JP5146767B2 - Magnesium alloy for casting and method for producing magnesium alloy casting - Google Patents

Magnesium alloy for casting and method for producing magnesium alloy casting Download PDF

Info

Publication number
JP5146767B2
JP5146767B2 JP2008549226A JP2008549226A JP5146767B2 JP 5146767 B2 JP5146767 B2 JP 5146767B2 JP 2008549226 A JP2008549226 A JP 2008549226A JP 2008549226 A JP2008549226 A JP 2008549226A JP 5146767 B2 JP5146767 B2 JP 5146767B2
Authority
JP
Japan
Prior art keywords
magnesium alloy
mass
casting
casting according
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2008549226A
Other languages
Japanese (ja)
Other versions
JPWO2008072435A1 (en
Inventor
夕紀 岡本
恭一 木下
元治 谷澤
和彦 吉田
裕哉 赤塚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Industries Corp
Original Assignee
Toyota Industries Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Industries Corp filed Critical Toyota Industries Corp
Priority to JP2008549226A priority Critical patent/JP5146767B2/en
Publication of JPWO2008072435A1 publication Critical patent/JPWO2008072435A1/en
Application granted granted Critical
Publication of JP5146767B2 publication Critical patent/JP5146767B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02FCYLINDERS, PISTONS OR CASINGS, FOR COMBUSTION ENGINES; ARRANGEMENTS OF SEALINGS IN COMBUSTION ENGINES
    • F02F7/00Casings, e.g. crankcases or frames
    • F02F7/0085Materials for constructing engines or their parts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D21/00Casting non-ferrous metals or metallic compounds so far as their metallurgical properties are of importance for the casting procedure; Selection of compositions therefor
    • B22D21/002Castings of light metals
    • B22D21/007Castings of light metals with low melting point, e.g. Al 659 degrees C, Mg 650 degrees C
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C23/00Alloys based on magnesium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C23/00Alloys based on magnesium
    • C22C23/02Alloys based on magnesium with aluminium as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/06Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of magnesium or alloys based thereon
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/02Selection of particular materials
    • F04D29/023Selection of particular materials especially adapted for elastic fluid pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/26Rotors specially for elastic fluids
    • F04D29/28Rotors specially for elastic fluids for centrifugal or helico-centrifugal pumps for radial-flow or helico-centrifugal pumps
    • F04D29/284Rotors specially for elastic fluids for centrifugal or helico-centrifugal pumps for radial-flow or helico-centrifugal pumps for compressors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05CINDEXING SCHEME RELATING TO MATERIALS, MATERIAL PROPERTIES OR MATERIAL CHARACTERISTICS FOR MACHINES, ENGINES OR PUMPS OTHER THAN NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES
    • F05C2201/00Metals
    • F05C2201/02Light metals
    • F05C2201/028Magnesium
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2300/00Materials; Properties thereof
    • F05D2300/10Metals, alloys or intermetallic compounds
    • F05D2300/12Light metals
    • F05D2300/125Magnesium
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2300/00Materials; Properties thereof
    • F05D2300/10Metals, alloys or intermetallic compounds
    • F05D2300/17Alloys

Description

本発明は、高温下での使用に適した鋳造用マグネシウム合金に関するものである。   The present invention relates to a magnesium alloy for casting suitable for use at high temperatures.

アルミニウム合金よりさらに軽量なマグネシウム合金は、軽量化の観点から航空機材料や車両材料などとして広く用いられつつある。しかしながら、マグネシウム合金は、用途によっては強度や耐熱性が充分ではないため、さらなる特性の向上が求められている。
たとえば、特開2005−54233号公報には、耐熱性をもつマグネシウム合金が開示されている。具体的には、4〜9質量%のアルミニウム(Al)と、1〜5質量%の銅(Cu)と、4質量%以下の亜鉛(Zn)と、0.001〜0.01質量%のベリリウム(Be)と、を含み、かつ、母相のマグネシウム中にMg−Al−Cu系の化合物が散在する金属組織を備えるマグネシウム合金である。
また、一般的なマグネシウム合金として、たとえば、AZ91D(ASTM記号)がある。AZ91Dは、機械的特性および鋳造性に優れるが、AZ91Dの熱伝導率は73W/mK程度であり、純マグネシウムの熱伝導率(167W/mK)に比べて極めて低い。そのため、使用環境が高温であったり使用中に発熱したりする部材にAZ91Dを用いると、放熱が良好に行われず、部材に熱変形が生じることがある。特に、内燃機関のシリンダヘッドやシリンダブロックに用いられるマグネシウム合金として熱伝導率の低いマグネシウム合金を用いると、シリンダヘッドが熱変形したり、シリンダブロック内に熱がこもりシリンダボアの熱変形が増大することで、摩擦が増大したり気密性が低下したりするなどの悪影響が生じる。そのため、高い熱伝導率をもつことで放熱が良好に行われ、高温下での使用に好適なマグネシウム合金が求められている。
Magnesium alloys that are lighter than aluminum alloys are widely used as aircraft materials and vehicle materials from the viewpoint of weight reduction. However, magnesium alloys are not sufficient in strength and heat resistance depending on applications, and therefore further improvement in characteristics is required.
For example, JP-A-2005-54233 discloses a magnesium alloy having heat resistance. Specifically, 4-9 mass% aluminum (Al), 1-5 mass% copper (Cu), 4 mass% or less zinc (Zn), 0.001-0.01 mass% And a beryllium (Be), and a magnesium alloy having a metal structure in which Mg-Al-Cu-based compounds are interspersed in magnesium of the parent phase.
Moreover, as a general magnesium alloy, for example, there is AZ91D (ASTM symbol). AZ91D is excellent in mechanical properties and castability, but the thermal conductivity of AZ91D is about 73 W / mK, which is extremely low compared to the thermal conductivity of pure magnesium (167 W / mK). For this reason, when AZ91D is used for a member that is used at a high temperature or generates heat during use, heat dissipation may not be performed well, and the member may be thermally deformed. In particular, when a magnesium alloy having low thermal conductivity is used as a magnesium alloy used in a cylinder head or cylinder block of an internal combustion engine, the cylinder head is thermally deformed, heat is accumulated in the cylinder block, and thermal deformation of the cylinder bore increases. Thus, adverse effects such as increased friction and reduced airtightness occur. For this reason, there is a demand for a magnesium alloy that has a high thermal conductivity so that heat can be radiated well and is suitable for use at high temperatures.

