JPH08134581A - Production of magnesium alloy - Google Patents

Production of magnesium alloy

Info

Publication number
JPH08134581A
JPH08134581A JP6279521A JP27952194A JPH08134581A JP H08134581 A JPH08134581 A JP H08134581A JP 6279521 A JP6279521 A JP 6279521A JP 27952194 A JP27952194 A JP 27952194A JP H08134581 A JPH08134581 A JP H08134581A
Authority
JP
Japan
Prior art keywords
less
weight
alloy
alloying
content
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6279521A
Other languages
Japanese (ja)
Inventor
Kohei Kubota
Ryuji Ninomiya
耕平 久保田
隆二 二宮
Original Assignee
Mitsui Mining & Smelting Co Ltd
三井金属鉱業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Mining & Smelting Co Ltd, 三井金属鉱業株式会社 filed Critical Mitsui Mining & Smelting Co Ltd
Priority to JP6279521A priority Critical patent/JPH08134581A/en
Publication of JPH08134581A publication Critical patent/JPH08134581A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE: To produce an Mg alloy having the desired mechanical properties by adding respectively prescribed amounts or less of alloying elements, such as Li and Be, so that the S orbital energy level and the molar fraction and the mechanical properties of the alloy satisfy the prescribed calibration curves. CONSTITUTION: One or more alloying elements, selected from the group consisting of, by weight, <=25% each of Dy, Tb, and Gd, <=20% each of La, Ce, Pr, Nd, and Sm, <=10% each of Al, Ca, Cu, Zn, Y, and Ag, <=8.0% Li, <=2.O% Si, <=1.0% Zr, and <=0.1% each of Be, Na, K, Ti, V, Cr Mn, Fe, Co, Ni, Ga, Ge, Nb, Mo, Cd, In, Sn, and Sb, is added to Mg. At this time, the addition of the alloying elements is done so that the S orbital energy levels Mk, determined with respect to Mg and respective alloying elements by a molecular orbital computing method, and the molar fractions of respective alloying elements and the prescribed mechanical properties Mp of the alloy satisfy the prescribed calibration curves. By this method, the composition of the Mg alloy can easily be determined from the desired mechanical properties.

Description

【発明の詳細な説明】Detailed Description of the Invention
【0001】[0001]
【産業上の利用分野】本発明は所定の機械特性を有する
マグネシウム合金の製造方法に関し、例えば所定の引張
強度又はビッカース硬さを有するマグネシウム合金の製
造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a magnesium alloy having predetermined mechanical properties, for example, a method for producing a magnesium alloy having a predetermined tensile strength or Vickers hardness.
【0002】[0002]
【従来の技術】マグネシウム合金は鋳物製品、ダイカス
ト製品、圧延材等として用いられており、それらの用途
によってマグネシウム合金に求められる引張強度、ビッ
カース硬さ等の機械特性が異なってくる。従来、種々の
マグネシウム合金が知られており、公知のマグネシウム
合金の中に所望の機械特性を有するマグネシウム合金が
あれば問題はないが、所望の機械特性を有するマグネシ
ウム合金を新規に開発する場合には、マグネシウム合金
の諸性質に及ぼす各合金元素の影響を試作実験から求
め、これらのデータに基づいて最適合金組成を決定する
という、いわゆる試行錯誤的な方法が用いられていた。
2. Description of the Related Art Magnesium alloys are used as cast products, die cast products, rolled materials, etc., and mechanical properties such as tensile strength and Vickers hardness required for magnesium alloys differ depending on their applications. Conventionally, various magnesium alloys are known, and if there is a magnesium alloy having desired mechanical properties among known magnesium alloys, there is no problem, but in the case of newly developing a magnesium alloy having desired mechanical properties, Used a so-called trial-and-error method in which the effect of each alloying element on various properties of a magnesium alloy was obtained from trial experiments and the optimum alloy composition was determined based on these data.
【0003】[0003]
【発明が解決しようとする課題】しかしながら、従来の
試行錯誤的手法によれば、所望の諸特性を兼備するマグ
ネシウム合金の開発には多大な費用、時間、労力を必要
とし、極めて非能率的であり、特に使用実績のない多成
分系マグネシウム合金についてこのような方法を実施す
ることは極めて困難であった。
However, according to the conventional trial-and-error method, the development of a magnesium alloy having desired properties requires a great deal of cost, time and labor, and is extremely inefficient. However, it is extremely difficult to carry out such a method for a multi-component magnesium alloy that has not been used in particular.
【0004】本発明は、このような従来技術の有する課
題に鑑みてなされたものであり、本発明の目的は、所望
の機械特性からマグネシウム合金組成を容易に決定する
ことのできるマグネシウム合金の製造方法を提供するこ
とにある。
The present invention has been made in view of the above problems of the prior art, and an object of the present invention is to produce a magnesium alloy whose magnesium alloy composition can be easily determined from desired mechanical properties. To provide a method.
【0005】[0005]
【課題を解決するための手段】本発明者等は上記の課題
を解決するために種々検討を重ね、またマグネシウム合
金の諸特性を評価するために、マグネシウム合金の電子
構造を分子軌道計算法(DV−Xαクラスター法)によ
って求めた。この計算法は、例えば足立裕彦著「量子材
料化学入門」(三共出版、1991年)に詳しく説明さ
れている。この計算から求められたパラメーターである
母金属マグネシウム中の合金元素Mのs軌道エネルギー
レベル(以下、Mkと記載する)を用いることにより、
マグネシウム合金の機械特性の検量線が得られ、これに
よりマグネシウム合金の機械特性を評価し得ることを見
出し、本発明を完成した。
Means for Solving the Problems The present inventors have conducted various studies to solve the above-mentioned problems, and in order to evaluate various characteristics of the magnesium alloy, the electronic structure of the magnesium alloy is calculated by a molecular orbital calculation method ( DV-Xα cluster method). This calculation method is described in detail, for example, in "Introduction to Quantum Material Chemistry" by Hirohiko Adachi (Sankyo Publishing, 1991). By using the s-orbital energy level (hereinafter referred to as Mk) of the alloy element M in the mother metal magnesium, which is the parameter obtained from this calculation,
The inventors have found that a calibration curve of the mechanical properties of the magnesium alloy can be obtained and that the mechanical properties of the magnesium alloy can be evaluated, and have completed the present invention.
【0006】本発明においては、図1に示すマグネシウ
ムクラスター模型を用いて分子軌道計算によりMkを算
出した。この算出値は表1に示す通りであった。また、
マグネシウム合金においては、各合金元素の添加可能な
最大量は固溶度、脆い金属間化合物の晶出、合金溶製の
可否等によって制限される。その最大添加量も表1に示
す。
In the present invention, Mk was calculated by molecular orbital calculation using the magnesium cluster model shown in FIG. The calculated value was as shown in Table 1. Also,
In magnesium alloys, the maximum amount of each alloying element that can be added is limited by solid solubility, crystallization of brittle intermetallic compounds, availability of alloy melting, and the like. The maximum addition amount is also shown in Table 1.
【0007】[0007]
【表1】 [Table 1]
【0008】上記のMk値及び下記の式を用いることに
より、合金組成による組成平均を行うことができる: △Mk=Σ|Mki−MkMg|×Xi 式中、Mkiはi元素のMk値であり、MkMgはMg元
素のMk値であり、Xiはi元素のモル分率である。こ
の△Mk値はマグネシウム合金の引張強度、ビッカース
硬さ等の機械特性と相関しており、従ってこの△Mk値
とマグネシウム合金の機械特性との相関から検量線を求
めることができる。そしてこの検量線を利用することに
より所望の機械特性を有する合金組成を容易に決定する
ことができる。また逆にこの検量線を利用することによ
り合金組成からマグネシウム合金の機械特性を求めるこ
とができる。
Composition averaging according to alloy composition can be performed by using the above Mk value and the following formula: ΔMk = Σ | Mk i −Mk Mg | × X i In the formula, Mk i is the i element. Mk value, Mk Mg is the Mk value of the Mg element, and X i is the mole fraction of the i element. This ΔMk value correlates with mechanical properties such as tensile strength and Vickers hardness of the magnesium alloy. Therefore, a calibration curve can be obtained from the correlation between the ΔMk value and the mechanical properties of the magnesium alloy. Then, by using this calibration curve, the alloy composition having desired mechanical properties can be easily determined. On the contrary, by utilizing this calibration curve, the mechanical properties of the magnesium alloy can be determined from the alloy composition.
【0009】具体的には、マグネシウム合金、例えば種
々の組成のMg−Al−Zn−Ca合金並びに種々の組
成のMg−La−Ce−Nd−Sm−Gd合金について
△Mk=Σ|Mki−MkMg|×Xiを求めた。これらの
場合には△Mkは式 △Mk=|MkAl−MkMg|×XAl+|MkZn−MkMg
|×XZn+|MkCa−MkMg|×XCa 並びに式 △Mk=|MkLa−MkMg|×XLa+|MkCe−MkMg
|×XCe+|MkNd−MkMg|×XNd+|MkSm−Mk
Mg|×XSm+|MkGd−MkMg|×XGd によって算出した。この△Mk値とマグネシウム合金に
ついて実測した引張強度又はビッカース硬さとの相関図
はそれぞれ図2及び図3に示す通りであった。この図2
及び図3から検量線が求められる。相関係数を考慮する
と、マグネシウム合金の引張強度Ts(MPa)につい
ては式 Ts=a+bΣ|Mki−MkMg|×Xi (式中、aは135〜147、好ましくは138〜14
4の範囲内の値であり、図2中の直線については14
1.1であり、bは2432であり、Mkiはi元素のM
k値であり、MkMgはMg元素のMk値であり、またX
iはi元素のモル分率である)を満足しており、またマ
グネシウム合金のビッカース硬さHvについては式 Hv=a+bΣ|Mki−MkMg|×Xi (式中、aは40〜50、好ましくは44〜46の範囲
内の値であり、図3中の直線については45.16であ
り、bは551であり、Mkiはi元素のMk値であ
り、MkMgはMg元素のMk値であり、またXiはi元
素のモル分率である)を満足している。
[0009] Specifically, the magnesium alloy, for example, the Mg-La-Ce-Nd- Sm-Gd alloy Mg-Al-Zn-Ca alloys and various compositions of various compositions △ Mk = Σ | Mk i - Mk Mg | × X i was calculated. In these cases, ΔMk is represented by the formula ΔMk = | Mk Al −Mk Mg | × X Al + | Mk Zn −Mk Mg
| × X Zn + | Mk Ca −Mk Mg | × X Ca and the formula ΔMk = | Mk La −Mk Mg | × X La + | Mk Ce −Mk Mg
| × X Ce + | Mk Nd −Mk Mg | × X Nd + | Mk Sm −Mk
It was calculated by Mg | × X Sm + | Mk Gd −Mk Mg | × X Gd . Correlation diagrams between the ΔMk value and the actually measured tensile strength or Vickers hardness of the magnesium alloy are as shown in FIGS. 2 and 3, respectively. This figure 2
And a calibration curve is obtained from FIG. Considering the correlation coefficient, for the tensile strength Ts (MPa) of the magnesium alloy, the equation Ts = a + bΣ | Mk i −Mk Mg | × X i (where a is 135 to 147, preferably 138 to 14)
It is a value within the range of 4 and is 14 for the straight line in FIG.
1.1, b is 2432, Mk i is M of i element
k value, Mk Mg is the Mk value of the Mg element, and X
i is the mole fraction of the element i ), and the Vickers hardness Hv of the magnesium alloy is expressed by the formula Hv = a + bΣ | Mk i −Mk Mg | × X i (where a is 40 to 50). , Preferably in the range of 44 to 46, 45.16 for the straight line in FIG. 3, b is 551, Mk i is the Mk value of the i element, and Mk Mg is the Mg element. Mk value and X i is the mole fraction of the i element).
【0010】本発明においては、これらの検量線から所
望の機械特性を有するマグネシウム合金組成を容易に決
定することができ、所望の機械特性を有するマグネシウ
ム合金を容易に製造することができる。即ち、例えばM
g−Al−Ca合金を製造する場合には、Al添加量を
適当に設定した後、上記の引張強度Tsについての式及
び/又はビッカース硬さHvについての式を満足するよ
うにCa添加量を計算して求めればよい。添加元素が3
種類の場合には、2種類の元素の添加量を適当に設定し
た後、上記の引張強度Tsについての式及び/又はビッ
カース硬さHvについての式を満足するように残りの元
素の添加量を計算して求めればよい。添加元素が4種類
以上の場合にも全く同様にして求めることができる。
In the present invention, a magnesium alloy composition having desired mechanical properties can be easily determined from these calibration curves, and a magnesium alloy having desired mechanical properties can be easily produced. That is, for example, M
In the case of producing a g-Al-Ca alloy, after properly setting the Al addition amount, the Ca addition amount is set so as to satisfy the above formula for tensile strength Ts and / or the formula for Vickers hardness Hv. It can be calculated. 3 additional elements
In the case of the types, after appropriately setting the addition amounts of the two types of elements, the addition amounts of the remaining elements are set so as to satisfy the above formula for the tensile strength Ts and / or the formula for the Vickers hardness Hv. It can be calculated. It can be determined in the same manner even when the number of added elements is four or more.
【0011】従って、本発明の所望の機械特性を有する
マグネシウム合金の製造方法は、8.0重量%以下のL
i、0.1重量%以下のBe、0.1重量%以下のNa、
10重量%以下のAl、2.0重量%以下のSi、0.1
重量%以下のK、10重量%以下のCa、0.1重量%
以下のTi、0.1重量%以下のV、0.1重量%以下の
Cr、0.1重量%以下のMn、0.1重量%以下のF
e、0.1重量%以下のCo、0.1重量%以下のNi、
10重量%以下のCu、10重量%以下のZn、0.1
重量%以下のGa、0.1重量%以下のGe、10重量
%以下のY、1.0重量%以下のZr、0.1重量%以下
のNb、0.1重量%以下のMo、10重量%以下のA
g、0.1重量%以下のCd、0.1重量%以下のIn、
0.1重量%以下のSn、0.1重量%以下のSb、20
重量%以下のLa、20重量%以下のCe、20重量%
以下のPr、20重量%以下のNb、20重量%以下の
Sm、25重量%以下のGd、25重量%以下のTb及
び25重量%以下のDyからなる群から選ばれた少なく
とも1種の合金元素を、マグネシウム及び各合金元素に
ついて分子軌道法により算出したs軌道エネルギーレベ
ルMk及び各合金元素のモル分率と合金の所定の機械特
性Mpとが所定の検量線を満足するように添加すること
を特徴とする。
Therefore, the method for producing a magnesium alloy having the desired mechanical properties according to the present invention is not more than 8.0% by weight of L.
i, 0.1% by weight or less of Be, 0.1% by weight or less of Na,
10% by weight or less of Al, 2.0% by weight or less of Si, 0.1
K less than wt%, Ca less than 10 wt%, 0.1 wt%
Ti below, V below 0.1 wt%, Cr below 0.1 wt%, Mn below 0.1 wt%, F below 0.1 wt%.
e, 0.1% by weight or less of Co, 0.1% by weight or less of Ni,
Cu less than 10% by weight, Zn less than 10% by weight, 0.1
Weight% or less Ga, 0.1 weight% or less Ge, 10 weight% or less Y, 1.0 weight% or less Zr, 0.1 weight% or less Nb, 0.1 weight% or less Mo, 10 Less than A by weight
g, 0.1% by weight or less of Cd, 0.1% by weight or less of In,
0.1 wt% or less Sn, 0.1 wt% or less Sb, 20
La by weight or less, Ce by 20% by weight or less, 20% by weight
At least one alloy selected from the group consisting of the following Pr, 20 wt% or less Nb, 20 wt% or less Sm, 25 wt% or less Gd, 25 wt% or less Tb, and 25 wt% or less Dy. Add an element so that the s-orbital energy level Mk calculated by the molecular orbital method for magnesium and each alloying element, the mole fraction of each alloying element, and the predetermined mechanical property Mp of the alloy satisfy a predetermined calibration curve. Is characterized by.
【0012】また、本発明の所望の引張強度を有するマ
グネシウム合金の製造方法は、具体的には、上記の合金
元素からなる群から選ばれた少なくとも1種の合金元素
を、マグネシウム及び各合金元素について分子軌道法に
より算出したs軌道エネルギーレベルMk及び各合金元
素のモル分率と合金の引張強度Ts(MPa)とが式 Ts=a+bΣ|Mki−MkMg|×Xi (式中、aは135〜147の範囲内の値であり、bは
2432であり、Mkiはi元素のMk値であり、Mk
MgはMg元素のMk値であり、またXiはi元素のモル
分率である)を満足するように添加することを特徴とす
る。
Further, the method for producing a magnesium alloy having a desired tensile strength of the present invention, specifically, comprises at least one alloy element selected from the group consisting of the above alloy elements, magnesium and each alloy element. The s-orbital energy level Mk calculated by the molecular orbital method, the mole fraction of each alloying element, and the tensile strength Ts (MPa) of the alloy are expressed by the formula Ts = a + bΣ | Mk i −Mk Mg | × X i (where, a Is a value within the range of 135 to 147, b is 2432, Mk i is the Mk value of the i element, and Mk is
Mg is the Mk value of the Mg element, and X i is the mole fraction of the i element).
【0013】更に、本発明の所望のビッカース硬さを有
するマグネシウム合金の製造方法は、上記の合金元素か
らなる群から選ばれた少なくとも1種の合金元素を、マ
グネシウム及び各合金元素について分子軌道法により算
出したs軌道エネルギーレベルMk及び各合金元素のモ
ル分率と合金のビッカース硬さHvとが式 Hv=a+bΣ|Mki−MkMg|×Xi (式中、aは40〜50の範囲内の値であり、bは55
1であり、Mkiはi元素のMk値であり、MkMgはM
g元素のMk値であり、またXiはi元素のモル分率で
ある)を満足するように添加することを特徴とする。
Further, the method for producing a magnesium alloy having a desired Vickers hardness of the present invention is a molecular orbital method for magnesium and each alloying element, wherein at least one alloying element selected from the group consisting of the above alloying elements is used. The s-orbital energy level Mk, the mole fraction of each alloying element, and the Vickers hardness Hv of the alloy calculated by the equation Hv = a + bΣ | Mk i −Mk Mg | × X i (where a is in the range of 40 to 50) Is the value within, and b is 55
1, Mk i is the Mk value of the i element, and Mk Mg is M
It is characterized in that it is added so as to satisfy the Mk value of the g element, and X i is the mole fraction of the i element.
【0014】[0014]
【実施例】【Example】
実施例1 マグネシウム合金の機械特性が 引張強度 約196MPa(20kgf/mm2) ビッカース硬さ 約58 である合金を得るために、引張強度及びビッカース硬さ
の検量線から合金組成がMg−3.1%Al−3.1%C
aであるマグネシウム合金を調製した。このマグネシウ
ム合金について引張強度及びビッカース硬さの実測値及
び計算値は次の通りであった:
Example 1 In order to obtain an alloy in which the mechanical properties of the magnesium alloy are tensile strength of about 196 MPa (20 kgf / mm 2 ) and Vickers hardness of about 58, the alloy composition is Mg-3.1 from the calibration curve of tensile strength and Vickers hardness. % Al-3.1% C
A magnesium alloy of a was prepared. The measured and calculated tensile strength and Vickers hardness for this magnesium alloy were as follows:
【0015】[0015]
【発明の効果】本発明のマグネシウム合金の製造方法に
おいては所望の機械特性から検量線を用いて合金組成を
容易に決定できるので、新合金の開発が著しく簡単にな
り、また、これによってユーザーニーズの多様化に迅速
に対処できる。
In the method for producing a magnesium alloy according to the present invention, the alloy composition can be easily determined from the desired mechanical characteristics by using the calibration curve, so that the development of a new alloy can be remarkably simplified. Can quickly deal with the diversification of.
【図面の簡単な説明】[Brief description of drawings]
【図1】本発明において分子軌道計算によりMkを算出
するのに用いたマグネシウムクラスター模型を示す。
FIG. 1 shows a magnesium cluster model used for calculating Mk by molecular orbital calculation in the present invention.
【図2】△Mk値と引張強度との相関を示す引張強度検
量線グラフである。
FIG. 2 is a tensile strength calibration curve graph showing the correlation between ΔMk value and tensile strength.
【図3】△Mk値とビッカース硬さとの相関を示すビッ
カース硬さ検量線グラフである。
FIG. 3 is a Vickers hardness calibration curve graph showing a correlation between ΔMk value and Vickers hardness.

Claims (3)

    【特許請求の範囲】[Claims]
  1. 【請求項1】 8.0重量%以下のLi、0.1重量%以
    下のBe、0.1重量%以下のNa、10重量%以下の
    Al、2.0重量%以下のSi、0.1重量%以下のK、
    10重量%以下のCa、0.1重量%以下のTi、0.1
    重量%以下のV、0.1重量%以下のCr、0.1重量%
    以下のMn、0.1重量%以下のFe、0.1重量%以下
    のCo、0.1重量%以下のNi、10重量%以下のC
    u、10重量%以下のZn、0.1重量%以下のGa、
    0.1重量%以下のGe、10重量%以下のY、1.0重
    量%以下のZr、0.1重量%以下のNb、0.1重量%
    以下のMo、10重量%以下のAg、0.1重量%以下
    のCd、0.1重量%以下のIn、0.1重量%以下のS
    n、0.1重量%以下のSb、20重量%以下のLa、
    20重量%以下のCe、20重量%以下のPr、20重
    量%以下のNb、20重量%以下のSm、25重量%以
    下のGd、25重量%以下のTb及び25重量%以下の
    Dyからなる群から選ばれた少なくとも1種の合金元素
    を、マグネシウム及び各合金元素について分子軌道法に
    より算出したs軌道エネルギーレベルMk及び各合金元
    素のモル分率と合金の所定の機械特性Mpとが所定の検
    量線を満足するように添加することを特徴とする所望の
    機械特性を有するマグネシウム合金の製造方法。
    1. A Li content of not more than 8.0% by weight, a Be content of not more than 0.1% by weight, a Na content of not more than 0.1% by weight, an Al content of not more than 10% by weight, an Si content of not more than 2.0% by weight, and a Si content of 0.0. K less than 1% by weight,
    10% by weight or less of Ca, 0.1% by weight or less of Ti, 0.1
    V less than wt%, Cr less than 0.1 wt%, 0.1 wt%
    The following Mn, 0.1 wt% or less Fe, 0.1 wt% or less Co, 0.1 wt% or less Ni, 10 wt% or less C
    u, 10 wt% or less Zn, 0.1 wt% or less Ga,
    Ge less than 0.1 wt%, Y less than 10 wt%, Zr less than 1.0 wt%, Nb less than 0.1 wt%, 0.1 wt%
    The following Mo, 10 wt% or less Ag, 0.1 wt% or less Cd, 0.1 wt% or less In, 0.1 wt% or less S
    n, 0.1% by weight or less of Sb, 20% by weight or less of La,
    Consists of less than 20 wt% Ce, less than 20 wt% Pr, less than 20 wt% Nb, less than 20 wt% Sm, less than 25 wt% Gd, less than 25 wt% Tb and less than 25 wt% Dy. For at least one alloy element selected from the group, the s-orbital energy level Mk calculated by the molecular orbital method for magnesium and each alloy element, the mole fraction of each alloy element, and the predetermined mechanical property Mp of the alloy are predetermined. A method for producing a magnesium alloy having desired mechanical properties, characterized by adding so as to satisfy a calibration curve.
  2. 【請求項2】 8.0重量%以下のLi、0.1重量%以
    下のBe、0.1重量%以下のNa、10重量%以下の
    Al、2.0重量%以下のSi、0.1重量%以下のK、
    10重量%以下のCa、0.1重量%以下のTi、0.1
    重量%以下のV、0.1重量%以下のCr、0.1重量%
    以下のMn、0.1重量%以下のFe、0.1重量%以下
    のCo、0.1重量%以下のNi、10重量%以下のC
    u、10重量%以下のZn、0.1重量%以下のGa、
    0.1重量%以下のGe、10重量%以下のY、1.0重
    量%以下のZr、0.1重量%以下のNb、0.1重量%
    以下のMo、10重量%以下のAg、0.1重量%以下
    のCd、0.1重量%以下のIn、0.1重量%以下のS
    n、0.1重量%以下のSb、20重量%以下のLa、
    20重量%以下のCe、20重量%以下のPr、20重
    量%以下のNb、20重量%以下のSm、25重量%以
    下のGd、25重量%以下のTb及び25重量%以下の
    Dyからなる群から選ばれた少なくとも1種の合金元素
    を、マグネシウム及び各合金元素について分子軌道法に
    より算出したs軌道エネルギーレベルMk及び各合金元
    素のモル分率と合金の引張強度Ts(MPa)とが式 Ts=a+bΣ|Mki−MkZn|×Xi (式中、aは135〜147の範囲内の値であり、bは
    2432であり、Mkiはi元素のMk値であり、Mk
    ZnはZn元素のMk値であり、またXiはi元素のモル
    分率である)を満足するように添加することを特徴とす
    る所望の引張強度を有するマグネシウム合金の製造方
    法。
    2. A Li content of not more than 8.0% by weight, a Be content of not more than 0.1% by weight, a Na content of not more than 0.1% by weight, an Al content of not more than 10% by weight, an Si content of not more than 2.0% by weight, and a Si content of 0.0. K less than 1% by weight,
    10% by weight or less of Ca, 0.1% by weight or less of Ti, 0.1
    V less than wt%, Cr less than 0.1 wt%, 0.1 wt%
    The following Mn, 0.1 wt% or less Fe, 0.1 wt% or less Co, 0.1 wt% or less Ni, 10 wt% or less C
    u, 10 wt% or less Zn, 0.1 wt% or less Ga,
    Ge less than 0.1 wt%, Y less than 10 wt%, Zr less than 1.0 wt%, Nb less than 0.1 wt%, 0.1 wt%
    The following Mo, 10 wt% or less Ag, 0.1 wt% or less Cd, 0.1 wt% or less In, 0.1 wt% or less S
    n, 0.1% by weight or less of Sb, 20% by weight or less of La,
    Consists of less than 20 wt% Ce, less than 20 wt% Pr, less than 20 wt% Nb, less than 20 wt% Sm, less than 25 wt% Gd, less than 25 wt% Tb and less than 25 wt% Dy. For at least one alloy element selected from the group, s orbital energy level Mk calculated by the molecular orbital method for magnesium and each alloying element, the mole fraction of each alloying element, and the tensile strength Ts (MPa) of the alloy are expressed by Ts = a + bΣ | Mk i −Mk Zn | × X i (where a is a value within the range of 135 to 147, b is 2432, Mk i is the Mk value of the i element, and Mk is
    Zn is the Mk value of the Zn element, and X i is the molar fraction of the i element). A method for producing a magnesium alloy having a desired tensile strength, characterized in that:
  3. 【請求項3】 8.0重量%以下のLi、0.1重量%以
    下のBe、0.1重量%以下のNa、10重量%以下の
    Al、2.0重量%以下のSi、0.1重量%以下のK、
    10重量%以下のCa、0.1重量%以下のTi、0.1
    重量%以下のV、0.1重量%以下のCr、0.1重量%
    以下のMn、0.1重量%以下のFe、0.1重量%以下
    のCo、0.1重量%以下のNi、10重量%以下のC
    u、10重量%以下のZn、0.1重量%以下のGa、
    0.1重量%以下のGe、10重量%以下のY、1.0重
    量%以下のZr、0.1重量%以下のNb、0.1重量%
    以下のMo、10重量%以下のAg、0.1重量%以下
    のCd、0.1重量%以下のIn、0.1重量%以下のS
    n、0.1重量%以下のSb、20重量%以下のLa、
    20重量%以下のCe、20重量%以下のPr、20重
    量%以下のNb、20重量%以下のSm、25重量%以
    下のGd、25重量%以下のTb及び25重量%以下の
    Dyからなる群から選ばれた少なくとも1種の合金元素
    を、マグネシウム及び各合金元素について分子軌道法に
    より算出したs軌道エネルギーレベルMk及び各合金元
    素のモル分率と合金のビッカース硬さHvとが式 Hv=a+bΣ|Mki−MkMg|×Xi (式中、aは40〜50の範囲内の値であり、bは55
    1であり、Mkiはi元素のMk値であり、MkMgはZ
    n元素のMk値であり、またXiはi元素のモル分率で
    ある)を満足するように添加することを特徴とする所望
    のビッカース硬さを有するマグネシウム合金。
    3. Li of less than 8.0% by weight, Be of less than 0.1% by weight, Na of less than 0.1% by weight, Al of less than 10% by weight, Si of less than 2.0% by weight, of 0.0. K less than 1% by weight,
    10% by weight or less of Ca, 0.1% by weight or less of Ti, 0.1
    V less than wt%, Cr less than 0.1 wt%, 0.1 wt%
    The following Mn, 0.1 wt% or less Fe, 0.1 wt% or less Co, 0.1 wt% or less Ni, 10 wt% or less C
    u, 10 wt% or less Zn, 0.1 wt% or less Ga,
    Ge less than 0.1 wt%, Y less than 10 wt%, Zr less than 1.0 wt%, Nb less than 0.1 wt%, 0.1 wt%
    The following Mo, 10 wt% or less Ag, 0.1 wt% or less Cd, 0.1 wt% or less In, 0.1 wt% or less S
    n, 0.1% by weight or less of Sb, 20% by weight or less of La,
    Consists of less than 20 wt% Ce, less than 20 wt% Pr, less than 20 wt% Nb, less than 20 wt% Sm, less than 25 wt% Gd, less than 25 wt% Tb and less than 25 wt% Dy. For at least one alloying element selected from the group, the s-orbital energy level Mk calculated by the molecular orbital method for magnesium and each alloying element, the mole fraction of each alloying element, and the Vickers hardness Hv of the alloy are expressed by the formula Hv = a + bΣ | Mk i −Mk Mg | × X i (where a is a value in the range of 40 to 50, and b is 55).
    1, Mk i is the Mk value of the i element, and Mk Mg is Z
    A magnesium alloy having a desired Vickers hardness, characterized in that it is added so as to satisfy the Mk value of the n element and X i is the mole fraction of the i element.
JP6279521A 1994-11-14 1994-11-14 Production of magnesium alloy Pending JPH08134581A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6279521A JPH08134581A (en) 1994-11-14 1994-11-14 Production of magnesium alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6279521A JPH08134581A (en) 1994-11-14 1994-11-14 Production of magnesium alloy

Publications (1)

Publication Number Publication Date
JPH08134581A true JPH08134581A (en) 1996-05-28

Family

ID=17612190

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6279521A Pending JPH08134581A (en) 1994-11-14 1994-11-14 Production of magnesium alloy

Country Status (1)

Country Link
JP (1) JPH08134581A (en)

Cited By (49)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1840235A1 (en) * 2006-03-31 2007-10-03 BIOTRONIK VI Patent AG Magnesium alloy and corresponding production method
CN100439534C (en) * 2007-01-26 2008-12-03 江苏工业学院 High tenacity casting magnesium alloy
CN100441718C (en) * 2005-01-13 2008-12-10 上海交通大学 In situ synthesis of quasi-crystal and enhanced high performance heat resistant magnesium alloy with similar phase thereof
US20100202916A1 (en) * 2007-05-09 2010-08-12 Chamini Mendis Mg BASE ALLOY
CN101818351A (en) * 2010-04-19 2010-09-01 山东德瑞防腐材料有限公司 High negative potential magnesium base alloy sacrificial anode material and application thereof
WO2011146970A1 (en) * 2010-05-24 2011-12-01 Commonwealth Scientific And Industrial Research Organisation Magnesium-based alloy for wrought applications
CN102618764A (en) * 2012-04-13 2012-08-01 江汉大学 Magnesium alloy with hot cracking resistance and low linear shrinkage
CN102618765A (en) * 2012-04-13 2012-08-01 江汉大学 Magnesium alloy with hot cracking resistance and low linear shrinkage
CN102618757A (en) * 2012-04-13 2012-08-01 江汉大学 Heat-resistant magnesium alloy
CN102618759A (en) * 2012-04-13 2012-08-01 江汉大学 Low-shrinkage magnesium alloy
CN102618758A (en) * 2012-04-13 2012-08-01 江汉大学 Cast magnesium alloy of low linear shrinkage
CN102618762A (en) * 2012-04-13 2012-08-01 江汉大学 Heat-resisting magnesium alloy
JP2012213800A (en) * 2011-03-28 2012-11-08 Hiroshima Univ Method for deciding composition ratio of zinc alloy for high temperature solder and utilization of the same
KR101218875B1 (en) * 2012-11-20 2013-01-09 김종헌 High-strength magnesium alloy extrusion manufacturing
WO2013024125A1 (en) * 2011-08-15 2013-02-21 Meko Laserstrahl-Materialbearbeitungen E.K. Resorbable stents which contain a magnesium alloy
CN102994840A (en) * 2011-09-09 2013-03-27 武汉铁盟机电有限公司 MgAlZn heat resistance magnesium alloy
CN102994836A (en) * 2011-09-09 2013-03-27 江汉大学 Tough magnesium alloy with high elongation rate
CN102994847A (en) * 2011-09-09 2013-03-27 江汉大学 Heatproof magnesium alloy
CN102994837A (en) * 2011-09-09 2013-03-27 冯俊 Tough magnesium alloy containing niobium and cobalt
CN102994835A (en) * 2011-09-09 2013-03-27 江汉大学 Heatproof magnesium alloy
CN103184378A (en) * 2011-12-27 2013-07-03 比亚迪股份有限公司 Magnesium alloy and preparation method for same
CN103484742A (en) * 2013-08-13 2014-01-01 上海交通大学 High-strength damping magnesium alloy
CN103643095A (en) * 2013-12-05 2014-03-19 淄博宏泰防腐有限公司 Magnesium alloy for bicycle frame and preparation method thereof
CN104099506A (en) * 2014-08-06 2014-10-15 杨攀 Multicomponent heat-resistant magnesium alloy and production method thereof
CN104264022A (en) * 2014-10-01 2015-01-07 无棣向上机械设计服务有限公司 Magnesium alloy and preparation method thereof
CN104498796A (en) * 2014-12-15 2015-04-08 苏州昊卓新材料有限公司 Preparation method of Mg alloy
US9169542B2 (en) 2009-06-17 2015-10-27 Kabushiki Kaisha Toyota Chuo Kenkyusho Recycled magnesium alloy, process for producing the same, and magnesium alloy
CN105385912A (en) * 2015-11-13 2016-03-09 无锡清杨机械制造有限公司 Magnesium alloy sheet and preparing method thereof
CN105603279A (en) * 2016-01-27 2016-05-25 国网山东省电力公司莱阳市供电公司 Chromium diboride-enhanced magnesium alloy wire for cable and preparation method and application of magnesium alloy wire
CN105908040A (en) * 2016-06-22 2016-08-31 南昌航空大学 Mg-Gd-Zn-Ni-Zr rare-earth magnesium alloy for semisolid forming and preparation method for semisolid blank of semisolid Mg-Gd-Zn-Ni-Zr rare-earth magnesium alloy
KR20160138736A (en) * 2015-05-26 2016-12-06 주식회사 에스제이테크 Magnesium alloy for die-cast using the calcium silicon alloy powder and manufacturing method of casting using it
CN106367648A (en) * 2016-09-18 2017-02-01 冯军 Magnesium alloy wire doped with graphene and preparing method thereof
RU2615938C1 (en) * 2016-06-16 2017-04-11 Юлия Алексеевна Щепочкина Alloy on base of magnesium
CN107299267A (en) * 2017-06-27 2017-10-27 佛山科学技术学院 A kind of heat conductive magnesium alloy containing zirconium and preparation method thereof
CN107858616A (en) * 2017-12-12 2018-03-30 重庆市科学技术研究院 A kind of high-strength high-plasticity Mg Gd Y Zn Nd Zr cast magnesium alloys and preparation method thereof
CN108179336A (en) * 2018-01-22 2018-06-19 上海交通大学 A kind of super-light Mg-Li alloy and its heat treatment method
CN108251731A (en) * 2018-02-11 2018-07-06 河南科技大学 A kind of magnesium-rare earth and preparation method thereof
CN108251732A (en) * 2018-01-22 2018-07-06 上海交通大学 A kind of high intensity high heat stability magnesium lithium alloy and preparation method thereof
WO2018155994A1 (en) * 2017-02-27 2018-08-30 한국기계연구원 Aging heat-treated high strength magnesium alloy and manufacturing method therefor
CN109055791A (en) * 2018-08-23 2018-12-21 中北大学 A kind of preparation method of the high-strength magnesium alloy thin plate containing aluminium and titanium
CN109072359A (en) * 2017-02-27 2018-12-21 韩国机械研究院 Aging strengthening model type high-strength magnesium alloy and preparation method thereof
CN109161753A (en) * 2018-10-20 2019-01-08 广州宇智科技有限公司 A kind of antiflaming magnesium alloy of coupled surface liquid metal and matrix high heat-transfer performance
CN109161755A (en) * 2018-10-31 2019-01-08 广州宇智科技有限公司 A kind of novel suitable heat dissipation occasion and antiflaming magnesium alloy and its technique based on Sn
CN109161770A (en) * 2018-11-23 2019-01-08 重庆大学 A kind of high-modulus magnesium alloy and preparation method thereof
CN109628814A (en) * 2019-02-22 2019-04-16 中国科学院长春应用化学研究所 Weight rare earth complex intensifying heat resistance magnesium alloy and preparation method thereof
CN109778038A (en) * 2019-03-12 2019-05-21 黄俊龙 A kind of anti-high-pressure anticorrosion rare earth alloy and its processing technology
WO2019208287A1 (en) * 2018-04-23 2019-10-31 キヤノン株式会社 Magnesium-lithium-based alloy
US10544487B2 (en) * 2015-12-30 2020-01-28 The Florida International University Board Of Trustees Age-hardenable magnesium alloys
CN110964959A (en) * 2019-12-20 2020-04-07 佛山科学技术学院 High-strength magnesium-lithium alloy

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0390530A (en) * 1989-08-24 1991-04-16 Norsk Hydro As Magnesium alloy with high mechanical strength, and production of the alloy by rapid solidification
JPH0397824A (en) * 1989-08-24 1991-04-23 Pechiney Rech Group Interet Economique Method for producing magnesium alloy, and alloy obtained by the method
JPH0625790A (en) * 1992-03-25 1994-02-01 Metallges Ag High-strength magnesium alloy

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0390530A (en) * 1989-08-24 1991-04-16 Norsk Hydro As Magnesium alloy with high mechanical strength, and production of the alloy by rapid solidification
JPH0397824A (en) * 1989-08-24 1991-04-23 Pechiney Rech Group Interet Economique Method for producing magnesium alloy, and alloy obtained by the method
JPH0625790A (en) * 1992-03-25 1994-02-01 Metallges Ag High-strength magnesium alloy

Cited By (56)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100441718C (en) * 2005-01-13 2008-12-10 上海交通大学 In situ synthesis of quasi-crystal and enhanced high performance heat resistant magnesium alloy with similar phase thereof
US8293031B2 (en) 2006-03-31 2012-10-23 Biotronik Vi Patent Ag Magnesium alloy and the respective manufacturing method
EP1840235A1 (en) * 2006-03-31 2007-10-03 BIOTRONIK VI Patent AG Magnesium alloy and corresponding production method
US9074269B2 (en) 2006-03-31 2015-07-07 Biotronik Vi Patent Ag Magnesium alloy
CN100439534C (en) * 2007-01-26 2008-12-03 江苏工业学院 High tenacity casting magnesium alloy
US20100202916A1 (en) * 2007-05-09 2010-08-12 Chamini Mendis Mg BASE ALLOY
US9169542B2 (en) 2009-06-17 2015-10-27 Kabushiki Kaisha Toyota Chuo Kenkyusho Recycled magnesium alloy, process for producing the same, and magnesium alloy
CN101818351A (en) * 2010-04-19 2010-09-01 山东德瑞防腐材料有限公司 High negative potential magnesium base alloy sacrificial anode material and application thereof
US9945011B2 (en) 2010-05-24 2018-04-17 Commonwealth Scientific And Industrial Research Organisation Magnesium-based alloy for wrought applications
WO2011146970A1 (en) * 2010-05-24 2011-12-01 Commonwealth Scientific And Industrial Research Organisation Magnesium-based alloy for wrought applications
JP2016218083A (en) * 2011-03-28 2016-12-22 国立大学法人広島大学 Method for determining composition ratio of zinc alloy for high temperature solder and utilization of the same
JP2018089699A (en) * 2011-03-28 2018-06-14 国立大学法人広島大学 Method for determining composition ratio of zinc alloy for high temperature solder and utilization of the same
JP2012213800A (en) * 2011-03-28 2012-11-08 Hiroshima Univ Method for deciding composition ratio of zinc alloy for high temperature solder and utilization of the same
WO2013024125A1 (en) * 2011-08-15 2013-02-21 Meko Laserstrahl-Materialbearbeitungen E.K. Resorbable stents which contain a magnesium alloy
WO2013024124A1 (en) * 2011-08-15 2013-02-21 Meko Laserstrahl-Materialbearbeitungen E.K. Magnesium alloy and resorbable stents containing the same
CN102994847A (en) * 2011-09-09 2013-03-27 江汉大学 Heatproof magnesium alloy
CN102994837A (en) * 2011-09-09 2013-03-27 冯俊 Tough magnesium alloy containing niobium and cobalt
CN102994840A (en) * 2011-09-09 2013-03-27 武汉铁盟机电有限公司 MgAlZn heat resistance magnesium alloy
CN102994836A (en) * 2011-09-09 2013-03-27 江汉大学 Tough magnesium alloy with high elongation rate
CN102994835A (en) * 2011-09-09 2013-03-27 江汉大学 Heatproof magnesium alloy
CN103184378A (en) * 2011-12-27 2013-07-03 比亚迪股份有限公司 Magnesium alloy and preparation method for same
CN102618758A (en) * 2012-04-13 2012-08-01 江汉大学 Cast magnesium alloy of low linear shrinkage
CN102618759A (en) * 2012-04-13 2012-08-01 江汉大学 Low-shrinkage magnesium alloy
CN102618757A (en) * 2012-04-13 2012-08-01 江汉大学 Heat-resistant magnesium alloy
CN102618764A (en) * 2012-04-13 2012-08-01 江汉大学 Magnesium alloy with hot cracking resistance and low linear shrinkage
CN102618762A (en) * 2012-04-13 2012-08-01 江汉大学 Heat-resisting magnesium alloy
CN102618765A (en) * 2012-04-13 2012-08-01 江汉大学 Magnesium alloy with hot cracking resistance and low linear shrinkage
KR101218875B1 (en) * 2012-11-20 2013-01-09 김종헌 High-strength magnesium alloy extrusion manufacturing
CN103484742A (en) * 2013-08-13 2014-01-01 上海交通大学 High-strength damping magnesium alloy
CN103643095A (en) * 2013-12-05 2014-03-19 淄博宏泰防腐有限公司 Magnesium alloy for bicycle frame and preparation method thereof
CN104099506A (en) * 2014-08-06 2014-10-15 杨攀 Multicomponent heat-resistant magnesium alloy and production method thereof
CN104264022A (en) * 2014-10-01 2015-01-07 无棣向上机械设计服务有限公司 Magnesium alloy and preparation method thereof
CN104498796A (en) * 2014-12-15 2015-04-08 苏州昊卓新材料有限公司 Preparation method of Mg alloy
KR20160138736A (en) * 2015-05-26 2016-12-06 주식회사 에스제이테크 Magnesium alloy for die-cast using the calcium silicon alloy powder and manufacturing method of casting using it
CN105385912A (en) * 2015-11-13 2016-03-09 无锡清杨机械制造有限公司 Magnesium alloy sheet and preparing method thereof
US10544487B2 (en) * 2015-12-30 2020-01-28 The Florida International University Board Of Trustees Age-hardenable magnesium alloys
CN105603279A (en) * 2016-01-27 2016-05-25 国网山东省电力公司莱阳市供电公司 Chromium diboride-enhanced magnesium alloy wire for cable and preparation method and application of magnesium alloy wire
RU2615938C1 (en) * 2016-06-16 2017-04-11 Юлия Алексеевна Щепочкина Alloy on base of magnesium
CN105908040A (en) * 2016-06-22 2016-08-31 南昌航空大学 Mg-Gd-Zn-Ni-Zr rare-earth magnesium alloy for semisolid forming and preparation method for semisolid blank of semisolid Mg-Gd-Zn-Ni-Zr rare-earth magnesium alloy
CN106367648A (en) * 2016-09-18 2017-02-01 冯军 Magnesium alloy wire doped with graphene and preparing method thereof
CN109072359A (en) * 2017-02-27 2018-12-21 韩国机械研究院 Aging strengthening model type high-strength magnesium alloy and preparation method thereof
WO2018155994A1 (en) * 2017-02-27 2018-08-30 한국기계연구원 Aging heat-treated high strength magnesium alloy and manufacturing method therefor
CN109072359B (en) * 2017-02-27 2020-09-08 韩国机械研究院 Aging heat treatment type high-strength magnesium alloy and preparation method thereof
CN107299267A (en) * 2017-06-27 2017-10-27 佛山科学技术学院 A kind of heat conductive magnesium alloy containing zirconium and preparation method thereof
CN107858616A (en) * 2017-12-12 2018-03-30 重庆市科学技术研究院 A kind of high-strength high-plasticity Mg Gd Y Zn Nd Zr cast magnesium alloys and preparation method thereof
CN108251732A (en) * 2018-01-22 2018-07-06 上海交通大学 A kind of high intensity high heat stability magnesium lithium alloy and preparation method thereof
CN108179336A (en) * 2018-01-22 2018-06-19 上海交通大学 A kind of super-light Mg-Li alloy and its heat treatment method
CN108251731A (en) * 2018-02-11 2018-07-06 河南科技大学 A kind of magnesium-rare earth and preparation method thereof
WO2019208287A1 (en) * 2018-04-23 2019-10-31 キヤノン株式会社 Magnesium-lithium-based alloy
CN109055791A (en) * 2018-08-23 2018-12-21 中北大学 A kind of preparation method of the high-strength magnesium alloy thin plate containing aluminium and titanium
CN109161753A (en) * 2018-10-20 2019-01-08 广州宇智科技有限公司 A kind of antiflaming magnesium alloy of coupled surface liquid metal and matrix high heat-transfer performance
CN109161755A (en) * 2018-10-31 2019-01-08 广州宇智科技有限公司 A kind of novel suitable heat dissipation occasion and antiflaming magnesium alloy and its technique based on Sn
CN109161770A (en) * 2018-11-23 2019-01-08 重庆大学 A kind of high-modulus magnesium alloy and preparation method thereof
CN109628814A (en) * 2019-02-22 2019-04-16 中国科学院长春应用化学研究所 Weight rare earth complex intensifying heat resistance magnesium alloy and preparation method thereof
CN109778038A (en) * 2019-03-12 2019-05-21 黄俊龙 A kind of anti-high-pressure anticorrosion rare earth alloy and its processing technology
CN110964959A (en) * 2019-12-20 2020-04-07 佛山科学技术学院 High-strength magnesium-lithium alloy

Similar Documents

Publication Publication Date Title
JPH08134581A (en) Production of magnesium alloy
WO2003010349A1 (en) Aluminum alloy excellent in machinability, and aluminum alloy material and method for production thereof
US20060065332A1 (en) Magnesium alloy and production process thereof
JP2004091868A (en) Cu-BASED AMORPHOUS ALLOY
DE112005000312B4 (en) copper alloy
CN105525134A (en) High-strength alloy and preparation method thereof
CN105039777A (en) Machinable brass alloy and preparation method thereof
CN104862524A (en) High-strength alloy and preparation method therefor
CN102994835B (en) Heatproof magnesium alloy
KR20110009657A (en) Iron-nickel alloy
CA2335911A1 (en) Case hardened steel with high tempering temperature, method for obtaining same and parts formed with said steel
CN102618757A (en) Heat-resistant magnesium alloy
JPH111735A (en) High strength cu alloy with excellent press blankability and corrosion resistance
US4059462A (en) Niobium-iron rectangular hysteresis magnetic alloy
CN102618763A (en) Heat resistant magnesium alloy
JPH07278707A (en) Zinc alloy
CN102994847A (en) Heatproof magnesium alloy
CN108315595A (en) It is a kind of to may be cast as and deformable Environment-friendlyzinc zinc alloy
CN102994840A (en) MgAlZn heat resistance magnesium alloy
JPH06228717A (en) Silicon stainless steel
US2289365A (en) Iron-phosphorus-silicon alloy
US4082579A (en) Rectangular hysteresis magnetic alloy
US2384450A (en) Alloy for permanent magnets
JPH0711061B2 (en) Electromagnetic stainless steel for cold forging
JP2542603B2 (en) Abrasion resistance Al-Si-Mn sintered alloy

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20040129