JP5688744B2 - High strength and high toughness copper alloy forging - Google Patents

High strength and high toughness copper alloy forging Download PDF

Info

Publication number
JP5688744B2
JP5688744B2 JP2012222178A JP2012222178A JP5688744B2 JP 5688744 B2 JP5688744 B2 JP 5688744B2 JP 2012222178 A JP2012222178 A JP 2012222178A JP 2012222178 A JP2012222178 A JP 2012222178A JP 5688744 B2 JP5688744 B2 JP 5688744B2
Authority
JP
Japan
Prior art keywords
strength
copper alloy
toughness
present
patent document
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012222178A
Other languages
Japanese (ja)
Other versions
JP2014074202A (en
Inventor
田中 慎二
田中  慎二
護 水沢
護 水沢
三浦 博樹
博樹 三浦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Steel Works Ltd
Original Assignee
Japan Steel Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Steel Works Ltd filed Critical Japan Steel Works Ltd
Priority to JP2012222178A priority Critical patent/JP5688744B2/en
Publication of JP2014074202A publication Critical patent/JP2014074202A/en
Application granted granted Critical
Publication of JP5688744B2 publication Critical patent/JP5688744B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Forging (AREA)

Description

この発明は、樹脂射出金型材を始めとした鍛造成形品に適用可能な高強度高靭性銅合金鍛造材に関するものである。   The present invention relates to a high-strength, high-toughness copper alloy forged material that can be applied to forged molded articles such as resin injection mold materials.

従来、導電性・熱伝導性に優れた合金として、黄銅(Cu−Zn系)、青銅(Cu−Sn系)、Be銅やコルソン合金(Cu−Ni−Si系)といった銅合金が用いられてきた。特に熱伝導とともに強度や硬度が要求されるようなプラスチック射出金型材や航空機部材などにはBe銅やコルソン合金が用いられてきた。しかし、上記のBe銅は溶解や加工時に生じる粉塵の有毒性が懸念され代替材が求められている。コルソン合金には更なる高熱伝導性、高強度、高硬度が求められている。また、鍛造材では鍛造後の熱処理時に材料に割れが生じることから、熱間加工性に加え、熱処理後の延性の向上が求められている。   Conventionally, copper alloys such as brass (Cu—Zn), bronze (Cu—Sn), Be copper, and Corson alloy (Cu—Ni—Si) have been used as alloys having excellent conductivity and thermal conductivity. It was. In particular, Be copper and Corson alloy have been used for plastic injection mold materials and aircraft members that require strength and hardness as well as heat conduction. However, the above-mentioned Be copper is concerned about the toxicity of dust generated during melting and processing, and an alternative material is required. Corson alloys are required to have higher thermal conductivity, higher strength, and higher hardness. In addition, since the forged material is cracked during heat treatment after forging, it is required to improve ductility after heat treatment in addition to hot workability.

近年、銅合金の箔帯で強度を増大し、かつ曲げ加工性を向上させる方策として、Cu−Ni−Si系銅合金にMg、Sn、Ti、Zr、Al、Mnなどを添加した銅合金が製造されている(特許文献1、特許文献2、特許文献3、特許文献4、特許文献5参照)。
Mg、Snはマトリックスに固溶して強度を向上させる。Ti、Zr、Al、Mnは硫黄との親和性が強いため硫黄と化合物を形成し、熱間加工割れの原因である粒界への硫黄の偏析を軽減する。
In recent years, copper alloys obtained by adding Mg, Sn, Ti, Zr, Al, Mn, etc. to a Cu—Ni—Si based copper alloy as a measure to increase the strength and improve the bending workability with a copper alloy foil strip. It is manufactured (see Patent Document 1, Patent Document 2, Patent Document 3, Patent Document 4, and Patent Document 5).
Mg and Sn are dissolved in the matrix to improve the strength. Ti, Zr, Al, and Mn have a strong affinity for sulfur, so they form a compound with sulfur, reducing the segregation of sulfur to the grain boundaries, which is the cause of hot work cracking.