本発明は、上記問題点に鑑み、高温下での使用に適した鋳造用マグネシウム合金を提供することを目的とする。また、その鋳造用マグネシウム合金からなる鋳物の製造方法を提供することを目的とする。
本発明者らは、鋭意研究の結果、熱伝導率が高い銅をカルシウムとともに適量含有させることで、マグネシウム合金の熱伝導性を向上させることができることを見出し、これに基づき本発明を完成するに至った。
すなわち、本発明の鋳造用マグネシウム合金は、全体を100質量%としたときに、0.5質量%以上10質量%以下の銅(Cu)と、0.01質量%以上3質量%以下のカルシウム(Ca)と、を含み、残部がマグネシウム(Mg)と不可避不純物とからなることを特徴とする。このとき、銅(Cu)は、1質量%以上5質量%以下であるのが好ましい。
CuおよびCaを含む本発明の鋳造用マグネシウム合金は、鋳放しの状態(以下「鋳放し材」と略記)では、Mgを含むMg結晶粒と、CuおよびCaを含みMg結晶粒の粒界に三次元のネットワーク状(三次元網目構造)に晶出した粒界晶出物と、から構成される金属組織をもつ。三次元網目構造を呈する粒界晶出物により、高温になると特に活発になる粒界すべりが抑制され、高温強度および高温での耐クリープ性が向上する。そして、本発明の鋳造用マグネシウム合金は、合金元素として熱伝導率が高いCuを所定の量含有させることで、粒界晶出物がネットワーク状に晶出しても、Mg結晶粒同士の熱伝導が妨げられにくいことが新たにわかった。
また、本発明の鋳造用マグネシウム合金は、上記鋳放し材を熱処理した状態(以下「熱処理材」と略記)では、Mgを含むMg結晶粒と、Cuを含みMg結晶粒の粒界に粒状に分散した粒状化合物と、から構成される金属組織を有する。鋳放し材においてMg結晶粒の粒界にネットワーク状に晶出した粒界晶出物は、熱処理により、Mg結晶粒の粒界に粒状に分散する。そのため、Mg結晶粒同士の粒界での接触面積が増大し、熱伝導率が向上する。また、熱処理材であっても、CuおよびCaを上記の所定の範囲で含有すれば、高温強度および高温での耐クリープ性が低下しにくい。
また、本発明の鋳造用マグネシウム合金は、アルミニウム(Al)を10質量%以下さらには3質量%以下含むのが好ましい。本発明の鋳造用マグネシウム合金は、さらにAlを含むことで、マグネシウム合金の室温および高温での機械的強度が向上する。
また、本発明の鋳造用マグネシウム合金は、さらに、マンガン(Mn)を1質量%以下含んでもよい。本発明の鋳造用マグネシウム合金は、Mnを含むことで、室温および高温での機械的強度のほか、耐クリープ性、耐食性、鋳造性などが向上する。
また、本発明のマグネシウム合金鋳物の製造方法は、本発明の鋳造用マグネシウム合金からなる鋳物を製造する方法である。本発明のマグネシウム合金鋳物の製造方法は、
全体を100質量%としたときに、0.5質量%以上10質量%以下の銅(Cu)と、0.01質量%以上3質量%以下のカルシウム(Ca)と、を含み、残部がマグネシウム(Mg)と不可避不純物とからなる合金溶湯を鋳型に注湯する注湯工程と、
該注湯工程後の合金溶湯を冷却させて凝固させる凝固工程と、
を含むことを特徴とする。
本発明のマグネシウム合金鋳物の製造方法は、前記凝固工程後に、Mgを含むMg結晶粒の粒界にCuを含む晶出物を粒状化させる熱処理工程を含んでもよい。
以下、「質量%」は単に「%」(ただし「0.2%耐力」および「伸び」の単位[%]は「質量%」を意味しない)と略記することもある。なお、各合金元素の含有量は、いずれも鋳造用マグネシウム合金全体を100質量%としたときの割合である。
An object of this invention is to provide the magnesium alloy for casting suitable for use under high temperature in view of the said problem. Moreover, it aims at providing the manufacturing method of the casting which consists of the magnesium alloy for casting.
As a result of intensive studies, the present inventors have found that the thermal conductivity of a magnesium alloy can be improved by adding an appropriate amount of copper having high thermal conductivity together with calcium, and based on this, the present invention is completed. It came.
That is, the magnesium alloy for casting according to the present invention has a copper (Cu) content of 0.5% by mass to 10% by mass and calcium content of 0.01% by mass to 3% by mass when the total is 100% by mass. (Ca), the balance being magnesium (Mg) and inevitable impurities. At this time, it is preferable that copper (Cu) is 1 mass% or more and 5 mass% or less.
The magnesium alloy for casting according to the present invention containing Cu and Ca, in an as-cast state (hereinafter abbreviated as “as-cast material”), includes Mg crystal grains containing Mg and grain boundaries of Mg crystal grains containing Cu and Ca. It has a metal structure composed of grain boundary crystallized crystals crystallized in a three-dimensional network (three-dimensional network structure). The grain boundary crystallized substance having a three-dimensional network structure suppresses grain boundary sliding that becomes particularly active at high temperatures, and improves high-temperature strength and creep resistance at high temperatures. The magnesium alloy for casting according to the present invention contains a predetermined amount of Cu having a high thermal conductivity as an alloy element, so that heat conduction between Mg crystal grains can be achieved even if the grain boundary crystallization is crystallized in a network form. It has been newly found that is difficult to prevent.
Further, the magnesium alloy for casting according to the present invention is in a state in which the above as-cast material is heat-treated (hereinafter abbreviated as “heat-treated material”), and the Mg crystal grains containing Mg and the grain boundaries at the grain boundaries of Mg crystals containing Cu It has a metal structure composed of dispersed particulate compounds. In the as-cast material, the grain boundary crystallized crystallized in the form of a network at the grain boundaries of Mg crystal grains is dispersed in the grain boundaries of the Mg crystal grains by heat treatment. Therefore, the contact area at the grain boundary between Mg crystal grains is increased, and the thermal conductivity is improved. Moreover, even if it is a heat processing material, if Cu and Ca are contained in said predetermined range, high temperature intensity | strength and creep resistance at high temperature will not fall easily.
Moreover, it is preferable that the magnesium alloy for casting of this invention contains aluminum (Al) 10 mass% or less, further 3 mass% or less. When the magnesium alloy for casting of the present invention further contains Al, the mechanical strength of the magnesium alloy at room temperature and high temperature is improved.
The magnesium alloy for casting of the present invention may further contain 1% by mass or less of manganese (Mn). By including Mn, the magnesium alloy for casting according to the present invention improves not only mechanical strength at room temperature and high temperature, but also creep resistance, corrosion resistance, castability and the like.
Moreover, the manufacturing method of the magnesium alloy casting of this invention is a method of manufacturing the casting which consists of a magnesium alloy for casting of this invention. The method for producing a magnesium alloy casting according to the present invention includes:
When the whole is taken as 100% by mass, it contains 0.5% by mass or more and 10% by mass or less copper (Cu) and 0.01% by mass or more and 3% by mass or less calcium (Ca), with the balance being magnesium. A pouring process of pouring a molten alloy composed of (Mg) and inevitable impurities into a mold;
A solidification step of cooling and solidifying the molten alloy after the pouring step;
It is characterized by including.
The method for producing a magnesium alloy casting of the present invention may include a heat treatment step of granulating a crystallized substance containing Cu at a grain boundary of Mg crystal grains containing Mg after the solidification step.
Hereinafter, “mass%” may be simply abbreviated as “%” (where “0.2% yield strength” and “elongation” units [%] do not mean “mass%”). In addition, all content of each alloy element is a ratio when the whole magnesium alloy for casting is 100 mass%.

図1は、少なくともCuおよびCaを含むマグネシウム合金において、Alの含有量に対する熱伝導率の変化を示すグラフである。
図2は、少なくともCuおよびCaを含むマグネシウム合金において、Al/Cu値(質量比)に対する熱伝導率の変化を示すグラフである。
図3は、少なくともCuおよびCaを含むマグネシウム合金において、Caの含有量に対する引張強さおよび伸びの変化を示すグラフである。
図4Aおよび図4Bは、Mg−3%Cu−0.5%Ca合金の金属組織を示す図面代用写真であって、それぞれ低倍率の写真(A)と高倍率の写真(B)である。
図5Aおよび図5Bは、Mg−3%Cu−0.2%Ca−3%Al合金の金属組織を示す図面代用写真であって、それぞれ低倍率の写真(A)と高倍率の写真(B)である。
図6Aおよび図6Bは、Mg−3%Cu−3%Ca−3%Al−0.5%Mn合金の金属組織を示す図面代用写真であって、それぞれ低倍率の写真(A)と高倍率の写真(B)である。
図7は、少なくともCuおよびCaを含むマグネシウム合金において、Caの含有量に対する引張強さの変化を示すグラフである。
図8は、少なくともCuおよびCaを含むマグネシウム合金において、Caの含有量に対する伸びの変化を示すグラフである。
図9は、少なくともCuおよびCaを含むマグネシウム合金において、Alの含有量に対する熱伝導率の変化を示すグラフである。
図10は、3%のCuおよび1%のCaを含むマグネシウム合金において、Alの含有量に対する応力低下量の変化を示すグラフである。
図11A〜図11Dは、3%のCuおよび1%のCaを含むマグネシウム合金の金属組織を示す図面代用写真であって、さらにAlを0.5%(A)、2%(B)、4%(C)、8%(D)含むマグネシウム合金の金属組織をそれぞれ示す。
図12は、Mg−3%Cu−1%Ca−1%Al合金の電子線マイクロアナリシス(EPMA)による分析結果を示す。
図13は、1%のCa、1%のAlおよび0.5%のMnを含むマグネシウム合金(鋳放し材)において、Cuの含有量に対する引張強さ、0.2%耐力および伸びの変化を示すグラフである。
図14は、1%のCa、1%のAlおよび0.5%のMnを含む熱処理したマグネシウム合金(熱処理材)において、Cuの含有量に対する引張強さ、0.2%耐力および伸びの変化を示すグラフである。
図15は、1%のCa、1%のAlおよび0.5%のMnを含むマグネシウム合金において、Cuの含有量に対する応力低下量の変化を示すグラフである。
図16は、3%のCu、1%のCaおよび1%のAlを含むマグネシウム合金において、Mnの含有量に対する引張り強さの変化を示すグラフである。
図17は、3%のCu、1%のCaおよび1%のAlを含むマグネシウム合金において、Mnの含有量に対する応力低下量の変化を示すグラフである。
図18Aおよび図18Bは、Mg−3%Cu−1%Ca合金の金属組織を示す図面代用写真であって、それぞれ低倍率の写真(A)と高倍率の写真(B)である。
図19は、Mg−3%Cu−1%Ca合金のEPMAによる分析結果を示す。
図20は、熱処理したMg−3%Cu−1%Ca合金の金属組織を示す図面代用写真である。
図21は、熱処理したMg−3%Cu−1%Ca合金のEPMAによる分析結果を示す。
FIG. 1 is a graph showing changes in thermal conductivity with respect to Al content in a magnesium alloy containing at least Cu and Ca.
FIG. 2 is a graph showing a change in thermal conductivity with respect to an Al / Cu value (mass ratio) in a magnesium alloy containing at least Cu and Ca.
FIG. 3 is a graph showing changes in tensile strength and elongation with respect to Ca content in a magnesium alloy containing at least Cu and Ca.
4A and 4B are drawing-substituting photographs showing the metal structure of the Mg-3% Cu-0.5% Ca alloy, which are a low-magnification photograph (A) and a high-magnification photograph (B), respectively.
FIG. 5A and FIG. 5B are drawing-substituting photographs showing the metal structure of Mg-3% Cu-0.2% Ca-3% Al alloy, respectively, a low-magnification photograph (A) and a high-magnification photograph (B ).
FIG. 6A and FIG. 6B are drawing-substituting photographs showing the metal structure of Mg-3% Cu-3% Ca-3% Al-0.5% Mn alloy, respectively, a low-magnification photograph (A) and a high-magnification photograph. This is a photograph (B).
FIG. 7 is a graph showing changes in tensile strength with respect to Ca content in a magnesium alloy containing at least Cu and Ca.
FIG. 8 is a graph showing changes in elongation with respect to Ca content in a magnesium alloy containing at least Cu and Ca.
FIG. 9 is a graph showing the change in thermal conductivity with respect to the Al content in a magnesium alloy containing at least Cu and Ca.
FIG. 10 is a graph showing a change in the amount of stress reduction with respect to the Al content in a magnesium alloy containing 3% Cu and 1% Ca.
11A to 11D are photographs, which substitute for drawings, showing metal structures of magnesium alloys containing 3% Cu and 1% Ca, and Al is further 0.5% (A), 2% (B), 4 The metal structures of magnesium alloys containing% (C) and 8% (D) are shown.
FIG. 12 shows the analysis result by electron beam microanalysis (EPMA) of Mg-3% Cu-1% Ca-1% Al alloy.
FIG. 13 shows changes in tensile strength, 0.2% proof stress and elongation with respect to Cu content in a magnesium alloy (as-cast material) containing 1% Ca, 1% Al and 0.5% Mn. It is a graph to show.
FIG. 14 shows changes in tensile strength, 0.2% proof stress and elongation with respect to Cu content in a heat-treated magnesium alloy (heat-treated material) containing 1% Ca, 1% Al and 0.5% Mn. It is a graph which shows.
FIG. 15 is a graph showing changes in stress reduction with respect to Cu content in a magnesium alloy containing 1% Ca, 1% Al, and 0.5% Mn.
FIG. 16 is a graph showing the change in tensile strength with respect to the Mn content in a magnesium alloy containing 3% Cu, 1% Ca and 1% Al.
FIG. 17 is a graph showing the change in the amount of stress reduction with respect to the Mn content in a magnesium alloy containing 3% Cu, 1% Ca and 1% Al.
FIG. 18A and FIG. 18B are drawing-substituting photographs showing the metal structure of the Mg-3% Cu-1% Ca alloy, which are a low-magnification photograph (A) and a high-magnification photograph (B), respectively.
FIG. 19 shows the analysis result by EPMA of the Mg-3% Cu-1% Ca alloy.
FIG. 20 is a drawing-substituting photograph showing the metal structure of the heat-treated Mg-3% Cu-1% Ca alloy.
FIG. 21 shows the analysis result by EPMA of the heat-treated Mg-3% Cu-1% Ca alloy.

