JP5419061B2 - Magnesium alloy - Google Patents

Magnesium alloy Download PDF

Info

Publication number
JP5419061B2
JP5419061B2 JP2008243311A JP2008243311A JP5419061B2 JP 5419061 B2 JP5419061 B2 JP 5419061B2 JP 2008243311 A JP2008243311 A JP 2008243311A JP 2008243311 A JP2008243311 A JP 2008243311A JP 5419061 B2 JP5419061 B2 JP 5419061B2
Authority
JP
Japan
Prior art keywords
alloy
magnesium
magnesium alloy
atomic
aging
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008243311A
Other languages
Japanese (ja)
Other versions
JP2010070839A (en
Inventor
泰祐 佐々木
和博 宝野
忠勝 大久保
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute for Materials Science
Original Assignee
National Institute for Materials Science
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute for Materials Science filed Critical National Institute for Materials Science
Priority to JP2008243311A priority Critical patent/JP5419061B2/en
Publication of JP2010070839A publication Critical patent/JP2010070839A/en
Application granted granted Critical
Publication of JP5419061B2 publication Critical patent/JP5419061B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、時効硬化特性を示すマグネシウム合金に関するものである。   The present invention relates to a magnesium alloy exhibiting age hardening characteristics.

マグネシウム合金は、軽量構造材料として自動車や航空機などへの応用が期待される。
主な強化手段である結晶粒微細化は、室温強度の改善に非常に有効だが、高温強度の改善は難しい。それに対し、マグネシウムと添加元素より構成される第2相の分散による強化は、分散させる相の種類や分布状態によって、幅広い温度域における強度の改善が可能である。
特に、時効析出は、過飽和固溶体を形成させる溶体化処理と、その後の時効処理の組み合わせによって、微細な析出物を粒内、および結晶粒界に分散させることができ、粒内に分散した析出物は転位の運動を阻害し、幅広い温度域における強度の向上が可能である。また、結晶粒界に分散した析出相は、それが熱的に安定であれば粒界すべりを抑制し、高温強度を改善することができる。
こうした時効析出現象の発現が期待できる合金系は、高温度域と低温度域にて、合金元素の溶解度差がある合金である。多くのMg-Al系、Mg-Zn系合金をはじめとした商用マグネシウム合金は時効析出型だが、時効析出により高融点の析出相を分散させることが出来る合金系は、マグネシウムと希土類金属より構成される高価な合金がほとんどであり、希土類金属を含まないMg-Al系、Mg-Zn系の商用マグネシウム合金では、粒界上にあえて破壊の起点となるような高融点の粗大な晶出物のネットワークを形成させ、延性を犠牲にすることで耐熱性を付与していた。
例えば、特許文献1~5の希土類金属を含むマグネシウム合金の生産コストは、希土類金属フリーのマグネシウム合金より高価になる。また、構成元素に高価な希土類金属元素が含まれるような特許文献1~5に示される合金では、ダイカスト鋳造が難しく、自動車部品の大量生産に非経済的である。
一方で、特許文献6〜11のような希土類金属を含まない合金では、高温強度向上のために高融点の金属間化合物を粒界上に分散させているが、粗大で破壊の起点となりやすく、延性低下や鋳造割れの原因となる。
また、特許文献12のように微細な粒子を母相中に分散させた形で高温強度を改善した例であっても、そのプロセスが複雑である場合には、コスト高を招く原因となる。
Magnesium alloys are expected to be applied to automobiles and aircraft as lightweight structural materials.
Crystal grain refinement, which is the main strengthening means, is very effective in improving room temperature strength, but it is difficult to improve high temperature strength. On the other hand, strengthening by dispersing the second phase composed of magnesium and additive elements can improve the strength in a wide temperature range depending on the type and distribution state of the phase to be dispersed.
In particular, aging precipitation can disperse fine precipitates in the grains and grain boundaries by combining the solution treatment for forming a supersaturated solid solution and the subsequent aging treatment. Inhibits the movement of dislocations and can improve the strength in a wide temperature range. Further, if the precipitated phase dispersed in the crystal grain boundary is thermally stable, the grain boundary slip can be suppressed and the high temperature strength can be improved.
An alloy system in which such an aging precipitation phenomenon can be expected is an alloy having a difference in solubility of alloy elements between a high temperature region and a low temperature region. Many magnesium alloys such as Mg-Al and Mg-Zn alloys are aging precipitation type, but the alloy system that can disperse the high melting point precipitation phase by aging precipitation is composed of magnesium and rare earth metal. Most of the expensive alloys are Mg-Al-based and Mg-Zn-based commercial magnesium alloys that do not contain rare earth metals. Heat resistance was imparted by forming a network and sacrificing ductility.
For example, the production cost of magnesium alloys containing rare earth metals of Patent Documents 1 to 5 is higher than that of rare earth metal-free magnesium alloys. In addition, the alloys shown in Patent Documents 1 to 5 in which an expensive rare earth metal element is contained in the constituent elements are difficult to die cast and are uneconomical for mass production of automobile parts.
On the other hand, in an alloy that does not contain a rare earth metal such as Patent Documents 6 to 11, a high melting point intermetallic compound is dispersed on the grain boundary in order to improve the high temperature strength. It causes ductility reduction and casting crack.
Further, even if the high temperature strength is improved by dispersing fine particles in the matrix as in Patent Document 12, if the process is complicated, the cost may increase.