特許文献2、特許文献3、特許文献5に示すような銅合金箔帯はSn、Mn、Zrなどを添加して、固溶化処理と時効処理の前後で、熱間圧延、冷間圧延や熱間引抜、冷間引抜を繰り返し行うことで従来の銅合金箔帯を上回る曲げ加工性と強度を有している。
また、特許文献6に示すように、シェル中子用金型材に適用できる銅合金も発明されている。
Copper alloy foil strips as shown in Patent Document 2, Patent Document 3, and Patent Document 5 are added with Sn, Mn, Zr, etc., and before and after solution treatment and aging treatment, hot rolling, cold rolling or hot rolling. By repeatedly performing thinning and cold drawing, it has bending workability and strength that exceed those of conventional copper alloy foil strips.
Moreover, as shown in Patent Document 6, a copper alloy that can be applied to a shell core mold material has also been invented.

特開2006−9108号公報JP 2006-9108 A 特開2008−196042号公報JP 2008-196042 A 特開2008−223136号公報JP 2008-223136 A 特開2008−266787号公報JP 2008-266787 A 特開2010−106363号公報JP 2010-106363 A 特開平8−13067号公報JP-A-8-13067

しかし、鍛造成型品を製造する場合は、主に熱間鍛造で加工成型を行う。箔帯製造で行うような圧延や引抜加工を行うことができないので特許文献2、特許文献3、特許文献5に示すような成分で鍛造成型品を製造しても高強度が得られない。
また、特許文献6で提案されている銅合金の引張強さは最大588MPaであり、金型の鏡面性が要求される場合や、熱サイクルの振幅が大きい場合のような、強度が必要な用途においては不十分である。
また、高強度を得るためにはNiとSiの添加量の増加が有効であるが、凝固中に生成する晶出物や熱処理中に生成する析出物が増加し、熱伝導率が低下したり熱間加工性や熱処理後の延性が低下する可能性がある。
However, when manufacturing a forged molded product, processing molding is mainly performed by hot forging. Since the rolling and drawing processes that are performed in the production of foil strips cannot be performed, high strength cannot be obtained even if forged products are manufactured with the components shown in Patent Document 2, Patent Document 3, and Patent Document 5.
In addition, the tensile strength of the copper alloy proposed in Patent Document 6 is 588 MPa at the maximum, and when the mirror surface property of the mold is required or when the amplitude of the thermal cycle is large, the application requiring strength Is insufficient.
In order to obtain high strength, it is effective to increase the amount of Ni and Si. However, the amount of crystallized substances generated during solidification and precipitates generated during heat treatment increase, and the thermal conductivity decreases. Hot workability and ductility after heat treatment may be reduced.

本発明は、上記事情を背景としてなされたものであり、Cu−Ni−Si系銅合金に適量のZrを添加し硬度、強度、靭性を向上し、プラスチック射出金型材を始めとした鍛造成形品に使用可能な高硬度、高強度、高靭性を有する高強度高靭性銅合金鍛造材を提供することを目的としている。   The present invention has been made against the background of the above circumstances. Forging molded products such as plastic injection mold materials are improved by adding an appropriate amount of Zr to a Cu-Ni-Si based copper alloy to improve hardness, strength and toughness. An object of the present invention is to provide a high-strength, high-toughness copper alloy forging material having high hardness, high strength, and high toughness that can be used in the present invention.

本発明は、上記の課題を解決するためにCu−Ni−Si系銅合金にZrを0.005〜0.2%添加して粒界へのNiSiの析出を低減して靭性を高めつつ、Ni、Si、Zrの化合物を形成して強度と硬度を高めるものである。 In order to solve the above problems, the present invention adds 0.005 to 0.2% of Zr to a Cu—Ni—Si based copper alloy to reduce precipitation of Ni 2 Si on the grain boundary and increase toughness. However, Ni, Si, and Zr compounds are formed to increase the strength and hardness.

すなわち、本発明の高強度高靭性銅合金鍛造材のうち第1の本発明は、質量%で、Ni:3.8を越えて10%まで、Si:0.8を越えて2.4%まで、Zr:0.005〜0.15%を含有し、Ni/Siが3.8〜4.875である組成を有し、残部がCuおよび不可避不純物からなり、JISZ2241に準拠して常温で測定された引張強さが750MPa以上、JISZ2242に準拠してUノッチ試験片を用いて測定された衝撃吸収エネルギーが10J以上、常温で測定された導電率が30%IACS以上であることを特徴とする。 That is, among the high-strength, high-toughness copper alloy forgings according to the present invention, the first present invention has a mass% of Ni: more than 3.8 to 10%, Si: more than 0.8 and 2.4%. Zr: 0.005 to 0.15 % , Ni / Si has a composition of 3.8 to 4.875, the balance is made of Cu and inevitable impurities , and at room temperature according to JISZ2241 The measured tensile strength is 750 MPa or more, the impact absorption energy measured using a U-notch test piece in accordance with JISZ2242 is 10 J or more, and the conductivity measured at room temperature is 30% IACS or more. To do.

第2の本発明の高強度高靭性銅合金鍛造材は、前記第1の本発明において、さらに、Cr、Mn、Znの1種または2種以上を合計で1.5%以下含有することを特徴とする。   The high-strength, high-toughness copper alloy forged material of the second aspect of the present invention further comprises one or more of Cr, Mn, and Zn in the first aspect of the present invention, containing 1.5% or less in total. Features.

以下、本発明の高強度高靱性銅合金鍛造材における各成分の組成限定理由を説明する。なお、以下の成分含有量は、いずれも質量%で示される。   Hereinafter, the reasons for limiting the composition of each component in the high-strength, high-toughness copper alloy forged material of the present invention will be described. In addition, all the following component content is shown by the mass%.

Ni:3.8を越えて10%まで
Si:0.8を越えて2.4%まで
Ni及びSiは、時効処理を行うことによりNiとSiが微細なNiSiを主とした金属間化合物の析出粒子を形成し、合金の強度を著しく増加させる。また、時効処理でのNiSiの析出に伴い、導電性が向上する。ただし、Ni濃度が3.8%以下で、かつSi濃度が0.8%以下の場合は、所望とする強度が得られない。また、Ni濃度が10%を超え、かつSi濃度が2.4%を超える場合は、鋳造時にNiSi、NiSiなどが大量に晶出又は析出し、加工や熱処理時に割れやすくなる。加えて、Ni濃度が10%を超えると導電率も低下する。
製造性や特性のバランスを考慮すると、より好ましくはNi濃度の下限が4.0%(さらに好ましくは5.0%)、上限が8.0%で、かつSi濃度の下限が0.9%、上限が1.9%である。なお、Ni/Si比は3.8〜4.6が望ましく、この比から大きく外れると、過剰となったNi又はSiがCuマトリックス中に固溶して熱伝導率を低下させる。
Ni: more than 3.8 up to 10% Si: more than 0.8 up to 2.4% Ni and Si are formed by aging treatment between Ni and Si, mainly Ni 2 Si. Forms precipitated particles of the compound and significantly increases the strength of the alloy. Further, the conductivity is improved with the precipitation of Ni 2 Si in the aging treatment. However, when the Ni concentration is 3.8% or less and the Si concentration is 0.8% or less, the desired strength cannot be obtained. Further, when the Ni concentration exceeds 10% and the Si concentration exceeds 2.4%, a large amount of Ni 2 Si, Ni 5 Si 2 or the like crystallizes or precipitates during casting, and is easily cracked during processing or heat treatment. . In addition, when the Ni concentration exceeds 10%, the conductivity also decreases.
In consideration of the balance of manufacturability and characteristics, the lower limit of the Ni concentration is more preferably 4.0% (more preferably 5.0%), the upper limit is 8.0%, and the lower limit of the Si concentration is 0.9%. The upper limit is 1.9%. The Ni / Si ratio is preferably 3.8 to 4.6. If the Ni / Si ratio deviates greatly from this ratio, excess Ni or Si is dissolved in the Cu matrix to lower the thermal conductivity.

Zr:0.005〜0.2%
Zrは硫黄との親和性が強いため硫黄と化合物を形成し、熱間加工割れの原因であるインゴット粒界への硫黄の偏析を軽減することで熱間加工性が改善する。一方で、本発明者らが鋭意調査した結果、Zr添加によりNiやSiの拡散が抑制されて粒界に析出するNiSiが減少し、時効後の靭性が改善されることが見い出された。この効果を得るためにZrを0.005%以上添加する。しかし、0.2%以上添加すると酸化物や晶出物が増加して製造性、靭性や導電率が劣化するため、上限を0.2%とする。製造性や特性のバランスを考慮すると、より好ましくは下限が0.01%、上限が0.1%である。
Zr: 0.005 to 0.2%
Since Zr has a strong affinity with sulfur, it forms a compound with sulfur, and the hot workability is improved by reducing the segregation of sulfur to the ingot grain boundary, which is the cause of hot work cracking. On the other hand, as a result of intensive investigations by the present inventors, it was found that Ni 2 Si deposited on grain boundaries is reduced by the addition of Zr and Ni 2 Si is reduced and the toughness after aging is improved. . In order to obtain this effect, 0.005% or more of Zr is added. However, if 0.2% or more is added, the oxides and crystallized substances increase and the manufacturability, toughness and electrical conductivity deteriorate, so the upper limit is made 0.2%. Considering the balance between manufacturability and characteristics, the lower limit is more preferably 0.01% and the upper limit is 0.1%.

Cr、Mn、Zn:l種類以上を合計で1.5%以下
CrはSiと金属間化合物を形成し、強度を向上させたり、結晶粒を微細化する効果がある。Mnは硫黄との親和性が強いため硫黄と化合物を形成し、熱間加工割れの原因であるインゴット粒界への硫黄の偏析を低減することで熱間加工性が改善される。Znは固溶強化により強度を向上させる。また、溶解時に安価な黄銅スクラップを使用可能であれば製造コストを削減できる。
しかし、Cr、Mn、Znを過剰に添加すると熱伝導率が低下するため、上限をCr、Mn、Znの1種類以上を合計で1.5%以下とする。
Cr, Mn, Zn: 1% or more in total 1.5% or less In total, Cr forms an intermetallic compound with Si, and has the effect of improving the strength and making the crystal grains fine. Since Mn has a strong affinity for sulfur, it forms a compound with sulfur, and the hot workability is improved by reducing the segregation of sulfur to the ingot grain boundaries, which is the cause of hot work cracking. Zn improves the strength by solid solution strengthening. Moreover, if an inexpensive brass scrap can be used at the time of melt | dissolution, a manufacturing cost can be reduced.
However, if Cr, Mn and Zn are added excessively, the thermal conductivity is lowered. Therefore, the upper limit is made 1.5% or less in total for one or more of Cr, Mn and Zn.

以上のように、本発明の高強度高靭性銅合金鍛造材はZrを適量含有することから、高熱伝導率を維持しつつ従来のCu−Ni−Si系銅合金よりも高強度、高硬度、高靭性を有することができる。この結果、本発明の高強度高靭性銅合金鍛造材は、プラスチック射出金型材や航空機部材などにも使用することができる。   As described above, since the high-strength, high-toughness copper alloy forged material of the present invention contains an appropriate amount of Zr, it has higher strength, higher hardness than conventional Cu-Ni-Si based copper alloys while maintaining high thermal conductivity, It can have high toughness. As a result, the high-strength, high-toughness copper alloy forged material of the present invention can be used for plastic injection mold materials, aircraft members, and the like.

本発明の高強度高靱性銅合金鍛造材は、常法によって製造することができる。
本発明に用いる銅合金は、常法により溶製することができ、真空雰囲気や不活性雰囲気、大気雰囲気などで材料を溶解し、鋳塊を得ることができる。雰囲気は真空雰囲気、不活性雰囲気が望ましいが例えば大気高周波炉で溶製することもできる。また、エレクトロスラグ再溶解炉などを用いた二次溶解を行ってもよい。連続鋳造法によって板材を得ることも可能である。
The high-strength, high-toughness copper alloy forged material of the present invention can be produced by a conventional method.
The copper alloy used in the present invention can be melted by a conventional method, and an ingot can be obtained by melting the material in a vacuum atmosphere, an inert atmosphere, an air atmosphere or the like. The atmosphere is preferably a vacuum atmosphere or an inert atmosphere, but it can also be melted in an atmospheric high frequency furnace, for example. Further, secondary melting using an electroslag remelting furnace or the like may be performed. It is also possible to obtain a plate material by a continuous casting method.

銅合金は必要に応じて加工が施される。加工の内容は本発明としては特に限定されるものではなく、プレス、ハンマー、圧延などの既知の鍛造方法を採用することができ、いかなる加工方法を用いても、本発明の特性を得ることが可能である。なお、加工は、製造性を考慮すると熱間加工が望ましく、さらには900℃以上で行う熱間加工が望ましいが、室温での加工でも熱間加工と同様の特性を得ることが可能である   The copper alloy is processed as necessary. The content of the processing is not particularly limited as the present invention, and a known forging method such as pressing, hammering, rolling or the like can be employed, and the characteristics of the present invention can be obtained by using any processing method. Is possible. The processing is preferably hot processing in consideration of manufacturability, and further, hot processing performed at 900 ° C. or higher is preferable, but it is possible to obtain the same characteristics as hot processing even at processing at room temperature.