以下に、本発明の鋳造用マグネシウム合金およびマグネシウム合金鋳物の製造方法を実施するための最良の形態を説明する。
本発明の鋳造用マグネシウム合金は、銅(Cu)とカルシウム(Ca)とを含み、残部がマグネシウム(Mg)と不可避不純物とからなることを特徴とする。
CuとCaを含む本発明の鋳造用マグネシウム合金の鋳放し材は、少なくともCuおよびCaが結晶粒界に晶出することでネットワーク状の金属組織(三次元網目構造)が形成される。なお、一般的なマグネシウム合金として、耐熱性の向上のために希土類元素などを添加したマグネシウム合金があるが、そのようなマグネシウム合金では、三次元網目構造は形成されにくい。したがって、本発明の鋳造用マグネシウム合金は、希土類元素を実質的に含まないのが望ましい。
Cuの含有量は、鋳造用マグネシウム合金全体を100質量%としたときに、0.5質量%以上さらには1質量%以上であるのが好ましく、10質量%以下さらには5質量%以下、4質量%以下であるのが好ましい。Cuの含有量が0.5質量%未満では、Cuを添加したことによる熱伝導性の向上効果が良好に得られない。Cuが多いと熱が流れやすいが、10質量%を超えると、熱伝導性の大きな向上は期待できず経済的でない。また、高温での耐クリープ性が低下するため、好ましくない。
なお、CuやCu化合物は、熱膨張率が低い。そのため、本発明の鋳造用マグネシウム合金は、低い熱膨張率を示す。
本発明の鋳造用マグネシウム合金は、CuとともにCaを含む。Caも、Cuとともに結晶粒界に晶出することで、三次元網目構造の形成に寄与する。たとえば、Mg−Cu系化合物とともにMg−Ca系化合物が結晶粒界に晶出して、不連続部分の少ない、より完全な三次元網目構造が形成される。また、Caは、防燃効果をもつ。マグネシウム合金へCaを添加すると、マグネシウム合金の発火温度が上昇するため、マグネシウム合金を溶湯にしたときに発生することがある燃焼が防止される。Caを0.5質量%含むマグネシウム合金(AZ91)は、Caを含まないAZ91に比べて、発火温度が300℃程度高いことが知られている。そのため、本発明の鋳造用マグネシウム合金においても、Caの含有量は、鋳造用マグネシウム合金全体を100質量%としたときに、0.01質量%以上3質量%以下さらには0.5質量%以上2質量%以下であるのが好ましい。Caは、マグネシウム合金に少量でも添加されればよいが、3質量%を超えると、引張強度や伸びなどの機械的性質が低下する。
また、本発明の鋳造用マグネシウム合金において結晶粒界にネットワーク状に晶出するMg−Cu系化合物やMg−Ca系化合物などの金属間化合物は、マグネシウム合金中で粒界すべりを抑制すると考えられる。そのため、本発明の鋳造用マグネシウム合金は、高温域でもクリープ変形等の少ない優れた耐クリープ性を発現すると思われる。
本発明の鋳造用マグネシウム合金は、さらに、アルミニウム(Al)を含んでもよい。Alが添加された本発明の鋳造用マグネシウム合金は、結晶粒界にMg−Al−Cu系化合物およびMg−Al−Ca系化合物が晶出するため、引張強度や伸びなどの機械的性質が向上する。一方、Alの添加は、熱伝導率の低下を引き起こすことがある。そのため、Alの含有量は、鋳造用マグネシウム合金全体を100質量%としたときに、10質量%以下が好ましく、さらには4質量%以下、3質量%以下であるのが好ましく、用途によっては、Alを含まない方が望ましい。高い熱伝導率とともに機械的強度が必要とされる場合には、鋳造用マグネシウム合金全体を100質量%としたときのAlの含有量を、少なくとも0.5質量%とすればよい。
また、Alの含有量は、Cuとの質量比(Al/Cu)が1以下であるのが好ましい。1以下であれば、高い熱伝導率と高い機械的強度とが両立する。
また、本発明の鋳造用マグネシウム合金は、さらに、鋳造用マグネシウム合金全体を100質量%としたときに、マンガン(Mn)を1質量%以下含んでもよい。Mnは、マグネシウム合金の母材中に固溶して、マグネシウム合金を固溶強化させる元素である。また、Mnは、腐食原因となる不純物のFeを沈降除去する効果もある。すなわち、Mnが添加された本発明の鋳造用マグネシウム合金は、機械的強度とともに耐食性が向上する。ただし、Mnが少なすぎるとこのような効果が薄く、1質量%を超えても効果の向上は期待できず経済的でない。したがって、好ましいMnの含有量は、0.1質量%以上、0.2質量%以上さらには0.3質量%以上、また、1質量%以下、0.8質量%以下さらには0.7質量%以下である。
また、本発明の鋳造用マグネシウム合金は、さらに、鋳造用マグネシウム合金全体を100質量%としたときに、ストロンチウム(Sr)を1質量%以下含んでもよい。Srが添加された本発明の鋳造用マグネシウム合金は、Caを含むマグネシウム合金において耐食性を向上させる効果がある。そのため、Srは、本発明の鋳造用マグネシウム合金の耐食性を向上させる合金元素として好適である。また、Srは、マグネシウム合金の鋳造性(湯流れなど)を向上させる。好ましいSrの含有量は、0.01質量%以上1質量%以下、さらには0.1質量%以上1質量%以下である。
また、本発明の鋳造用マグネシウム合金は、さらに、鋳造用マグネシウム合金全体を100質量%としたときに、バリウム(Ba)を1質量%以下含んでもよい。Baが添加された本発明の鋳造用マグネシウム合金は、鋳造性が向上する。好ましいBaの含有量は、0.01質量%以上1質量%以下、さらには0.1質量%以上1質量%以下である。
なお、Mn、SrおよびBa等の合金元素は、本発明の鋳造用マグネシウム合金に添加されても、そのネットワーク状の金属組織を損なうことはない。
本発明の鋳造用マグネシウム合金は、鋳放し材では、Mgを含むMg結晶粒と、CuおよびCaを含みMg結晶粒の粒界に三次元のネットワーク状に晶出した粒界晶出物と、から構成される金属組織を有するが、熱処理することにより、Mgを含むMg結晶粒の粒界にCuを含む粒状の化合物、たとえばMg−Cu系化合物が分散する。すなわち、本発明の鋳造用マグネシウム合金は、Mgを含むMg結晶粒と、Cuを含みMg結晶粒の粒界に粒状に分散した粒状化合物と、から構成される金属組織を有してもよい。マグネシウム合金に適切な熱処理を施すことで機械的特性が向上することは知られている。上記の組成をもつ本発明の鋳造用マグネシウム合金は、熱処理によりCu化合物を粒状化することで、熱伝導率が向上する。また、Cu、Ca等の添加元素の含有量が上記の範囲であれば、熱処理後の耐クリープ性の低下が抑制される。
以上説明した本発明の鋳造用マグネシウム合金は、宇宙、軍事、航空の分野をはじめとし、自動車、電気機器など、各種分野で用いることができる。また、本発明の鋳造用マグネシウム合金からなる部材としては、その高温での特性を生かして、高温環境下で使用される製品、たとえば、使用中に高温となるコンプレッサー、ポンプ類、各種ケース類を構成する部品、また、高温および高負荷の下で用いられるエンジン部品、特に、内燃機関のシリンダヘッド、シリンダブロックやオイルパン、内燃機関のターボチャージャー用インペラ、自動車等に用いられるトランスミッションケース等が挙げられる。
また、本発明のマグネシウム合金鋳物の製造方法は、以上詳説した本発明の鋳造用マグネシウム合金からなる鋳物の製造方法である。本発明のマグネシウム合金鋳物の製造方法は、注湯工程と凝固工程とを含む。注湯工程は、全体を100質量%としたときに、0.5質量%以上10質量%以下の銅(Cu)と、0.01質量%以上3質量%以下のカルシウム(Ca)と、を含み、残部がマグネシウム(Mg)と不可避不純物とからなる合金溶湯を鋳型に注湯する工程である。凝固工程は、注湯工程後の合金溶湯を冷却させて凝固させる工程である。
マグネシウム合金鋳物は、通常の重力鋳造や加圧鋳造に限らず、ダイカスト鋳造したものでもよい。また、鋳造に使用される鋳型も砂型、金型等を問わない。凝固工程における凝固速度(冷却速度)にも特に限定はなく、三次元網目構造が形成される程度の凝固速度を鋳塊のサイズに応じて適宜選択すればよい。なお、一般的な凝固速度で凝固させれば、三次元網目構造をもつ金属組織が得られる。
また、本発明のマグネシウム合金鋳物の製造方法は、凝固工程後に、Mgを含むMg結晶粒の粒界にCuを含む粒状の化合物を分散させる熱処理工程を含んでもよい。熱処理工程では、JIS規格で用いられる調質記号「T5」または「T6」で表される焼入れ(または高温加工)後の焼戻し処理を行えばよい。たとえば、本発明の鋳造用マグネシウム合金の鋳放し材を、400℃以上共晶温度以下で溶体化処理後、100〜300℃で時効硬化処理するとよい。さらに望ましくは、溶体化処理を400〜550℃さらには410〜510℃、時効硬化処理を150〜250℃で行うとよい。また、溶体化処理は、5〜24時間さらには5〜10時間高温で保持して行うとよい。さらに、溶体化処理においては、高温で保持してから低温に冷却するが、冷却は、空冷であっても水冷であってもよく、水冷により急冷するのが望ましい。なお、熱処理に最適な温度、時間および冷却速度は、従来から行われている一般的な方法により選定すればよい。
以上、本発明の鋳造用マグネシウム合金およびマグネシウム合金鋳物の製造方法の実施形態を説明したが、本発明は、上記実施形態に限定されるものではない。本発明の要旨を逸脱しない範囲において、当業者が行い得る変更、改良等を施した種々の形態にて実施することができる。
以下に、本発明の鋳造用マグネシウム合金およびマグネシウム合金鋳物の製造方法の実施例を挙げて、本発明を具体的に説明する。
マグネシウム合金中の合金元素の含有量を変更した試験片を複数製作し、特性の評価および金属組織の観察などを行った。
[試験片#1〜#10の作製]
電気炉中で予熱した鉄製るつぼの内面に塩化物系のフラックスを塗布し、その中に秤量した純マグネシウム地金、純Cuおよび必要に応じて純Alを投入して溶解した。さらに、750℃に保持したこの溶湯中に秤量したCaを添加した(溶湯調製工程)。
この溶湯を十分に攪拌し、原料を完全に溶解させた後、同温度でしばらく沈静保持した。こうして得られた合金溶湯を所定の形状の金型に流し込み(注湯工程)、大気雰囲気中で凝固させて(凝固工程)、#1〜#10の試験片(マグネシウム合金鋳物)を鋳造した。なお、得られた試験片は、30mm×30mm×200mmであった。各試験片の合金組成を表1に示す。なお、「合金組成I」は原料全体を100%としたときの溶湯調製工程において秤量された各成分の割合、「合金組成II」は蛍光X線分析により分析した各試験片の合金組成であって、残部はMgである。
[熱伝導率および機械的強度の測定]
#1〜#10の試験片について、レーザーフラッシュ法により熱伝導率を求めた。また、JIS Z 2241による引張試験(試験温度:25℃)を行い、引張強さと伸びを求めた。試験結果を表1に合わせて示す。また、Alの含有量に対する熱伝導率の変化を示すグラフを図1、Al/Cu値(質量比)に対する熱伝導率の変化を示すグラフを図2、Caの含有量に対する引張強さおよび伸びの変化を示すグラフを図3、にそれぞれ示す。
図1より、Alの含有量が増加すると、熱伝導率が低下することがわかった。特に、Alの含有量が3質量%以下のマグネシウム合金は、高い熱伝導率(100W/mK以上)を示した。また、図2より、Al/Cu値は小さい方が熱伝導率が大きくなることがわかった。特に、Cuの含有量がAlの含有量と等しい或いはAlの含有量を上回る場合には、マグネシウム合金は高い熱伝導率(100W/mK以上)を示した。
Caは、マグネシウム合金において三次元網目構造の形成に寄与するが、図3より、Caの含有量が多くなる程、機械的強度が低下する傾向にあることがわかった。
[金属組織の観察]
上記の手順と同様にして金属組織観察用の試験片を3種類作製した。それぞれの合金組成Iは、Mg−3%Cu−0.5%Ca(#1に相当)、Mg−3%Cu−0.2%Ca−3%Al(#10に相当)およびMg−3%Cu−3%Ca−3%Al−0.5%Mn(単位「%」は全て「質量%」)とした。
金属組織の観察は、各試験片から切り出された断面を金属顕微鏡で観察して行った。金属組織を図4A〜図6Bに示す。いずれの試験片においても、結晶粒界に金属間化合物が晶出してなる三次元網目構造が確認された。したがって、少なくともCuおよびCaを含むマグネシウム合金は、三次元網目構造をもつことがわかった。なお、結晶粒界に晶出した化合物は、図4AおよびBではMg−Cu系化合物およびMg−Ca系化合物、図5AおよびBではMg−Al−Cu系化合物およびMg−Ca系化合物、図6AおよびBではMg−Al−Cu系化合物およびMg−Ca系化合物、であったと考えられる。
[試験片#11〜#35の作製]
電気炉中で予熱した鉄製るつぼの内面に塩化物系のフラックスを塗布し、その中に秤量した純マグネシウム地金、純Cuおよび必要に応じて純Al、Al−Mn合金を投入して溶解した。さらに、750℃に保持したこの溶湯中に秤量したCaを添加した(溶湯調製工程)。
この溶湯を十分に攪拌し、原料を完全に溶解させた後、同温度でしばらく沈静保持した。こうして得られた合金溶湯を所定の形状の金型に流し込み(注湯工程)、大気雰囲気中で凝固させて(凝固工程)、#11〜#35の試験片(マグネシウム合金鋳物)を鋳造した。なお、得られた試験片は、30mm×30mm×200mmであった。各試験片の合金組成を表2に示す。なお、「合金組成I」は原料全体を100%としたときの溶湯調製工程において秤量された各成分の割合、「合金組成II」は蛍光X線分析により分析した各試験片の合金組成であって、残部はMgである。
なお、#13、#16〜#21、#32は、それぞれ、#1、#2〜7、#9と同じ試験片である(表2の備考欄参照)。
[熱伝導率および機械的強度の測定]
#11〜#35の試験片について、レーザーフラッシュ法により熱伝導率を求めた。また、JIS Z 2241による引張試験(試験温度:25℃)を行い、引張強さ、伸びおよび0.2%耐力を求めた。試験結果を表2(0.2%耐力については表3)に合わせて示す。また、Caの含有量に対する引張強さの変化を示すグラフを図7、Caの含有量に対する伸びの変化を示すグラフを図8、Alの含有量に対する熱伝導率の変化を示すグラフを図9、にそれぞれ示す。
試験片#11、#14および#32はCaを1%含みCuの含有量が異なるマグネシウム合金、#25および#33〜35はCaを1%、Alを1%、Mnを0.5%含みCuの含有量が異なるマグネシウム合金である。これらのマグネシウム合金の熱伝導率は、上記の方法により測定した純マグネシウムの熱伝導率(167W/mK)と比較して、低下量が9〜39W/mKで比較的小さかった。Cuの含有量は、0.8〜4.5%が特に好ましいことがわかった。
また、図7および図8は、試験片#11〜#35の引張り強さの変化と伸びの変化をCa含有量に対してまとめたグラフである。Ca量が増加するに従い、引張り強さ、伸びともに低下する傾向にある。特に、Ca量を2.5%以下さらには1.5%以下に抑えることで、高い機械的特性と高い熱伝導率とをもちあわせるマグネシウム合金が得られることがわかった。さらに、Cuを3%含みCa含有量の異なる試験片#13、#14および#28より、Ca量が0.3〜2.0%の範囲であれば、Ca含有量を変更しても熱伝導率に大きな影響がないことがわかった。
また、図9は、試験片#11〜#35の熱伝導率の変化をAl含有量に対してまとめたグラフである。Al量が増加するに従い、熱伝導率は低下する傾向にある。つまり、高い熱伝導率をもつマグネシウム合金を得るには、Al含有量を極力抑えるのが好ましいことがわかった。
[応力緩和試験]
表2に示した試験片#11〜#35について、応力緩和試験を行い、マグネシウム合金の高温下での耐クリープ性を調べた。応力緩和試験は、試験片に試験時間中、所定の変形量まで荷重を加えたときの応力が時間とともに減少する過程を測定する。具体的には、200℃の大気雰囲気中において、各試験片に100MPaの圧縮応力を負荷し、そのときの試験片の変位が一定に保たれるように、時間の経過に併せてその圧縮応力を低下させていった。試験開始から1時間後、10時間後および40時間後の応力低下量、ならびに、20時間後から40時間後までの応力低下速度、をそれぞれ表3に示す。
図10は、Cuを3%、Caを1%含みAlの含有量が異なる試験片#14〜#21の試験開始から40時間後の応力低下量の変化をAl含有量に対してまとめたグラフである。応力低下量が小さいマグネシウム合金は、高温での耐クリープ性に優れる。図10より、Al含有量を0.5%以上さらには0.75%以上とすることで、高温であっても優れた耐クリープ性を示すことがわかった。
[金属組織の観察]
上記の手順と同様にして金属組織観察用の試験片を4種類作製した。それぞれの合金組成Iは、Mg−3%Cu−1%Ca−0.5Al(#15に相当)、Mg−3%Cu−1%Ca−2%Al(#17に相当)、Mg−3%Cu−1%Ca−4%Al(#19に相当)およびMg−3%Cu−1%Ca−8%Al(単位「%」は全て「質量%」)とした。
金属組織の観察は、各試験片から切り出された断面を金属顕微鏡で観察して行った。金属組織を図11A〜図11Dに示す。図11A〜図11Cでは、結晶粒界に金属間化合物が晶出してなる三次元網目構造が確認された。しかしながら、三次元網目構造は、Al含有量が増加するにつれて見られなくなっていった。Alの増加に伴う三次元網目構造の減少が、上記の耐クリープ性の悪化に影響したのだと考えられる。図10のグラフも考慮すると、Al含有量は4.5%以下が特に好ましい。
[EPMA分析]
Mg−3%Cu−1%Ca−1%Al合金(#16に相当)について、電子線マイクロアナリシス(EPMA)による分析を行った。結果を図12に示す。なお、図12において、左上の写真は二次電子線像(BEI)であって、他は二次電子線像の領域の元素分布を分析した面分析結果である。#16のマグネシウム合金は、主としてMgからなるMg結晶粒と、Mg結晶粒の粒界に三次元のネットワーク状に晶出しCu、CaおよびAlを含む粒界晶出物と、からなる金属組織をもつことがわかった。
[熱処理した試験片の作製]
上記の試験片#14〜#16、#23〜#27、#29〜#31、#33〜#35(鋳放し材)を熱処理して、試験片#14a〜#16a、#23a〜#27a、#29a〜#31a、#33a〜#35a(熱処理材)を作製した。熱処理は、鋳放し材を410〜510℃で5〜24時間加熱し水冷(溶体化処理)した後、150〜250℃で1〜10時間再加熱(時効硬化処理)して行った。
熱処理材についても、上記と同様な方法で、熱伝導率、引張り強さ、伸び、0.2%耐力および応力低下量を測定した。結果を表4に示す。
熱処理前後の熱伝導率を比較すると、熱処理により熱伝導率が低下した試験片はなく、ほとんどの試験片で熱処理による熱伝導率の向上が見られた。また、試験片#16、#24〜#27および#16a、#24a〜#27aあるいは試験片#29〜#31および#29a〜#31aの熱伝導率の測定結果から、Mnの含有量が多い試験片ほど、熱処理により熱伝導率が大きく向上した。
図13および図14は、Caを1%、Alを1%、Mnを0.5%含みCuの含有量が異なるマグネシウム合金の機械的特性の変化をCu含有量に対してまとめたグラフである。なお、図13は鋳放し材、図14は熱処理材をそれぞれ示す。いずれの試験片においても、熱処理により機械的特性は向上した。
また、図15は、Caを1%、Alを1%、Mnを0.5%含みCuの含有量が異なるマグネシウム合金の試験開始から40時間後の応力低下量の変化をCu含有量に対してまとめたグラフである。鋳放し材、熱処理材ともにCu含有量が多いと高温での耐クリープ性が低下する傾向にあった。また、熱処理により高温での耐クリープ性が低下するが、特にCu含有量を3.5質量%以下とすることで、鋳放し材のみならず熱処理による耐クリープ性の低下を抑えられることがわかった。
図16は、Cuを3%、Caを1%、Alを1%含みMnの含有量が異なるマグネシウム合金の引張り強さの変化をMn含有量に対してまとめたグラフである。Mn含有量にかかわらず、熱処理後の引張り強さは向上した。また、図17は、Cuを3%、Caを1%、Alを1%含みMnの含有量が異なるマグネシウム合金の試験開始から40時間後の応力低下量の変化をMn含有量に対してまとめたグラフである。鋳放し材では、Mn含有量が多いほど、耐クリープ性が向上する傾向にあった。しかし、1%を超えて含有しても耐クリープ性の向上は見られず、かえって耐クリープ性の低下が予測される。また、Mnの含有量が1%を超えると、熱処理材の耐クリープ性が大きく低下した。したがって、特に好ましいMn含有量は、0.1〜0.8%さらには0.3〜0.7%であると言える。
図18A、図18Bおよび図19〜図21に、熱処理前後の試験片#14の金属組織の観察結果とEPMA分析結果を示す。図18Aおよび図18Bは、鋳放し材の金属組織を示す。図18Aでは、三次元網目構造が観察された。高倍率の図18Bでは、結晶粒界に、コントラストが均一な部分(その一部をP1で示す)と、コントラストが縞状の部分(その一部をP2で示す)と、が観察された。図19のEPMA分析結果によれば、P1はMg−Cu系化合物、P2はMg−Ca系化合物、からなることがわかった。また、CuおよびCaは、ほとんどが結晶粒界に存在することがわかった。
