JP5419071B2 - Mg alloy forged product and its manufacturing method - Google Patents

Mg alloy forged product and its manufacturing method Download PDF

Info

Publication number
JP5419071B2
JP5419071B2 JP2009064111A JP2009064111A JP5419071B2 JP 5419071 B2 JP5419071 B2 JP 5419071B2 JP 2009064111 A JP2009064111 A JP 2009064111A JP 2009064111 A JP2009064111 A JP 2009064111A JP 5419071 B2 JP5419071 B2 JP 5419071B2
Authority
JP
Japan
Prior art keywords
magnesium alloy
magnesium
phase
forging
alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2009064111A
Other languages
Japanese (ja)
Other versions
JP2010215962A (en
Inventor
英俊 染川
敏司 向井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute for Materials Science
Original Assignee
National Institute for Materials Science
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute for Materials Science filed Critical National Institute for Materials Science
Priority to JP2009064111A priority Critical patent/JP5419071B2/en
Publication of JP2010215962A publication Critical patent/JP2010215962A/en
Application granted granted Critical
Publication of JP5419071B2 publication Critical patent/JP5419071B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Forging (AREA)

Description

本発明は、マグネシウム母相中に準結晶相またはその近似結晶相が分散されてなるマグネシウム合金を所定の形状に鍛造加工されてなるマグネシウム合金鍛造品とその製造方法に関する。   The present invention relates to a magnesium alloy forged product obtained by forging a magnesium alloy in which a quasicrystalline phase or an approximate crystalline phase thereof is dispersed in a magnesium matrix into a predetermined shape, and a method for producing the same.

マグネシウムは、軽量で豊富な資源を示すことから、電子機器や構造部材などの軽量化材料として注目を浴びている。一方で、鉄道車輌や自動車などの移動用構造部材への適応を検討した場合、使用に際しての安全性・信頼性の観点から、素材の高強度・高延性・高靭性特性が求められる。
特許文献1から4には、希土類元素(特にイットリウム)添加により、マグネシウム母相内に準結晶を発現させたものが、高強度・高延性・高靭性特性に有用であることが記載されている。
特許文献5,6には、準結晶相がマグネシウム母相内に発現できないマグネシウム合金についての高速超塑性挙動を利用した、マグネシウム合金の鍛造技術が示されている。いずれも、最終的な鍛造成型の際、高速超塑性を発現させるためには、ピンニング粒子がマグネシウム母相に分散し、結晶粒径が微細であることが必要であると示されている。
予めマグネシウム母相を微細にするためには、高体積率のピンニング粒子を用い、マグネシウム母相の結晶粒粗大化を防ぐ、または、強ひずみ加工により初期組織を微細にするなどの手法がある。しかし、一般的なピンニング粒子を高体積率に分散することは、破壊の起点になりやすく特性劣化、特に延性低下につながる。また、強ひずみ加工を使用すると、金型やコンテナなどの寿命が短くなり、エネルギー損失が大きくなる、などの問題が考えられる。
一般的な結晶相とは異なり、決まった原子の配列が繰り返し並ぶ構造(並進秩序性)を持たない特異な相、すなわち準結晶相が、Mg−Zn−RE(RE=Y,Gd,Dy,Ho,Er,Tb)合金やMg−Zn−Al合金で発現することに注目した。準結晶相は、母相の結晶格子とマッチングが良いため、母相と準結晶相の界面同士が強固に結合し、整合界面を形成する特徴がある。
そのため、準結晶相をマグネシウム母相に分散することは、塑性変形中、転位の運動を阻害し、高強度化に寄与するものの、破壊の核や起点になりにくいことで知られている。
また、圧延や押出などひずみ付与(展伸加工)したマグネシウム合金は、その集合組織形成に起因し、圧縮降伏応力が引張降伏応力と比べて低くなる、いわゆる降伏異方性を示す問題がある。
しかし、展伸加工した準結晶粒子分散マグネシウム合金は、集合組織の強度(底面の集積度合)を低減し、高い引張強度レベルを維持したまま、圧縮特性を改善し、構造用途の部材設計には望ましくない降伏異方性を解消することが可能である。更に、展伸加工した準結晶分散マグネシウム合金は、超塑性挙動を発現し、二次成形性にも優れている。その一方で、超塑性挙動を発現するためには、微細で等軸な結晶粒を示すことが必要で、成型加工に用いるマグネシウム合金の微細組織構造と、加工後の微細組織構造に変化が少ないことが重要とされる。組織変化が大きいと、強度や延性などの機械的特性の劣化につながり、成型加工が大きく制限されて、その実用性を阻害していた。
このため準結晶相が分散されているものでも、組織構造に影響しない切削加工を行うことを前提にしたものであり、鍛造、特に温間鍛造加工などは不可能とされていた。
Magnesium is attracting attention as a lightweight material for electronic devices and structural members because it is lightweight and shows abundant resources. On the other hand, when considering the application to moving structural members such as railway vehicles and automobiles, high strength, high ductility and high toughness characteristics of the material are required from the viewpoint of safety and reliability in use.
Patent Documents 1 to 4 describe that quasicrystals developed in a magnesium matrix by addition of rare earth elements (particularly yttrium) are useful for high strength, high ductility, and high toughness characteristics. .
Patent Documents 5 and 6 show a forging technique of a magnesium alloy using high-speed superplastic behavior for a magnesium alloy in which a quasicrystalline phase cannot be expressed in a magnesium matrix. In any case, it is indicated that pinning particles are required to be dispersed in a magnesium matrix and have a fine crystal grain size in order to develop high-speed superplasticity during final forging.
In order to refine the magnesium matrix in advance, there are techniques such as using pinning particles with a high volume ratio to prevent coarsening of the magnesium matrix phase or to refine the initial structure by high strain processing. However, dispersion of general pinning particles at a high volume ratio tends to be a starting point of fracture, leading to deterioration of characteristics, particularly reduction of ductility. In addition, when high strain processing is used, there are problems such as shortening the life of molds and containers and increasing energy loss.
Unlike a general crystal phase, a peculiar phase that does not have a structure in which a predetermined arrangement of atoms is repeatedly arranged (translational order), that is, a quasicrystalline phase is Mg—Zn—RE (RE = Y, Gd, Dy, It was noticed that it appears in an alloy of Ho, Er, Tb) or Mg—Zn—Al. Since the quasicrystalline phase has good matching with the crystal lattice of the parent phase, the interface between the parent phase and the quasicrystalline phase is strongly bonded to form a matching interface.
Therefore, dispersing the quasicrystalline phase in the magnesium matrix is known to inhibit dislocation movement during plastic deformation and contribute to higher strength, but is less likely to become the nucleus or starting point of fracture.
In addition, a magnesium alloy subjected to straining (stretching) such as rolling or extrusion has a problem of so-called yield anisotropy in which the compressive yield stress is lower than the tensile yield stress due to the formation of the texture.
However, wrought quasicrystalline particle-dispersed magnesium alloy reduces the strength of the texture (the degree of accumulation on the bottom surface), improves the compression characteristics while maintaining a high tensile strength level, and is used for structural component design. Undesirable yield anisotropy can be eliminated. Further, the quasicrystal-dispersed magnesium alloy that has been subjected to the stretch processing exhibits superplastic behavior and is excellent in secondary formability. On the other hand, in order to develop superplastic behavior, it is necessary to show fine and equiaxed crystal grains, and there is little change in the microstructure of the magnesium alloy used for forming and the microstructure after processing. It is important. Large structural changes lead to deterioration of mechanical properties such as strength and ductility, and the molding process is greatly restricted, impeding its practicality.
For this reason, even if the quasicrystalline phase is dispersed, it is premised on cutting that does not affect the structure, and forging, especially warm forging, is impossible.