掲載誌名:Phase Diagrams of Binary Magnesium alloys 発行日:1988年 著者:Nayeb-Hashemi AA and Clark JBPublication title: Phase Diagrams of Binary Magnesium alloys Publication date: 1988 Author: Nayeb-Hashemi AA and Clark JB 特開平9−172948JP-A-9-172948 特開2005−113235JP 2005-113235 A 特開2005−213535JP-A-2005-213535 特開2008−75176JP2008-75176 特開2008−127639JP2008-1227639 特開平6−256833JP-A-6-256833 特開平7−34172JP-A-7-34172 特開平10−324941JP 10-324941 A 特開2002−266044JP2002-266044 特開2004−277761JP 2004-277761 A 特開2007−70688JP2007-70688A 特開2008−69438JP2008-69438

本発明はこのような実情に鑑み、希土類元素を用いずに時効析出現象を生じさせるマグネシウム合金を提供することを目的とする。   In view of such circumstances, an object of the present invention is to provide a magnesium alloy that causes an aging precipitation phenomenon without using rare earth elements.


本発明のマグネシウム合金は、ビスマスを0.85原子%以下、亜鉛を0.5原子%以上2原子%未満含有し、残部マグネシウム及び不可避的不純物からなるマグネシウム合金であって、結晶粒径は100〜200μmであり、溶体化処理によってビスマスと亜鉛は母相に固溶して過飽和固溶体を形成すると共に、マグネシウムの柱面である(1120)面に板状の析出物が析出していることを特徴とする(ここで、(1120)面の表記として正しい表記は下記の数1に記載のものである)。
本発明のマグネシウム合金において、好ましくは、板状の析出物は、直径が100〜250nmで、厚さが20nmであるとよい。
本発明のマグネシウム合金において、好ましくは、ビスマスリッチの結晶粒径が2〜3μmの第2相粒子が存在するとよい。 本発明のマグネシウム合金において、好ましくは、板状の析出物は、直径が40〜50nmで、厚さが10nmであるとよい。
本発明のマグネシウム合金において、好ましくは、時効処理を最大硬度に達するまでおこなうとよい。


Magnesium alloy of the present invention, bismuth 0.85 atomic% or less, zinc contains less than 2 atomic% 0.5 atom% or more, a magnesium alloy and the balance being magnesium and unavoidable impurities, grain size 100 to 200 μm, bismuth and zinc are dissolved in the matrix by solution treatment to form a supersaturated solid solution, and a plate-like precipitate is deposited on the (1120) plane which is the columnar surface of magnesium. (Here, the correct notation for the (1120) plane is the one described in the following equation 1).
In the magnesium alloy of the present invention, preferably, the plate-like precipitate has a diameter of 100 to 250 nm and a thickness of 20 nm.
In the magnesium alloy of the present invention, preferably, second phase particles having a bismuth-rich crystal grain size of 2 to 3 μm are present. In the magnesium alloy of the present invention, preferably, the plate-like precipitate has a diameter of 40 to 50 nm and a thickness of 10 nm.
In the magnesium alloy of the present invention, the aging treatment is preferably performed until the maximum hardness is reached.

本発明におけるMg-Bi合金では、状態図から予測される析出相の融点は、希土類金属元素と同等の800℃程度であるため、Mg-希土類金属合金よりも低コストで、かつこれまでの希土類金属を含まない合金のように破壊の起点となるような粗大な晶出物のネットワークを形成させることなく、耐熱性を兼ね備えたマグネシウム合金が開発できるものである。
また、Znを適当な量添加することで、析出物の形状をマグネシウム合金の強化に最も有効である(1120)面に析出する板状の析出物を多く分散させることが出来た。
In the Mg-Bi alloy according to the present invention, the melting point of the precipitated phase predicted from the phase diagram is about 800 ° C., which is equivalent to that of the rare earth metal element. It is possible to develop a magnesium alloy having heat resistance without forming a coarse crystallized network that becomes a starting point of fracture like an alloy containing no metal.
In addition, by adding an appropriate amount of Zn, it was possible to disperse a large amount of plate-like precipitates deposited on the (1120) plane, which is the most effective for strengthening the magnesium alloy.