一方、図20は、熱処理材(#14a)の金属組織を示す。熱処理材には、粒状で結晶粒界に分散して存在する粒状化合物(その一部をP3で示す)が見られた。また、P4で示す部分のように、隣接するMg結晶粒が互いに接する箇所が多く見られた。このような金属組織をもつことにより、熱処理材が高い熱伝導率を示すようになるのだと考えられる。図21のEPMA分析結果によれば、P3は主としてCuを含むCu系化合物からなることがわかった。また、Cuは、ほとんどが結晶粒界に存在するが、Caの大部分はMg結晶粒に拡散して存在することがわかった。これは、図19のCaの面分析結果(鋳放し材)と、図21のCaの面分析結果(熱処理材)と、を比べたとき、図21の方が全体的にコントラストが明るい(カラー写真では、ほとんどがMgからなり黒で表示される中に青で表示されるCaが点在する)ことから明確である。
Below, the best form for implementing the manufacturing method of the magnesium alloy for casting of this invention and a magnesium alloy casting is demonstrated.
The magnesium alloy for casting according to the present invention is characterized in that it contains copper (Cu) and calcium (Ca), and the balance consists of magnesium (Mg) and inevitable impurities.
In the as-cast material of the magnesium alloy for casting according to the present invention containing Cu and Ca, a network-like metal structure (three-dimensional network structure) is formed by at least Cu and Ca crystallizing at the crystal grain boundaries. Note that, as a general magnesium alloy, there is a magnesium alloy to which a rare earth element or the like is added in order to improve heat resistance. However, in such a magnesium alloy, it is difficult to form a three-dimensional network structure. Therefore, it is desirable that the magnesium alloy for casting of the present invention does not substantially contain rare earth elements.
The content of Cu is preferably 0.5% by mass or more, more preferably 1% by mass or more, when the entire magnesium alloy for casting is 100% by mass, 10% by mass or less, further 5% by mass or less, 4 It is preferable that it is below mass%. When the Cu content is less than 0.5% by mass, the effect of improving thermal conductivity due to the addition of Cu cannot be obtained satisfactorily. If there is a large amount of Cu, heat tends to flow, but if it exceeds 10% by mass, a large improvement in thermal conductivity cannot be expected, which is not economical. Moreover, since the creep resistance at high temperature falls, it is not preferable.
Cu and Cu compounds have a low coefficient of thermal expansion. Therefore, the magnesium alloy for casting according to the present invention exhibits a low coefficient of thermal expansion.
The magnesium alloy for casting according to the present invention contains Ca together with Cu. Ca also crystallizes at the grain boundary together with Cu, thereby contributing to the formation of a three-dimensional network structure. For example, the Mg—Ca compound and the Mg—Ca compound crystallize at the grain boundary, and a more complete three-dimensional network structure with few discontinuities is formed. Moreover, Ca has a flameproofing effect. When Ca is added to the magnesium alloy, the ignition temperature of the magnesium alloy rises, so that combustion that may occur when the magnesium alloy is melted is prevented. It is known that the magnesium alloy (AZ91) containing 0.5% by mass of Ca has an ignition temperature higher by about 300 ° C. than AZ91 not containing Ca. Therefore, also in the magnesium alloy for casting of the present invention, the content of Ca is 0.01% by mass or more and 3% by mass or less, further 0.5% by mass or more when the entire magnesium alloy for casting is 100% by mass. It is preferable that it is 2 mass% or less. Ca may be added to the magnesium alloy even in a small amount, but when it exceeds 3% by mass, mechanical properties such as tensile strength and elongation decrease.
Moreover, in the magnesium alloy for casting according to the present invention, intermetallic compounds such as Mg—Cu compounds and Mg—Ca compounds that crystallize in the form of network at the grain boundaries are considered to suppress the grain boundary slip in the magnesium alloys. . Therefore, it seems that the magnesium alloy for casting of the present invention exhibits excellent creep resistance with little creep deformation or the like even in a high temperature range.
The magnesium alloy for casting according to the present invention may further contain aluminum (Al). The magnesium alloy for casting of the present invention to which Al is added has improved mechanical properties such as tensile strength and elongation because Mg-Al-Cu compounds and Mg-Al-Ca compounds crystallize at the grain boundaries. To do. On the other hand, the addition of Al may cause a decrease in thermal conductivity. Therefore, the content of Al is preferably 10% by mass or less, more preferably 4% by mass or less, and 3% by mass or less when the entire magnesium alloy for casting is 100% by mass. It is desirable not to contain Al. When mechanical strength is required with high thermal conductivity, the content of Al when the entire magnesium alloy for casting is 100% by mass may be at least 0.5% by mass.
Moreover, it is preferable that mass ratio (Al / Cu) with Cu is 1 or less about content of Al. If it is 1 or less, high thermal conductivity and high mechanical strength are compatible.
Further, the magnesium alloy for casting of the present invention may further contain 1% by mass or less of manganese (Mn) when the entire magnesium alloy for casting is 100% by mass. Mn is an element that dissolves in the base material of the magnesium alloy and strengthens the magnesium alloy. Mn also has the effect of precipitating and removing Fe, an impurity that causes corrosion. That is, the magnesium alloy for casting according to the present invention to which Mn is added has improved corrosion resistance as well as mechanical strength. However, if the amount of Mn is too small, such an effect is thin, and even if it exceeds 1% by mass, an improvement in the effect cannot be expected and it is not economical. Therefore, the preferable Mn content is 0.1% by mass or more, 0.2% by mass or more, further 0.3% by mass or more, 1% by mass or less, 0.8% by mass or less, and further 0.7% by mass. % Or less.
Moreover, the magnesium alloy for casting of the present invention may further contain 1% by mass or less of strontium (Sr) when the entire magnesium alloy for casting is 100% by mass. The magnesium alloy for casting according to the present invention to which Sr is added has an effect of improving the corrosion resistance in the magnesium alloy containing Ca. Therefore, Sr is suitable as an alloy element that improves the corrosion resistance of the magnesium alloy for casting according to the present invention. Moreover, Sr improves the castability (hot water flow etc.) of a magnesium alloy. Preferable Sr content is 0.01% by mass or more and 1% by mass or less, and further 0.1% by mass or more and 1% by mass or less.
Further, the magnesium alloy for casting of the present invention may further contain 1% by mass or less of barium (Ba) when the entire magnesium alloy for casting is 100% by mass. The magnesium alloy for casting according to the present invention to which Ba is added has improved castability. The preferable Ba content is 0.01% by mass or more and 1% by mass or less, and further 0.1% by mass or more and 1% by mass or less.
In addition, even if alloy elements, such as Mn, Sr, and Ba, are added to the magnesium alloy for casting according to the present invention, the network-like metal structure is not impaired.
The magnesium alloy for casting of the present invention is an as-cast material, Mg crystal grains containing Mg, and grain boundary crystallized crystals crystallized in a three-dimensional network form at the grain boundaries of Mg crystal grains containing Cu and Ca. However, when heat-treated, a granular compound containing Cu, for example, a Mg—Cu compound, is dispersed in the grain boundary of Mg crystal grains containing Mg. That is, the magnesium alloy for casting according to the present invention may have a metal structure composed of Mg crystal grains containing Mg and a granular compound containing Cu and dispersed in the grain boundaries of the Mg crystal grains. It is known that mechanical properties are improved by subjecting a magnesium alloy to an appropriate heat treatment. The magnesium alloy for casting of the present invention having the above composition improves the thermal conductivity by granulating the Cu compound by heat treatment. Moreover, if content of additional elements, such as Cu and Ca, is said range, the fall of the creep resistance after heat processing will be suppressed.
The magnesium alloy for casting of the present invention described above can be used in various fields such as automobiles, electric appliances, as well as in the fields of space, military and aviation. In addition, as a member made of the magnesium alloy for casting according to the present invention, a product used under a high temperature environment, for example, a compressor, a pump, various cases, etc., which become high temperature during use, taking advantage of its high temperature characteristics. Component parts, engine parts used under high temperature and high load, especially cylinder heads of internal combustion engines, cylinder blocks and oil pans, impellers for turbochargers of internal combustion engines, transmission cases used in automobiles, etc. It is done.
Moreover, the manufacturing method of the magnesium alloy casting of this invention is a manufacturing method of the casting which consists of the magnesium alloy for casting of this invention explained in full detail above. The manufacturing method of the magnesium alloy casting of the present invention includes a pouring step and a solidification step. In the pouring process, when the whole is 100% by mass, copper (Cu) of 0.5% by mass to 10% by mass and calcium (Ca) of 0.01% by mass to 3% by mass are obtained. It is a step of pouring a molten alloy containing magnesium (Mg) and inevitable impurities into a mold. The solidification step is a step of cooling and solidifying the molten alloy after the pouring step.
The magnesium alloy casting is not limited to ordinary gravity casting or pressure casting, but may be die casting. The mold used for casting may be a sand mold, a mold, or the like. There is no particular limitation on the solidification rate (cooling rate) in the solidification step, and a solidification rate at which a three-dimensional network structure is formed may be appropriately selected according to the size of the ingot. If solidified at a general solidification rate, a metal structure having a three-dimensional network structure can be obtained.
Moreover, the manufacturing method of the magnesium alloy casting of this invention may also include the heat processing process which disperse | distributes the granular compound containing Cu to the grain boundary of Mg crystal grain containing Mg after a solidification process. In the heat treatment step, a tempering treatment after quenching (or high temperature processing) represented by a tempering symbol “T5” or “T6” used in the JIS standard may be performed. For example, the as-cast material of the magnesium alloy for casting according to the present invention may be subjected to an age hardening treatment at 100 to 300 ° C. after solution treatment at 400 ° C. or more and a eutectic temperature or less. More preferably, the solution treatment is performed at 400 to 550 ° C, further 410 to 510 ° C, and the age hardening treatment is performed at 150 to 250 ° C. Moreover, it is good to perform a solution treatment by hold | maintaining at high temperature for 5 to 24 hours, and also 5 to 10 hours. Furthermore, in the solution treatment, it is held at a high temperature and then cooled to a low temperature. The cooling may be air cooling or water cooling, and it is desirable to rapidly cool by water cooling. In addition, what is necessary is just to select the temperature, time, and cooling rate optimal for heat processing by the general method conventionally performed.
As mentioned above, although embodiment of the magnesium alloy for casting of this invention and the manufacturing method of a magnesium alloy casting was described, this invention is not limited to the said embodiment. The present invention can be implemented in various forms without departing from the gist of the present invention.
Hereinafter, the present invention will be described in detail by way of examples of the magnesium alloy for casting and the method for producing a magnesium alloy casting according to the present invention.
A plurality of test pieces having different alloy element contents in the magnesium alloy were manufactured, and the characteristics were evaluated and the metal structure was observed.
[Production of test pieces # 1 to # 10]
Chloride flux was applied to the inner surface of an iron crucible preheated in an electric furnace, and weighed pure magnesium ingot, pure Cu, and pure Al as needed, were dissolved. Furthermore, weighed Ca was added to the molten metal maintained at 750 ° C. (molten preparation step).
The molten metal was sufficiently stirred to completely dissolve the raw material, and then kept calm at the same temperature for a while. The molten alloy thus obtained was poured into a mold having a predetermined shape (a pouring step) and solidified in an air atmosphere (a solidification step) to cast test pieces (magnesium alloy castings) # 1 to # 10. In addition, the obtained test piece was 30 mm x 30 mm x 200 mm. Table 1 shows the alloy composition of each test piece. “Alloy composition I” is the proportion of each component weighed in the melt preparation step when the total raw material is 100%, and “Alloy composition II” is the alloy composition of each specimen analyzed by fluorescent X-ray analysis. The balance is Mg.
[Measurement of thermal conductivity and mechanical strength]
For the test pieces of # 1 to # 10, the thermal conductivity was determined by the laser flash method. Moreover, the tensile test (test temperature: 25 degreeC) by JISZ2241 was done, and the tensile strength and elongation were calculated | required. The test results are shown in Table 1. Moreover, the graph which shows the change of the heat conductivity with respect to Al content is FIG. 1, the graph which shows the change of the heat conductivity with respect to Al / Cu value (mass ratio) is FIG. 2, and the tensile strength and elongation with respect to the Ca content. The graph which shows the change of this is shown in FIG.
FIG. 1 indicates that the thermal conductivity decreases as the Al content increases. In particular, a magnesium alloy having an Al content of 3% by mass or less showed high thermal conductivity (100 W / mK or more). Further, FIG. 2 shows that the smaller the Al / Cu value, the higher the thermal conductivity. In particular, when the Cu content is equal to or exceeds the Al content, the magnesium alloy has a high thermal conductivity (100 W / mK or more).
Ca contributes to the formation of a three-dimensional network structure in the magnesium alloy, but FIG. 3 shows that the mechanical strength tends to decrease as the Ca content increases.
[Observation of metal structure]
Three kinds of test pieces for observing the metal structure were prepared in the same manner as described above. Each alloy composition I is Mg-3% Cu-0.5% Ca (corresponding to # 1), Mg-3% Cu-0.2% Ca-3% Al (corresponding to # 10) and Mg-3. % Cu-3% Ca-3% Al-0.5% Mn (the unit "%" is "% by mass").
The metal structure was observed by observing a cross section cut out from each test piece with a metal microscope. The metal structure is shown in FIGS. 4A to 6B. In all the test pieces, a three-dimensional network structure formed by crystallization of an intermetallic compound at the crystal grain boundary was confirmed. Therefore, it was found that the magnesium alloy containing at least Cu and Ca has a three-dimensional network structure. The compounds crystallized at the grain boundaries are Mg-Cu compounds and Mg-Ca compounds in FIGS. 4A and 4B, Mg-Al-Cu compounds and Mg-Ca compounds in FIGS. 5A and B, and FIG. 6A. And B are considered to be Mg—Al—Cu compounds and Mg—Ca compounds.
[Production of test pieces # 11 to # 35]
Chloride-based flux was applied to the inner surface of an iron crucible preheated in an electric furnace, and weighed pure magnesium ingot, pure Cu, and pure Al and Al-Mn alloy as necessary, were dissolved. . Furthermore, weighed Ca was added to the molten metal maintained at 750 ° C. (molten preparation step).
The molten metal was sufficiently stirred to completely dissolve the raw material, and then kept calm at the same temperature for a while. The molten alloy thus obtained was poured into a mold having a predetermined shape (a pouring process) and solidified in an air atmosphere (a solidification process) to cast test pieces (magnesium alloy castings) # 11 to # 35. In addition, the obtained test piece was 30 mm x 30 mm x 200 mm. Table 2 shows the alloy composition of each test piece. “Alloy composition I” is the proportion of each component weighed in the melt preparation step when the total raw material is 100%, and “Alloy composition II” is the alloy composition of each specimen analyzed by fluorescent X-ray analysis. The balance is Mg.
Note that # 13, # 16 to # 21, and # 32 are the same test pieces as # 1, # 2 to 7, and # 9, respectively (see the remarks column in Table 2).
[Measurement of thermal conductivity and mechanical strength]
Regarding the test pieces of # 11 to # 35, the thermal conductivity was determined by the laser flash method. Moreover, the tensile test (test temperature: 25 degreeC) by JISZ2241 was done, and tensile strength, elongation, and 0.2% yield strength were calculated | required. The test results are shown in Table 2 (Table 3 for 0.2% proof stress). FIG. 7 is a graph showing changes in tensile strength with respect to the Ca content, FIG. 8 is a graph showing changes in elongation with respect to the Ca content, and FIG. 9 is a graph showing changes in thermal conductivity with respect to the Al content. , Respectively.
Specimens # 11, # 14 and # 32 contain magnesium alloys with 1% Ca and different Cu contents. # 25 and # 33 to 35 contain 1% Ca, 1% Al and 0.5% Mn. Magnesium alloys with different Cu contents. The thermal conductivity of these magnesium alloys was relatively small at 9 to 39 W / mK compared to the thermal conductivity of pure magnesium (167 W / mK) measured by the above method. It was found that the Cu content is particularly preferably 0.8 to 4.5%.
7 and 8 are graphs summarizing changes in tensile strength and changes in elongation of the test pieces # 11 to # 35 with respect to the Ca content. As the amount of Ca increases, both tensile strength and elongation tend to decrease. In particular, it was found that a magnesium alloy having both high mechanical properties and high thermal conductivity can be obtained by suppressing the Ca content to 2.5% or less, further 1.5% or less. Furthermore, from specimens # 13, # 14, and # 28 containing 3% Cu and having different Ca contents, if the Ca content is in the range of 0.3 to 2.0%, the heat is increased even if the Ca content is changed. It was found that there was no significant effect on conductivity.
FIG. 9 is a graph summarizing changes in the thermal conductivity of the test pieces # 11 to # 35 with respect to the Al content. As the Al content increases, the thermal conductivity tends to decrease. That is, it was found that it is preferable to suppress the Al content as much as possible in order to obtain a magnesium alloy having high thermal conductivity.
[Stress relaxation test]
About the test pieces # 11- # 35 shown in Table 2, the stress relaxation test was done and the creep resistance of the magnesium alloy under high temperature was investigated. The stress relaxation test measures a process in which the stress when a load is applied to a test piece up to a predetermined deformation amount during the test time decreases with time. Specifically, in an air atmosphere at 200 ° C., a compressive stress of 100 MPa is applied to each test piece, and the compressive stress with time elapses so that the displacement of the test piece is kept constant. Was reduced. Table 3 shows the amount of stress reduction after 1 hour, 10 hours and 40 hours, and the rate of stress reduction from 20 hours to 40 hours after the start of the test.
FIG. 10 is a graph summarizing changes in the amount of decrease in stress after 40 hours from the start of test pieces # 14 to # 21 containing 3% Cu and 1% Ca and having different Al contents with respect to the Al content. It is. A magnesium alloy with a small amount of stress reduction has excellent creep resistance at high temperatures. From FIG. 10, it was found that when the Al content is 0.5% or more, further 0.75% or more, excellent creep resistance is exhibited even at high temperatures.
[Observation of metal structure]
In the same manner as the above procedure, four types of test pieces for observing the metal structure were produced. Each alloy composition I is Mg-3% Cu-1% Ca-0.5Al (corresponding to # 15), Mg-3% Cu-1% Ca-2% Al (corresponding to # 17), Mg-3 % Cu-1% Ca-4% Al (corresponding to # 19) and Mg-3% Cu-1% Ca-8% Al (the unit "%" is "% by mass").
The metal structure was observed by observing a cross section cut out from each test piece with a metal microscope. The metal structures are shown in FIGS. 11A to 11D. In FIGS. 11A to 11C, a three-dimensional network structure formed by crystallization of an intermetallic compound at the crystal grain boundary was confirmed. However, the three-dimensional network structure disappeared as the Al content increased. The decrease in the three-dimensional network structure accompanying the increase in Al is thought to have affected the above-described deterioration in creep resistance. Considering the graph of FIG. 10, the Al content is particularly preferably 4.5% or less.
[EPMA analysis]
The Mg-3% Cu-1% Ca-1% Al alloy (corresponding to # 16) was analyzed by electron beam microanalysis (EPMA). The results are shown in FIG. In FIG. 12, the upper left photograph is a secondary electron beam image (BEI), and the other is a surface analysis result obtained by analyzing the element distribution in the region of the secondary electron beam image. The # 16 magnesium alloy has a metal structure composed of Mg crystal grains mainly composed of Mg, and grain boundary crystallized crystals containing Cu, Ca, and Al that crystallize in a three-dimensional network at the grain boundaries of the Mg crystal grains. I understood that it has.
[Preparation of heat-treated specimen]
The above test pieces # 14 to # 16, # 23 to # 27, # 29 to # 31, # 33 to # 35 (as cast material) are heat-treated, and test pieces # 14a to # 16a, # 23a to # 27a , # 29a to # 31a, # 33a to # 35a (heat treatment material) were produced. The heat treatment was performed by heating the as-cast material at 410 to 510 ° C. for 5 to 24 hours and water-cooling (solution treatment), and then reheating at 150 to 250 ° C. for 1 to 10 hours (age hardening treatment).
For the heat treated material, the thermal conductivity, tensile strength, elongation, 0.2% proof stress and stress reduction were measured in the same manner as described above. The results are shown in Table 4.
When the thermal conductivity before and after the heat treatment was compared, there was no test piece whose thermal conductivity decreased due to the heat treatment, and most of the test pieces showed an improvement in the thermal conductivity due to the heat treatment. Further, the Mn content is large from the measurement results of the thermal conductivity of the test pieces # 16, # 24 to # 27 and # 16a, # 24a to # 27a or the test pieces # 29 to # 31 and # 29a to # 31a. The thermal conductivity of the test piece was greatly improved by the heat treatment.
FIG. 13 and FIG. 14 are graphs summarizing changes in mechanical properties of magnesium alloys having different Cu contents with 1% Ca, 1% Al, 0.5% Mn and different Cu contents. . FIG. 13 shows an as-cast material, and FIG. 14 shows a heat treatment material. In all the test pieces, the mechanical properties were improved by the heat treatment.
Further, FIG. 15 shows the change in the amount of stress reduction after 40 hours from the start of the test of the magnesium alloy having 1% Ca, 1% Al, 0.5% Mn and different Cu contents with respect to the Cu content. It is a graph summarized. When both the as-cast material and the heat-treated material have a high Cu content, the creep resistance at high temperatures tends to decrease. Moreover, although the creep resistance at high temperature is reduced by heat treatment, it is found that the decrease in creep resistance not only by the as-cast material but also by heat treatment can be suppressed by setting the Cu content to 3.5% by mass or less. It was.
FIG. 16 is a graph summarizing changes in tensile strength of magnesium alloys having 3% Cu, 1% Ca, 1% Al and different Mn contents with respect to Mn content. Regardless of the Mn content, the tensile strength after heat treatment was improved. FIG. 17 summarizes the change in the amount of stress reduction 40 hours after the start of the test of the magnesium alloy having 3% Cu, 1% Ca, 1% Al, and different Mn contents, and the Mn content. It is a graph. In the as-cast material, creep resistance tended to improve as the Mn content increased. However, even if the content exceeds 1%, no improvement in creep resistance is observed, and a decrease in creep resistance is expected. In addition, when the Mn content exceeds 1%, the creep resistance of the heat-treated material is greatly reduced. Therefore, it can be said that the particularly preferable Mn content is 0.1 to 0.8%, further 0.3 to 0.7%.
18A, 18B, and FIGS. 19 to 21 show the observation results of the metal structure and the EPMA analysis results of specimen # 14 before and after heat treatment. 18A and 18B show the metal structure of the as-cast material. In FIG. 18A, a three-dimensional network structure was observed. In FIG. 18B at a high magnification, a portion where the contrast is uniform (a part thereof is indicated by P1) and a portion where the contrast is a stripe shape (a part thereof is indicated by P2) are observed at the crystal grain boundary. According to the EPMA analysis result of FIG. 19, it was found that P1 is composed of an Mg—Cu compound and P2 is composed of an Mg—Ca compound. It was also found that most of Cu and Ca exist at the grain boundaries.
On the other hand, FIG. 20 shows the metal structure of the heat treatment material (# 14a). In the heat-treated material, a granular compound (partially indicated by P3) that was dispersed and present in the crystal grain boundary was observed. Moreover, many places where adjacent Mg crystal grains were in contact with each other, such as a portion indicated by P4, were observed. By having such a metal structure, it is considered that the heat-treated material exhibits a high thermal conductivity. According to the EPMA analysis result of FIG. 21, it was found that P3 is mainly composed of a Cu-based compound containing Cu. It was also found that most of Cu is present in the crystal grain boundary, but most of Ca is diffused into the Mg crystal grain. This is because when comparing the Ca surface analysis result (as-cast material) in FIG. 19 with the Ca surface analysis result (heat treatment material) in FIG. 21, the overall contrast in FIG. 21 is brighter (color In the photograph, it is clear from the fact that most of it is made of Mg and is displayed in black while Ca is displayed in blue.

Claims (15)

全体を100質量%としたときに、
0.5質量%以上10質量%以下の銅(Cu)と、
0.01質量%以上3質量%以下のカルシウム(Ca)と、
を含み、残部がマグネシウム(Mg)と不可避不純物とからなることを特徴とする鋳造用マグネシウム合金。
When the total is 100% by mass,
0.5 mass% or more and 10 mass% or less of copper (Cu),
0.01% by mass or more and 3% by mass or less of calcium (Ca);
A magnesium alloy for casting, the balance being magnesium (Mg) and inevitable impurities.
全体を100質量%としたときに、さらに、アルミニウム(Al)を10質量%以下含む請求の範囲第1項記載の鋳造用マグネシウム合金。  The magnesium alloy for casting according to claim 1, further comprising 10 mass% or less of aluminum (Al) when the whole is 100 mass%. 全体を100質量%としたときに、さらに、アルミニウム(Al)を3質量%以下含む請求の範囲第1項記載の鋳造用マグネシウム合金。  The magnesium alloy for casting according to claim 1, further comprising 3% by mass or less of aluminum (Al) when the whole is 100% by mass. 前記銅(Cu)は、1質量%以上5質量%以下である請求の範囲第1項記載の鋳造用マグネシウム合金。  2. The magnesium alloy for casting according to claim 1, wherein the copper (Cu) is 1% by mass or more and 5% by mass or less. 全体を100質量%としたときに、さらに、マンガン(Mn)を1質量%以下含む請求の範囲第1項記載の鋳造用マグネシウム合金。  The magnesium alloy for casting according to claim 1, further comprising 1% by mass or less of manganese (Mn) when the whole is 100% by mass. Mgを含むMg結晶粒と、CuおよびCaを含み該Mg結晶粒の粒界に三次元のネットワーク状に晶出した粒界晶出物と、から構成される金属組織を有する請求の範囲第1項記載の鋳造用マグネシウム合金。  Claim 1 which has a metal structure composed of Mg crystal grains containing Mg, and grain boundary crystallized substances containing Cu and Ca and crystallized in a three-dimensional network at the grain boundaries of the Mg crystal grains. The magnesium alloy for casting as described in the item. Mgを含むMg結晶粒と、Cuを含み該Mg結晶粒の粒界に粒状に分散した粒状化合物と、から構成される金属組織を有する請求の範囲第1項記載の鋳造用マグネシウム合金。  The magnesium alloy for casting according to claim 1, which has a metal structure composed of Mg crystal grains containing Mg and a granular compound containing Cu and dispersed in the grain boundaries of the Mg crystal grains. 請求の範囲第1項記載の鋳造用マグネシウム合金からなる内燃機関のシリンダヘッド。  A cylinder head of an internal combustion engine comprising the magnesium alloy for casting according to claim 1. 請求の範囲第1項記載の鋳造用マグネシウム合金からなる内燃機関のシリンダブロック。  A cylinder block for an internal combustion engine comprising the magnesium alloy for casting according to claim 1. 請求の範囲第1項記載の鋳造用マグネシウム合金からなる内燃機関のオイルパン。An oil pan for an internal combustion engine comprising the magnesium alloy for casting according to claim 1. 請求の範囲第1項記載の鋳造用マグネシウム合金からなる内燃機関のターボチャージャー用インペラ。An impeller for a turbocharger of an internal combustion engine comprising the magnesium alloy for casting according to claim 1. 請求の範囲第1項記載の鋳造用マグネシウム合金からなるトランスミッションケース。A transmission case made of the magnesium alloy for casting according to claim 1. 全体を100質量%としたときに、0.5質量%以上10質量%以下の銅(Cu)と、0.01質量%以上3質量%以下のカルシウム(Ca)と、を含み、残部がマグネシウム(Mg)と不可避不純物とからなる合金溶湯を鋳型に注湯する注湯工程と、
該注湯工程後の合金溶湯を冷却させて凝固させる凝固工程と、
を含むことを特徴とするマグネシウム合金鋳物の製造方法。
When the whole is taken as 100% by mass, it contains 0.5% by mass or more and 10% by mass or less copper (Cu) and 0.01% by mass or more and 3% by mass or less calcium (Ca), with the balance being magnesium. A pouring process of pouring a molten alloy composed of (Mg) and inevitable impurities into a mold;
A solidification step of cooling and solidifying the molten alloy after the pouring step;
The manufacturing method of the magnesium alloy casting characterized by including.
前記凝固工程後に、Mgを含むMg結晶粒の粒界にCuを含む晶出物を粒状化させる熱処理工程を含む請求の範囲第13項記載のマグネシウム合金鋳物の製造方法。The method for producing a magnesium alloy casting according to claim 13, further comprising a heat treatment step of granulating a crystallized substance containing Cu at a grain boundary of Mg crystal grains containing Mg after the solidifying step. 前記熱処理工程は、400〜550℃で溶体化処理後、100〜300℃で時効硬化処理を行う工程である請求の範囲第14項記載のマグネシウム合金鋳物の製造方法。The method for producing a magnesium alloy casting according to claim 14, wherein the heat treatment step is a step of performing age hardening treatment at 100 to 300 ° C after solution treatment at 400 to 550 ° C.
JP2008549226A 2006-12-11 2007-11-02 Magnesium alloy for casting and method for producing magnesium alloy casting Active JP5146767B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008549226A JP5146767B2 (en) 2006-12-11 2007-11-02 Magnesium alloy for casting and method for producing magnesium alloy casting

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2006333652 2006-12-11
JP2006333652 2006-12-11
PCT/JP2007/071756 WO2008072435A1 (en) 2006-12-11 2007-11-02 Casting magnesium alloy and process for production of cast magnesium alloy
JP2008549226A JP5146767B2 (en) 2006-12-11 2007-11-02 Magnesium alloy for casting and method for producing magnesium alloy casting

Publications (2)

Publication Number Publication Date
JPWO2008072435A1 JPWO2008072435A1 (en) 2010-03-25
JP5146767B2 true JP5146767B2 (en) 2013-02-20

Family

ID=39511460

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008549226A Active JP5146767B2 (en) 2006-12-11 2007-11-02 Magnesium alloy for casting and method for producing magnesium alloy casting

Country Status (3)

Country Link
EP (1) EP2088217A1 (en)
JP (1) JP5146767B2 (en)
WO (1) WO2008072435A1 (en)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10758974B2 (en) 2014-02-21 2020-09-01 Terves, Llc Self-actuating device for centralizing an object
US20170268088A1 (en) 2014-02-21 2017-09-21 Terves Inc. High Conductivity Magnesium Alloy
US10689740B2 (en) 2014-04-18 2020-06-23 Terves, LLCq Galvanically-active in situ formed particles for controlled rate dissolving tools
CA2936851A1 (en) 2014-02-21 2015-08-27 Terves, Inc. Fluid activated disintegrating metal system
CA2936816A1 (en) 2014-02-21 2015-08-27 Terves, Inc. Manufacture of controlled rate dissolving materials
US11167343B2 (en) 2014-02-21 2021-11-09 Terves, Llc Galvanically-active in situ formed particles for controlled rate dissolving tools
CN106460133B (en) 2014-04-18 2019-06-18 特维斯股份有限公司 The particle of electro-chemical activity for controllable rate dissolution tool being formed in situ
GB201413327D0 (en) 2014-07-28 2014-09-10 Magnesium Elektron Ltd Corrodible downhole article
EP3438303B1 (en) 2016-03-31 2020-02-19 Kurimoto, Ltd. Degradable mg alloy
CA3012511A1 (en) 2017-07-27 2019-01-27 Terves Inc. Degradable metal matrix composite
CN114502758B (en) * 2019-10-18 2023-01-10 株式会社栗本铁工所 Degradable magnesium alloy
US20230183843A1 (en) * 2020-04-21 2023-06-15 National Institute Of Advanced Industrial Science And Technology Magnesium alloy, magnesium alloy plate, magnesium alloy bar, manufacturing methods thereof, and magnesium alloy member
CN114001041A (en) * 2021-09-18 2022-02-01 喻开怀 Light alloy fan impeller and preparation method thereof

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0625790A (en) * 1992-03-25 1994-02-01 Mitsui Mining & Smelting Co Ltd High-strength magnesium alloy
JPH0711374A (en) * 1993-06-28 1995-01-13 Ube Ind Ltd Magnesium alloy

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005054233A (en) 2003-08-04 2005-03-03 Chiba Inst Of Technology Heat resistant magnesium alloy

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0625790A (en) * 1992-03-25 1994-02-01 Mitsui Mining & Smelting Co Ltd High-strength magnesium alloy
JPH0711374A (en) * 1993-06-28 1995-01-13 Ube Ind Ltd Magnesium alloy

Also Published As

Publication number Publication date
WO2008072435A1 (en) 2008-06-19
EP2088217A1 (en) 2009-08-12
JPWO2008072435A1 (en) 2010-03-25

Similar Documents

Publication Publication Date Title
JP5146767B2 (en) Magnesium alloy for casting and method for producing magnesium alloy casting
JP5703881B2 (en) High strength magnesium alloy and method for producing the same
EP2369025B1 (en) Magnesium alloy and magnesium alloy casting
JP2006291327A (en) Heat-resistant magnesium alloy casting
EP2138594A1 (en) Magnesium alloy for casting and magnesium alloy cast
JP4852082B2 (en) Magnesium alloy
JP3737440B2 (en) Heat-resistant magnesium alloy casting and manufacturing method thereof
EP1418248A1 (en) Heat resistant magnesiun alloy
JP6814446B2 (en) Flame-retardant magnesium alloy and its manufacturing method
US20080187454A1 (en) Heat-resistant magnesium alloy for casting heat-resistant magnesium alloy cast product, and process for producing heat-resistant magnesium alloy cast product
JP2005240129A (en) Heat resistant magnesium alloy casting
EP2138595A1 (en) Magnesium alloy for casting and magnesium alloy cast
JP2004256873A (en) Aluminum alloy for casting having excellent high temperature strength
JP2005187896A (en) Heat resistant magnesium alloy casting
JP5590413B2 (en) High thermal conductivity magnesium alloy
JP2005187895A (en) Heat resistant magnesium alloy casting
JPH05255794A (en) Heat resistant magnesium alloy
US20040151613A1 (en) Heat-resistant magnesium alloy for casting and heat-resistant magnesium alloy cast product
JP3915739B2 (en) Aluminum alloy for casting with excellent high temperature strength
JP4065977B2 (en) Aluminum alloy for casting with excellent high temperature strength
JP4341453B2 (en) Aluminum alloy casting excellent in thermal conductivity and method for producing the same
JP2005240130A (en) Heat resistant magnesium alloy casting
JP2011219820A (en) Heat resisting magnesium alloy
JP2005187894A (en) Heat resistant magnesium alloy casting

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100127

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121101

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121114

R151 Written notification of patent or utility model registration

Ref document number: 5146767

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151207

Year of fee payment: 3