この様な問題に鑑み、鍛造によっても成型加工が可能で、その準結晶相の特性が滅失していないマグネシウム合金鍛造品を提供することを目的とする。   In view of such problems, an object of the present invention is to provide a magnesium alloy forged product that can be formed by forging and that does not lose its quasicrystalline phase characteristics.

発明1のマグネシウム合金鍛造品は、マグネシウム母相中に準結晶相またはその近似結晶相が分散されてなるマグネシウム合金を所定の形状に鍛造加工されてなるマグネシウム合金鍛造品であって、前記マグネシウム合金の化学組成は、希土類元素を添加する(100−X−Y)at.%Mg−Xat.%RE−Yat.%Zn合金(RE=Y,Gd,Dy,Ho,Er,Tb)であると共に、Mg−Zn−REからなる準結晶相、またはその近似結晶相がマグネシウム母相に形成する組成域は、0.2≦X≦1.5、5X≦Y≦7Xで、XとYは原子%であり、前記準結晶相またはその近似結晶相が分散されているマグネシウム母相が等軸状であることを特徴とする。
発明のマグネシウム合金鍛造品は、マグネシウム母相中に準結晶相またはその近似結晶相が分散されてなるマグネシウム合金を所定の形状に鍛造加工されてなるマグネシウム合金鍛造品であって、前記マグネシウム合金の化学組成は、質量%で表して、希土類元素を添加しない(100−a−b)Mg−aAl−bZn合金であると共に、Mg−Zn−Alからなる準結晶相、またはその近似結晶相がマグネシウム母相に形成する組成域は、3≦a≦15かつ6≦b≦12、および、2≦a≦15かつ12<b≦35で、aとbは質量%であり、前記準結晶相またはその近似結晶相が分散されているマグネシウム母相が等軸状であることを特徴とする。
発明は、発明1または2のマグネシウム合金鍛造品において、マグネシウム母相のアスペクト比が2.5以下であることを特徴とする。
発明は、発明1から3のいずれかのマグネシウム合金鍛造品において、凹凸部が少なくとも一部に形成されてなる複雑形状を有していて、前記凹凸部においてもマグネシウム母相が等軸状であることを特徴とする。
The magnesium alloy forged product of the invention 1 is a magnesium alloy forged product obtained by forging a magnesium alloy in which a quasicrystalline phase or an approximate crystalline phase thereof is dispersed in a magnesium matrix into a predetermined shape. The chemical composition of (100-XY) at. % Mg-Xat. % RE-Yat. % Zn alloy (RE = Y, Gd, Dy, Ho, Er, Tb), and the composition range formed by the quasicrystalline phase consisting of Mg—Zn—RE or its approximate crystalline phase in the magnesium matrix is 0. .2 ≦ X ≦ 1.5, 5X ≦ Y ≦ 7X, X and Y are atomic%, and the magnesium matrix phase in which the quasicrystalline phase or its approximate crystalline phase is dispersed is equiaxed. Features.
A magnesium alloy forged product according to a second aspect of the present invention is a magnesium alloy forged product obtained by forging a magnesium alloy in which a quasicrystalline phase or an approximate crystalline phase thereof is dispersed in a magnesium matrix into a predetermined shape. The chemical composition is expressed by mass% and is a (100-ab) Mg-aAl-bZn alloy not containing rare earth elements, and a quasicrystalline phase composed of Mg-Zn-Al, or an approximate crystalline phase thereof. The composition range formed in the magnesium matrix is 3 ≦ a ≦ 15 and 6 ≦ b ≦ 12, 2 ≦ a ≦ 15 and 12 <b ≦ 35, a and b are mass%, and the quasicrystalline phase Alternatively, the magnesium matrix phase in which the approximate crystal phase is dispersed is equiaxed.
Invention 3 is characterized in that in the magnesium alloy forged product of Invention 1 or 2 , the aspect ratio of the magnesium matrix phase is 2.5 or less.
Invention 4 has a complex shape in which the concavo-convex portion is formed at least in part in the magnesium alloy forged product according to any one of the first to third aspects , and the magnesium matrix is equiaxed in the concavo-convex portion. It is characterized by being.