(1) 合金組成:主要成分として、少なくともBiとZnを含む合金。
以下の実験結果から次のことが明らかとなった。
Biの添加量:
少なくともこれを含み、その含有量が0.85原子%以下とするのが好ましい。
非特許文献1にあるように、Biは常温ではMg母相にほぼ固溶しないが、温度の増加と共に固溶限は急激に拡大し、550℃で0.96 原子%Mg中に固溶する。
しかし、通常、Mg合金の熱処理温度の上限は500〜530℃であり、それを溶体化処理温度の上限とした時に固溶させることが出来るBiの量は約0.85原子%なので、これが好ましい添加量の上限となる。
溶体化処理中にマグネシウム母相に固溶させることが出来るBiの量が溶体化処理の上限温度によって約0.85原子%に限定されるため、これ以上のBiを添加しても、時効析出による硬度、強度上昇の効果を見込むことは不可能であり、また、過剰に添加されたBiは粒界に粗大な晶出物を形成し、溶体化処理後の水冷時に鋳物が割れる原因となり、延性を損なう原因となる。
(1) Alloy composition: an alloy containing at least Bi and Zn as main components.
The following results became clear from the following experimental results.
Addition amount of Bi:
It is preferable that at least this is included and the content is 0.85 atomic% or less.
As described in Non-Patent Document 1, Bi does not substantially dissolve in the Mg matrix at room temperature, but the solid solubility limit increases rapidly with increasing temperature, and dissolves in 0.96 atomic% Mg at 550 ° C.
However, usually, the upper limit of the heat treatment temperature of the Mg alloy is 500 to 530 ° C., and when the upper limit of the solution treatment temperature is used, the amount of Bi that can be dissolved is about 0.85 atomic%. It becomes the upper limit of.
The amount of Bi that can be dissolved in the magnesium matrix during the solution treatment is limited to about 0.85 atomic% depending on the maximum temperature of the solution treatment, so even if more Bi is added, the hardness due to aging precipitation In addition, it is impossible to expect the effect of increasing the strength, and Bi added excessively forms coarse crystallized products at the grain boundaries, which causes the casting to break during water cooling after solution treatment, resulting in ductility. Cause damage.

Znの添加量:
0.5原子%以上の添加が望ましい。より好ましくは、0.5原子%以上、2原子%未満。
Znは、Mg-Bi合金の時効硬化性を改善する添加元素である。実施例1、2に示すように、ビッカース硬さにして60 VHNの硬度を達成するためには、0.5原子%以上の添加が望ましい。
これは、Znの添加によって、析出物の微細化、形状、および分布状態の変化が起こることが原因であることは、図4、7より明らかである。
また、図8に示すとおり、2原子%のZnを添加した場合は、時効析出に起因する硬化量も1原子%添加した場合と大差ないだけでなく、図10に示すように溶体化処理後の水冷時に鋳物が割れる。そのため、Znのより好ましい添加量として、0.5原子%以上、2原子%未満とするのが良い。
Znを過剰に添加すると、含有元素を溶体化処理中に母相に固溶させることが出来ず、Bi、ZnとMgよりなる晶出物が粒界上に残存する事が原因であることは図9 (f)より容易に類推できる。
Addition amount of Zn:
Addition of 0.5 atomic% or more is desirable. More preferably, it is 0.5 atomic% or more and less than 2 atomic%.
Zn is an additive element that improves the age hardening of the Mg-Bi alloy. As shown in Examples 1 and 2, in order to achieve a Vickers hardness of 60 VHN, addition of 0.5 atomic% or more is desirable.
It is clear from FIGS. 4 and 7 that this is caused by the refinement of precipitates and the change in shape and distribution state due to the addition of Zn.
In addition, as shown in FIG. 8, when 2 atomic% of Zn is added, not only is the amount of hardening caused by aging precipitation different from the case of adding 1 atomic%, but also after solution treatment as shown in FIG. The casting breaks during water cooling. Therefore, a more preferable addition amount of Zn is 0.5 atomic% or more and less than 2 atomic%.
If excessive Zn is added, the contained elements cannot be dissolved in the matrix during the solution treatment, and the crystallized product of Bi, Zn and Mg remains on the grain boundary. It can be easily inferred from Fig. 9 (f).

時効時間について
時効析出による強化の効果を最大限に高め、高い強度を有する状態にするために、時効処理を最大硬度に達するまで行うと良い。0.5原子%のZnを添加した合金の場合は25時間、1.0原子%以上のZnを添加した合金の場合は100時間とするのが好ましい。
In order to maximize the strengthening effect due to aging precipitation and to have a high strength, the aging treatment is preferably performed until the maximum hardness is reached. In the case of an alloy to which 0.5 atomic% of Zn is added, it is preferably 25 hours, and in the case of an alloy to which 1.0 atomic% or more of Zn is added, it is preferably 100 hours.

