JP2001316753A - Magnesium alloy and magnesium alloy member excellent in corrosion resistance and heat resistance - Google Patents

Magnesium alloy and magnesium alloy member excellent in corrosion resistance and heat resistance

Info

Publication number
JP2001316753A
JP2001316753A JP2000137672A JP2000137672A JP2001316753A JP 2001316753 A JP2001316753 A JP 2001316753A JP 2000137672 A JP2000137672 A JP 2000137672A JP 2000137672 A JP2000137672 A JP 2000137672A JP 2001316753 A JP2001316753 A JP 2001316753A
Authority
JP
Japan
Prior art keywords
magnesium alloy
mass
corrosion resistance
alloy
resistance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000137672A
Other languages
Japanese (ja)
Inventor
Yukiyoshi Fuda
之欣 附田
Akihiro Maehara
明弘 前原
Ryohei Uchida
良平 内田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Steel Works Ltd
Original Assignee
Japan Steel Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Steel Works Ltd filed Critical Japan Steel Works Ltd
Priority to JP2000137672A priority Critical patent/JP2001316753A/en
Publication of JP2001316753A publication Critical patent/JP2001316753A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To obtain a heat resistant magnesium allay and a heat resistant member thereof excellent in strength and corrosion resistance. SOLUTION: This magnesium alloy has a composition containing 6.0 to 8.0% Al, 2.0 to 4.0% Ca, 0.1 to 0.8% Mn, 0.001 to 0.05% Sr, 0 to 0.5% Si and 0 to 0.5% Zn, and the balance Mg with inevitable impurities. The heat resistant member is obtained by subjecting the same to injection molding into a die in a half-melted state with a solid phase ratio of <=50%. In this way, the magnesium alloy having excellent strength and heat resistance equal to those of the conventional material cap be obtained. The alloy is also excellent in castability, and the heat resistant member excellent in those characteristics can easily be obtained.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、優れた耐食性、耐
熱性とともに、良好な鋳造性を有し、金属射出成形、ダ
イカスト、スクイーズキャストなどの各種高圧鋳造法に
適したマグネシウム合金と、該合金を用いてこれら高圧
鋳造法により作製されるマグネシウム合金部材に関する
ものである。
[0001] The present invention relates to a magnesium alloy having excellent corrosion resistance and heat resistance and good castability, and suitable for various high-pressure casting methods such as metal injection molding, die casting, squeeze casting, and the like. The present invention relates to a magnesium alloy member produced by these high-pressure casting methods using the above method.

【0002】[0002]

【従来の技術】マグネシウム合金は軽量で室温強度だけ
でなく高温での強度にも優れており、各種用途への適用
が期待されている。例えば、自動車分野で実用化が期待
されているトランスミッションケースやオイルパンなど
の耐食性に優れた耐熱性部材をマグネシウム合金で製造
することができ、車体の軽量化が達成される結果、燃費
の向上が期待でき、地球温暖化の抑制に貢献できる。ま
た、家電分野においては内部に光源を有する液晶プロジ
ェクターなどの耐食性とともに耐熱性を必要とするマグ
ネシウム合金製筐体を製造できるため、高強度のポータ
ブル機器の拡大に貢献できる。その他、電動工具やレジ
ャー用品などの耐食性とともに耐熱性を必要とする軽量
部材への適用が期待される。
2. Description of the Related Art Magnesium alloys are lightweight and have excellent strength not only at room temperature but also at high temperatures, and are expected to be applied to various uses. For example, magnesium alloys can be used to manufacture highly corrosion-resistant heat-resistant members, such as transmission cases and oil pans, which are expected to be put to practical use in the automotive field. It can be expected and can contribute to the suppression of global warming. In the field of home appliances, a magnesium alloy housing that requires heat resistance as well as corrosion resistance, such as a liquid crystal projector having a light source inside, can be manufactured, thereby contributing to the expansion of high-strength portable devices. In addition, it is expected to be applied to lightweight members requiring heat resistance as well as corrosion resistance such as electric tools and leisure goods.

【0003】従来この種のマグネシウム合金としては、
AS系合金(AS41、AS21)とAE系合金(AE
42)が代表的である。さらに実用化はされていない
が、以下の各種合金が提案されている。なお、下記合金
の成分量はいずれも質量%で示されている。 (1)Al:1〜6%、Ca:0.5〜4%、Si:
0.5〜1.5%、Mn:0.15〜0.5%、Zn:
0.1〜0.3%を含むMg合金(特公平3−1789
0号公報)。 (2)Al:2〜10%、Ca:1.4〜10%、Ca
/Al≧0.7、Si、Zn:≦2%、希土類元素:≦
4%を含むMg合金(特開平6−25790号公報)。 (3)Al:5〜10%、Si:0.2〜1.0%、C
a:0.05〜0.5%、Sr:≦0.1%を含むMg
合金(特開平9−104942号公報)。 (4)Al:2〜10%、Ca:1.0〜10%、S
i、Mn、Zn、Zrの少なくとも一種:≦2%、希土
類元素:≦4%を含むMg合金(特開平9−27191
9号公報)。 (5)Al:2〜6%、Ca:0.5〜4%、Ca/A
l≦0.8、Sr:≦0.15%を含むMg合金(特開
平9−272945号公報)。
Conventionally, as this kind of magnesium alloy,
AS-based alloys (AS41, AS21) and AE-based alloys (AE
42) is representative. Although not put into practical use, the following various alloys have been proposed. In addition, all the component amounts of the following alloys are shown by mass%. (1) Al: 1 to 6%, Ca: 0.5 to 4%, Si:
0.5-1.5%, Mn: 0.15-0.5%, Zn:
Mg alloy containing 0.1 to 0.3% (Japanese Patent Publication No. 3-1789)
No. 0). (2) Al: 2 to 10%, Ca: 1.4 to 10%, Ca
/Al≧0.7, Si, Zn: ≦ 2%, rare earth element: ≦
Mg alloy containing 4% (JP-A-6-25790). (3) Al: 5 to 10%, Si: 0.2 to 1.0%, C
a: Mg containing 0.05 to 0.5%, Sr: ≤0.1%
Alloy (JP-A-9-104942). (4) Al: 2 to 10%, Ca: 1.0 to 10%, S
Mg alloy containing at least one of i, Mn, Zn, and Zr: ≤2% and rare earth element: ≤4% (Japanese Patent Application Laid-Open No. 9-27191)
No. 9). (5) Al: 2 to 6%, Ca: 0.5 to 4%, Ca / A
Mg alloy containing l ≦ 0.8 and Sr: ≦ 0.15% (Japanese Patent Application Laid-Open No. 9-272945).

【0004】上記各合金における成分元素の作用(添加
理由)は、概ね以下のとおりである。AlはMgとの間
で硬い金属間化合物(Mg17Al12)を形成し、そ
の分散強化により合金の耐力および引張強さを高める。
CaはAlあるいはMgとの間で高融点の金属間化合物
を形成し、引張強さとクリープ抵抗性を高める。Siは
Mgとの間で高融点の金属間化合物(MgSi)を形
成し、引張強さとクリープ抵抗性を高める。Znは時効
硬化能を向上させ、強度の向上に寄与する。希土類元素
(主としてミッシュメタル)はAlとの間で金属間化合
物を形成し、高温の破断伸びとともにクリープ抵抗性を
向上させる。
The actions (reasons for addition) of the component elements in each of the above alloys are generally as follows. Al forms a hard intermetallic compound (Mg 17 Al 12 ) with Mg, and enhances the yield strength and tensile strength of the alloy by its dispersion strengthening.
Ca forms a high melting point intermetallic compound with Al or Mg, and increases tensile strength and creep resistance. Si forms a high-melting intermetallic compound (Mg 2 Si) with Mg, and increases tensile strength and creep resistance. Zn improves age hardening ability and contributes to improvement in strength. The rare earth element (mainly misch metal) forms an intermetallic compound with Al and improves the elongation at break at high temperature and the creep resistance.

【0005】[0005]

【発明が解決しようとする課題】しかし、上記した従来
のマグネシウム合金では、強度やクリープ特性を向上さ
せるために組成の調整が図られているが、その反面で強
度、クリープ特性のいずれかや、鋳造性、耐食性に悪影
響が生じる結果を招いてしまっている。例えば、各合金
では、強度を向上させるためにAlやZnを含有させて
いるが、Alを多く添加すると、低融点でかつ脆い金属
間化合物であるMg17Al を増加させるため、靱
性の低下とともにクリープ抵抗性を低下させてしまう。
また、Znを多く添加すると、クリープ抵抗性を低下さ
せる上、鋳造割れ感受性が高くなる。また、希土類元素
はクリープ特性の向上には効果があるが、材料コスト高
を招く上、酸化し易いため金型へ焼き付きやすくなると
いう問題がある。CaやSiは、引張強さとともにクリ
ープ特性を向上させる作用があるが、Caを多く添加す
ると靱性を低下させる上、鋳造割れ感受性が高くなる。
さらに添加量の増大とともに耐食性が急激に劣化する。
特に、Mg−Al−Ca合金は、希土類元素を含まない
低コスト耐熱合金として期待されるが、充分なクリープ
特性を得るために必要な2質量%以上のCaを含有する
と、耐食性を著しく劣化させるという欠点を有してい
る。また、SiはCaとの間で化合物を形成しやすく、
溶解途中で多量に晶出して溶解歩留まりが低下するの
で、前記した作用(引張強さとクリープ特性の向上作
用)を効果的に得ることができない。以上のように、従
来のマグネシウム合金では、引張り強度、高温クリープ
特性、耐食性、鋳造性のいずれかの点において、満足で
きる特性を有しておらず、前述した用途における要求特
性を十分に満たすには至っていない。さらに、従来合金
は一般に高融点であるため、溶解温度を高くする必要が
あるので溶湯が燃えやすく、固相線温度も高いため溶湯
の流動性が悪く、鋳造欠陥が生じやすかった。そのた
め、実用部品として機能するに至っていなかった。
However, in the above-mentioned conventional magnesium alloy, the composition is adjusted in order to improve the strength and the creep characteristics, but on the other hand, either the strength or the creep characteristics, This results in adverse effects on castability and corrosion resistance. For example, in the alloy, but contain a Al and Zn in order to improve the strength, the addition number of Al, in order to increase the Mg 17 Al 1 2 a low melting point and and brittle intermetallic compound, the toughness The creep resistance decreases with the decrease.
Also, when a large amount of Zn is added, the creep resistance is reduced and the casting cracking sensitivity is increased. Further, while rare earth elements are effective in improving creep characteristics, they raise the material cost and are liable to be oxidized, so that they tend to seize into a mold. Although Ca and Si have the effect of improving the creep characteristics together with the tensile strength, the addition of a large amount of Ca lowers the toughness and increases the casting crack susceptibility.
Further, the corrosion resistance rapidly deteriorates with an increase in the amount of addition.
In particular, Mg-Al-Ca alloy is expected as a low-cost heat-resistant alloy containing no rare earth element. However, if it contains 2% by mass or more of Ca necessary for obtaining sufficient creep characteristics, the corrosion resistance is significantly deteriorated. There is a disadvantage that. In addition, Si easily forms a compound with Ca,
Since a large amount of crystallization occurs during melting to lower the melting yield, the above-mentioned effects (the effects of improving the tensile strength and creep characteristics) cannot be obtained effectively. As described above, conventional magnesium alloys do not have satisfactory characteristics in any of tensile strength, high-temperature creep characteristics, corrosion resistance, and castability, and thus do not sufficiently satisfy the required characteristics in the above-mentioned applications. Has not been reached. Further, since the conventional alloy generally has a high melting point, it is necessary to raise the melting temperature, so that the molten metal is liable to burn. Also, since the solidus temperature is high, the flowability of the molten metal is poor, and casting defects are likely to occur. Therefore, it did not function as a practical part.

【0006】本発明は上記のような従来合金の課題を解
決するためになされたものであり、特に従来は、ほとん
ど検討されていなかった耐食性に着目し合金設計を行
い、低い溶解温度でも健全な鋳造性を確保するととも
に、優れた高温におけるクリープ抵抗性を有するマグネ
シウム合金と、それを用いて製造される耐熱部材を提供
することを目的としている。
The present invention has been made to solve the above-mentioned problems of the conventional alloys. In particular, the present invention focuses on corrosion resistance, which has hardly been studied in the past, and designs alloys so that soundness can be maintained even at a low melting temperature. It is an object of the present invention to provide a magnesium alloy having excellent castability and excellent creep resistance at high temperatures, and a heat-resistant member manufactured using the same.

【0007】[0007]

【課題を解決するための手段】上記課題を解決するた
め、本発明の耐食性および耐熱性に優れたマグネシウム
合金のうち第1の発明は、Al:6.0〜8.0質量
%、Ca:2.0〜4.0質量%、Mn:0.1〜0.
8質量%、Sr:0.001〜0.05質量%、Si:
0〜0.5質量%、Zn:0〜0.5質量%を含有し、
残部がMgおよび不可避的不純物からなることを特徴と
する。
Means for Solving the Problems In order to solve the above problems, the first invention of the magnesium alloy excellent in corrosion resistance and heat resistance according to the present invention is: Al: 6.0 to 8.0 mass%, Ca: 2.0 to 4.0% by mass, Mn: 0.1 to 0.
8% by mass, Sr: 0.001 to 0.05% by mass, Si:
0-0.5% by mass, Zn: 0-0.5% by mass,
The balance consists of Mg and unavoidable impurities.

【0008】第2の発明の耐食性および耐熱性に優れた
マグネシウム合金は、第1の発明において、不可避不純
物のうち、Cu、Ni、Fe、Clの1種以上におい
て、Cu:0.01質量%以下、Ni:0.001質量
%以下、Fe:0.004質量%以下、Cl:0.00
3質量%以下を許容含有量とすることを特徴とする。
[0008] The magnesium alloy having excellent corrosion resistance and heat resistance according to the second invention is the magnesium alloy according to the first invention, wherein at least one of Cu, Ni, Fe, and Cl among the unavoidable impurities has a Cu content of 0.01% by mass. Hereinafter, Ni: 0.001% by mass or less, Fe: 0.004% by mass or less, Cl: 0.00
It is characterized in that the allowable content is 3% by mass or less.

【0009】第3の発明の耐食性および耐熱性に優れた
マグネシウム合金部材は、上記第1または第2の発明の
マグネシウム合金からなり、固相率50%以下の完全溶
融あるいは半溶融状態で金型に射出して成形されたこと
を特徴とする。
A magnesium alloy member having excellent corrosion resistance and heat resistance according to a third aspect of the present invention is made of the magnesium alloy according to the first or second aspect of the present invention, and is a mold in a completely molten or semi-molten state having a solid fraction of 50% or less. And molded by injection.

【0010】以下に本発明のマグネシウム合金成分の作
用およびその含有量の限定理由について説明する。なお
各成分の含有量は質量%で示されている。Al:6.0
〜8.0%AlはMg母相には、ほとんど固溶せず、M
g初晶の凝固前面に濃縮される結果、MgあるいはCa
との共晶化合物が形成されるまで、良好な流動性が得ら
れる。このとき、Alが6%未満では高融点であるた
め、合金溶製時や鋳造時の溶解温度を高くする必要があ
り作業性が低下する。また、8%を越えると金属間化合
物が増加するため、靱性の低下、さらに鋳造割れ感受性
が増加する。このため、Al含有量を6.0〜8.0%
の範囲に限定する。
The function of the magnesium alloy component of the present invention and the reason for limiting the content will be described below. In addition, the content of each component is shown by mass%. Al: 6.0
-8.0% Al hardly forms a solid solution in the Mg matrix,
g is concentrated on the solidification front of primary crystals, resulting in Mg or Ca
Good fluidity is obtained until a eutectic compound is formed. At this time, if Al is less than 6%, the melting point is high at the time of melting the alloy or at the time of casting, since the melting point is high, and the workability is reduced. On the other hand, if it exceeds 8%, the intermetallic compound increases, so that the toughness decreases and the casting cracking susceptibility increases. For this reason, the Al content is reduced to 6.0 to 8.0%.
To the range.

【0011】Ca:2.0〜4.0% CaはMgおよびAlとの間で金属間化合物を形成し、
主として結晶粒界にネットワーク状に晶出し、これが転
位の上昇運動に対する障害物として作用し、引張強さの
向上、クリープ変形の抵抗性を高める。このとき、Ca
含有量が2%未満では効果が充分ではなく、一方、4%
を越えると鋳造割れが発生しやすくなり、耐食性も低下
する。このため、Caの含有量を2.0〜4.0%に限
定する。
Ca: 2.0-4.0% Ca forms an intermetallic compound with Mg and Al,
It is mainly crystallized in the form of a network at the crystal grain boundaries, and this acts as an obstacle to the dislocation ascending movement, improving the tensile strength and increasing the resistance to creep deformation. At this time, Ca
If the content is less than 2%, the effect is not sufficient, while 4%
If it exceeds 300, casting cracks are likely to occur, and the corrosion resistance also decreases. For this reason, the content of Ca is limited to 2.0 to 4.0%.

【0012】Mn:0.1〜0.8% MnはAlと化合して金属間化合物を形成し、不純物元
素であるFeを固溶することにより、耐食性の劣化を抑
制する。このとき、0.1%未満では効果が充分ではな
く、一方、0.8%を越えると溶解歩留まりが劣化す
る。このため、Mnの含有量を0.1〜0.8%に限定
する。なお、同様の理由で、下限を0.15%、上限を
0.75%に限定するのが望ましい。
Mn: 0.1-0.8% Mn combines with Al to form an intermetallic compound, and suppresses the deterioration of corrosion resistance by forming a solid solution of Fe as an impurity element. At this time, if the content is less than 0.1%, the effect is not sufficient, while if it exceeds 0.8%, the dissolution yield is deteriorated. For this reason, the content of Mn is limited to 0.1 to 0.8%. For the same reason, it is desirable to limit the lower limit to 0.15% and the upper limit to 0.75%.

【0013】Sr:0.001〜0.05% 微量添加されるSrは、粒界の晶出物に固溶することで
高いクリープ抵抗性を保持したまま、晶出物の耐食性を
飛躍的に向上させる作用を有しており、Ca含有による
耐食性の低下を排除する。このとき、Srの含有が0.
001%未満では耐食性が充分ではなく、一方、0.0
5%を越えても溶湯中への溶解歩留まりが低下して効果
の向上が望めないので、Srの含有量を0.001〜
0.05%とする。なお、同様の理由で、下限を0.0
02%、上限を0.04%に限定するのが望ましい。
Sr: 0.001 to 0.05% Sr to be added in a very small amount significantly improves the corrosion resistance of the crystallized material while maintaining high creep resistance by being dissolved in the crystallized material at the grain boundary. It has an effect of improving and eliminates a decrease in corrosion resistance due to Ca content. At this time, the content of Sr is 0.1.
If it is less than 001%, the corrosion resistance is not sufficient.
Even if it exceeds 5%, the yield of dissolution in the molten metal is lowered and the effect cannot be expected to be improved.
0.05%. For the same reason, the lower limit is set to 0.0
It is desirable to limit the upper limit to 02% and the upper limit to 0.04%.

【0014】Si:0〜0.5% Zn:0〜0.5% SiとZnは、いずれも融点を低下させるので、所望に
より一方または両方を含有させることができる。ただ
し、それぞれ0.5%を越えて含有させるとクリープ抵
抗性を低下させるので、上限を0.5%とする。
Si: 0 to 0.5% Zn: 0 to 0.5% Since both Si and Zn lower the melting point, one or both of them can be contained as desired. However, if each content exceeds 0.5%, the creep resistance decreases, so the upper limit is made 0.5%.

【0015】Cu:0.01質量%以下 Ni:0.001質量%以下 Fe:0.004質量%以下 Cl:0.003質量%以下 これら元素は、マグネシウム合金の不可避的不純物とし
て扱われるものであるが、耐食性に悪影響を与える元素
であるので、極力含有量を少なくするのが望ましい。工
業性を考慮すればCu:0.01%以下、Ni:0.0
01%以下、Fe:0.004%以下、Cl:0.00
3%以下の1種以上を許容含有量とするのが望ましく、
さらに、これら元素の全てにおいて上記許容含有量を満
たすのが一層望ましい。
Cu: 0.01% by mass or less Ni: 0.001% by mass or less Fe: 0.004% by mass or less Cl: 0.003% by mass or less These elements are treated as inevitable impurities of the magnesium alloy. However, since it is an element that adversely affects the corrosion resistance, it is desirable to reduce the content as much as possible. Considering industrial properties, Cu: 0.01% or less, Ni: 0.0
01% or less, Fe: 0.004% or less, Cl: 0.00
It is desirable that the allowable content is at least one of 3% or less,
Further, it is more desirable that all of these elements satisfy the above-mentioned allowable contents.

【0016】[0016]

【発明の実施の形態】本発明のマグネシウム合金は、上
記成分範囲を目標値として溶製されるが、本発明として
は溶製方法が特に限定されるものではなく、一般に用い
られている方法を採用することができる。溶製されたマ
グネシウム合金は、溶湯のまま、または一旦スラブとし
た後、後工程である鋳造工程に供することができる。鋳
造工程における鋳造方法としては、一般に知られている
各種方法を採用することができるが、本発明のマグネシ
ウム合金は優れた鋳造性を有しているので、鋳造性への
要求は高いものの高品質材を得ることができるダイキャ
スト、スクイーズキャスト、金属射出成形法などの高圧
鋳造法に好適な材料である。これら鋳造法での条件は本
発明としては特に限定されるものではないが、半溶融成
形では、溶融金属の固相率を50%以下とするのが望ま
しい。これは、固相率が50%を越えると鋳造性が良好
な本発明の合金によっても溶湯の流動性が低くなって良
好な成形が困難になるおそれがあるためである。
BEST MODE FOR CARRYING OUT THE INVENTION The magnesium alloy of the present invention is smelted with the above component ranges as target values, but the smelting method is not particularly limited as the present invention. Can be adopted. The molten magnesium alloy can be used as a molten metal or once as a slab, and then subjected to a casting process as a subsequent process. As the casting method in the casting process, various generally known methods can be adopted.However, since the magnesium alloy of the present invention has excellent castability, the demand for castability is high, but high quality is required. It is a material suitable for high-pressure casting such as die casting, squeeze casting, and metal injection molding from which a material can be obtained. The conditions in these casting methods are not particularly limited as the present invention, but in semi-solid molding, it is desirable that the solid phase ratio of the molten metal be 50% or less. This is because if the solid phase ratio exceeds 50%, even with the alloy of the present invention having good castability, the fluidity of the molten metal may be low, and good molding may be difficult.

【0017】上記の高圧鋳造法では、溶解した合金(半
溶融の場合も含む)が高い流動性を有するので、薄肉の
製品に成形する際にも湯流れよく鋳造でき、高い製品歩
留りが得られる。また得られた部材は、良好な湯流れに
よって欠陥が少なく、高強度材においても優れた特性が
確保される。したがって、本発明合金による成形性品
は、各種用途において軽量、高強度で高温特性に、耐食
性に優れた部材として使用することができる。したがっ
て、これら特性が要求される自動車用部品や各種ポータ
ブル機器への使用量の拡大が期待でき、さらに電動工具
やレジャー用品等への用途の拡大も期待される。しか
も、これらのマグネシウム合金製品は、従来のプラスチ
ック製品に比べてリサイクル可能であり、地球環境の保
全に貢献できる。
In the above-mentioned high-pressure casting method, the molten alloy (including the case of semi-molten) has high fluidity, so that it can be cast with good flow even when forming into a thin product, and a high product yield can be obtained. . In addition, the obtained member has few defects due to good hot water flow, and excellent characteristics are secured even in a high-strength material. Therefore, the moldable article made of the alloy of the present invention can be used as a member that is lightweight, high-strength, has high-temperature characteristics, and has excellent corrosion resistance in various applications. Therefore, it can be expected to be used for automobile parts and various portable devices that require these characteristics, and also for electric tools and leisure goods. Moreover, these magnesium alloy products are more recyclable than conventional plastic products, and can contribute to the preservation of the global environment.

【0018】[0018]

【実施例】以下、本発明の実施例について説明する。鋳
造には高圧鋳造法の一つである金属射出成形法(型締め
力450t)を採用した。発明合金および比較としての
従来合金インゴットを溶製後、切削により各種原料チッ
プを作製した。原料チップの化学分析結果と鋳造性を表
1に示す。鋳造は、成形条件のうち金型温度(443
K)、射出速度(1.7m/s)を一定にして、各試験
片の成分に合わせてそれぞれが同等の固相率(約0%)
となるようにシリンダ温度のみを変化させ(853〜9
03K)、平行部直径6mmのクリープ試験片と肉厚2
mmの平板(塩水噴霧試験片)を作製した。
Embodiments of the present invention will be described below. For the casting, a metal injection molding method (a mold clamping force of 450 t), which is one of the high pressure casting methods, was employed. After melting the inventive alloy and the conventional alloy ingot as a comparison, various raw material chips were produced by cutting. Table 1 shows the chemical analysis results and castability of the raw material chips. In the casting, the mold temperature (443
K), while keeping the injection speed (1.7 m / s) constant, the same solid fraction (approximately 0%) according to the components of each test piece.
(853-9)
03K), creep test piece with parallel part diameter 6mm and thickness 2
mm flat plate (salt spray test piece) was prepared.

【0019】上記平板に対し塩水噴霧試験を行い、10
0時間の塩水噴霧試験前後の重量減から腐食速度を算出
した。試験は各試験について3回行い、その結果得られ
た腐食速度の平均値を表2に示した。図1〜3には、各
試験片における腐食速度の上下限値と平均値を示した。
図1は、従来合金におけるCa含有量と腐食速度との関
係を示すものであり、耐食性に及ぼすCa含有量の影響
が示されている。すなわち、Ca量が2質量%を越える
と耐食性が大幅に劣化しており、従来合金ではクリープ
特性の向上に必要なCa量を含有させると良好な耐食性
を確保できないことが分かる。図2は、耐食性におよぼ
すAl添加量の影響を示すものである。Caを含まない
Mg−Al系合金の耐食性は、Al含有量の増加ととも
に向上することが知られているが、クリープ抵抗性を高
めるために3質量%程度のCaを共存させると、Al量
を増やしても耐食性の改善が認められない。すなわち、
従来材においては、クリープ特性を向上させるCa含有
のマグネシウム合金では、Alの増量によっても良好な
耐食性を得ることが難しい。図3は、Ca含有Mg合金
において、微量元素であるSr、Ba、Si、Zn、M
mの添加が耐食性に及ぼす影響を示している。この図よ
り、Srの微量添加が耐食性を飛躍的に向上させること
がわかる。なお、高価なMmの添加もその他の微量元素
に比べて耐食性改善に有効であるが、1質量%の添加に
おいても、耐食性は実用的なレベルには達しておらず、
コストの割に効果が少なく、しかも前述したように金型
への焼き付き現象が見られた。すなわち、本発明におい
てのみ、Caを3%程度含有していても良好な耐食性を
確保することができる。
A salt water spray test was performed on the flat plate,
The corrosion rate was calculated from the weight loss before and after the 0 hour salt spray test. The test was performed three times for each test, and the average value of the resulting corrosion rates is shown in Table 2. 1 to 3 show the upper and lower limits and the average value of the corrosion rate in each test piece.
FIG. 1 shows the relationship between the Ca content and the corrosion rate in a conventional alloy, and shows the effect of the Ca content on corrosion resistance. That is, it is understood that when the Ca amount exceeds 2% by mass, the corrosion resistance is significantly deteriorated, and the conventional alloy cannot secure good corrosion resistance if the Ca amount necessary for improving the creep characteristics is contained. FIG. 2 shows the effect of the amount of Al added on the corrosion resistance. It is known that the corrosion resistance of an Mg-Al alloy containing no Ca improves with an increase in the Al content. However, when about 3% by mass of Ca is present in order to increase the creep resistance, the Al content is reduced. No increase in corrosion resistance is observed even when the amount is increased. That is,
In a conventional material, it is difficult to obtain good corrosion resistance even with an increase in Al in a Ca-containing magnesium alloy that improves creep characteristics. FIG. 3 shows trace elements Sr, Ba, Si, Zn, M in a Ca-containing Mg alloy.
This shows the effect of the addition of m on corrosion resistance. From this figure, it is understood that the addition of a small amount of Sr dramatically improves the corrosion resistance. The addition of expensive Mm is also effective in improving the corrosion resistance as compared with other trace elements, but even with the addition of 1% by mass, the corrosion resistance has not reached a practical level.
The effect was small for the cost, and the phenomenon of seizure to the mold was observed as described above. That is, only in the present invention, good corrosion resistance can be ensured even if Ca is contained at about 3%.

【0020】また、各クリープ試験片について、負荷応
力および試験温度を変えてクリープ試験を行い、その際
の最小クリープ速度を求めた。表2には、負荷応力70
MPa、試験温度423Kにおける最小クリープ速度を
示している。図4では、試験温度423Kにおける、最
小クリープ速度と負荷応力との関係を示している。この
図を基に、Caを添加していないAE42と、Caを3
%程度含有する試験片とを比較すると、両者は低応力側
ではほぼ同等のクリープ特性を有しているが、負荷応力
が増すに連れてCaを含有する試験片の方がクリープ特
性について優位性が顕著になってくる。また、Srを含
有する試験片においては、Srの含有によってクリープ
特性に悪影響が生じていることはなく、Caによるクリ
ープ特性の改善効果が出現している。図5では、負荷応
力50MPaにおける、最小クリープ速度と試験温度と
の関係を示している。この図から明らかなように、試験
温度に拘わらず、各試験片は同等のクリープ特性を示し
ており、図4の結果と合わせれば、Caの含有は、高応
力側でのクリープ特性の改善、すなわちクリープ強度の
向上に効果があることが分かる。なお、実施例には金属
射出成形法に関するデータを示したが、健全な成形性が
確保される射出前の固相率が50%以下であれば、その
他の高圧鋳造法であるダイカストやスクウィーズなどに
も本発明合金の適用が可能である。
A creep test was performed on each creep test piece while changing the applied stress and the test temperature, and the minimum creep rate at that time was determined. Table 2 shows the applied stress of 70
The minimum creep rate at a test temperature of 423K in MPa is shown. FIG. 4 shows the relationship between the minimum creep rate and the applied stress at a test temperature of 423K. Based on this figure, AE42 to which Ca was not added and Ca
%, The two specimens have almost the same creep characteristics on the low stress side, but the specimen containing Ca has more superior creep properties as the applied stress increases. Becomes noticeable. In addition, in the test piece containing Sr, the creep characteristics were not adversely affected by the content of Sr, and the effect of improving the creep characteristics by Ca appeared. FIG. 5 shows the relationship between the minimum creep rate and the test temperature at a load stress of 50 MPa. As is clear from this figure, regardless of the test temperature, each test piece shows the same creep characteristics, and when combined with the results of FIG. 4, the Ca content indicates that the creep characteristics on the high stress side can be improved. That is, it can be seen that there is an effect in improving the creep strength. In the examples, data relating to the metal injection molding method is shown. However, if the solid phase ratio before injection is 50% or less, which ensures sound moldability, other high-pressure casting methods such as die casting and squeeze are used. Also, the alloy of the present invention can be applied.

【0021】[0021]

【表1】 [Table 1]

【0022】[0022]

【表2】 [Table 2]

【0023】[0023]

【発明の効果】以上説明したように、本発明のマグネシ
ウム合金によれば、Al:6.0〜8.0質量%、C
a:2.0〜4.0質量%、Mn:0.1〜0.8質量
%、Sr:0.001〜0.05質量%、Si:0〜
0.5質量%、Zn:0〜0.5質量%を含有し、残部
がMgおよび不可避的不純物からなるので、引張り強
度、耐熱性および耐食性に優れた特性を有している。し
かも鋳造性が良好であるので、製造が容易であり、ま
た、鋳造欠陥なく鋳造品を得ることができる。また、本
発明のマグネシウム合金材は、上記合金を固相率50%
以下の半溶融状態で金型内に射出する射出成形によって
得るので、良好な機械的特性を有しており、また軽量化
も容易である。
As described above, according to the magnesium alloy of the present invention, Al: 6.0-8.0% by mass, C
a: 2.0 to 4.0% by mass, Mn: 0.1 to 0.8% by mass, Sr: 0.001 to 0.05% by mass, Si: 0 to 0%
Since it contains 0.5% by mass and Zn: 0 to 0.5% by mass and the balance consists of Mg and unavoidable impurities, it has excellent properties in tensile strength, heat resistance and corrosion resistance. In addition, since the castability is good, the production is easy and a cast product can be obtained without casting defects. Further, the magnesium alloy material of the present invention is characterized in that the above alloy has a solid content of 50%.
Since it is obtained by injection molding in which the following semi-molten state is injected into a mold, it has good mechanical properties and can be easily reduced in weight.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 従来のマグネシウム合金試験片における耐食
性におよぼすCa含有量の影響を示すグラフである。
FIG. 1 is a graph showing the influence of Ca content on corrosion resistance in a conventional magnesium alloy test piece.

【図2】 従来のマグネシウム合金試験片における耐食
性におよぼすAl含有量の影響を示すグラフである。
FIG. 2 is a graph showing the effect of Al content on corrosion resistance of a conventional magnesium alloy test piece.

【図3】 マグネシウム合金試験片における耐食性にお
よぼすSr、Ba、Mm、Si、Zn添加の影響を示す
グラフである。
FIG. 3 is a graph showing the influence of the addition of Sr, Ba, Mm, Si, and Zn on the corrosion resistance of a magnesium alloy test piece.

【図4】 マグネシウム合金試験片について、試験温度
423Kにおける最小クリープ速度と負荷応力との関係
を示すグラフである。
FIG. 4 is a graph showing the relationship between the minimum creep rate and the applied stress at a test temperature of 423 K for a magnesium alloy test piece.

【図5】 マグネシウム合金試験片について、負荷応力
50MPaにおける最小クリープ速度と試験温度との関
係を示すグラフである。
FIG. 5 is a graph showing a relationship between a minimum creep rate and a test temperature at a load stress of 50 MPa for a magnesium alloy test piece.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 Al:6.0〜8.0質量%、Ca:
2.0〜4.0質量%、Mn:0.1〜0.8質量%、
Sr:0.001〜0.05質量%、Si:0〜0.5
質量%、Zn:0〜0.5質量%を含有し、残部がMg
および不可避的不純物からなることを特徴とする耐食性
および耐熱性に優れたマグネシウム合金
1. Al: 6.0 to 8.0 mass%, Ca:
2.0 to 4.0% by mass, Mn: 0.1 to 0.8% by mass,
Sr: 0.001 to 0.05% by mass, Si: 0 to 0.5
% By mass, Zn: 0 to 0.5% by mass, with the balance being Mg
Magnesium alloy excellent in corrosion resistance and heat resistance characterized by being composed of unavoidable impurities
【請求項2】 不可避不純物のうち、Cu、Ni、F
e、Clの1種以上において、Cu:0.01質量%以
下、Ni:0.001質量%以下、Fe:0.004質
量%以下、Cl:0.003質量%以下を許容含有量と
することを特徴とする請求項1記載の耐食性および耐熱
性に優れたマグネシウム合金
2. Among the unavoidable impurities, Cu, Ni, F
In one or more of e and Cl, the allowable contents are Cu: 0.01% by mass or less, Ni: 0.001% by mass or less, Fe: 0.004% by mass or less, and Cl: 0.003% by mass or less. The magnesium alloy excellent in corrosion resistance and heat resistance according to claim 1, characterized in that:
【請求項3】 請求項1または2に記載の合金からな
り、固相率50%以下の完全溶融あるいは半溶融状態で
金型に射出して成形されたことを特徴とする耐食性およ
び耐熱性に優れたマグネシウム合金部材
3. A corrosion-resistant and heat-resistant alloy comprising the alloy according to claim 1 or 2 and being molded by injection into a mold in a completely molten or semi-molten state having a solid fraction of 50% or less. Excellent magnesium alloy members
JP2000137672A 2000-05-10 2000-05-10 Magnesium alloy and magnesium alloy member excellent in corrosion resistance and heat resistance Pending JP2001316753A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000137672A JP2001316753A (en) 2000-05-10 2000-05-10 Magnesium alloy and magnesium alloy member excellent in corrosion resistance and heat resistance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000137672A JP2001316753A (en) 2000-05-10 2000-05-10 Magnesium alloy and magnesium alloy member excellent in corrosion resistance and heat resistance

Publications (1)

Publication Number Publication Date
JP2001316753A true JP2001316753A (en) 2001-11-16

Family

ID=18645410

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000137672A Pending JP2001316753A (en) 2000-05-10 2000-05-10 Magnesium alloy and magnesium alloy member excellent in corrosion resistance and heat resistance

Country Status (1)

Country Link
JP (1) JP2001316753A (en)

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003064438A (en) * 2001-08-23 2003-03-05 Japan Steel Works Ltd:The Magnesium alloy having excellent corrosion resistance, and magnesium alloy member
JP2004162090A (en) * 2002-11-11 2004-06-10 Toyota Industries Corp Heat resistant magnesium alloy
FR2850672A1 (en) * 2003-01-31 2004-08-06 Toyota Jidoshokki Kk HEAT RESISTANT MOLDING MAGNESIUM ALLOY AND HEAT RESISTANT MAGNESIUM ALLOY MOLDED MOLD
JP2004238676A (en) * 2003-02-05 2004-08-26 Dead Sea Magnesium Ltd Magnesium alloy
JP2005194605A (en) * 2004-01-09 2005-07-21 Takata Corp Magnesium alloy for die-casting, and magnesium die-cast product
US7083689B2 (en) 2003-04-21 2006-08-01 Hyundai Motor Company Method for fabricating magnesium alloy billets for a thixoforming process
KR100681409B1 (en) 2005-01-26 2007-02-09 김영희 A magnesium alloy composition for manufacturing alkaline reducing water, a method for the same and a method for producing alkaline reducing water by using the same
JP2009007676A (en) * 2008-07-30 2009-01-15 Toyota Industries Corp Heat resistant magnesium alloy for casting, and heat resistant magnesium alloy casting
WO2010038893A1 (en) * 2008-10-03 2010-04-08 株式会社豊田自動織機 Heat-resistant magnesium alloy
WO2010055897A1 (en) 2008-11-14 2010-05-20 株式会社豊田自動織機 Magnesium alloy and magnesium alloy casting
US8123877B2 (en) 2003-01-31 2012-02-28 Kabushiki Kaisha Toyota Jidoshokki Heat-resistant magnesium alloy for casting heat-resistant magnesium alloy cast product, and process for producing heat-resistant magnesium alloy cast product
US8374852B2 (en) 2005-03-29 2013-02-12 Nec Corporation Apparatus and method of code conversion and recording medium that records program for computer to execute the method
CZ305292B6 (en) * 2001-11-27 2015-07-22 Xstrata Canada Corporation Method of making oxidation-resistant alloy melt and alloy casting from such a melt, oxidation-resistant alloy melt and alloy casting
CN109957693A (en) * 2019-03-27 2019-07-02 东北大学 A kind of the casting magnesium-based composite material and preparation method of high strontium high aluminium content
CN110093523A (en) * 2019-04-25 2019-08-06 黑龙江科技大学 A kind of new medical metal material and its super-pressure preparation method
WO2020203050A1 (en) * 2019-03-29 2020-10-08 株式会社栗本鐵工所 Heat-resistant magnesium alloy
WO2020203041A1 (en) * 2019-03-29 2020-10-08 株式会社栗本鐵工所 Heat-resistant magnesium alloy for casting

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04231435A (en) * 1990-06-01 1992-08-20 Pechiney Electrometall Strontium-containing magnesium alloy with high mechanical strength and preparation thereof by means of rapid coagulation
JPH07224344A (en) * 1993-12-17 1995-08-22 Mazda Motor Corp Magnesium alloy casting stock for plastic working, magnesium alloy member using the same and production thereof
JPH0924338A (en) * 1995-07-07 1997-01-28 Mazda Motor Corp Formation of high corrosion resistant coating film for magnesium alloy material
JPH09272945A (en) * 1996-04-04 1997-10-21 Mazda Motor Corp Heat resistant magnesium alloy molded member, heat resistant magnesium alloy used for the molding and molding method therefor
JP2000319744A (en) * 1999-04-30 2000-11-21 General Motors Corp <Gm> Die-casting of creep-resistant magnesium alloy
JP2001316752A (en) * 2000-02-24 2001-11-16 Mitsubishi Alum Co Ltd Magnesium alloy for diecasting

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04231435A (en) * 1990-06-01 1992-08-20 Pechiney Electrometall Strontium-containing magnesium alloy with high mechanical strength and preparation thereof by means of rapid coagulation
JPH07224344A (en) * 1993-12-17 1995-08-22 Mazda Motor Corp Magnesium alloy casting stock for plastic working, magnesium alloy member using the same and production thereof
JPH0924338A (en) * 1995-07-07 1997-01-28 Mazda Motor Corp Formation of high corrosion resistant coating film for magnesium alloy material
JPH09272945A (en) * 1996-04-04 1997-10-21 Mazda Motor Corp Heat resistant magnesium alloy molded member, heat resistant magnesium alloy used for the molding and molding method therefor
JP2000319744A (en) * 1999-04-30 2000-11-21 General Motors Corp <Gm> Die-casting of creep-resistant magnesium alloy
JP2001316752A (en) * 2000-02-24 2001-11-16 Mitsubishi Alum Co Ltd Magnesium alloy for diecasting

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003064438A (en) * 2001-08-23 2003-03-05 Japan Steel Works Ltd:The Magnesium alloy having excellent corrosion resistance, and magnesium alloy member
CZ305292B6 (en) * 2001-11-27 2015-07-22 Xstrata Canada Corporation Method of making oxidation-resistant alloy melt and alloy casting from such a melt, oxidation-resistant alloy melt and alloy casting
JP2004162090A (en) * 2002-11-11 2004-06-10 Toyota Industries Corp Heat resistant magnesium alloy
FR2850672A1 (en) * 2003-01-31 2004-08-06 Toyota Jidoshokki Kk HEAT RESISTANT MOLDING MAGNESIUM ALLOY AND HEAT RESISTANT MAGNESIUM ALLOY MOLDED MOLD
JP2004232060A (en) * 2003-01-31 2004-08-19 Toyota Industries Corp Heat resistant magnesium alloy for casting and heat resistant magnesium alloy casting
US8123877B2 (en) 2003-01-31 2012-02-28 Kabushiki Kaisha Toyota Jidoshokki Heat-resistant magnesium alloy for casting heat-resistant magnesium alloy cast product, and process for producing heat-resistant magnesium alloy cast product
JP4526768B2 (en) * 2003-02-05 2010-08-18 デッド シー マグネシウム エルティーディー Magnesium alloy
JP2004238676A (en) * 2003-02-05 2004-08-26 Dead Sea Magnesium Ltd Magnesium alloy
US7083689B2 (en) 2003-04-21 2006-08-01 Hyundai Motor Company Method for fabricating magnesium alloy billets for a thixoforming process
JP2005194605A (en) * 2004-01-09 2005-07-21 Takata Corp Magnesium alloy for die-casting, and magnesium die-cast product
JP4589630B2 (en) * 2004-01-09 2010-12-01 健司 東 Magnesium alloy for die casting and magnesium die casting products
KR100681409B1 (en) 2005-01-26 2007-02-09 김영희 A magnesium alloy composition for manufacturing alkaline reducing water, a method for the same and a method for producing alkaline reducing water by using the same
US8374852B2 (en) 2005-03-29 2013-02-12 Nec Corporation Apparatus and method of code conversion and recording medium that records program for computer to execute the method
JP2009007676A (en) * 2008-07-30 2009-01-15 Toyota Industries Corp Heat resistant magnesium alloy for casting, and heat resistant magnesium alloy casting
WO2010038893A1 (en) * 2008-10-03 2010-04-08 株式会社豊田自動織機 Heat-resistant magnesium alloy
CN102171374A (en) * 2008-10-03 2011-08-31 株式会社丰田自动织机 Heat-resistant magnesium alloy
JP2010090405A (en) * 2008-10-03 2010-04-22 Toyota Industries Corp Heat-resistant magnesium alloy
WO2010055897A1 (en) 2008-11-14 2010-05-20 株式会社豊田自動織機 Magnesium alloy and magnesium alloy casting
US9180515B2 (en) 2008-11-14 2015-11-10 Kabushiki Kaisha Toyota Jidoshokki Magnesium alloy and magnesium-alloy cast product
CN109957693A (en) * 2019-03-27 2019-07-02 东北大学 A kind of the casting magnesium-based composite material and preparation method of high strontium high aluminium content
WO2020203050A1 (en) * 2019-03-29 2020-10-08 株式会社栗本鐵工所 Heat-resistant magnesium alloy
WO2020203041A1 (en) * 2019-03-29 2020-10-08 株式会社栗本鐵工所 Heat-resistant magnesium alloy for casting
CN110093523A (en) * 2019-04-25 2019-08-06 黑龙江科技大学 A kind of new medical metal material and its super-pressure preparation method

Similar Documents

Publication Publication Date Title
JP3592659B2 (en) Magnesium alloys and magnesium alloy members with excellent corrosion resistance
RU2689825C1 (en) Aluminum alloy
JP2001316753A (en) Magnesium alloy and magnesium alloy member excellent in corrosion resistance and heat resistance
US5855697A (en) Magnesium alloy having superior elevated-temperature properties and die castability
EP1329530B1 (en) High temperature resistant magnesium alloys
KR20170138916A (en) Aluminum alloy for die casting, and die-cast aluminum alloy using same
US9180515B2 (en) Magnesium alloy and magnesium-alloy cast product
JP6229130B2 (en) Cast aluminum alloy and casting using the same
JP7152977B2 (en) aluminum alloy
JP2010150624A (en) alpha+beta TYPE TITANIUM ALLOY FOR CASTING, AND GOLF CLUB HEAD USING THE SAME
JP2009203516A (en) Aluminum alloy
JP4145242B2 (en) Aluminum alloy for casting, casting made of aluminum alloy and method for producing casting made of aluminum alloy
JP2021021138A (en) Aluminum alloy for die casting, and method for producing cast product using the same
JP2001247926A (en) Magnesium alloy excellent in fluidity and magnesium alloy material
JP2005187896A (en) Heat resistant magnesium alloy casting
JP2005240129A (en) Heat resistant magnesium alloy casting
JP2001316752A (en) Magnesium alloy for diecasting
JP2019173111A (en) Aluminum alloy for die casting and aluminum alloy cast
CN113046606B (en) Aluminum alloy, preparation method thereof and aluminum alloy structural part
JP3611759B2 (en) Magnesium alloy and magnesium alloy heat-resistant member with excellent heat resistance and castability
JP2001247925A (en) High ductility magnesium alloy excellent in fluidity and magnesium alloy material
JPH06172948A (en) Production of heat resistant magnesium alloy
JP2005240130A (en) Heat resistant magnesium alloy casting
JP3132693B2 (en) Magnesium alloy for die casting
US20220205069A1 (en) Heat-resistant magnesium alloy for casting