発明は、発明1のマグネシウム合金鍛造品の製造方法であって、前記マグネシウム合金を450℃以下で加熱して行う温間鍛造によって、所定の形状を内型としたプレス型により閉塞鍛造してなることを特徴とする。
発明は、発明2のマグネシウム合金鍛造品の製造方法であって、前記マグネシウム合金を350℃以下で加熱して行う温間鍛造によって、所定の形状を内型としたプレス型により閉塞鍛造してなることを特徴とする。
Invention 5 is a method for producing a magnesium alloy forged product according to Invention 1 , wherein the magnesium alloy is forged by a press die having a predetermined shape as an inner die by warm forging performed by heating the magnesium alloy at 450 ° C. or less. It is characterized by becoming.
Invention 6 is a method for producing a magnesium alloy forged product according to invention 2 , wherein the magnesium alloy is closed forged by a press die having a predetermined shape as an inner die by warm forging performed by heating the magnesium alloy at 350 ° C. or less. It is characterized by becoming.

上記組織構造を持つマグネシウム合金鍛造品は、鍛造後の形状に対する切削加工をも可能となり、効率よく自由な形状への加工された高強度マグネシウム合金製品を実現し得るものである。
また、その創製においても、従来から一般に知られている鍛造手段を利用することにより達成し得るので、極めて高い実現性を有するものである。
The magnesium alloy forged product having the above-mentioned structure can be cut into a shape after forging, and can efficiently realize a high-strength magnesium alloy product processed into a free shape.
Moreover, since it can also be achieved by utilizing a forging means that has been generally known, it has extremely high feasibility.

実施例1の鍛造用試料の光学顕微鏡による微細組織観察写真。The fine structure observation photograph by the optical microscope of the sample for forging of Example 1. FIG. 実施例1の鍛造成形後の外観写真および断面図Appearance photograph and sectional view after forging and forming of Example 1 実施例1の鍛造成形材(ギヤ近傍部)の光学顕微鏡による微細組織観察写真。The fine structure observation photograph by the optical microscope of the forging molding material (gear vicinity part) of Example 1. FIG. 実施例1の鍛造成形材(鍛造中心部)の電子線後方散乱回折法による微細組織観察写真。The fine structure observation photograph by the electron beam backscattering diffraction method of the forging molding material (forging center part) of Example 1. FIG. 実施例1の鍛造成形材の引張・圧縮の公称応力−公称ひずみ曲線Nominal stress-nominal strain curve for tension and compression of the forged material of Example 1 実施例1の鍛造成形材のX線回折測定例。FIG. 3 is an example of X-ray diffraction measurement of the forged molded material of Example 1. FIG. 実施例2の鍛造用試料の光学顕微鏡による微細組織観察写真。The microstructure observation photograph by the optical microscope of the sample for forging of Example 2. FIG. 実施例2の鍛造成形材(ギヤ近傍部)の光学顕微鏡による微細組織観察写真。The fine structure observation photograph by the optical microscope of the forging molding material (gear vicinity part) of Example 2. FIG. 実施例2の鍛造成形材(鍛造中心部)の電子線後方散乱回折法による微細組織観察写真。The microstructure observation photograph by the electron beam backscattering diffraction method of the forging molding material (forging center part) of Example 2. FIG.