実施例1として、Mg-0.8Bi-0.5Zn合金の例を示す。特に断りがない限り、合金組成は原子%で表す。
実験は図1に示すフローチャートに沿って行った。
まず、高周波誘導溶解炉を用いて純マグネシウム、純ビスマス、純亜鉛を鉄るつぼ中で溶解し、鉄鋳型に鋳造した。
得られた鋳塊をパイレックス管にHe封入し、マッフル炉を用いて525℃で48時間の均質化処理を行い、水冷した。
次に、均質化処理材をパイレックス管に再度He封入し、マッフル炉を用いて525℃で48時間の溶体化処理を行い、水冷した。
その後オイルバスを用いて160℃で時効処理を行った。
時効処理中における硬さの変化を調べるために、ビッカース硬さ計を用いて硬さの経時変化を測定し、時効硬化曲線を作成した。時効硬化曲線の測定にあたって、ある一定時間経過後、合金をオイルバスから取り出し、荷重300g、荷重時間10秒で異なる任意の場所から10回測定を行い、その測定値のうち最大値と最小値を除いた8つの測定値の平均値をその時間における合金の硬さとした。
ミクロ組織の観察をOM(Optical microscope (光学顕微鏡))、およびSEM(Scanning electron microscope (走査型電子顕微鏡))を用いて行い、粒内の析出組織の観察をTEM(Transmission electron microscope (透過型電子顕微鏡))を用いて行った。
時効処理中最大硬度に達した材料の機械的特性を圧縮試験によって評価した。
表1の測定データに基づく図2の時効硬化曲線に示すように、溶体化処理後のビッカース硬さは47VHNであり、時効開始後30時間してピーク時効に達する。ピーク時効時におけるビッカース硬さは61VHN、時効処理による硬度の増加は14VHNであった。

注:灰色で塗りつぶした測定値は平均値の計算時に除外した測定データを示す。
Example 1 shows an example of an Mg-0.8Bi-0.5Zn alloy. Unless otherwise specified, alloy compositions are expressed in atomic percent.
The experiment was performed according to the flowchart shown in FIG.
First, pure magnesium, pure bismuth and pure zinc were melted in an iron crucible using a high frequency induction melting furnace and cast into an iron mold.
The obtained ingot was sealed with He in a Pyrex tube, homogenized at 525 ° C. for 48 hours using a muffle furnace, and cooled with water.
Next, the homogenized material was again sealed with He in the Pyrex tube, subjected to a solution treatment at 525 ° C. for 48 hours using a muffle furnace, and cooled with water.
Thereafter, an aging treatment was performed at 160 ° C. using an oil bath.
In order to examine the change in hardness during the aging treatment, the time-dependent change in hardness was measured using a Vickers hardness meter, and an age hardening curve was prepared. When measuring the age hardening curve, the alloy is taken out from the oil bath after a certain period of time, measured 10 times from any place with a load of 300 g and a load time of 10 seconds, and the maximum and minimum values are measured. The average value of the eight measured values was taken as the hardness of the alloy at that time.
The microstructure is observed using OM (Optical microscope) and SEM (Scanning electron microscope), and the precipitation structure in the grain is observed by TEM (Transmission electron microscope). Microscope)).
The mechanical properties of the material that reached the maximum hardness during aging treatment were evaluated by compression test.
As shown in the age hardening curve of FIG. 2 based on the measurement data of Table 1, the Vickers hardness after solution treatment is 47 VHN, and reaches peak aging 30 hours after the start of aging. The Vickers hardness at peak aging was 61 VHN, and the increase in hardness by aging treatment was 14 VHN.

Note: Measurement values filled in gray indicate measurement data excluded when calculating the average value.

OM、SEMを用いて観察した溶体化処理後の組織を図3に示す。
図3(a)に示すように、結晶粒径は100〜200μm程度であり、図3(b)に示すように、溶体化処理によってBiおよびZnは母相に固溶し、過飽和固溶体を形成している。
TEMを用いて観察したピーク時効時の粒内の組織を図4に示す。図4(a)、(b)は(1120)および(0001)晶帯軸から微細組織を低倍率で観察したものであり、図4(c)、(d)は(1120)、および(0001)晶帯軸から微細組織を高倍率で観察したものである。
図4(a)および(b)に示すように、析出物は母相中に均一に分散している。また、図4(c)および(d)からトレース解析を行った結果、マグネシウムの柱面である(1120)面に析出する板状の析出物(直径100〜250nm×厚さ20nm)が多く観察された。

The structure after solution treatment observed using OM and SEM is shown in FIG.
As shown in FIG. 3 (a), the crystal grain size is about 100 to 200 μm , and as shown in FIG. 3 (b), Bi and Zn are dissolved in the parent phase by solution treatment, and the supersaturated solid solution is obtained. Is forming.
FIG. 4 shows the intragranular structure at the time of peak aging observed using TEM. FIGS. 4A and 4B are obtained by observing the microstructure from the (1120) and (0001) crystallographic axis at a low magnification, and FIGS. 4C and 4D are (1120) and (0001). ) The microstructure is observed at high magnification from the zone axis.
As shown in FIGS. 4A and 4B, the precipitates are uniformly dispersed in the matrix phase. Further, as a result of the trace analysis from FIGS. 4C and 4D, many plate-like precipitates (diameter: 100 to 250 nm × thickness 20 nm) precipitated on the (1120) plane which is the columnar surface of magnesium are observed. It was.

