JP2004256873A - Aluminum alloy for casting having excellent high temperature strength - Google Patents

Aluminum alloy for casting having excellent high temperature strength Download PDF

Info

Publication number
JP2004256873A
JP2004256873A JP2003049788A JP2003049788A JP2004256873A JP 2004256873 A JP2004256873 A JP 2004256873A JP 2003049788 A JP2003049788 A JP 2003049788A JP 2003049788 A JP2003049788 A JP 2003049788A JP 2004256873 A JP2004256873 A JP 2004256873A
Authority
JP
Japan
Prior art keywords
mass
casting
crystallized
aluminum alloy
temperature strength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003049788A
Other languages
Japanese (ja)
Inventor
Hiroshi Horikawa
宏 堀川
Katsumi Takagi
克己 高木
Kunihiko Uchida
邦彦 内田
Masaru Narusawa
大 鳴澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Light Metal Co Ltd
Art Metal Manufacturing Co Ltd
Toyota Motor Corp
Aisin Corp
Original Assignee
Aisin Seiki Co Ltd
Nippon Light Metal Co Ltd
Art Metal Manufacturing Co Ltd
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aisin Seiki Co Ltd, Nippon Light Metal Co Ltd, Art Metal Manufacturing Co Ltd, Toyota Motor Corp filed Critical Aisin Seiki Co Ltd
Priority to JP2003049788A priority Critical patent/JP2004256873A/en
Publication of JP2004256873A publication Critical patent/JP2004256873A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Pistons, Piston Rings, And Cylinders (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an aluminum alloy for a casting with which a casting having a high temperature strength higher than that of the conventional one can be manufactured by reducing the size of crystallized products without using a powder metallurgy method and a die casting method. <P>SOLUTION: The aluminum alloy for a casting comprises, by mass, 9.5 to 11.5% Si, 5.0 to 7.7% Cu, 3.5 to 5.5% Ni, 0.55 to 1.5% Mg, 0.003 to 0.1% P and 0.15 to 0.7% Fe, and, if required, further comprises at least one kind of metals selected from 0.005 to 0.3% Ti, 0.02 to 0.3% Zr, 0.02 to 0.3% V, 0.001 to 0.1% B and 0.1 to 0.7% Mn, and the balance substantially Al. The