希土類元素を添加する(100−X−Y)at.%Mg−Xat.%RE−Yat.%Zn合金において、Mg−Zn−REからなる準結晶相、またはその近似結晶相がマグネシウム母相に形成する組成域は、0.2≦X≦1.5、5X≦Y≦7Xで、XとYは原子%である。
質量%で表して、希土類元素を添加しない(100−a−b)Mg−aAl−bZn合金において、Mg−Zn−Alからなる準結晶相、またはその近似結晶相がマグネシウム母相に形成する組成域は、3≦a≦15かつ6≦b≦12、および、2≦a≦15かつ12<b≦35で、aとbは質量%である。
そして、適度なひずみを与え準結晶相またはその近似結晶相を分散させることについては、前記特許文献1から4と同様な手法により行うことができる。
そしてこのようにして得られた準結晶相またはその近似結晶相が分散したマグネシウム合金を鍛造する場合は、希土類元素を使用するMg−Zn−RE合金の場合は、450℃、好ましくは400℃、より好ましくは300℃以下とし、希土類元素を使用しないMg−Zn−Al合金の場合は、350℃、好ましくは300℃、より好ましくは250℃以下とするのが望ましい。
この加熱温度が過剰になると、鍛造中に準結晶相またはその近似結晶相が消滅する。なお、鍛造部品の形状は、軸、球あるいは板状などの単純な形状に限らず、実施例に示すようなギヤあるいはネジ、カム、ノコ歯等の凹凸形状や、軸や球或いは板の一部に凹凸を形成した複雑な形状であっても良い。
これは、準結晶相が、鍛造中に動的再結晶の核となり、微細で等軸な結晶粒組織が得られる。また、準結晶相は、マグネシウムの結晶格子と良いマッチングを示すため、高体積率で存在しても破壊の核になりにくく、特性劣化、特に延性の低下につながらない。そのため、機能が有効に利用された結果、鍛造品の結晶が等軸に維持されることとなるものと思われる。以上の結果、鍛造前の微細組織形態に関係なく、温間鍛造により、均一で等軸かつ微細な結晶粒を有する鍛造成型品が作製可能である。また、その機械的特性は、展伸マグネシウム合金に見られる降伏異方性がなく、均一な硬さ分布を示す特徴がある。
Add a rare earth element (100-XY) at. % Mg-Xat. % RE-Yat. In the% Zn alloy, the composition range in which the quasicrystalline phase composed of Mg—Zn—RE or its approximate crystalline phase forms in the magnesium matrix is 0.2 ≦ X ≦ 1.5, 5X ≦ Y ≦ 7X, And Y are atomic%.
In a composition expressed by mass%, a rare earth element is not added (100-ab) Mg-aAl-bZn alloy. The ranges are 3 ≦ a ≦ 15 and 6 ≦ b ≦ 12, and 2 ≦ a ≦ 15 and 12 <b ≦ 35, and a and b are mass %.
And about moderate dispersion | distribution and disperse | distributing a quasicrystal phase or its approximate crystal phase can be performed by the method similar to the said patent documents 1-4.
And when forging a magnesium alloy in which the quasicrystalline phase or the approximate crystalline phase thus obtained is dispersed, in the case of an Mg—Zn—RE alloy using rare earth elements, 450 ° C., preferably 400 ° C., More preferably, the temperature is 300 ° C. or less, and in the case of an Mg—Zn—Al alloy that does not use rare earth elements, it is desirable that the temperature be 350 ° C., preferably 300 ° C., more preferably 250 ° C. or less.
When this heating temperature is excessive, the quasicrystalline phase or its approximate crystalline phase disappears during forging. The shape of the forged part is not limited to a simple shape such as a shaft, a sphere, or a plate, but may be an uneven shape such as a gear, a screw, a cam, or a saw tooth as shown in the embodiment, or a shaft, a sphere, or a plate. It may be a complicated shape with irregularities formed on the part.
This is because the quasicrystalline phase becomes the nucleus of dynamic recrystallization during forging, and a fine and equiaxed grain structure is obtained. In addition, since the quasicrystalline phase shows good matching with the crystal lattice of magnesium, even if it exists at a high volume ratio, it does not easily become a nucleus of fracture, and does not lead to deterioration of characteristics, particularly ductility. Therefore, as a result of the effective use of the function, it seems that the crystal of the forged product is maintained equiaxed. As a result, a forged molded product having uniform, equiaxed, and fine crystal grains can be produced by warm forging regardless of the microstructure structure before forging. In addition, the mechanical properties are characterized by the uniform hardness distribution without the yield anisotropy seen in wrought magnesium alloys.