実施例2として、Mg−0.8Bi−1.0Zn合金の例を示す。特に断りがない限り、合金組成は原子%で表す。
実施例1と同様、図1に示すフローチャートに沿った実験を行った。
まず、高周波誘導溶解炉を用いて純マグネシウム、純ビスマス、純亜鉛を鉄るつぼ中で溶解し、鉄鋳型に鋳造した。
得られた鋳塊をパイレックス管にHe封入し、マッフル炉を用いて525℃で48時間の均質化処理を行い、水冷した。
次に、均質化処理材をパイレックス管に再度He封入し、マッフル炉を用いて525℃で48時間の溶体化処理を行い、水冷した。
その後オイルバスを用いて160℃で時効処理を行った。
時効処理中における硬さの変化を調べるために、ビッカース硬さ計を用いて硬さの経時変化を測定し、時効硬化曲線を作成した。時効硬化曲線の測定にあたって、ある一定時間経過後、合金をオイルバスから取り出し、荷重300g、荷重時間10秒で異なる任意の場所から10回硬さ測定を行い、その測定値のうち最大の硬さと最小の硬さを除いた8つの測定値の平均値をその時間における合金の硬さとした。
ミクロ組織の観察をOM(Optical microscope (光学顕微鏡))、およびSEM(Scanning electron microscope (走査型電子顕微鏡))を用いて行い、粒内の析出組織の観察をTEM(Transmission electron microscope (透過型電子顕微鏡))を用いて行った。
時効処理中最大硬度に達した材料の機械的特性を圧縮試験によって評価した。
表2の測定データに基づく図5に示す時効硬化曲線のように、溶体化処理後のビッカース硬さは44VHNであり、時効開始後100時間でピーク時効に達する。ピーク時効時におけるビッカース硬さは68VHN、時効処理による硬度の増加は22VHNであった。また、圧縮試験により強度評価を行った結果、139MPaの降伏強度を示した。

注:灰色で塗りつぶした測定値は平均値の計算時に除外した測定データを示す。

Example 2 shows an example of an Mg-0.8Bi-1.0Zn alloy. Unless otherwise specified, alloy compositions are expressed in atomic percent.
As in Example 1, an experiment was performed according to the flowchart shown in FIG.
First, pure magnesium, pure bismuth and pure zinc were melted in an iron crucible using a high frequency induction melting furnace and cast into an iron mold.
The obtained ingot was sealed with He in a Pyrex tube, homogenized at 525 ° C. for 48 hours using a muffle furnace, and cooled with water.
Next, the homogenized material was again sealed with He in a Pyrex tube, and solution treatment was performed at 525 ° C. for 48 hours using a muffle furnace, followed by water cooling.
Thereafter, an aging treatment was performed at 160 ° C. using an oil bath.
In order to examine the change in hardness during the aging treatment, the time-dependent change in hardness was measured using a Vickers hardness meter, and an age hardening curve was prepared. When measuring the age hardening curve, the alloy is taken out from the oil bath after a certain period of time, and the hardness is measured 10 times from any different place with a load of 300 g and a load time of 10 seconds. The average value of the eight measured values excluding the minimum hardness was the hardness of the alloy at that time.
The microstructure is observed using OM (Optical microscope) and SEM (Scanning electron microscope), and the precipitation structure in the grains is observed by TEM (Transmission electron microscope). Microscope)).
The mechanical properties of the material that reached the maximum hardness during aging treatment were evaluated by compression test.
Like the age hardening curve shown in FIG. 5 based on the measurement data of Table 2, the Vickers hardness after solution treatment is 44 VHN, and reaches peak aging in 100 hours after aging start. The Vickers hardness at the time of peak aging was 68 VHN, and the increase in hardness by aging treatment was 22 VHN. Moreover, as a result of strength evaluation by a compression test, a yield strength of 139 MPa was shown.

Note: Measurement values filled in gray indicate measurement data excluded when calculating the average value.

OM、SEMによって観察した溶体化処理後の微細組織を図6に示す。図6(a)に示すように、結晶粒径は100〜200μm程度であり、図6(b)に示すように、溶体化処理によってBiおよびZnは、ほぼ母相に固溶していたが、Bi−richの化合物と思われる2〜3μm程度の第2相粒子の存在がわずかに確認された。
TEMを用いて観察したピーク時効時のMg−0.8Bi−1.0Zn合金の最大硬度時の粒内の微細組織を図7(a)、(b)に示す。図7(a)、(b)は、それぞれ(0110)、および(0001)晶帯軸から低倍で観察したものである。析出物はMg−0.8Bi−0.5Znに比べて、微細化されている。また、図7(c)、(d)は、この組織をそれぞれ(0110)、および(0001)晶帯軸から低倍で観察したものであるMg−0.8Bi−0.5Zn合金と同様に、析出物の多くは、マグネシウムの柱面である(1120)面を晶癖面とする板状の析出物(直径40〜50nm×厚さ10nm)であった。
FIG. 6 shows the microstructure after solution treatment observed by OM and SEM. As shown in FIG. 6 (a), the crystal grain size is about 100 to 200 μm , and as shown in FIG. 6 (b), Bi and Zn are substantially dissolved in the matrix by solution treatment. However, the presence of second-phase particles of about 2 to 3 μm , which seems to be a Bi-rich compound, was slightly confirmed.
FIGS. 7A and 7B show the microstructure in the grains at the maximum hardness of the Mg-0.8Bi-1.0Zn alloy during peak aging observed using TEM. FIGS. 7A and 7B are observed at low magnifications from the (0110) and (0001) crystal zone axes, respectively. The precipitate is refined compared to Mg-0.8Bi-0.5Zn. 7 (c) and 7 (d) are similar to the Mg-0.8Bi-0.5Zn alloy in which this structure is observed at a low magnification from the (0110) and (0001) crystal zone axes, respectively. Most of the precipitates were plate-like precipitates (diameter 40 to 50 nm × thickness 10 nm) with the (1120) plane being the columnar surface of magnesium as the crystal habit plane.

上記の実施例の他、Mg-0.8Bi、Mg-0.8Bi-0.2Zn、Mg-0.8Bi-2.0Zn合金についても時効硬化挙動を調査した。
それらの合金の時効硬化曲線を図8に示し、表4に溶体化処理後、およびピーク時効時のビッカース硬さ、および時効処理による硬さの増分をまとめる。

注:灰色で塗りつぶした測定値は平均値の計算時に除外した測定データを示す。
In addition to the above examples, the age hardening behavior of Mg-0.8Bi, Mg-0.8Bi-0.2Zn, and Mg-0.8Bi-2.0Zn alloys was also investigated.
The age hardening curves of these alloys are shown in FIG. 8, and Table 4 summarizes the Vickers hardness after solution treatment and during peak aging, and the increase in hardness due to aging treatment.

Note: Measurement values filled in gray indicate measurement data excluded when calculating the average value.

Mg-0.8Bi、Mg-0.8Bi-0.2Zn、Mg-0.8Bi-2.0Zn合金のOM、SEMを用いて観察したミクロ組織を図9に示す。図9 (a)、(b)に示す光学顕微鏡組織みられるように、Mg-0.8Bi、Mg-0.8Bi-0.2Zn合金は、図3、図6に示したMg-0.8Bi-0.5Zn、Mg-0.8Bi-1.0Zn合金と同程度の結晶粒径を有する。また、図9(d)、(e)に示す反射電子像に見られるように、これらの合金ではMg-0.8Bi-0.5Zn、Mg-0.8Bi-1.0Zn合金と同様にBi、Znが母相に固溶している。
しかし、表4、および図9(c)の光学顕微鏡像に示すように、Mg-0.8Bi-2.0Zn合金は他の実験例に示した合金よりも粗大な結晶粒より構成され、また、図9 (f)の反射電子像に示すように、粒界上に溶体化処理によっても母相に固溶させることが出来なかった晶出物が残っている。
FIG. 9 shows the microstructure of the Mg-0.8Bi, Mg-0.8Bi-0.2Zn, and Mg-0.8Bi-2.0Zn alloys observed using OM and SEM. As seen in the optical microstructure shown in FIGS. 9 (a) and (b), the Mg-0.8Bi and Mg-0.8Bi-0.2Zn alloys are Mg-0.8Bi-0.5Zn shown in FIG. 3 and FIG. It has the same crystal grain size as Mg-0.8Bi-1.0Zn alloy. In addition, as seen in the backscattered electron images shown in FIGS. 9 (d) and 9 (e), in these alloys, Bi and Zn are the same as the Mg-0.8Bi-0.5Zn and Mg-0.8Bi-1.0Zn alloys. It is a solid solution in the phase.
However, as shown in Table 4 and the optical microscope image of FIG. 9 (c), the Mg-0.8Bi-2.0Zn alloy is composed of coarser grains than the alloys shown in the other experimental examples. As shown in the backscattered electron image of 9 (f), crystallized substances that could not be dissolved in the matrix even by solution treatment remain on the grain boundaries.

本発明のマグネシウム合金は、耐熱強度を有するマグネシウム合金部材。特に自動車のエンジン周りの部品などに適用される可能性がある。
The magnesium alloy of the present invention is a magnesium alloy member having heat resistance strength. In particular, it may be applied to parts around an automobile engine.

実験のフローチャートFlow chart of experiment Mg-0.8Bi-0.5Zn合金の時効硬化曲線Age hardening curve of Mg-0.8Bi-0.5Zn alloy 溶体化処理後のMg-0.8Bi-0.5Zn合金のミクロ組織、(a):光学顕微鏡組織、(b):反射電子像Microstructure of Mg-0.8Bi-0.5Zn alloy after solution treatment, (a): Optical microstructure, (b): Backscattered electron image 最大硬度時のMg-0.8Bi-0.5Zn合金の粒内の組織TEM明視野像、(a): (1120)晶帯軸から低倍で観察した粒内のTEM像、(b): (0001)晶帯軸から低倍で観察した粒内のTEM像、(c): (1120)晶帯軸から高倍で観察した粒内のTEM像、(d): (0001)晶帯軸から高倍で観察した粒内のTEM像In-grain microstructure TEM bright-field image of Mg-0.8Bi-0.5Zn alloy at maximum hardness, (a): (1120) In-grain TEM image observed at low magnification from the zone axis, (b): (0001 ) Intragranular TEM image observed at a low magnification from the zone axis, (c): (1120) Intragranular TEM image observed at a high magnification from the zone axis, (d): High from the (0001) zone axis TEM image in the observed grain Mg-0.8Bi-1.0Zn合金の時効硬化曲線Age hardening curve of Mg-0.8Bi-1.0Zn alloy 溶体化処理後のMg-0.8Bi-1.0Zn合金のミクロ組織、(a):光学顕微鏡組織、(b):反射電子像Microstructure of Mg-0.8Bi-1.0Zn alloy after solution treatment, (a): Optical microstructure, (b): Backscattered electron image 最大硬度時のMg-0.8Bi-1.0Zn合金の粒内の組織TEM明視野像、(a):(0110)晶帯軸から低倍で観察した粒内のTEM像、(b): (0001)晶帯軸から低倍で観察した粒内のTEM像、(c): (0110)晶帯軸から高倍で観察した粒内のTEM像、(d): (0001)晶帯軸から高倍で観察した粒内のTEM像In-grain microstructure TEM bright field image of Mg-0.8Bi-1.0Zn alloy at maximum hardness, (a): (0110) Intra-grain TEM image observed at low magnification from the zone axis, (b): (0001 ) Intragranular TEM image observed at a low magnification from the zone axis, (c): (0110) Intragranular TEM image observed at a high magnification from the zone axis, (d): High from the (0001) zone axis TEM image in the observed grain Mg-0.8Bi、Mg-0.8Bi-0.2Zn、Mg-0.8Bi-2.0Zn合金の時効硬化曲線Age hardening curves of Mg-0.8Bi, Mg-0.8Bi-0.2Zn, Mg-0.8Bi-2.0Zn alloys Mg-0.8Bi、Mg-0.8Bi-0.2Zn、Mg-0.8Bi-2.0Zn合金のミクロ組織、(a):Mg-0.8Bi合金の光学顕微鏡組織、(b):Mg-0.8Bi-0.2Zn合金の光学顕微鏡組織、(c):Mg-0.8Bi-2.0Zn合金の光学顕微鏡組織、(d):Mg-0.8Bi合金の反射電子像、(e):Mg-0.8Bi-0.2Zn合金の反射電子像、(f):Mg-0.8Bi-2.0Zn合金の反射電子像Mg-0.8Bi, Mg-0.8Bi-0.2Zn, microstructure of Mg-0.8Bi-2.0Zn alloy, (a): Optical microstructure of Mg-0.8Bi alloy, (b): Mg-0.8Bi-0.2Zn Optical microstructure of alloy, (c): Optical microstructure of Mg-0.8Bi-2.0Zn alloy, (d): Reflected electron image of Mg-0.8Bi alloy, (e): Mg-0.8Bi-0.2Zn alloy Backscattered electron image, (f): Backscattered electron image of Mg-0.8Bi-2.0Zn alloy Mg-0.8Bi、Mg-0.8Bi-1.0Zn、Mg-0.8Bi-2.0Zn合金の溶体化処理後の鋳塊の写真Photograph of ingot after solution treatment of Mg-0.8Bi, Mg-0.8Bi-1.0Zn, Mg-0.8Bi-2.0Zn alloy 明細書中、(1120)の正しい表示Correct indication of (1120) in the description 明細書中、(0001)の正しい表示Correct indication of (0001) in the description 明細書中、(0110)の正しい表示Correct indication of (0110) in the description

Claims (5)


ビスマスを0.85原子%以下、
亜鉛を0.5原子%以上2原子%未満含有し
残部がマグネシウム及び不可避的不純物からなるマグネシウム合金であって、
結晶粒径は100〜200μmであり、まず溶体化処理によってビスマスと亜鉛は母相に固溶して過飽和固溶体を形成させ、その後の時効処理によって、マグネシウムの柱面である(1120)面に板状の析出物が析出していることを特徴とするマグネシウム合金(ここで、(1120)面の表記として正しい表記は下記の数1に記載のものである)。