加工された銅合金材では、加工後または加工途中に固溶化処理を行うことも可能である。固溶化処理の条件は、例えば800〜1000℃で1〜10時間保持した後、Ni、Siを十分固溶させるために500℃以上の温度域を5℃/秒以上の冷却速度で冷却するものが挙げられる。   The processed copper alloy material can be subjected to a solution treatment after processing or during processing. The conditions of the solid solution treatment are, for example, holding at 800 to 1000 ° C. for 1 to 10 hours, and then cooling a temperature range of 500 ° C. or higher at a cooling rate of 5 ° C./second or more in order to sufficiently dissolve Ni and Si. Is mentioned.

加工された銅合金材は、固溶化処理後または加工ままで時効処理を行うことができる。時効処理の条件は、例えば、400〜500℃で1〜30時間保持するものが挙げられる。
得られた高強度高靱性銅合金材は、0.2%耐力が750MPa以上、衝撃吸収エネルギーが10J以上、導電率が30%IACS以上の特性を有している。
The processed copper alloy material can be subjected to aging treatment after the solution treatment or as processed. As for the conditions of an aging treatment, what is hold | maintained at 400-500 degreeC for 1 to 30 hours is mentioned, for example.
The obtained high-strength, high-toughness copper alloy material has the characteristics that the 0.2% proof stress is 750 MPa or more, the impact absorption energy is 10 J or more, and the conductivity is 30% IACS or more.

以下に、本発明の実施例について説明する。
表1の成分組成になるように、原料を配合し真空誘導溶解炉で溶解してφ100mm×200mmhの合金を作製した。この合金を熱間鍛造して25mm厚の板材とし、970℃で4時間保持した後に水冷する固溶化処理を実施した。本発明の溶解方法および鍛造方法は上記の方法に限定されるものではない。
Examples of the present invention will be described below.
Raw materials were blended so as to have the component composition shown in Table 1 and melted in a vacuum induction melting furnace to prepare an alloy of φ100 mm × 200 mmh. This alloy was hot-forged to obtain a plate having a thickness of 25 mm, and a solid solution treatment was carried out by holding it at 970 ° C. for 4 hours and then cooling it with water. The melting method and the forging method of the present invention are not limited to the above methods.

Figure 0005688744
Figure 0005688744

その後、時効処理を施して常温引張試験を実施し、JISZ2244に基づき、荷重5kgでヴィッカース硬さと、ヴィーデマン=フランツ則に示されるように熱伝導率とほぼ比例関係にある導電率を測定した。表2にその結果を示す。本発明の実施例は700MPa以上の引張強さ(JISZ2241に準拠)、Uノッチ試験片で10J以上の衝撃吸収エネルギー(JISZ2242に準拠)、30%IACS以上の導電率を有していた。また比較例と同等あるいはそれ以上の硬さを有していた。
以上のように、本発明は適量のZrを含有することにより、高導電率すなわち高熱伝導率を維持しつつ強度、靭性、硬度が高くなるという優れた性能を有する。
Thereafter, an aging treatment was performed, and a normal temperature tensile test was performed. Based on JISZ2244, a Vickers hardness was measured at a load of 5 kg, and an electrical conductivity approximately proportional to the thermal conductivity was measured as indicated by Wiedemann-Franz rule. Table 2 shows the results. The examples of the present invention had a tensile strength of 700 MPa or more (conforming to JISZ2241), an impact absorption energy of 10 J or more (conforming to JISZ2242), and a conductivity of 30% IACS or more using a U-notch test piece. Moreover, it had a hardness equal to or higher than that of the comparative example.
As described above, the present invention has an excellent performance that strength, toughness, and hardness are increased while maintaining high conductivity, that is, high thermal conductivity, by containing an appropriate amount of Zr.

Figure 0005688744
Figure 0005688744

Claims (2)

質量%で、Ni:3.8を越えて10%まで、Si:0.8を越えて2.4%まで、Zr:0.005〜0.15%を含有し、Ni/Siが3.8〜4.875である組成を有し、残部がCuおよび不可避不純物からなり、JISZ2241に準拠して常温で測定された引張強さが750MPa以上、JISZ2242に準拠してUノッチ試験片を用いて測定された衝撃吸収エネルギーが10J以上、常温で測定された導電率が30%IACS以上であることを特徴とする高強度高靭性銅合金鍛造材。 In mass%, Ni: more than 3.8 to 10%, Si: more than 0.8 to 2.4%, Zr: 0.005 to 0.15 % , Ni / Si is 3. It has a composition of 8 to 4.875, the balance is made of Cu and inevitable impurities , the tensile strength measured at room temperature according to JISZ2241, is 750 MPa or more, and a U-notch test piece is used according to JISZ2242. the measured impact absorption energy than 10J, high strength and high toughness copper alloy forging measured conductivity at room temperature is equal to or is 30% IACS or more. さらに、Cr、Mn、Znの1種または2種以上を合計で1.5%以下含有することを特徴とする請求項1記載の高強度高靭性銅合金鍛造材。   The high-strength, high-toughness copper alloy forged material according to claim 1, further comprising 1.5% or less of one or more of Cr, Mn, and Zn in total.
JP2012222178A 2012-10-04 2012-10-04 High strength and high toughness copper alloy forging Active JP5688744B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012222178A JP5688744B2 (en) 2012-10-04 2012-10-04 High strength and high toughness copper alloy forging

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012222178A JP5688744B2 (en) 2012-10-04 2012-10-04 High strength and high toughness copper alloy forging

Publications (2)

Publication Number Publication Date
JP2014074202A JP2014074202A (en) 2014-04-24
JP5688744B2 true JP5688744B2 (en) 2015-03-25

Family

ID=50748557

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012222178A Active JP5688744B2 (en) 2012-10-04 2012-10-04 High strength and high toughness copper alloy forging

Country Status (1)

Country Link
JP (1) JP5688744B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210130931A1 (en) * 2018-07-12 2021-05-06 Materion Corporation Copper-nickel-silicon alloys with high strength and high electrical conductivity
CN109967672B (en) * 2019-04-01 2021-02-26 武汉重工铸锻有限责任公司 Forging method of CuAl10Fe5Ni5 copper alloy

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080190523A1 (en) * 2007-02-13 2008-08-14 Weilin Gao Cu-Ni-Si-based copper alloy sheet material and method of manufacturing same
JP5546196B2 (en) * 2008-10-03 2014-07-09 古河電気工業株式会社 Aging precipitation type copper alloy, copper alloy material, copper alloy part, and method for producing copper alloy material
JP5522692B2 (en) * 2011-02-16 2014-06-18 株式会社日本製鋼所 High strength copper alloy forging

Also Published As

Publication number Publication date
JP2014074202A (en) 2014-04-24

Similar Documents

Publication Publication Date Title
JP5085908B2 (en) Copper alloy for electronic materials and manufacturing method thereof
KR102502373B1 (en) Copper alloy and producing method thereof
JP6057855B2 (en) Aluminum alloy extruded material for cutting
JP5305323B2 (en) Zinc alloy for die casting and method for producing die cast member using Zn alloy for die casting
CN111101034A (en) Low-rare-earth high-performance rare earth aluminum alloy and preparation method thereof
EP3436616B1 (en) Aluminum alloys having improved tensile properties
US10072321B2 (en) Copper nickel alloy
JP5688744B2 (en) High strength and high toughness copper alloy forging
JP5887449B2 (en) Copper alloy, cold-rolled sheet and method for producing the same
JP5522692B2 (en) High strength copper alloy forging
JP4351609B2 (en) Aluminum alloy, heat-resistant and high-strength aluminum alloy part, and manufacturing method thereof
JP6563831B2 (en) Copper alloy and manufacturing method thereof
JP5939590B2 (en) High hardness and high heat conductive composite metal material, method for producing high hardness and high heat conductive composite metal material, and mold for molding plastic or fiber reinforced plastic
US20210404038A1 (en) 2xxx aluminum lithium alloys
JP2020169378A (en) Aluminum alloy for compressor slide components and compressor slide component forging
JP6172653B2 (en) Nickel-based alloy, cast material, hot plastic work material and method for producing hot plastic work material excellent in high temperature ductility
JP5595961B2 (en) Cu-Ni-Si based copper alloy for electronic materials and method for producing the same
JP2010106332A (en) Copper alloy material for structural member of resistance welding machine
JPH042750A (en) Manufacture of high strength copper alloy
CN104593641A (en) Novel high-strength iron-aluminum alloy forging material

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140709

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140730

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140925

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150121

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150121

R150 Certificate of patent or registration of utility model

Ref document number: 5688744

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250