商用純マグネシウム(純度99.95%)に、7.5質量%亜鉛と1.7質量%イットリウムを溶解鋳造し、母合金を作製した。まず、母合金を400℃で24時間、大気中で熱処理を行った後、機械加工により、直径90mmの押出ビレットを準備した。押出ビレットを300℃に昇温した押出コンテナに投入し、30分程度保持した後、5:1の押出比で押出加工を施し、直径40mmの押出材を得た。その後、鍛造用試料を作成するために、再度、370℃に昇温した押出コンテナに投入し、30分程度保持した後、4:1の押出比で直径20mmの棒状の鍛造用試料を得た。図1に、光学顕微鏡による鍛造用試料の微細組織観察例を示す。鍛造用試料のマグネシウム母相の結晶粒径は15.3μmで、等軸からなることが確認できる。(ただし、結晶粒径は、切片法により求めている。)内径58mm、外径60mm、歯数60個のギヤ形状を示す内歯車を使用し、温度:300℃、初期ひずみ速度:1.1×10-3-1で温間閉塞鍛造を行って鍛造成形材を得た。図2に、鍛造成形後の外観写真を示す。成形品、特にギヤ部には割れや欠陥などがなく、素材が内歯車全体およびロゴ内全体に均一に充填していることが確認できる。
光学顕微鏡、電子線後方散乱回折法による鍛造成形材の微細組織観察例を図3、4に示す。ギヤ部近傍(図2の(A)、以下同じ。)(図3)および鍛造中心部(図2の(B)、以下同じ。)(図4)のマグネシウム母相の平均結晶粒径は、それぞれ12.5、11.0μmであり、そのアスペクト比は、2.5以下であった。閉塞鍛造により結晶粒微細化が起こるとともに等軸状態が維持されていることが確認できる。
また、微細組織観察した領域近傍の硬さは、61.4および65.2Hvで、ギヤ部と中心部における硬さがほぼ同じ値であるので、全体としては均一な硬さを有していると考える。
以上の結果から、閉塞鍛造材全域にわたり、均一な組織と硬さを有する成型品であることが分かる。
鍛造成形材から平行部直径2.5mm、長さ10mmを示す引張試験片、直径4mm、高さ8mmを示す圧縮試験片を採取し、初期引張・圧縮ひずみ速度:1×10-3-1で室温引張・圧縮試験を行った。図5に、室温引張・圧縮試験により得られた公称応力−公称ひずみ曲線を示す。鍛造成形材の引張、圧縮降伏応力は、それぞれ120、124MPaである。また、圧縮/引張降伏応力の比は、1以上であり、展伸マグネシウム合金に観察される降伏異方性がなく、等方的に変形可能であることを示唆している。
図6に、鍛造成形部材のX線回折結果を示す。図の白丸は、Mg−Zn−Yからなる準結晶相(Mg3Zn61)の回折ピークで、実施例1で作製した鍛造成形部材には、準結晶相の存在が確認できる。
7.5% by mass zinc and 1.7% by mass yttrium were melt-cast in commercial pure magnesium (purity 99.95%) to produce a master alloy. First, the mother alloy was heat treated in the atmosphere at 400 ° C. for 24 hours, and then an extruded billet having a diameter of 90 mm was prepared by machining. The extrusion billet was put into an extrusion container heated to 300 ° C., held for about 30 minutes, and then extruded at an extrusion ratio of 5: 1 to obtain an extruded material having a diameter of 40 mm. Thereafter, in order to prepare a forging sample, it was again put into an extrusion container heated to 370 ° C., held for about 30 minutes, and then a rod-shaped forging sample having a diameter of 20 mm was obtained at an extrusion ratio of 4: 1. . FIG. 1 shows an example of microstructure observation of a forging sample by an optical microscope. The crystal grain size of the magnesium matrix of the forging sample is 15.3 μm, and it can be confirmed that it is equiaxed. (However, the crystal grain size is determined by the intercept method.) An internal gear having an inner diameter of 58 mm, an outer diameter of 60 mm, and a gear shape of 60 teeth is used, temperature: 300 ° C., initial strain rate: 1.1. Warm closed forging was performed at × 10 −3 s −1 to obtain a forged molded material. FIG. 2 shows a photograph of the appearance after forging. It can be confirmed that the molded product, particularly the gear part, is free from cracks and defects, and the material is uniformly filled in the entire internal gear and the entire logo.
FIGS. 3 and 4 show examples of observing the microstructure of the forged material by an optical microscope and an electron beam backscatter diffraction method. The average crystal grain size of the magnesium matrix in the vicinity of the gear portion ((A) in FIG. 2, the same applies hereinafter) (FIG. 3) and the forging center ((B) in FIG. 2, the same applies hereinafter) (FIG. 4) They were 12.5 and 11.0 μm, respectively, and the aspect ratio was 2.5 or less. It can be confirmed that crystal grain refinement occurs by closed forging and that the equiaxed state is maintained.
Further, the hardness in the vicinity of the region observed in the fine structure is 61.4 and 65.2 Hv, and the hardness in the gear portion and the central portion is almost the same value, so that the hardness is uniform as a whole. I think.
From the above results, it can be seen that the molded product has a uniform structure and hardness over the entire closed forging material.
A tensile test piece having a parallel part diameter of 2.5 mm and a length of 10 mm, and a compression test piece having a diameter of 4 mm and a height of 8 mm were collected from the forged molded material, and an initial tensile / compression strain rate: 1 × 10 −3 s −1. The room temperature tensile / compression test was conducted. FIG. 5 shows a nominal stress-nominal strain curve obtained by a room temperature tensile / compression test. The tensile and compressive yield stresses of the forging material are 120 and 124 MPa, respectively. Further, the ratio of compressive / tensile yield stress is 1 or more, suggesting that there is no yield anisotropy observed in the wrought magnesium alloy and that it can be deformed isotropically.
FIG. 6 shows an X-ray diffraction result of the forged member. The white circles in the figure are diffraction peaks of the quasicrystalline phase (Mg 3 Zn 6 Y 1 ) composed of Mg—Zn—Y, and the presence of the quasicrystalline phase can be confirmed in the forged molded member produced in Example 1.