0.85 atomic% or less of bismuth,
Containing 0.5 atomic% or more and less than 2 atomic% of zinc,
The balance is magnesium alloy consisting of magnesium and inevitable impurities,
The crystal grain size is 100 to 200 μm. First, bismuth and zinc are dissolved in the matrix by solution treatment to form a supersaturated solid solution, and then a plate is formed on the (1120) plane which is the column surface of magnesium by aging treatment. A magnesium alloy characterized in that a precipitate is deposited (here, the correct notation for the (1120) plane is the one described in the following equation 1).
前記板状の析出物は、直径が100〜250nmで、厚さが20nmであることを特徴とする請求項1に記載のマグネシウム合金。   The magnesium alloy according to claim 1, wherein the plate-like precipitate has a diameter of 100 to 250 nm and a thickness of 20 nm. さらに、ビスマスリッチの結晶粒径が2〜3μmの第2相粒子が存在することを特徴とする請求項1に記載のマグネシウム合金。 2. The magnesium alloy according to claim 1, wherein second phase particles having a bismuth-rich crystal grain size of 2 to 3 μm are present. 前記板状の析出物は、直径が40〜50nmで、厚さが10nmであることを特徴とする請求項3に記載のマグネシウム合金。   The magnesium alloy according to claim 3, wherein the plate-like precipitate has a diameter of 40 to 50 nm and a thickness of 10 nm. 時効処理を最大硬度に達するまでおこなったことを特徴とする請求項1乃至請求項4の何れか1項に記載のマグネシウム合金。
The magnesium alloy according to any one of claims 1 to 4, wherein the aging treatment is performed until the maximum hardness is reached.
JP2008243311A 2008-09-22 2008-09-22 Magnesium alloy Expired - Fee Related JP5419061B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008243311A JP5419061B2 (en) 2008-09-22 2008-09-22 Magnesium alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008243311A JP5419061B2 (en) 2008-09-22 2008-09-22 Magnesium alloy

Publications (2)

Publication Number Publication Date
JP2010070839A JP2010070839A (en) 2010-04-02
JP5419061B2 true JP5419061B2 (en) 2014-02-19

Family

ID=42202893

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008243311A Expired - Fee Related JP5419061B2 (en) 2008-09-22 2008-09-22 Magnesium alloy

Country Status (1)

Country Link
JP (1) JP5419061B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11060173B2 (en) 2016-03-10 2021-07-13 National Institute For Materials Science Wrought processed magnesium-based alloy and method for producing same
WO2019017307A1 (en) * 2017-07-18 2019-01-24 国立研究開発法人物質・材料研究機構 Magnesium-based alloy wrought product and method for producing same
CN107201471B (en) * 2017-07-28 2019-03-29 山东省科学院新材料研究所 A kind of wrought magnesium alloy and preparation method thereof

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NO152944C (en) * 1978-05-31 1985-12-18 Magnesium Elektron Ltd MAGNESIUM ALLOY WITH GOOD MECHANICAL PROPERTIES.

Also Published As

Publication number Publication date
JP2010070839A (en) 2010-04-02

Similar Documents

Publication Publication Date Title
JP5852580B2 (en) Flame retardant magnesium alloy having excellent mechanical properties and method for producing the same
KR101159790B1 (en) Magnesium alloy having high ductility and high toughness and process for preparing the same
JP4189687B2 (en) Magnesium alloy material
JP5703881B2 (en) High strength magnesium alloy and method for producing the same
JP6860235B2 (en) Magnesium-based alloy wrought material and its manufacturing method
JP6860236B2 (en) Magnesium-based alloy wrought material and its manufacturing method
US11060173B2 (en) Wrought processed magnesium-based alloy and method for producing same
Ibrahim et al. Effect of aging conditions on precipitation hardening in Al–Si–Mg and Al–Si–Cu–Mg alloys
Yang et al. Effects of Sn addition on as-cast microstructure, mechanical properties and casting fluidity of ZA84 magnesium alloy
JP6893354B2 (en) Magnesium-based alloy extender
JPWO2010082669A1 (en) Mg-based alloy
WO2013157653A1 (en) Magnesium alloy and method for producing same
JP6489576B2 (en) Method for producing a magnesium-based alloy extension material
JP2024020484A (en) Magnesium alloy aging treated material and its manufacturing method
JP6493741B2 (en) Mg alloy and manufacturing method thereof
JP6594663B2 (en) Heat-resistant magnesium casting alloy and its manufacturing method
JP5215710B2 (en) Magnesium alloy with excellent creep characteristics at high temperature and method for producing the same
JP5419061B2 (en) Magnesium alloy
JP2016017183A (en) Magnesium-based alloy malleable material and manufacturing method therefor
JP6648894B2 (en) Magnesium-based alloy stretch material and method of manufacturing the same
JP5590413B2 (en) High thermal conductivity magnesium alloy
Suksongkarm et al. Bismuth Formation in Lead-Free Cu–Zn–Si Yellow Brass with Various Bismuth–Tin Alloy Additions
Xiao et al. Characterization and preparation of Mg–Al–Zn alloys with minor Sc
JP2010047777A (en) Mg-BASED ALLOY
El Mahallawy et al. Microstructure and mechanical properties of Mg–6Sn and Mg–6Zn alloys prepared by different processing techniques: a comparative study: Eine vergleichende Studie über die Mikrostruktur und die Festigkeitseigenschaften von durch verschiedene Verfahren entwickelten Mg–6Sn‐und Mg–6Zn‐Legierungen

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110801

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130322

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130402

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130603

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130820

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131004

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131112

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131113

R150 Certificate of patent or registration of utility model

Ref document number: 5419061

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees