JP5939590B2 - High hardness and high heat conductive composite metal material, method for producing high hardness and high heat conductive composite metal material, and mold for molding plastic or fiber reinforced plastic - Google Patents

High hardness and high heat conductive composite metal material, method for producing high hardness and high heat conductive composite metal material, and mold for molding plastic or fiber reinforced plastic Download PDF

Info

Publication number
JP5939590B2
JP5939590B2 JP2014134742A JP2014134742A JP5939590B2 JP 5939590 B2 JP5939590 B2 JP 5939590B2 JP 2014134742 A JP2014134742 A JP 2014134742A JP 2014134742 A JP2014134742 A JP 2014134742A JP 5939590 B2 JP5939590 B2 JP 5939590B2
Authority
JP
Japan
Prior art keywords
metal material
hardness
high hardness
composite metal
thermal conductivity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014134742A
Other languages
Japanese (ja)
Other versions
JP2016010816A (en
Inventor
秋夫 大野
秋夫 大野
田中 慎二
田中  慎二
邦彦 橋
邦彦 橋
響 知念
響 知念
哲司 間島
哲司 間島
護 水澤
護 水澤
岳彦 柳屋
岳彦 柳屋
拓也 二山
拓也 二山
晃 田代
晃 田代
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Steel Works Ltd
Original Assignee
Japan Steel Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Steel Works Ltd filed Critical Japan Steel Works Ltd
Priority to JP2014134742A priority Critical patent/JP5939590B2/en
Publication of JP2016010816A publication Critical patent/JP2016010816A/en
Application granted granted Critical
Publication of JP5939590B2 publication Critical patent/JP5939590B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

この発明は、高い硬度と良好な熱伝導性を有する高硬度高熱伝導性複合金属材、高硬度高熱伝導性複合金属材の製造方法およびプラスチックまたは繊維強化プラスチック成形用金型に関するものである。   The present invention relates to a high hardness and high thermal conductivity composite metal material having high hardness and good thermal conductivity, a method for producing a high hardness and high thermal conductivity composite metal material, and a mold for plastic or fiber reinforced plastic molding.

プラスチックや繊維強化プラスチック部品を対象とした射出成形及びプレス成形においては、成形時間短縮のために金型の速やかな加熱・冷却が強く求められており、熱伝導性の良好な高熱伝導率材の使用が試行されている。高熱伝導率材として、銅やアルミニウム、黄銅(Cu−Zn系)、青銅(Cu−Sn系)、ベリリウム銅(Be−Cu系)やコルソン合金(Cu−Ni−Si系)といった銅合金が知られている。特に、熱伝導とともに強度や硬度が要求されるようなプラスチック射出金型材や航空機部材などには、ベリリウム銅やコルソン合金を用いることが考えられる。一方で、繊維強化プラスチックのような複合材料の成形する場合は、繊維による摩耗が生じることから、これらの成形金型材には高い耐摩耗性が要求されるが、これら銅合金では十分な硬さが得られないため、プラスチックと金型が直接接する意匠面には高硬度金属材を配置し、プラスチックを速やかに固めたい箇所に入れ子の形で銅合金を配置して使用している。しかし、銅合金を入れ子の形で挿入した場合、銅合金と高硬度金属材との間にはエアギャップが生じ、伝熱効率が低下するという問題が生じる。   In injection molding and press molding for plastic and fiber reinforced plastic parts, rapid heating and cooling of the mold is strongly required to shorten the molding time, and high thermal conductivity materials with good thermal conductivity are required. Attempted use. Copper alloys such as copper, aluminum, brass (Cu—Zn), bronze (Cu—Sn), beryllium copper (Be—Cu), and Corson alloy (Cu—Ni—Si) are known as high thermal conductivity materials. It has been. In particular, it is conceivable to use beryllium copper or a Corson alloy for plastic injection mold materials or aircraft members that require strength and hardness as well as heat conduction. On the other hand, when molding composite materials such as fiber reinforced plastics, wear due to fibers occurs, so these mold materials are required to have high wear resistance, but these copper alloys have sufficient hardness. Therefore, a high-hardness metal material is arranged on the design surface where the plastic and the mold are in direct contact with each other, and a copper alloy is arranged in a nesting form at a place where the plastic is to be hardened quickly. However, when a copper alloy is inserted in a nested manner, an air gap is generated between the copper alloy and the high-hardness metal material, resulting in a problem that heat transfer efficiency is lowered.

上記課題を解決する方法として、拡散接合により異種金属同士を隙間なく接合して、金属同士の接合界面での伝熱ロスをなくす方法が提案されている。特許文献1では高熱伝熱材として銅C1020を用いて拡散接合する例が述べられている。また、特許文献2では、高熱伝導性金属層として、純銅、銅合金、純アルミニウム、アルミニウム合金から選択される材種と高硬度金属層を拡散接合するモデルが記載されている。   As a method for solving the above-described problem, a method has been proposed in which dissimilar metals are joined to each other by diffusion joining so as to eliminate heat transfer loss at the joining interface between the metals. Patent Document 1 describes an example of diffusion bonding using copper C1020 as a high heat transfer material. Patent Document 2 describes a model in which a high-hardness metal layer is diffusion-bonded with a material selected from pure copper, a copper alloy, pure aluminum, and an aluminum alloy as a highly thermally conductive metal layer.

特開2010−94712号公報JP 2010-94712 A WO2012/133406号公報WO2012 / 133406

高熱伝導性金属の効果を十分に発揮するには、界面でのロスをなくすために拡散接合が好適であり、特許文献2では、拡散接合の実施例として、高硬度金属層にSKD61、高熱伝導性金属層に無酸素銅を用いて、加圧下で800℃、1時間保持する方法が提案されているが、純銅では強度が低く、金型としての剛性が低くなってしまう。これまでに、純銅の代替材として熱伝導性や剛性に優れる銅合金の適用が提案されているが、普及にはいたっていない。   In order to fully exhibit the effect of the high thermal conductivity metal, diffusion bonding is suitable for eliminating loss at the interface. In Patent Document 2, as an example of diffusion bonding, SKD61, high thermal conductivity is applied to the high hardness metal layer. A method has been proposed in which oxygen-free copper is used for the conductive metal layer and held at 800 ° C. for 1 hour under pressure, but pure copper has low strength and low rigidity as a mold. Up to now, the application of a copper alloy having excellent thermal conductivity and rigidity as a substitute for pure copper has been proposed, but it has not been widely used.

その理由としては、高硬度金属と高熱伝導性金属の線膨張差が挙げられる。金型向けの一般的な高硬度金属としては工具鋼があるが、その室温〜200℃における線膨張係数は1.0〜1.2×10−5/℃程度である。一方、一般的な銅合金の線膨張係数は1.6〜1.8×10−5/℃程度である。上述した通り、金型全体の剛性を高くするためには高熱伝導性金属もある程度強度が高い必要がある。 The reason for this is the difference in linear expansion between the high hardness metal and the high thermal conductivity metal. As a general hard metal for molds, there is tool steel, and its linear expansion coefficient from room temperature to 200 ° C. is about 1.0 to 1.2 × 10 −5 / ° C. On the other hand, the linear expansion coefficient of a general copper alloy is about 1.6 to 1.8 × 10 −5 / ° C. As described above, in order to increase the rigidity of the entire mold, the high thermal conductivity metal also needs to have a certain degree of strength.

特許文献2では、線膨張係数の差が接合性に影響することを課題として熱変形を拘束することが記載されている(段落0024、0025)。
しかし、高硬度金属、高熱伝導性金属ともに強度が高く、その分延靭性が低い素材を用いると、接合後に、両者の線膨張係数の違いから金型使用時に接合界面にひずみが蓄積した際に、クラックが容易に生じて熱伝導性が劣化したり、最悪の場合には金型が破壊してしまうという問題がある。
Patent Document 2 describes that thermal deformation is constrained on the subject that the difference in linear expansion coefficient affects the bondability (paragraphs 0024 and 0025).
However, when materials with high strength and low thermal toughness are used for both high-hardness metal and high thermal conductivity metal, when the strain accumulates at the joint interface during die use due to the difference in linear expansion coefficient between the two after joining. In addition, there is a problem that cracks are easily generated and thermal conductivity is deteriorated, or in the worst case, the mold is destroyed.

本発明は、上記事情を背景としてなされたものであり、熱伝導性に優れたCu−Ni−Si系銅合金と、高硬度金属材とが界面接合によってエアギャップを有することなく良好に接合されており、しかも、両者の材料の線膨張係数差に起因する問題を緩和して接合性を高めた高硬度高熱伝導性複合金属材、高硬度高熱伝導性複合金属材の製造方法およびプラスチックまたは繊維強化プラスチック成形用金型を提供することを目的とする。   The present invention has been made against the background of the above circumstances, and a Cu-Ni-Si-based copper alloy having excellent thermal conductivity and a high-hardness metal material are satisfactorily bonded without having an air gap by interfacial bonding. In addition, a high-hardness and high-heat-conductivity composite metal material that has improved the bondability by alleviating the problem caused by the difference in linear expansion coefficient between the two materials, a method for producing a high-hardness and high-heat-conductivity composite metal material, and plastic or fiber An object is to provide a mold for reinforced plastic molding.

本発明者らは、高硬度金属とCu−Ni−Si系銅合金を界面接合した後に高温処理を施すと、接合界面の高硬度金属側にCu−Ni−Si系銅合金からNiとSiが拡散し、高硬度金属とCu−Ni−Si系銅合金の中間的な線膨張係数を有する層が生成することを見出した。なお、高温処理の温度はCu−Ni−Si系銅合金に析出するNiSiを固溶化する処理と高硬度金属の焼入処理を兼ねた温度を採用できることもわかった。高温処理の後には、Cu−Ni−Si系銅合金におけるNiSiを微細かつ大量に析出させる時効処理と、高硬度金属の焼戻処理を兼ねた低温処理を行うと、高硬度金属、Cu−Ni−Si系銅合金ともに硬度を高めることができる。 When the present inventors perform high-temperature treatment after interfacial bonding of a high-hardness metal and a Cu-Ni-Si-based copper alloy, Ni and Si are formed from the Cu-Ni-Si-based copper alloy on the high-hardness metal side of the bonding interface. It has been found that a layer that diffuses and has an intermediate linear expansion coefficient between a hard metal and a Cu—Ni—Si based copper alloy is formed. It has also been found that the temperature for the high temperature treatment can be a temperature that combines the treatment for solidifying Ni 2 Si deposited on the Cu—Ni—Si based copper alloy and the quenching treatment for the high hardness metal. After the high temperature treatment, when performing a low temperature treatment that combines Ni 2 Si in Cu—Ni—Si based copper alloy in a fine and large amount and a tempering treatment of the hard metal, the high hardness metal, Cu -Ni-Si type copper alloy can raise hardness.

すなわち、本発明の高硬度高熱伝導性複合金属材のうち、第1の本発明は、Cu−Ni−Si系銅合金材と高硬度金属材とが界面接合されており、接合界面に、Ni、Siの拡散層が形成されていることを特徴とする。   That is, among the high hardness and high thermal conductivity composite metal materials of the present invention, the first present invention is such that a Cu-Ni-Si based copper alloy material and a high hardness metal material are interface bonded, and Ni is bonded to the bonding interface. A Si diffusion layer is formed.

第2の本発明の高硬度高熱伝導性複合金属材は、前記第1の本発明において、前記Cu−Ni−Si系銅合金材が、質量%でNiを3〜7.5%、Siを0.7〜1.8%含有する組成を有することを特徴とする。   The high hardness and high thermal conductivity composite metal material of the second aspect of the present invention is the above-mentioned first aspect of the present invention, wherein the Cu-Ni-Si based copper alloy material contains 3 to 7.5% Ni and Si in mass%. It has a composition containing 0.7 to 1.8%.

第3の本発明の高硬度高熱伝導性複合金属材は、前記第1または第2の本発明において、前記Cu−Ni−Si系銅合金材は、前記組成において質量%でNi/Siが3.7〜4.7であることを特徴とする。   The high hardness and high thermal conductivity composite metal material of the third aspect of the present invention is the first or second aspect of the present invention, wherein the Cu—Ni—Si based copper alloy material has a Ni / Si ratio of 3% by mass in the composition. .7 to 4.7.

第4の本発明の高硬度高熱伝導性複合金属材は、前記第1〜第3の本発明のいずれかにおいて、前記高硬度金属材がHRC30以上であり、前記Cu−Ni−Si系銅合金がHRC20以上であることを特徴とする。 The high hardness and high thermal conductivity composite metal material according to the fourth aspect of the present invention is the Cu—Ni—Si based copper alloy according to any one of the first to third aspects, wherein the high hardness metal material is HRC30 or more. The material is HRC20 or more.

第5の本発明の高硬度高熱伝導性複合金属材は、前記第1〜第4の本発明のいずれかにおいて、前記拡散層の厚さが10μm以上であることを特徴とする。   The high hardness and high thermal conductive composite metal material of the fifth aspect of the present invention is characterized in that, in any of the first to fourth aspects of the present invention, the thickness of the diffusion layer is 10 μm or more.

第6の本発明の高硬度高熱伝導性複合金属材は、前記第1〜第5の本発明のいずれかにおいて、前記Cu−Ni−Si系銅合金材の室温〜200℃における線膨張率が1.6〜1.8×10−5/℃であり、前記高硬度金属材の室温〜200℃における線膨張率が1.0〜1.2×10−5/℃であり、前記拡散層の室温〜200℃における線膨張率が1.2〜1.6×10−5/℃であることを特徴とする。 The high hardness and high thermal conductivity composite metal material according to the sixth aspect of the present invention, in any one of the first to fifth aspects of the present invention, has a linear expansion coefficient at room temperature to 200 ° C. of the Cu—Ni—Si based copper alloy material. 1.6 to 1.8 × 10 −5 / ° C., and the linear expansion coefficient of the high-hardness metal material at room temperature to 200 ° C. is 1.0 to 1.2 × 10 −5 / ° C., and the diffusion layer The linear expansion coefficient at room temperature to 200 ° C. is 1.2 to 1.6 × 10 −5 / ° C.

第7の本発明の高硬度高熱伝導性複合金属材は、前記第1〜第6の本発明のいずれかにおいて、前記高硬度金属材が析出硬化型鋼であることを特徴とする。   The high hardness and high thermal conductivity composite metal material of the seventh aspect of the present invention is characterized in that, in any of the first to sixth aspects of the present invention, the high hardness metal material is precipitation hardening type steel.

第8の本発明の高硬度高熱伝導性複合金属材の製造方法は、界面接合されたCu−Ni−Si系銅合金材と高硬度金属材を加熱してCu−Ni−Si系銅合金材のNi、Siを高硬度金属側に拡散させて界面にNi、Siの拡散層を形成することを特徴とする。   According to an eighth aspect of the present invention, there is provided a method for producing a high hardness and high thermal conductivity composite metal material comprising heating a Cu—Ni—Si based copper alloy material and a high hardness metal material which are interface bonded to each other to form a Cu—Ni—Si based copper alloy material. Ni and Si are diffused to the high hardness metal side to form a Ni and Si diffusion layer at the interface.

第9の本発明の高硬度高熱伝導性複合金属材の製造方法は、前記第8の本発明において、
前記高硬度高熱伝導性複合金属材を相対的に高い温度で加熱してCu−Ni−Si系銅合金材のNi、Siを高硬度金属材側に拡散させるとともに、Cu−Ni−Si系銅合金材中のNi、Siを固溶化させ、その後、前記高硬度高熱伝導性複合金属材を相対的に低い温度で加熱して前記Cu−Ni−Si系銅合金材中にNiSiを分散析出させることを特徴とする。
In the ninth aspect of the present invention, the manufacturing method of the high hardness and high thermal conductivity composite metal material of the ninth aspect of the present invention is as follows.
The high hardness and high thermal conductivity composite metal material is heated at a relatively high temperature to diffuse Ni and Si of the Cu-Ni-Si based copper alloy material to the high hardness metal material side, and Cu-Ni-Si based copper. Ni and Si in the alloy material are dissolved, and then the high hardness and high thermal conductivity composite metal material is heated at a relatively low temperature to disperse Ni 2 Si in the Cu—Ni—Si based copper alloy material. It is made to precipitate.

第10の本発明の高硬度高熱伝導性複合金属材の製造方法は、前記第9の本発明において、前記高硬度高熱伝導性複合金属材の加熱を、850〜1000℃で1〜10時間加熱して前記Ni、Siの前記拡散と前記固溶化を行い、その後、375〜500℃で1〜50時間加熱して前記NiSiを分散析出させることを特徴とする。 The method for producing a high hardness and high thermal conductivity composite metal material according to the tenth aspect of the present invention is the method according to the ninth aspect, wherein the high hardness and high thermal conductivity composite metal material is heated at 850 to 1000 ° C. for 1 to 10 hours. Then, the diffusion of Ni and Si and the solid solution are performed, and then the Ni 2 Si is dispersed and precipitated by heating at 375 to 500 ° C. for 1 to 50 hours.

第11の本発明の高硬度高熱伝導性複合金属材の製造方法は、前記第10の本発明において、前記拡散と前記固溶化の処理後、前記分散析出の処理前に、加熱された前記高硬度高熱伝導性複合金属材を5℃/秒以上の冷却速度で冷却することを特徴とする。   The method for producing a high hardness and high thermal conductivity composite metal material of the eleventh aspect of the present invention is the method according to the tenth aspect of the present invention, wherein the high temperature heated after the diffusion and solution treatment and before the dispersion precipitation process. The hard metal composite metal material having high hardness is cooled at a cooling rate of 5 ° C./second or more.

第12の本発明の高硬度高熱伝導性複合金属材の製造方法は、前記第9〜第11の本発明のいずれかにおいて、前記高硬度金属材が析出硬化型鋼からなることを特徴とする。   According to a twelfth aspect of the present invention, there is provided a method for producing a high hardness and high thermal conductivity composite metal material according to any one of the ninth to eleventh aspects, wherein the high hardness metal material is made of precipitation hardening type steel.

第13の本発明のプラスチックまたは繊維強化プラスチック成形用金型は、前記第1〜第7の本発明のいずれかに記載した高硬度高熱伝導性複合金属材を用いてなることを特徴とする。   A plastic or fiber-reinforced plastic molding die according to a thirteenth aspect of the present invention is characterized by using the high hardness and high heat conductive composite metal material described in any of the first to seventh aspects of the present invention.

以上説明したように、本発明によれば、Cu−Ni−Si系銅合金材と高硬度金属材とが界面接合されて良好な接合状態が得られるとともに、界面にNi、Siの拡散層が形成されているので、Cu−Ni−Si系銅合金材と高硬度金属材との線膨張係数差による弊害を防止して良好な接合状態を維持することができ、結果的に高い硬度面を有するとともに良好な熱伝導性を有する。該材料を金型に用いる場合、金型全体として高熱伝導率を維持しつつ、金型の意匠面に耐摩耗性や鏡面性を付与した金属材を供給することが可能となる。この結果、本発明の高硬度高熱伝導性複合金属材は、プラスチック射出成形金型材、特に複合材料向けの金型材として最適であり、従来の金型よりもプラスチック製品射出のサイクルタイムを短縮するとともに、使用中の劣化を低減できる。   As described above, according to the present invention, a Cu—Ni—Si based copper alloy material and a high-hardness metal material are interface bonded to obtain a good bonded state, and Ni and Si diffusion layers are formed at the interface. Since it is formed, it is possible to prevent adverse effects due to the difference in linear expansion coefficient between the Cu-Ni-Si-based copper alloy material and the high-hardness metal material, and maintain a good bonding state, resulting in a high hardness surface. And good thermal conductivity. When the material is used for a mold, it is possible to supply a metal material that imparts wear resistance and specularity to the design surface of the mold while maintaining high thermal conductivity as a whole mold. As a result, the high hardness and high thermal conductivity composite metal material of the present invention is optimal as a plastic injection mold material, particularly a mold material for composite materials, and shortens the cycle time of plastic product injection than conventional molds. Deterioration during use can be reduced.

本発明の実施工程における高硬度高熱伝導性複合金属材の製造方法および高硬度高熱伝導性複合金属材を示す図である。It is a figure which shows the manufacturing method of the high hardness highly heat conductive composite metal material in the implementation process of this invention, and a high hardness high heat conductive composite metal material. 同じく、実施例における材料断面の走査型電子顕微鏡写真を示す図面代用写真である。Similarly, it is drawing substitute photograph which shows the scanning electron micrograph of the material cross section in an Example. 同じく、実施例における材料断面のエネルギー分散型X線分析(EDS/EDX: Energy Dispersive X-ray Spectroscopy)結果を示す図面代用写真である。Similarly, it is a drawing-substituting photograph showing an energy dispersive X-ray analysis (EDS / EDX: Energy Dispersive X-ray Spectroscopy) of a material cross section in an example.

以下に、本発明の実施形態を説明する。
本発明に用いる高硬度金属材としては、プラスチック金型用鋼、工具鋼、析出硬化型ステンレスなどプラスチック成形金型として従来から使用されている鋼を用いることができる。ただし、Cu−Ni−Si系合金からNi、Siを拡散させるため、Ni、Si添加量がCu−Ni−Si系合金の1.2倍以下とするのが望ましい。1.2倍以下であれば銅合金から鋼へNi、Siが拡散することが実験で確かめられている。なお、以下では、高硬度金属材としては、高硬度を有する金属材の他、高硬度化される前の金属材を総称していうものである。
Hereinafter, embodiments of the present invention will be described.
As the high-hardness metal material used in the present invention, steels conventionally used as plastic molds such as plastic mold steel, tool steel, precipitation hardening stainless steel, and the like can be used. However, in order to diffuse Ni and Si from the Cu—Ni—Si based alloy, it is desirable that the amount of Ni and Si added is 1.2 times or less that of the Cu—Ni—Si based alloy. Experiments have confirmed that Ni and Si diffuse from a copper alloy to steel if it is 1.2 times or less. In the following description, the high-hardness metal material is a generic term for a metal material having a high hardness and a metal material before being hardened.

高熱伝導性合金としてはNi、Siの高硬度金属への拡散が必要であるため、Ni、Siを含むCu−Ni−Si系銅合金材が最適である。金型に必要な剛性を得るためには、Niを3%以上、Siを0.7%以上添加するのが望ましい。NiとSiの比は硬さ上昇能の高いNiSiを析出させるために重量比でNi/Si=3.7〜4.7に調整するのが望ましい。Ni、Siの含有量が多過ぎると凝固中にNiSiなどの晶出物が大量に生じて鋼との接合性を低下させるため、Niは7.5%以下、Siは1.8%以下が望ましい。
なお、以下では、Cu−Ni−Si系銅合金材としては、高硬度高熱伝導性複合金属材に含まれて使用可能な状態のCu−Ni−Si系銅合金材の他、処理前の材料を総称していうものである。
As the high thermal conductivity alloy, Ni and Si need to be diffused into a hard metal, and therefore, a Cu—Ni—Si based copper alloy material containing Ni and Si is optimal. In order to obtain the rigidity required for the mold, it is desirable to add 3% or more of Ni and 0.7% or more of Si. The ratio of Ni and Si is preferably adjusted to Ni / Si = 3.7 to 4.7 by weight ratio in order to precipitate Ni 2 Si having a high hardness increasing ability. If the content of Ni and Si is too large, a large amount of crystallized materials such as Ni 2 Si are generated during solidification and the bondability with steel is lowered. Therefore, Ni is 7.5% or less, and Si is 1.8%. The following is desirable.
In the following, as the Cu—Ni—Si based copper alloy material, the Cu—Ni—Si based copper alloy material in a state of being usable by being included in the high hardness and high thermal conductive composite metal material, and the material before the processing Is a collective term.

Ni、Si以外の元素については、一般的に銅合金に添加されているBe、P、Cr、Mn、Co、Zn、Ag、Snの1種以上をそれぞれ単独で1%以下、合計で3%以下含有しても問題ない。酸化物形成傾向が強いあるいは鉄と金属間化合物を形成しやすい元素であるMg、Al、Ti、Zrの1種以上を含有してもよく、その場合、それぞれ単独で0.2%以下、合計で0.5%以下が望ましい。   For elements other than Ni and Si, one or more of Be, P, Cr, Mn, Co, Zn, Ag, and Sn generally added to copper alloys are each 1% or less, and 3% in total. Even if it contains below, there is no problem. It may contain one or more of Mg, Al, Ti, and Zr, which are elements that have a strong tendency to form oxides or easily form intermetallic compounds with iron. And 0.5% or less is desirable.

両素材の製造方法については限定しない。鋼の溶解方法としては高炉、電気炉、誘導溶解炉、真空誘導溶解炉など、精錬方法としては取鍋精錬、RH真空脱ガスなど、鋳込み方法としては真空脱ガス鋳込み、連続鋳造法など常法を採用できる。エレクトロスラグ再溶解や真空アーク再溶解といった二次溶解も採用できる。また、金型に要求される特性を有しているならば、粉末冶金手法で製造しても問題ない。一方、銅合金の溶解方法としては誘導溶解炉、真空誘導溶解炉など、鋳込み方法としてはダービル法、連続鋳造法など常法を、エレクトロスラグ再溶解といった二次溶解も採用できる。
また、両素材の厚さも互いに特に限定されるものではない。
The manufacturing method of both materials is not limited. Steel melting methods include blast furnace, electric furnace, induction melting furnace, vacuum induction melting furnace, refining methods such as ladle refining, RH vacuum degassing, etc. Conventional methods such as vacuum degassing casting and continuous casting methods Can be adopted. Secondary melting such as electroslag remelting or vacuum arc remelting can also be employed. Moreover, if it has the characteristic requested | required of a metal mold | die, even if it manufactures with a powder metallurgy technique, there is no problem. On the other hand, as a melting method of the copper alloy, an induction melting furnace, a vacuum induction melting furnace or the like can be used. As a casting method, a conventional method such as the Darville method or a continuous casting method can be used, and secondary melting such as electroslag remelting can be employed.
Further, the thicknesses of both materials are not particularly limited to each other.

Cu−Ni−Si系銅合金材と高硬度金属材の接合方法は、真空下で加熱・加圧して実施する拡散接合が最適ではある。適切に接合するためには1〜20MPaの圧力下で、850〜950℃に保持して10分〜10時間保持する。圧力は低過ぎると界面が密着しないため1MPa以上、高過ぎるとCu−Ni−Si系合金が変形するため20MPa以下が望ましい。保持温度は界面の元素の移動を盛んにするため850℃以上、Cu−Ni−Si系合金の変形を防止するために950℃以下が望ましい。保持時間は界面の元素の移動を確実にするために10分以上、Cu−Ni−Si系合金のクリープ変形を防止するために10時間以下が望ましい。加熱時の昇温速度や接合後の冷却速度は限定する必要はない。なお、界面接合方法は、本発明としては特に限定されるものではなく、加熱後の圧延、室温での爆着など、両者の界面を隙間なく接合させる方法であれば限定しない。   As a method for joining the Cu—Ni—Si copper alloy material and the high hardness metal material, diffusion joining performed by heating and pressurizing under vacuum is optimal. In order to join appropriately, it hold | maintains at 850-950 degreeC under the pressure of 1-20 Mpa, and hold | maintains for 10 minutes-10 hours. If the pressure is too low, the interface does not adhere, so that it is 1 MPa or more, and if it is too high, the Cu—Ni—Si alloy is deformed, so 20 MPa or less is desirable. The holding temperature is desirably 850 ° C. or higher for increasing the movement of elements at the interface, and 950 ° C. or lower for preventing deformation of the Cu—Ni—Si alloy. The holding time is desirably 10 minutes or longer to ensure the movement of elements at the interface, and 10 hours or shorter to prevent creep deformation of the Cu—Ni—Si alloy. There is no need to limit the heating rate during heating and the cooling rate after bonding. The interface bonding method is not particularly limited as the present invention, and is not limited as long as it is a method of bonding the interfaces of both without gaps, such as rolling after heating and explosion at room temperature.

接合した後の高温処理の温度は、Cu−Ni−Si系銅合金材から高硬度金属材へのNi、Siの拡散を促進するために850℃以上が望ましく、Cu−Ni−Si系銅合金材の部分溶融を避けるために1000℃以下が望ましい。高温処理の保持時間は、Cu−Ni−Si系合金におけるNiSiの固溶化を促進するために1時間以上が望ましく、Cu−Ni−Si系銅合金材の結晶粒粗大化を防ぐために10時間以下が望ましい。
処理時の昇温速度は限定する必要はないが、冷却速度は水冷かそれに準じた速度であるのが望ましい。コルソン合金におけるNiSiの固溶を確実にするために5℃/秒以上の冷却速度とすることが望ましい。
低温処理はCu−Ni−Si系銅合金材においてNiSiが微細かつ大量に析出する375〜500℃で1時間〜50時間保持するのが望ましい。処理時の昇温速度と冷却速度は限定する必要はない。
The temperature of the high temperature treatment after joining is preferably 850 ° C. or more in order to promote the diffusion of Ni and Si from the Cu—Ni—Si based copper alloy material to the high hardness metal material, and the Cu—Ni—Si based copper alloy. In order to avoid partial melting of the material, 1000 ° C. or lower is desirable. The holding time of the high temperature treatment is desirably 1 hour or more in order to promote the solid solution of Ni 2 Si in the Cu—Ni—Si based alloy, and 10 in order to prevent the crystal grain coarsening of the Cu—Ni—Si based copper alloy material. Less than an hour is desirable.
The rate of temperature increase during the treatment need not be limited, but the cooling rate is preferably water cooling or a similar rate. In order to ensure the solid solution of Ni 2 Si in the Corson alloy, a cooling rate of 5 ° C./second or more is desirable.
The low temperature treatment is desirably held at 375 to 500 ° C. for 1 to 50 hours at which Ni 2 Si precipitates finely and in large quantities in the Cu—Ni—Si based copper alloy material. There is no need to limit the heating rate and cooling rate during the treatment.

図1は、上記工程の例A、Bを示すものである。
工程Aでは、高硬度金属材2とCu−Ni−Si系銅合金材3とが界面接合によって接合され、高硬度高熱伝導性複合金属材1が得られる。
両素材が界面接合された高硬度高熱伝導性複合金属材1は、好適には850〜1000℃で1時間〜10時間加熱されてCu−Ni−Si系銅合金材3の一部のNi、Siが高硬度金属材2側に拡散してNi、Si拡散層4が得られ、また、Cu−Ni−Si系銅合金材3中のNi、Siが固溶化する。この際に、高硬度金属材2の溶体化処理を併せて行うことができる。
加熱された高硬度高熱伝導性複合金属材1は、水冷やこれに準ずる方法で冷却し、その際の冷却速度を5℃/秒以上とするのが望ましい。なお、この冷却速度による冷却は、少なくとも300℃まで行われればよい。
FIG. 1 shows examples A and B of the above process.
In step A, the high-hardness metal material 2 and the Cu—Ni—Si-based copper alloy material 3 are joined by interfacial bonding, and the high-hardness and high-heat conductive composite metal material 1 is obtained.
The high hardness and high thermal conductivity composite metal material 1 in which both materials are interface-bonded is preferably heated at 850 to 1000 ° C. for 1 hour to 10 hours to form a part of Ni in the Cu—Ni—Si based copper alloy material 3, Si diffuses to the high hardness metal material 2 side to obtain a Ni / Si diffusion layer 4, and Ni and Si in the Cu—Ni—Si based copper alloy material 3 are solidified. At this time, the solution treatment of the high-hardness metal material 2 can be performed together.
The heated high hardness and high thermal conductivity composite metal material 1 is preferably cooled by water cooling or a method equivalent thereto, and the cooling rate at that time is preferably 5 ° C./second or more. The cooling at this cooling rate may be performed up to at least 300 ° C.

冷却された高硬度高熱伝導性複合金属材1は、好適には375〜500℃で、1〜50時間の加熱を行う。この加熱により、Cu−Ni−Si系銅合金材3中に固溶したNi、SiからNiSi粒子が微細かつ大量に生成したCu−Ni−Si系銅合金材30が得られる。なお、NiSi粒子の大きさや分散密度は特に限定されるものではない。
なお、この加熱の際に、高硬度金属材2の焼戻しが行われるものであってもよい。
The cooled high hardness and high thermal conductive composite metal material 1 is preferably heated at 375 to 500 ° C. for 1 to 50 hours. By this heating, a Cu—Ni—Si based copper alloy material 30 in which Ni 2 Si particles are finely and produced in large quantities from Ni and Si dissolved in the Cu—Ni—Si based copper alloy material 3 is obtained. The size and dispersion density of the Ni 2 Si particles is not particularly limited.
In addition, the high-hardness metal material 2 may be tempered during this heating.

工程Bでは、界面接合として拡散接合が行われる工程である。拡散接合では、1〜20MPaの加圧状態で、850〜950℃、10分〜10時間の加熱が行われる。この際にCu−Ni−Si系銅合金材3の一部のNi、Siが高硬度金属材2側に拡散してNi、Si拡散層4aが得られるが、拡散量は十分ではない。なお、拡散に際し、熱拘束する手段を講じてもよい。   In step B, diffusion bonding is performed as interface bonding. In diffusion bonding, heating is performed at 850 to 950 ° C. for 10 minutes to 10 hours in a pressurized state of 1 to 20 MPa. At this time, a part of Ni and Si in the Cu—Ni—Si based copper alloy material 3 is diffused to the high hardness metal material 2 side to obtain the Ni and Si diffusion layer 4a, but the diffusion amount is not sufficient. Note that a means for thermally constraining the diffusion may be taken.

次いで、高硬度高熱伝導性複合金属材1は、好適には850〜1000℃で1時間〜10時間加熱されてCu−Ni−Si系銅合金材3の一部のNi、Siが高硬度金属材2側に拡散してNi、Si拡散層4が得られ、また、Cu−Ni−Si系銅合金材3中のNi、Siが固溶化する。この際に、高硬度金属材2の溶体化が行われ、所望の特性を有する高硬度金属材20が得られる。この際に加熱によって、Ni、Si拡散層4では、十分な量のNi、Si拡散が得られる。
加熱された高硬度高熱伝導性複合金属材1は、その後、上記工程Aと同様に冷却され、さらに、加熱により、Cu−Ni−Si系銅合金材3中に固溶したNi、SiをNiSi粒子として析出、分散させる。
Next, the high hardness and high thermal conductivity composite metal material 1 is preferably heated at 850 to 1000 ° C. for 1 to 10 hours, and a part of the Cu—Ni—Si-based copper alloy material 3 Ni and Si is a high hardness metal. The Ni and Si diffusion layers 4 are obtained by diffusing to the material 2 side, and Ni and Si in the Cu—Ni—Si based copper alloy material 3 are solidified. At this time, the high-hardness metal material 2 is formed into a solution, and the high-hardness metal material 20 having desired characteristics is obtained. At this time, a sufficient amount of Ni and Si diffusion is obtained in the Ni and Si diffusion layer 4 by heating.
The heated high hardness and high thermal conductivity composite metal material 1 is then cooled in the same manner as in the above step A, and further, Ni and Si dissolved in the Cu—Ni—Si based copper alloy material 3 by heating are converted into Ni. 2 Precipitate and disperse as Si particles.

以下に、本発明の実施例について説明する。
20kg真空溶解炉で溶製し、鍛造成形したCu−Ni−Si系合金のコルソン合金と、50kgVIMで溶製し、鍛造成形したプラスチック金型用鋼であるAISI P21系鋼ならびに市販の析出硬化型ステンレスSUS630を用いた。これら素材の成分を表1に示す。いずれの成分も質量%を示しており、SUS630およびP21系鋼では、残部がFeおよび不可避不純物からなる。コルソン合金では、残部がCuおよび不可避不純物からなる。
Examples of the present invention will be described below.
A Cu-Ni-Si alloy Corson alloy melted and forged in a 20 kg vacuum melting furnace, AISI P21 steel as a plastic mold steel melted and forged and molded in 50 kg VIM, and a commercially available precipitation hardening die Stainless steel SUS630 was used. Table 1 shows the components of these materials. All the components show mass%, and the balance of SUS630 and P21 steel is Fe and inevitable impurities. In the Corson alloy, the balance consists of Cu and inevitable impurities.

真空下で900℃、加圧力5MPa、保持時間1時間40分の条件で、コルソン合金とP21系鋼あるいはSUS630との拡散接合を行った。その後、一体化した高強度高熱伝導性複合金属に高温処理および低温処理を施した。
高温処理は、900℃×4時間で行い、その後、水冷によって冷却速度10℃/秒で 200℃まで冷却した。低温処理は、450℃×10時間で行った。
Diffusion bonding between the Corson alloy and P21 steel or SUS630 was performed under the conditions of 900 ° C., pressure of 5 MPa, and holding time of 1 hour and 40 minutes under vacuum. Thereafter, the integrated high strength and high thermal conductive composite metal was subjected to high temperature treatment and low temperature treatment.
The high temperature treatment was performed at 900 ° C. for 4 hours, and then cooled to 200 ° C. at a cooling rate of 10 ° C./second by water cooling. The low temperature treatment was performed at 450 ° C. × 10 hours.

界面接合部の界面直角方向で、引張強さはどちらも650MPaであり、コルソン合金(650MPa)と同等であった。
処理後のコルソン合金はJISZ2244に基づき、荷重5kgでビッカース硬さと、ヴィーデマン=フランツ則に示されるように熱伝導率とほぼ比例関係にある導電率を測定した。コルソン合金のビッカース硬さはHV240、導電率は45%IACSであった。
In the direction perpendicular to the interface of the interface joint, both tensile strengths were 650 MPa, which was equivalent to the Corson alloy (650 MPa).
Based on JISZ2244, the Corson alloy after the treatment was measured for Vickers hardness at a load of 5 kg and conductivity substantially proportional to the thermal conductivity as shown by Wiedemann-Franz rule. The Corson alloy had a Vickers hardness of HV240 and an electrical conductivity of 45% IACS.

AIS IP21系鋼の硬さはHV370、SUS630の硬さはHV420であった。
P21系鋼、SUS630ともに接合界面には拡散層が確認された。SUS630を用いた供試材について走査型電子顕微鏡(SEM)とエネルギー分散型X線分光法(EDX)で分析した結果、拡散層にはNi、Siの濃化が認められた。
The hardness of the AIS IP21 steel was HV370, and the hardness of SUS630 was HV420.
A diffusion layer was confirmed at the bonding interface for both P21 steel and SUS630. As a result of analyzing the test material using SUS630 with a scanning electron microscope (SEM) and energy dispersive X-ray spectroscopy (EDX), enrichment of Ni and Si was observed in the diffusion layer.

アーク溶解により本拡散層の成分で溶製した素材の室温〜200℃の線膨張係数を測定した。線膨張係数はJIS Z 2285に準拠して測定した。P21系鋼の界面は1.2×10−5/℃、SUS630の界面は1.3×10−5/℃であり、コルソン合金(1.7×10−5/℃)と鋼(P21系鋼:1.1×10−5/℃、SUS630:1.1×10−5/℃)の中間に位置する値が得られた。
また、拡散層の厚さは、AIS IP21系鋼で10〜20μm、SUS630で10〜30μmであった。
The linear expansion coefficient from room temperature to 200 ° C. of the material melted with the components of this diffusion layer by arc melting was measured. The linear expansion coefficient was measured according to JIS Z 2285. The interface of P21 steel is 1.2 × 10 −5 / ° C., and the interface of SUS630 is 1.3 × 10 −5 / ° C .. Corson alloy (1.7 × 10 −5 / ° C.) and steel (P21 steel) steel: the value located in the middle of 1.1 × 10 -5 /℃,SUS630:1.1×10 -5 / ℃ ) was obtained.
The thickness of the diffusion layer was 10 to 20 μm for AIS IP21 steel and 10 to 30 μm for SUS630.

以上、本発明について上記実施形態および上記実施例に基づいて説明を行ったが、本発明の範囲を逸脱しない限りは適宜の変更が可能である。   As described above, the present invention has been described based on the above embodiment and the above examples, but appropriate modifications can be made without departing from the scope of the present invention.

1 高硬度高熱伝導性複合金属材
2 高硬度金属材
3 Cu−Ni−Si系銅合金材
4 Ni、Si拡散層
20 高硬度金属材
30 Cu−Ni−Si系銅合金材
DESCRIPTION OF SYMBOLS 1 High hardness high heat conductive composite metal material 2 High hardness metal material 3 Cu-Ni-Si type copper alloy material 4 Ni, Si diffusion layer 20 High hardness metal material 30 Cu-Ni-Si type copper alloy material

Claims (13)

Cu−Ni−Si系銅合金材と高硬度金属材とが界面接合されており、接合界面に、Ni、Siの拡散層が形成されていることを特徴とする高硬度高熱伝導性複合金属材。   A Cu-Ni-Si-based copper alloy material and a high-hardness metal material are interface-bonded, and a Ni and Si diffusion layer is formed at the bonding interface. . 前記Cu−Ni−Si系銅合金材が、質量%でNiを3〜7.5%、Siを0.7〜1.8%含有する組成を有することを特徴とする請求項1記載の高硬度高熱伝導性複合金属材。   The Cu-Ni-Si-based copper alloy material has a composition containing 3 to 7.5% Ni and 0.7 to 1.8% Si in mass%. Hard metal composite material with high thermal conductivity. 前記Cu−Ni−Si系銅合金材は、前記組成において質量%でNi/Siが3.7〜4.7であることを特徴とする請求項1または2に記載の高硬度高熱伝導性複合金属材。   The high hardness and high thermal conductivity composite according to claim 1, wherein the Cu—Ni—Si based copper alloy material has a Ni / Si ratio of 3.7 to 4.7 by mass% in the composition. Metal material. 前記高硬度金属材がHRC30以上であり、前記Cu−Ni−Si系銅合金がHRC20以上であることを特徴とする請求項1〜3のいずれか1項に記載の高硬度高熱伝導性複合金属材。 The high-hardness and high-heat conductive composite according to any one of claims 1 to 3, wherein the high-hardness metal material is HRC30 or higher and the Cu-Ni-Si-based copper alloy material is HRC20 or higher. Metal material. 前記拡散層の厚さが10μm以上であることを特徴とする請求項1〜4のいずれか1項に記載の高硬度高熱伝導性複合金属材。   The thickness of the said diffused layer is 10 micrometers or more, The high hardness highly heat conductive composite metal material of any one of Claims 1-4 characterized by the above-mentioned. 前記Cu−Ni−Si系銅合金材の室温〜200℃における線膨張率が1.6〜1.8×10−5/℃であり、前記高硬度金属材の室温〜200℃における線膨張率が1.0〜1.2×10−5/℃であり、前記拡散層の室温〜200℃における線膨張率が1.2〜1.6×10−5/℃であることを特徴とする請求項1〜5のいずれか1項に記載の高硬度高熱伝導性複合金属材。 The linear expansion coefficient at room temperature to 200 ° C. of the Cu—Ni—Si based copper alloy material is 1.6 to 1.8 × 10 −5 / ° C., and the linear expansion coefficient at room temperature to 200 ° C. of the high hardness metal material. Is 1.0 to 1.2 × 10 −5 / ° C., and the linear expansion coefficient of the diffusion layer from room temperature to 200 ° C. is 1.2 to 1.6 × 10 −5 / ° C. The high hardness high heat conductive composite metal material according to any one of claims 1 to 5. 前記高硬度金属材が析出硬化型鋼であることを特徴とする請求項1〜6のいずれか1項に記載の高硬度高熱伝導性複合金属材。   7. The high hardness and high thermal conductivity composite metal material according to claim 1, wherein the high hardness metal material is precipitation hardening type steel. 界面接合されたCu−Ni−Si系銅合金材と高硬度金属材を加熱してCu−Ni−Si系銅合金材のNi、Siを高硬度金属側に拡散させて界面にNi、Siの拡散層を形成することを特徴とする高硬度高熱伝導性複合金属材の製造方法。   The Cu-Ni-Si-based copper alloy material and the high-hardness metal material bonded at the interface are heated to diffuse Ni and Si of the Cu-Ni-Si-based copper alloy material to the high-hardness metal side, so that Ni and Si are diffused at the interface. A method for producing a high hardness and high thermal conductivity composite metal material, characterized by forming a diffusion layer. 前記高硬度高熱伝導性複合金属材を相対的に高い温度で加熱してCu−Ni−Si系銅合金材のNi、Siを高硬度金属材側に拡散させるとともに、Cu−Ni−Si系銅合金材中のNi、Siを固溶化させ、その後、前記高硬度高熱伝導性複合金属材を相対的に低い温度で加熱して前記Cu−Ni−Si系銅合金材中にNiSiを分散析出させることを特徴とする請求項8記載の高硬度高熱伝導性複合金属材の製造方法。 The high hardness and high thermal conductivity composite metal material is heated at a relatively high temperature to diffuse Ni and Si of the Cu-Ni-Si based copper alloy material to the high hardness metal material side, and Cu-Ni-Si based copper. Ni and Si in the alloy material are dissolved, and then the high hardness and high thermal conductivity composite metal material is heated at a relatively low temperature to disperse Ni 2 Si in the Cu—Ni—Si based copper alloy material. The method for producing a high hardness and high thermal conductivity composite metal material according to claim 8, wherein the precipitation is performed. 前記高硬度高熱伝導性複合金属材の加熱を、850〜1000℃で1〜10時間加熱して前記Ni、Siの前記拡散と前記固溶化を行い、その後、375〜500℃で1〜50時間加熱して前記NiSiを分散析出させることを特徴とする請求項9記載の高硬度高熱伝導性複合金属材の製造方法。 The high hardness and high thermal conductivity composite metal material is heated at 850 to 1000 ° C. for 1 to 10 hours to perform the diffusion and solid solution of the Ni and Si, and then at 375 to 500 ° C. for 1 to 50 hours. The method for producing a high hardness and high thermal conductivity composite metal material according to claim 9, wherein the Ni 2 Si is dispersed and precipitated by heating. 前記拡散と前記固溶化の処理後、前記分散析出の処理前に、加熱された前記高硬度高熱伝導性複合金属材を5℃/秒以上の冷却速度で冷却することを特徴とする請求項10記載の高硬度高熱伝導性複合金属材の製造方法。   11. The heated high hardness and high thermal conductive composite metal material is cooled at a cooling rate of 5 ° C./second or more after the diffusion and solution treatment and before the dispersion precipitation treatment. The manufacturing method of the high hardness highly heat conductive composite metal material of description. 前記高硬度金属材が析出硬化型鋼からなることを特徴とする請求項9〜11のいずれか1項に記載の高硬度高熱伝導性複合金属材の製造方法。   The method for producing a high hardness and high thermal conductivity composite metal material according to any one of claims 9 to 11, wherein the high hardness metal material is made of precipitation hardening steel. 詩求項1〜7のいずれか1項に記載した高硬度高熱伝導性複合金属材を用いてなることを特徴とするプラスチックまたは繊維強化プラスチック成形用金型。   A plastic or fiber reinforced plastic molding die, characterized by using the high hardness and high thermal conductive composite metal material described in any one of claims 1 to 7.
JP2014134742A 2014-06-30 2014-06-30 High hardness and high heat conductive composite metal material, method for producing high hardness and high heat conductive composite metal material, and mold for molding plastic or fiber reinforced plastic Active JP5939590B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014134742A JP5939590B2 (en) 2014-06-30 2014-06-30 High hardness and high heat conductive composite metal material, method for producing high hardness and high heat conductive composite metal material, and mold for molding plastic or fiber reinforced plastic

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014134742A JP5939590B2 (en) 2014-06-30 2014-06-30 High hardness and high heat conductive composite metal material, method for producing high hardness and high heat conductive composite metal material, and mold for molding plastic or fiber reinforced plastic

Publications (2)

Publication Number Publication Date
JP2016010816A JP2016010816A (en) 2016-01-21
JP5939590B2 true JP5939590B2 (en) 2016-06-22

Family

ID=55227879

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014134742A Active JP5939590B2 (en) 2014-06-30 2014-06-30 High hardness and high heat conductive composite metal material, method for producing high hardness and high heat conductive composite metal material, and mold for molding plastic or fiber reinforced plastic

Country Status (1)

Country Link
JP (1) JP5939590B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112813368B (en) * 2020-12-25 2022-05-13 大连交通大学 High-performance Cu-Ni-Si alloy plate strip and production process thereof

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6024750B2 (en) * 1977-09-05 1985-06-14 三菱重工業株式会社 Diffusion welding of copper and stainless steel
JPS60197834A (en) * 1984-03-17 1985-10-07 Ngk Insulators Ltd Cladding material of iron or steel base alloy and copper alloy material
JPH0938785A (en) * 1995-07-26 1997-02-10 Chuetsu Gokin Chuko Kk Method for joining copper alloy to ferrous material
US5642853A (en) * 1995-08-30 1997-07-01 General Electric Company Method for bonding steel to copper
FR2779983B1 (en) * 1998-06-23 2000-07-13 Commissariat Energie Atomique METHOD OF ASSEMBLING BY DIFFUSION WELDING A MARTENSITIC STAINLESS STEEL AND A COPPER ALLOY, AND BIMETALLIC ELEMENT OBTAINED
FI114691B (en) * 2000-02-23 2004-12-15 Outokumpu Oy A method for forming a connection between copper and stainless steel
JP4819148B2 (en) * 2009-03-31 2011-11-24 新日本製鐵株式会社 Material for metal outer case and metal outer case of lithium ion battery with little voltage drop due to metal elution and lithium ion battery
JP5706193B2 (en) * 2011-03-02 2015-04-22 株式会社タカコ Manufacturing method of sliding member
CN202087919U (en) * 2011-04-19 2011-12-28 大连海事大学 Copper and steel dual-metal pipe end head structure
JP2013154399A (en) * 2012-01-05 2013-08-15 Hitachi Metals Ltd Dissimilar metal joined body

Also Published As

Publication number Publication date
JP2016010816A (en) 2016-01-21

Similar Documents

Publication Publication Date Title
US11555229B2 (en) High-strength aluminum alloy laminated molding and production method therefor
JP7097824B2 (en) Copper-nickel-tin alloy, its manufacturing method, and its usage
JP7097826B2 (en) Copper-nickel-tin alloy, its manufacturing method, and its usage
TWI658146B (en) Manufacturing method of steam cavity
US20120270070A1 (en) Hybrid copper alloy realizing simultaneously high strength, high elastic modulus, high corrosion-resistance, wear resistance, and high conductivity and manufacturing method thereof
JP6679742B2 (en) Tin-containing copper alloy, its manufacturing method, and its use
JP5939590B2 (en) High hardness and high heat conductive composite metal material, method for producing high hardness and high heat conductive composite metal material, and mold for molding plastic or fiber reinforced plastic
US11028463B2 (en) Copper alloy containing tin, method for producing same, and use of same
JP6837542B2 (en) Copper alloy plate material with excellent heat resistance and heat dissipation
JP5688744B2 (en) High strength and high toughness copper alloy forging
CN110387489A (en) Aluminium alloy for die casting and the method using its manufacture aluminium alloy castings
CN105349828B (en) Cu alloy material and preparation method thereof
US20070187006A1 (en) Aluminum alloy containing copper and zinc
JP5522692B2 (en) High strength copper alloy forging
TWI580802B (en) Beryllium-free multi-element copper alloy
CN108728688A (en) Copper alloy based composites and preparation method thereof
CN112877600B (en) Copper-steel solid-liquid composite bimetallic material for electronic power and preparation method thereof
CN117226074A (en) Layered heterogeneous plate with chemical gradient interface and preparation method thereof
KR101468203B1 (en) Hybrid Copper alloy realizing simultaneously high strength, high elastic modulus, high corrosion-resistance, wear resistance, and high conductivity and manufacturing method thereof
Zhang et al. Microstructure and Interfacial Properties of ZCuSn10Pb10/Q235 Bimetallic Composite after Semi-Solid and Cladding Treatment
Anderson et al. Al-Si-Cu Premium Casting Alloy
KR20240021028A (en) High strength and high thermal conductivity FeCu alloy and powder metallurgy method for manufacturing thereof
KR20240021996A (en) High strength and high thermal conductivity FeCu alloy and manufacturing method thereof by continuous HIP procedure
Kumar et al. Fabrication and Evaluation of Mechanical Properties of AL6061-4% B4C-4% CU Based Composite Experimentally
CN114309534A (en) Die-casting die and preparation method thereof

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160330

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160408

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160511

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160511

R150 Certificate of patent or registration of utility model

Ref document number: 5939590

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250