商用純マグネシウム(純度99.95%)に、8質量%亜鉛と4質量%アルミニウムを溶解鋳造し、母合金を作製した。まず、母合金を325℃で48時間、大気中で熱処理を行った後、機械加工により、直径40mmの押出ビレットを準備した。この押出ビレットを265℃に昇温した押出コンテナに投入し、30分程度保持した後、4:1の押出比で温間押出加工を施し、直径20mmの棒状の鍛造用試料を得た。図7に、光学顕微鏡による鍛造用試料の微細組織観察例を示す。鍛造用試料の結晶粒は、温間ひずみ付与量が少ないことから、押出方向に扁平した組織で、長軸および短軸方向のマグネシウム母相の結晶粒径は約250、50μm(平均アスペクト比5.3:1)を示すことが確認できる。
実施例1と同様の形状を有する内歯車を使用し、温度:250℃、初期圧縮ひずみ速度:4.5×10-3-1で温間閉塞鍛造を行い、鍛造成形材を得た。光学顕微鏡、電子線後方散乱回折法による鍛造成形後の微細組織観察例を図8、9に示す。
ギヤ部近傍(図8)および鍛造中心部(図9)のマグネシウム母相の平均結晶粒径は、それぞれ5.8、5.9μmであり、閉塞鍛造により結晶粒の微細化が起こることが確認できる。図7〜9から、鍛造前のマグネシウム母相の形態に関係なく、温間鍛造により等軸で微細な結晶粒を示す組織が得られた。また、微細組織観察した領域近傍の硬さは、83.1および83.3Hvであった。以上の結果から、実施例1と同様に、閉塞鍛造材全域にわたり、均一な組織と硬さを有する形成品であることが分かる。
鍛造成形材から平行部直径2.5mm、長さ10mmを示す引張試験片、直径4mm、高さ8mmを示す圧縮試験片を採取し、初期引張・圧縮ひずみ速度:1×10-3-1で室温引張・圧縮試験を行った。鍛造成形材の引張、圧縮降伏応力は、それぞれ197、198MPaであり、実施例1と同様に、圧縮/引張降伏応力の比は、1以上であり、降伏異方性がなく、等方的に変形可能であることを示唆している。
また、前記図6の解析結果などから、図8・9中の黒色の部分が準結晶相であると思われる。
8% by mass zinc and 4% by mass aluminum were melt cast in commercial pure magnesium (purity 99.95%) to produce a master alloy. First, the mother alloy was heat-treated at 325 ° C. for 48 hours in the air, and then an extruded billet having a diameter of 40 mm was prepared by machining. This extruded billet was put into an extrusion container heated to 265 ° C., held for about 30 minutes, and then subjected to warm extrusion at an extrusion ratio of 4: 1 to obtain a rod-shaped forging sample having a diameter of 20 mm. FIG. 7 shows an example of microstructural observation of a forging sample using an optical microscope. Since the crystal grains of the forging sample have a small amount of warm strain imparted, the crystal grain size of the magnesium matrix in the major axis and minor axis direction is about 250, 50 μm (average aspect ratio 5). 3: 1) can be confirmed.
Using an internal gear having the same shape as in Example 1, warm closed forging was performed at a temperature of 250 ° C. and an initial compression strain rate of 4.5 × 10 −3 s −1 to obtain a forged material. 8 and 9 show examples of microstructure observation after forging by an optical microscope and electron beam backscatter diffraction method.
The average crystal grain size of the magnesium matrix in the vicinity of the gear part (FIG. 8) and the forging center part (FIG. 9) is 5.8 and 5.9 μm, respectively. it can. 7-9, the structure which shows an equiaxed fine crystal grain was obtained by warm forging irrespective of the form of the magnesium mother phase before forging. Further, the hardness in the vicinity of the region observed with the fine structure was 83.1 and 83.3 Hv. From the above results, it can be seen that, as in Example 1, the formed product has a uniform structure and hardness over the entire area of the closed forging material.
A tensile test piece having a parallel part diameter of 2.5 mm and a length of 10 mm, and a compression test piece having a diameter of 4 mm and a height of 8 mm were collected from the forged molded material, and an initial tensile / compression strain rate: 1 × 10 −3 s −1. The room temperature tensile / compression test was conducted. The tensile and compressive yield stresses of the forged molded material are 197 and 198 MPa, respectively, and the ratio of the compressive / tensile yield stress is 1 or more as in Example 1, there is no yield anisotropy, and isotropic It suggests that it can be deformed.
Further, from the analysis results of FIG. 6 and the like, the black portions in FIGS. 8 and 9 are considered to be quasicrystalline phases.

特開2002−309332JP 2002-309332 A 特開2005−113234JP 2005-113234 A 特開2005−113235JP 2005-113235 A WO2008/016150WO2008 / 016150 特開2003−277899JP 2003-277899 A 特開2004−176180JP 2004-176180 A

Claims (6)

マグネシウム母相中に準結晶相またはその近似結晶相が分散されてなるマグネシウム合金を所定の形状に鍛造加工されてなるマグネシウム合金鍛造品であって、
前記マグネシウム合金の化学組成は、希土類元素を添加する(100−X−Y)at.%Mg−Xat.%RE−Yat.%Zn合金(RE=Y,Gd,Dy,Ho,Er,Tb)であると共に、Mg−Zn−REからなる準結晶相、またはその近似結晶相がマグネシウム母相に形成する組成域は、0.2≦X≦1.5、5X≦Y≦7Xで、XとYは原子%であり、
前記準結晶相またはその近似結晶相が分散されているマグネシウム母相が等軸状であることを特徴とするマグネシウム合金鍛造品。
A magnesium alloy forged product obtained by forging a magnesium alloy in which a quasicrystalline phase or an approximate crystalline phase thereof is dispersed in a magnesium matrix into a predetermined shape,
The chemical composition of the magnesium alloy is such that a rare earth element is added (100-XY) at. % Mg-Xat. % RE-Yat. % Zn alloy (RE = Y, Gd, Dy, Ho, Er, Tb), and the composition range formed by the quasicrystalline phase consisting of Mg—Zn—RE or its approximate crystalline phase in the magnesium matrix is 0. .2 ≦ X ≦ 1.5, 5X ≦ Y ≦ 7X, X and Y are atomic%,
The quasi-crystalline phase or a magnesium alloy forging its approximate crystal phase and wherein the magnesium mother phase dispersed is equiaxed.
マグネシウム母相中に準結晶相またはその近似結晶相が分散されてなるマグネシウム合金を所定の形状に鍛造加工されてなるマグネシウム合金鍛造品であって、
前記マグネシウム合金の化学組成は、質量%で表して、希土類元素を添加しない(100−a−b)Mg−aAl−bZn合金であると共に、Mg−Zn−Alからなる準結晶相、またはその近似結晶相がマグネシウム母相に形成する組成域は、3≦a≦15かつ6≦b≦12、および、2≦a≦15かつ12<b≦35で、aとbは質量%であり、
前記準結晶相またはその近似結晶相が分散されているマグネシウム母相が等軸状であることを特徴とするマグネシウム合金鍛造品。
A magnesium alloy forged product obtained by forging a magnesium alloy in which a quasicrystalline phase or an approximate crystalline phase thereof is dispersed in a magnesium matrix into a predetermined shape,
The chemical composition of the magnesium alloy is (100-ab) Mg-aAl-bZn alloy not containing a rare earth element, expressed in mass%, and a quasicrystalline phase composed of Mg-Zn-Al, or an approximation thereof. The compositional regions that the crystal phase forms in the magnesium matrix are 3 ≦ a ≦ 15 and 6 ≦ b ≦ 12, and 2 ≦ a ≦ 15 and 12 <b ≦ 35, where a and b are mass%,
The quasi-crystalline phase or a magnesium alloy forging its approximate crystal phase and wherein the magnesium mother phase dispersed is equiaxed.
請求項1又は2に記載のマグネシウム合金鍛造品において、マグネシウム母相のアスペクト比が2.5以下であることを特徴とするマグネシウム合金鍛造品。 The magnesium alloy forged product according to claim 1 or 2 , wherein the aspect ratio of the magnesium matrix phase is 2.5 or less. 請求項1から3のいずれかに記載のマグネシウム合金鍛造品において、凹凸部が少なくとも一部に形成されてなる複雑形状を有していて、前記凹凸部においてもマグネシウム母相が等軸状であることを特徴とするマグネシウム合金鍛造品。 The magnesium alloy forged product according to any one of claims 1 to 3 , wherein the concavo-convex portion has a complicated shape formed at least in part, and the magnesium matrix phase is also equiaxed in the concavo-convex portion. Magnesium alloy forgings characterized by that. 請求項に記載のマグネシウム合金鍛造品の製造方法であって、
前記マグネシウム合金を450℃以下で加熱して行う温間鍛造によって、所定の形状を内型としたプレス型により閉塞鍛造してなることを特徴とするマグネシウム合金鍛造品の製造方法。
It is a manufacturing method of the magnesium alloy forgings according to claim 1 ,
A method for producing a magnesium alloy forged product, wherein the magnesium alloy is forged by a press die having a predetermined shape as an inner die by warm forging performed by heating the magnesium alloy at 450 ° C. or lower .
請求項に記載のマグネシウム合金鍛造品の製造方法であって、
前記マグネシウム合金を350℃以下で加熱して行う温間鍛造によって、所定の形状を内型としたプレス型により閉塞鍛造してなることを特徴とするマグネシウム合金鍛造品の製造方法。
It is a manufacturing method of the magnesium alloy forgings according to claim 2 ,
A method for producing a magnesium alloy forged product, characterized in that the magnesium alloy is forged by a press die having a predetermined shape as an inner die by warm forging performed by heating the magnesium alloy at 350 ° C. or lower .
JP2009064111A 2009-03-17 2009-03-17 Mg alloy forged product and its manufacturing method Expired - Fee Related JP5419071B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009064111A JP5419071B2 (en) 2009-03-17 2009-03-17 Mg alloy forged product and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009064111A JP5419071B2 (en) 2009-03-17 2009-03-17 Mg alloy forged product and its manufacturing method

Publications (2)

Publication Number Publication Date
JP2010215962A JP2010215962A (en) 2010-09-30
JP5419071B2 true JP5419071B2 (en) 2014-02-19

Family

ID=42975099

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009064111A Expired - Fee Related JP5419071B2 (en) 2009-03-17 2009-03-17 Mg alloy forged product and its manufacturing method

Country Status (1)

Country Link
JP (1) JP5419071B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5691848B2 (en) 2010-09-27 2015-04-01 株式会社デンソー Honeycomb structure and electrically heated catalyst device
CN103361529B (en) * 2013-07-26 2015-07-08 山西银光华盛镁业股份有限公司 Manufacture method for quasicrystalline-phase reinforced magnesium-alloy sheet strip

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10506150A (en) * 1994-08-01 1998-06-16 フランツ ヘーマン、 Processes selected for non-equilibrium lightweight alloys and products
KR20020078936A (en) * 2001-04-11 2002-10-19 학교법인연세대학교 Quasicrystalline phase hardened Mg-based metallic alloy exhibiting warm and hot formability
JP4155149B2 (en) * 2003-10-09 2008-09-24 トヨタ自動車株式会社 High strength magnesium alloy and method for producing the same
JP2005113235A (en) * 2003-10-09 2005-04-28 Toyota Motor Corp High strength magnesium alloy, and its production method
JP2008018454A (en) * 2006-07-13 2008-01-31 National Institute Of Advanced Industrial & Technology Metal vitrification promoting tool, and manufacturing method and manufacturing device using the tool
JP5429702B2 (en) * 2006-08-03 2014-02-26 独立行政法人物質・材料研究機構 Magnesium alloy and manufacturing method thereof
WO2010082669A1 (en) * 2009-01-19 2010-07-22 独立行政法人物質・材料研究機構 Mg-BASE ALLOY

Also Published As

Publication number Publication date
JP2010215962A (en) 2010-09-30

Similar Documents

Publication Publication Date Title
JP5540415B2 (en) Mg-based alloy
EP2511029B1 (en) Preparation method of metal matrix composite
JP4189687B2 (en) Magnesium alloy material
JP5252583B2 (en) Mg alloy and manufacturing method thereof
JP5557121B2 (en) Magnesium alloy
EP2646585B1 (en) Heat resistant and high strength aluminum alloy and method for producing the same
JP5586027B2 (en) Mg-based alloy
WO2008016150A1 (en) Magnesium alloy and method for producing the same
CN108699642B (en) Magnesium-based alloy ductile material and method for producing same
JP6860235B2 (en) Magnesium-based alloy wrought material and its manufacturing method
WO2013180122A1 (en) Magnesium alloy, magnesium alloy member and method for manufacturing same, and method for using magnesium alloy
JP2016089228A (en) Magnesium-based alloy extension material and manufacturing method therefor
JP5419071B2 (en) Mg alloy forged product and its manufacturing method
JP6648894B2 (en) Magnesium-based alloy stretch material and method of manufacturing the same
JP5403508B2 (en) Mg alloy member.
JP5376488B2 (en) Magnesium alloy warm working method
Son et al. The effects of yttrium element on microstructure and mechanical properties of Mg-5 mass% Al-3 mass% Ca based alloys fabricated by gravity casting and extrusion process
CN112831737B (en) Magnesium alloy processing method for improving high-temperature creep property
JP4849377B2 (en) Magnesium alloy screw manufacturing method and magnesium alloy screw
JP5348624B2 (en) Magnesium alloy screw
TWI270418B (en) A method for producing high strength magnesium alloys
JP6120380B6 (en) Magnesium alloy, magnesium alloy member and method for producing the same, and method of using magnesium alloy
CN117242198A (en) Aluminum alloy, aluminum alloy hot working material and method for producing same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111227

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130822

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130903

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131007

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131112

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131113

R150 Certificate of patent or registration of utility model

Ref document number: 5419071

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees