルミニウム
合金ビレットを鋳造した。
Si, Mg, Zn, Fe, Ti, B, C
A molten metal was prepared so that u, Cr, and Zr had the compositions shown in Table 1 below, and an aluminum alloy billet was cast by continuous casting.

【0025】[0025]

【表1】 [Table 1]

【0026】上記表1に示すアルミニウム合金ビレット
を、表2に示す条件で処理し、半溶融成型の成型性、半
溶融成型後の初晶α(Al)相の形状を評価した結果も
表2に併記した。
The aluminum alloy billets shown in Table 1 were treated under the conditions shown in Table 2 to evaluate the moldability of semi-melt molding and the shape of the primary crystal α (Al) phase after semi-melt molding. Also described in.

【0027】[0027]

【表2】 [Table 2]

【0028】表2に示した加工歪導入時の成型性は、表
2で示す成型条件で成型した際に割れが発生せず成型性
が良好なものを○とし、割れが見られるものを×で判定
した。半溶融成型の成型性は、良好なものを○とし、成
型性の悪いものを×と判定した。半溶融成型後の初晶α
(Al)相の形状は、球状化が認められるものを○と
し、球状化が不充分であるものを×と判定した。半溶融
成型後の初晶α(Al)相の微細均一化では初晶α(A
l)相のサイズが100μm以下を○とし、100μm
を越えるサイズのものを×と判定した。
With respect to the moldability shown in Table 2 when the processing strain was introduced, the moldability that did not cause cracks when molded under the molding conditions shown in Table 2 was good, and the moldability was good. It was judged by. Regarding the moldability of the semi-melt molding, the good one was evaluated as ◯, and the poor moldability was evaluated as x. Primary crystal α after semi-melt molding
The shape of the (Al) phase was evaluated as ◯ when spheroidization was recognized, and as x when spheroidization was insufficient. In the homogenization of the primary α (Al) phase after semi-melt molding, the primary α (A
l) A phase size of 100 μm or less is defined as ◯, and 100 μm
Those having a size exceeding 0.1 were judged as x.

【0029】図2は、初晶α(Al)相の微細均一化が
○評価の代表例写真を示す。
FIG. 2 shows a photograph of a representative example in which the fine homogenization of the primary crystal α (Al) phase was evaluated as ◯.

【0030】[0030]

【発明の効果】以上述べて来た如く、本発明方法によれ
ば、従来の半溶融ビレットよりも工程が簡素化され低コ
スト化が図れる。また、得られる組織も初晶α(Al)
相サイズが平均100μm以下で、かつ初晶α(Al)
相の面積率50%の均一球状化組織となっており、自動
車部材等の輸送機器用として使用が可能である。
As described above, according to the method of the present invention, the process can be simplified and the cost can be reduced as compared with the conventional semi-molten billet. Further, the obtained structure is also primary crystal α (Al).
Phase size average 100μm or less and primary crystal α (Al)
It has a uniform spheroidized structure with a phase area ratio of 50% and can be used for transportation equipment such as automobile parts.

【図面の簡単な説明】[Brief description of drawings]

【図1】冷間型枠鍛造の模式図である。FIG. 1 is a schematic view of cold formwork forging.

【図2】初晶α(Al)相の微細均一化が○評価の代表
例の顕微鏡組織写真であり、倍率は50倍である。
FIG. 2 is a photomicrograph of a typical example in which fine homogenization of primary crystal α (Al) phase is evaluated as ◯, and the magnification is 50 times.

【符号の説明】[Explanation of symbols]

1 鍛造用金型 2 鍛造用金型ポンチ 3 アルミニウム合金ビレット 1 Forging die 2 Forging die punch 3 Aluminum alloy billet

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) C22F 1/00 681 C22F 1/00 681 682 682 685 685A 691 691B 691C 694 694A (72)発明者 村山 康幸 福岡県大牟田市四山町80番地 九州三井ア ルミニウム工業株式会社内 (72)発明者 岩下 綱樹 福岡県大牟田市四山町80番地 九州三井ア ルミニウム工業株式会社内 Fターム(参考) 4E087 AA01 BA04 BA24 CA11 CB03 DB15 GA09 HB17 ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 7 Identification code FI theme code (reference) C22F 1/00 681 C22F 1/00 681 682 682 685 685A 691 691B 691C 694 694A (72) Inventor Yasuyuki Murayama 80, Shiyama-cho, Omuta-shi, Kyushu Within Kyushu Mitsui Aluminum Industry Co., Ltd. (72) Inventor Tsuneki Iwashita, F-Term, 80, Yoyama-cho, Omuta-shi, Fukuoka Kyushu Mitsui Aluminum Industry Co., Ltd. (reference) 4E087 AA01 BA04 BA24 CA11 CB03 DB15 GA09 HB17

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 Zn3.5〜7.5wt%、Mg0.5
0〜4.0wt%、Si0.50wt%以下、Fe0.
55wt%以下と、Ti0.001〜0.50wt%及
びB0.0001〜0.5wt%の少なくとも1種以上
と、Cu0.30〜3.0wt%、Mn0.03〜0.
80wt%、Zr0.03〜0.35wt%、Cr0.
03〜0.35wt%及びV0.03〜0.2wt%の
中の少なくとも1種以上を含み、残部が実質的にAlの
組成から成り、デンドライト枝間隔が200μm以下で
あるアルミニウム合金を製造し、次いで歪み率5〜50
%、加工導入速度50mm/sec.以下で再結晶温度
未満の温度で、冷間型枠鍛造にて加工歪みを導入し、そ
の後固相線温度以上に昇温し、液相率が20〜80%と
なる温度で保持して半溶融加工することを特徴とする輸
送機器用アルミニウム合金の半溶融成型ビレットの製造
方法。
1. Zn3.5-7.5 wt%, Mg0.5
0-4.0 wt%, Si 0.50 wt% or less, Fe0.
55 wt% or less, at least one or more of Ti 0.001 to 0.50 wt% and B 0.0001 to 0.5 wt%, Cu 0.30 to 3.0 wt%, Mn 0.03 to 0.
80 wt%, Zr 0.03 to 0.35 wt%, Cr0.
An aluminum alloy containing at least one of 03 to 0.35 wt% and V0.03 to 0.2 wt%, the balance being substantially composed of Al, and having a dendrite branch interval of 200 μm or less, Then distortion rate 5 to 50
%, Processing introduction speed 50 mm / sec. In the following, a working strain was introduced by cold mold forging at a temperature lower than the recrystallization temperature, then the temperature was raised to above the solidus temperature, and the liquid phase ratio was maintained at a temperature of 20 to 80% to maintain a half. A method for producing a semi-molten molded billet of an aluminum alloy for transportation equipment, characterized by performing melt processing.
【請求項2】 アルミニウム合金を製造し、加工歪みを
導入する前に、400〜520℃の温度で1〜24時間
均質化処理を行うことを特徴とする請求項1記載の輸送
機器用アルミニウム合金の半溶融成型ビレットの製造方
法。
2. The aluminum alloy for transportation equipment according to claim 1, wherein the aluminum alloy is manufactured and subjected to a homogenizing treatment at a temperature of 400 to 520 ° C. for 1 to 24 hours before introducing a working strain. Method for producing semi-molten molded billet.
JP2001338928A 2001-11-05 2001-11-05 Method for producing semi-melt molded billet of aluminum alloy for transportation equipment Expired - Lifetime JP3852915B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001338928A JP3852915B2 (en) 2001-11-05 2001-11-05 Method for producing semi-melt molded billet of aluminum alloy for transportation equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001338928A JP3852915B2 (en) 2001-11-05 2001-11-05 Method for producing semi-melt molded billet of aluminum alloy for transportation equipment

Publications (2)

Publication Number Publication Date
JP2003147498A true JP2003147498A (en) 2003-05-21
JP3852915B2 JP3852915B2 (en) 2006-12-06

Family

ID=19153347

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001338928A Expired - Lifetime JP3852915B2 (en) 2001-11-05 2001-11-05 Method for producing semi-melt molded billet of aluminum alloy for transportation equipment

Country Status (1)

Country Link
JP (1) JP3852915B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1759028A2 (en) * 2004-04-22 2007-03-07 Alcoa Inc. Heat treatable al-zn-mg alloy for aerospace and automotive castings
US7883591B2 (en) 2004-10-05 2011-02-08 Aleris Aluminum Koblenz Gmbh High-strength, high toughness Al-Zn alloy product and method for producing such product
US8002913B2 (en) 2006-07-07 2011-08-23 Aleris Aluminum Koblenz Gmbh AA7000-series aluminum alloy products and a method of manufacturing thereof
CN102994829A (en) * 2012-09-29 2013-03-27 吴雅萍 High-strength aluminium alloy
US8608876B2 (en) 2006-07-07 2013-12-17 Aleris Aluminum Koblenz Gmbh AA7000-series aluminum alloy products and a method of manufacturing thereof
CN104152762A (en) * 2014-08-21 2014-11-19 东北轻合金有限责任公司 Method for manufacturing 7B50T7451 aluminum alloy prestretching thick plate for aviation
JP2016026887A (en) * 2011-06-28 2016-02-18 国立大学法人電気通信大学 Method for producing high-strength magnesium alloy material and rod made of magnesium alloy
US10472707B2 (en) 2003-04-10 2019-11-12 Aleris Rolled Products Germany Gmbh Al—Zn—Mg—Cu alloy with improved damage tolerance-strength combination properties
CN116179909A (en) * 2023-02-20 2023-05-30 浙江春旭铝业有限公司 High-hardness aluminum alloy and production process thereof

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10472707B2 (en) 2003-04-10 2019-11-12 Aleris Rolled Products Germany Gmbh Al—Zn—Mg—Cu alloy with improved damage tolerance-strength combination properties
EP1759028A2 (en) * 2004-04-22 2007-03-07 Alcoa Inc. Heat treatable al-zn-mg alloy for aerospace and automotive castings
EP1759028A4 (en) * 2004-04-22 2007-10-03 Alcoa Inc Heat treatable al-zn-mg alloy for aerospace and automotive castings
US7883591B2 (en) 2004-10-05 2011-02-08 Aleris Aluminum Koblenz Gmbh High-strength, high toughness Al-Zn alloy product and method for producing such product
US8002913B2 (en) 2006-07-07 2011-08-23 Aleris Aluminum Koblenz Gmbh AA7000-series aluminum alloy products and a method of manufacturing thereof
US8088234B2 (en) 2006-07-07 2012-01-03 Aleris Aluminum Koblenz Gmbh AA2000-series aluminum alloy products and a method of manufacturing thereof
US8608876B2 (en) 2006-07-07 2013-12-17 Aleris Aluminum Koblenz Gmbh AA7000-series aluminum alloy products and a method of manufacturing thereof
JP2016026887A (en) * 2011-06-28 2016-02-18 国立大学法人電気通信大学 Method for producing high-strength magnesium alloy material and rod made of magnesium alloy
CN102994829A (en) * 2012-09-29 2013-03-27 吴雅萍 High-strength aluminium alloy
CN104152762A (en) * 2014-08-21 2014-11-19 东北轻合金有限责任公司 Method for manufacturing 7B50T7451 aluminum alloy prestretching thick plate for aviation
CN116179909A (en) * 2023-02-20 2023-05-30 浙江春旭铝业有限公司 High-hardness aluminum alloy and production process thereof

Also Published As

Publication number Publication date
JP3852915B2 (en) 2006-12-06

Similar Documents

Publication Publication Date Title
CN110004341B (en) High-strength magnesium alloy containing rare earth and preparation method thereof
US3791876A (en) Method of making high strength aluminum alloy forgings and product produced thereby
EP2274454B1 (en) Alloy composition and preparation thereof
JP2000144296A (en) High-strength and high-toughness aluminum alloy forged material
JP2001220639A (en) Aluminum alloy for casting
CN113430429A (en) Multi-element heat-deformation-resistant rare earth aluminum alloy and preparation method thereof
JP3525486B2 (en) Magnesium alloy casting material for plastic working, magnesium alloy member using the same, and methods for producing them
US20240263279A1 (en) High strength microalloyed magnesium alloy
JP2004084058A (en) Method for producing aluminum alloy forging for transport structural material and aluminum alloy forging
JP3548709B2 (en) Method for producing semi-solid billet of Al alloy for transportation equipment
JP3852915B2 (en) Method for producing semi-melt molded billet of aluminum alloy for transportation equipment
KR101400140B1 (en) Preparing method for magnesium alloy extrudate and the magnesium alloy extrudate thereby
JP2004315938A (en) Forged material of aluminum alloy for structural material in transport aircraft, and manufacturing method therefor
JP3346186B2 (en) Aluminum alloy material for casting and forging with excellent wear resistance, castability and forgeability, and its manufacturing method
JP2001020047A (en) Stock for aluminum alloy forging and its production
JP3840400B2 (en) Method for producing semi-melt molded billet of aluminum alloy for transportation equipment
JP3676723B2 (en) Method for producing semi-melt molded billet of aluminum alloy for transportation equipment
JP3798676B2 (en) Method for producing semi-melt molded billet of aluminum alloy for transportation equipment
WO2002038821A1 (en) A method for producing formed products of an aluminium alloy and the use of such products
CN114351019B (en) Aluminum alloy material and preparation method and application thereof
JP4121266B2 (en) Method for producing semi-molten billet of aluminum alloy for transportation equipment
JP4152095B2 (en) Method for producing semi-molten billet of aluminum alloy for transportation equipment
JP2003311373A (en) Method for producing base material for semi-melting formation
KR20190030296A (en) Methods of treating aluminum alloy
JPH093581A (en) Forged aluminum product with high fatigue strength and its production

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041102

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060606

A131 Notification of reasons for refusal

Effective date: 20060710

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Effective date: 20060809

Free format text: JAPANESE INTERMEDIATE CODE: A523

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060830

A61 First payment of annual fees (during grant procedure)

Effective date: 20060904

Free format text: JAPANESE INTERMEDIATE CODE: A61

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 4

Free format text: PAYMENT UNTIL: 20100915

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 4

Free format text: PAYMENT UNTIL: 20100915

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110915

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 6

Free format text: PAYMENT UNTIL: 20120915