temperature range in a solid-liquid coexistent region on solidification is made narrow, and various crystallized products are almost simultaneously crystallized out, so that the crystallized products are uniformly and finely distributed, and a metallic structure in which an α-Al phase as a matrix is is finely parted is formed. Thus, its high temperature strength is improved. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【産業上の利用分野】
本発明は、高温強度に優れた鋳物用アルミニウム合金に関するものであり、特に高温強度が必要とされ、かつ耐摩耗性や鋳造性も要求される車輌用等の内燃機関用ピストンに適した鋳物用アルミニウム合金に関する。
【0002】
【従来の技術】
内燃機関に使用されるピストンとして、軽量化を図るためJIS規格AC8A合金(Si:11.0〜13.0質量%,Cu:0.8〜1.3質量%,Mg:0.7〜1.3質量%,Ni:0.8〜1.5質量%)のような、耐摩耗性や鋳造性に優れ、熱膨張係数の小さいAl−Si系アルミニウム合金が使用されてきた。
近年、より高い温度での強度を要求されるピストンには、高温強度を高めるためにNiやCuの添加量を多くしたアルミニウム合金が使用される用になってきた(例えば、特許文献1,2参照)。
【0003】
例えば特許文献1で紹介されたアルミニウム合金では、10〜16質量%のSiを含むAl−Si系合金にCu:1〜7質量%,Ni:0.2〜6質量%を含有させている。しかしながらこの合金では、晶出物の大きさが大きくなりやすいので、所要の高温強度を発現させるためには、含有P及びCa量を規制する必要があり、しかもダイカスト法を用い冷却速度20℃/秒以上で鋳造しなければならない。
また特許文献2で紹介されたアルミニウム合金では、11〜16質量%のSiを含むAl−Si系合金にCu:3〜7質量%,Ni:3〜7質量%を含有させている。しかしながらこの合金でも、晶出物の大きさを小さくするためにダイカスト法を用い冷却速度が早くなるように鋳造している。
【0004】
【特許文献1】
特開平8−134577号公報
【特許文献2】
特開2000−204428号公報
【0005】
【発明が解決しようとする課題】
Cu及びNiを含有したAl−Si系合金では、高温で安定なAl−Ni−Cu系の晶出物を微細均一に晶出させ、α−Al相を細かく分断することにより高温強度を高めている。上記2つの技術で、冷却速度の速い鋳造法を採用して晶出物の大きさを小さくするのは、このためである。冷却速度が遅く、凝固の進行が遅い場合には晶出物が粗大化してα−Al相を細かく分断できなくなる。また、粗大な晶出物は破壊の起点になり、アルミニウム合金材の強度、特に疲労強度や破壊靭性値を低下させる原因にもなる。
晶出物の粗大化を抑制するためには急冷凝固させる必要がある。具体的には、粉末冶金法の適用や高速高圧のダイカスト法で鋳造する必要がある。しかし、粉末冶金法を使用した材料は、その製法上非常に高価であり、また高速高圧のダイカスト法はその工法上内部欠陥を含みやすく、また金型及び装置が高価になる。
本発明は、このような問題を解消すべく案出されたものであり、粉末冶金法やダイカスト法を用いることなく、従来よりもさらに高温強度の高い鋳物が製造できる鋳物用アルミニウム合金を提供することを目的とする。
【0006】
【課題を解決するための手段】
本発明の高温強度に優れた鋳物用アルミニウム合金は、その目的を達成するため、Si:9.5〜11.5質量%,Cu:5.0〜7.7質量%,Ni:3.5〜5.5質量%,Mg:0.55〜1.5質量%,P:0.003〜0.1質量%,Fe:0.15〜0.7質量%を含み、残部が実質的にAlからなることを特徴とする。
本発明の鋳物用アルミニウム合金は、さらにTi:0.005〜0.3質量%,Zr:0.02〜0.3質量%,V:0.02〜0.3質量%,B:0.001〜0.1質量%,Mn:0.1〜0.7質量%の少なくとも1種以上を含むことができる。
この鋳物用アルミニウム合金は、晶出物の平均粒径が15μm以下,最大粒径が100μm以下,代表粒子間距離が20μm以下であるものが好ましい。
そしてこのような鋳物用アルミニウム合金が内燃機関用ピストンとして適用される。
【0007】
【作用】
Al−Si系合金溶湯を鋳造する際、凝固速度が遅い場合に晶出物が均一微細に晶出せず粗大な晶出物が形成する理由は、発生した晶出物の周りに十分な液相スペースと成長するための時間的な余裕があるためである。例えば、特許文献2の実施例で使用されたAl−12.6%Si−4.2%Cu−0.5%Fe−0.4%Mn−4.5%Ni合金の熱平衡計算で算出した状態図を図1に示す。
この組成のアルミニウム合金溶湯を凝固させるとき、まず約609℃でAlFeSiが晶出し、次に初晶Siが晶出し、その後α−Al相の晶出が始まる。さらに、AlFeNi、AlNiの順で晶出し、約531℃の固相線に達するとAlNi、AlCuMgSiが晶出する。そして凝固速度が遅いとAlFeSi、初晶Si、AlFeNiが十分に成長する。これらの晶出物を成長させないためには、図1中の固液共存領域[AlFeSiの晶出開始温度(約609℃)から固相線温度(約531℃)までの領域]を急速に通過させる必要がある。そのために従来の技術では、冷却速度が速いダイカスト法を使用する必要があった。
【0008】
また、鋳物用Al−Si系合金の代表的組成である、Al−12%Si−3%Cu−2.5%Ni−1.0%Mg−0.2%Fe合金の熱平衡計算で算出した状態図も図2に示す。この組成のアルミニウム合金溶湯を凝固させるとき、まず約568℃で初晶Siが晶出し、その後α−Al相の晶出が始まる。次にAlNiの晶出が始まる。さらに531℃付近になると、Ni(NiCu)やMgSi等が現れる。特許文献2の合金の固液共存領域よりも狭いが、まだ固液共存領域(約568℃〜約531℃)は広い。そして凝固速度が遅いと初晶Siは十分に成長し、その後AlNiも十分に成長し大きなAlNiに置き換わる。このため、最近のピストンに対する高い要求強度を十分に満たす高強度の鋳物は得られていない。
なお、図1,2および次の図3に共通する事項であるが、Siはα−Al相の晶出温度以上では初晶Siとして晶出し、その後は共晶Siとして晶出する。またAlNiは途中からAlNiの原料になるのでほとんどなくなる。
【0009】
そこで、本発明者等は、上記図1,2において固液共存領域の温度幅を狭く、且つ晶出温度が近似する晶出物が晶出するような成分組成を探索することにした。Siと各種Al−Ni系金属間化合物をほぼ同時に晶出させれば、異種の晶出物同士が互いに粗大化することを抑制し、凝固速度が遅くても晶出物は微細均一に且つ高密度で分布することになる。
例えば、Al−10%Si−7%Cu−5%Ni−1.0%Mg−0.2%Fe合金の熱平衡計算で算出した状態図を図3に示す。この合金の最初の晶出物(AlFeNi)の晶出開始温度は約553℃,固相線は約525℃である。この図から、固液共存領域の温度幅が狭く、且つ共晶Si及び各種Al−Ni系金属間化合物はほぼ同時に晶出することがわかる。このような成分組成をもつアルミニウム合金溶湯を鋳造する際、冷却速度(凝固速度)を速くしなくても晶出物は互いにその成長を抑制し合い、そのため晶出物は均一微細に分布し、マトリックスであるα−Al相が細かく分断された金属組織となって高温強度を向上することができるようになったものである。
【0010】
なお、請求項の記載で規定した成分組成は、上記の観点から各種成分組成についての熱平衡計算を行い、その計算結果から最適合金組成を予測し、予測した合金組成について予備実験を重ねて確認した結果に基づいて設定したものである。
そして、本発明の成分組成を採用すれば、重力鋳造のような低速低圧の鋳造方法でも優れた高温強度が得られる。高速高圧のダイカスト法、又は低速高圧の溶湯鍛造法などの高圧鋳造法で鋳造すると、結晶粒や晶出物はさらに微細化され、ミクロシュリンケージの発生を抑制することができるので、より優れた高温強度が得られることになる。
また、鋳込んだ鋳塊に人工時効を施したり、鋳造焼入れ後に人工時効を施したり、或いは溶体化処理後に人工時効を施すなどの熱処理を施すことにより、マトリックスの強度を制御し、より高い強度を得ることができることは、従来の鋳造用Al−Si系合金と同様である。
【0011】
以下、本発明鋳物用アルミニウム合金の成分,含有量等について詳しく説明する。
Si:9.5〜11.5質量%
初晶Siや共晶Siとして晶出し、耐熱性及び耐摩耗性を改善する合金成分である。また、熱膨張率を低下させ、鋳造時の湯流れを向上する上でも有効な成分である。さらに、共存しているMgと反応し時効処理によってMgSiとして析出し、機械強度を向上させる。Si含有量が9.5質量%に満たないと耐摩耗性や高温強度が低くなり、熱膨張係数が大きくなる。逆に11.5質量%を超えるSi含有量では、初晶Siが比較的高温で液相から粗大に成長し、伸びが低下するうえ、鋳造性の点から鋳造温度を高くする必要も生じる。
【0012】
Cu:5.0〜7.7質量%
マトリックスに固溶し、またNiと共存するときAl(NiCu)を生成し、200〜350℃の高温強度向上に寄与する。またAl−Siの共晶温度域を下げ、Al−Ni系金属間化合物とほぼ同温度域とする。また、時効処理でAlCu中間体を生成し、250℃までの温度域でのマトリックス強度の向上に寄与する。Cu含有量が5.0質量%に満たないとこの効果は十分出ない。逆に.7質量%を超えると、Al−Si−Cu−Mg−系低融点化合物の生成量が多くなり、ミクロシュリンケージにより伸びを低下させるとともに。鋳造割れも起こしやすくなる。また、合金の比重が大きくなり、アルミニウム合金使用の軽量化メリットが減じる。
【0013】
Ni:3.5〜5.5質量%
Niは、高融点のAl−Ni系晶出物を形成し、200〜350℃付近における耐熱性,高温強度を改善する。またNiは鋳造性を向上(耐焼付き性の向上)させる作用もある。これらの効果は3.5質量%以上の含有で顕著になる。しかし、5.5質量%を超える多量のNiを含有させると、Al−Ni(FeMn)系の金属間化合物が比較的高温で液相から粗大に成長し、伸びが低下するうえ、粗大金属間化合物の周囲では高温強度向上に必要なα相の微細な分断も得られない。さらに、鋳造温度を高温にする必要も生じる。また、合金の比重が大きくなり、アルミニウム合金使用の軽量化メリットが減じるとともに、地金が高価になる。
【0014】
Mg:0.55〜1.5質量%
アルミニウム地中に固溶してマトリックスを強化するとともに、Siとの共存により時効処理でMgSi中間体を析出し、機械強度を向上させる合金成分である。またAl−Siの共晶温度域を下げ、Al−Ni系金属間化合物とほぼ同温度域とする。Mg含有量が0.55質量%以上で十分な強化作用が得られ、1.5質量%を超えるとAl−Si−Cu−Mg系低融点化合物の生成量が多くなり、ミクロシュリンケージにより伸びを低下させる。また、鋳造割れも起こしやすくなる。
【0015】
P:0.003〜0.1質量%
初晶Siの粗大化抑制及び共晶Siの過度の微細化抑制にも寄与する。この効果は0.003重量%以上のP含有量で顕著になる。Pの含有量が多くなるにつれて湯流れ性が悪化し、湯まわり不良や湯境いといった鋳造欠陥が発生し易くなる。したがって、P含有量の上限は0.1質量%とした。
【0016】
Fe:0.15〜0.7質量%
Feは不可避的に混入してくる不純物でもあり、0.15質量%以下に抑えるのは困難であるが、0.2重量%以上含有していると種々の金属間化合物を生成し、耐摩耗性及び高温強度を向上させ、熱膨張率を下げる効果がある。また、ダイカストを行う場合には金型への焼付きを防止する効果もある。しかし、0.7質量%超える過剰量のFeが含まれると、粗大なAl−Ni(FeMn)系の金属間化合物を生成し、高温強度及び伸びを低下させる。
【0017】
Ti:0.005〜0.3質量%,Zr:0.02〜0.3質量%,V:0.02〜0.3質量%,B:0.001〜0.1質量%
Ti,Zr及びBは、必要に応じて添加される成分であり、結晶粒微細化作用があり、また引け性を改善する。各々単独でも効果があるが、特にTiとBが共存すると添加量は少なくても効果は大きい。またZrには、溶湯の酸化を抑制する働きもある。Vは高温強度を高める効果があり、またZrと同様に溶湯の酸化を抑制する働きもある。
各元素の効果は下限添加量未満では不十分であり、上限添加量を超える量添加しても効果は飽和している。なお、Ti及びBを過剰に添加すると、TiBクラスタが成長・粗大化し、ハードスポットの原因となる。また同じくZrを過剰に添加するとAlZrが成長し、伸びを阻害する。Vを過剰に添加すると地金が高価になる。
【0018】
Mn:0.1〜0.7質量%
Fe同様、種々の金属間化合物として晶出し、耐摩耗性及び高温強度を向上させ、熱膨張率を下げる効果がある。また、Mnはα−Al相に固溶しマトリックスを強化するとともに、粗大針状のAl−Fe系晶出物の生成も抑えられる。このような作用は、0.1質量%以上のMn含有量で顕著になる。しかし、Mn含有量が0.7質量%を超えると、Feとともに粗大なAl−Ni(FeMn)系の金属間化合物を生成し、却って高温強度及び伸びを低下させることになる。
【0019】
その他
不可避的に混入する不純物は少ない方が好ましい。例えばCaは湯流れ性を悪化させ、また共晶Siを過度に微細化して耐摩耗性を低下させるので、0.002質量%以下に規制することが好ましい。また、同様の理由から、Na含有量は0.001質量%以下に、Sr含有量は0.002質量%以下に、Sb含有量は0.05質量%以下に、さらにBi含有量は0.003質量%以下に規制することが好ましい。
【0020】
晶出物の平均粒径が15μm以下,最大粒径が100μm以下,代表粒子間距離が20μm以下
晶出物の平均粒径が15μmより大きいと、α−Al相を微細に分断できず、十分な高温強度を得ることができない。また、100μmより大きい粒径の晶出物が存在すると、応力集中が激しく晶出物が母相から剥離したり、晶出物自体が破砕されて破壊の起点となり、強度が低下する。さらに、代表粒子間距離が20μmを超えるとα−Al相を微細に分断できず、十分な高温強度を得ることができない。
このような金属組織にするためには、本請求項に記載したように規制された成分組成を有する合金を鋳造することにより得られる。
【0021】
【実施例】
表1に示す組成を有するアルミニウム合金を、重力金型鋳造法(冷却速度:0.5〜5℃/s)で、ピストン形状に鋳造した。溶湯保持温度は750℃±10℃,金型温度は250℃である。
得られた鋳物に220℃×4hrの時効処理を施した後、ピストン頭頂部から引張試験片を採取した。試験温度にて100時間の予備加熱をし、250℃と350℃で引張試験を行って引張強度を求めた。
また同時にピン穴上部の組織観察も行い、画像解析法により晶出物の平均粒径,最大粒径及び代表粒子間距離を測定した。なお、代表粒子間距離は、軽金属学会研究委員会鋳造・凝固部会推奨のデンドライトアームスペーシング測定の2次枝法により測定した。
それらの結果を表2に示す。
【0022】

Figure 2004256873
【0023】
Figure 2004256873
【0024】
表2より、本発明の実施例である試験No.1〜7は、例えば図4にみられるように、粗大な晶出物が晶出しておらず、高温強度に優れていることがわかる。
これに対して、比較例では、例えば図5にみられるように、晶出物の粒径が大きくなったり、粒子間距離が大きくなって、高温強度が低下している。
試験No.8は、Cu含有量が少ないために各種Al−Ni系金属間化合物の晶出温度域が分かれ、晶出物が粗大化して引張強度も低下した。試験No.9は、P含有量が少なかったために初晶Siの微細化効果が十分でなく初晶Siが粗大化して引張強度も低下した。試験No.10はSi含有量が少ないために最初にα−Al相が晶出し、そのためにα−Al相が十分に分断されず高温強度が十分でなかった。また表2には示していないが、本発明例と比較して熱膨張係数が大きくなっていた。試験No.11はCu含有量が多いためにAl−Si−Cu−Mg系低融点化合物が多量に形成され、高温強度が低下した。また鋳造性も悪かった。また試験No.12はSi含有量が多くCuとNiの含有量が少ないために晶出物量が少なく、α−Al相を十分に分断することができなかったために引張強度は高くならなかった。さらに、試験No.13はSi及びNiの含有量が多すぎたために粗大な晶出物が現れ、鋳造性も悪かった。
【0025】
【発明の効果】
以上に説明したように、本発明は、鋳造用Al−Si系アルミニウム合金において、合金成分の含有量を調整して凝固時の固液共存領域の温度範囲を狭くし、晶出物をほとんど同時に晶出させるようにすることにより、冷却速度(凝固速度)を速くしなくても晶出物を均一微細に分布させ、マトリックスであるα−Al相が細かく分断された金属組織とすることができたので、鋳造方法に影響されることなく高温強度に優れた鋳造用Al−Si系アルミニウム合金を得ることができる。これにより、高温強度,高温疲労強度及び耐摩耗性に優れた内燃機関用ピストン等が安価に提供される。
【図面の簡単な説明】
【図1】Al−12.6%Si−4.2%Cu−0.5%Fe−0.4%Mn−4.5%Ni合金の熱平衡計算で算出した状態図
【図2】Al−12%Si−3%Cu−2.5%Ni−1.0%Mg−0.2%Fe合金の熱平衡計算で算出した状態図
【図3】Al−10%Si−7%Cu−5%Ni−1.0%Mg−0.2%Fe合金の熱平衡計算で算出した状態図
【図4】試験No.1のマクロ組織を説明する図
【図5】試験No.12のマクロ組織を説明する図[0001]
[Industrial applications]
The present invention relates to an aluminum alloy for castings excellent in high-temperature strength, particularly for castings suitable for internal combustion engine pistons for vehicles and the like that require high-temperature strength and also require wear resistance and castability. Related to aluminum alloy.
[0002]
[Prior art]
As a piston used in an internal combustion engine, JIS standard AC8A alloy (Si: 11.0 to 13.0% by mass, Cu: 0.8 to 1.3% by mass, Mg: 0.7 to 1) for weight reduction Al-Si-based aluminum alloys having excellent wear resistance and castability and a small coefficient of thermal expansion, such as 0.3% by mass (Ni: 0.8 to 1.5% by mass).
In recent years, aluminum alloys with an increased amount of Ni or Cu added to increase the high-temperature strength have been used for pistons that require strength at higher temperatures (for example, Patent Documents 1 and 2). reference).
[0003]
For example, in an aluminum alloy introduced in Patent Literature 1, an Al-Si alloy containing 10 to 16% by mass of Si contains 1 to 7% by mass of Cu and 0.2 to 6% by mass of Ni. However, in this alloy, the size of the crystallized matter tends to be large, so that it is necessary to regulate the content of P and Ca in order to develop the required high-temperature strength. Must be cast in seconds or more.
Further, in the aluminum alloy introduced in Patent Document 2, Cu: 3 to 7% by mass and Ni: 3 to 7% by mass are contained in an Al—Si alloy containing 11 to 16% by mass of Si. However, this alloy is also cast using a die casting method so as to increase the cooling rate in order to reduce the size of the crystallized material.
[0004]
[Patent Document 1]
JP-A-8-134577 [Patent Document 2]
JP 2000-204428 A [0005]
[Problems to be solved by the invention]
In an Al-Si alloy containing Cu and Ni, a high-temperature stable Al-Ni-Cu-based crystallized product is finely and uniformly crystallized, and the α-Al phase is finely divided to enhance the high-temperature strength. I have. It is for this reason that the size of the crystallized material is reduced by employing a casting method with a high cooling rate in the above two techniques. If the cooling rate is slow and the progress of solidification is slow, the crystallized material becomes coarse and the α-Al phase cannot be finely divided. Further, the coarse crystallized substance becomes a starting point of fracture, and also causes a reduction in the strength of the aluminum alloy material, particularly, the fatigue strength and the fracture toughness value.
Rapid solidification is required to suppress the coarsening of the crystallized material. Specifically, it is necessary to apply a powder metallurgy method or to perform casting by a high-speed and high-pressure die casting method. However, materials using the powder metallurgy method are very expensive in terms of the production method, and the high-speed and high-pressure die-casting method tends to include internal defects in the method, and the molds and apparatuses are expensive.
The present invention has been devised to solve such a problem, and provides an aluminum alloy for castings that can produce a casting having a higher high-temperature strength than before without using a powder metallurgy method or a die casting method. The purpose is to:
[0006]
[Means for Solving the Problems]
The aluminum alloy for castings excellent in high-temperature strength according to the present invention achieves the object by, for example, Si: 9.5 to 11.5% by mass, Cu: 5.0 to 7.7% by mass, and Ni: 3.5%. To 5.5% by mass, Mg: 0.55 to 1.5% by mass, P: 0.003 to 0.1% by mass, Fe: 0.15 to 0.7% by mass, and the balance is substantially It is characterized by being made of Al.
The aluminum alloy for casting according to the present invention further comprises: Ti: 0.005 to 0.3% by mass, Zr: 0.02 to 0.3% by mass, V: 0.02 to 0.3% by mass, B: 0. 001-0.1% by mass and Mn: 0.1-0.7% by mass.
This aluminum alloy for castings preferably has an average crystallite size of 15 μm or less, a maximum particle size of 100 μm or less, and a representative particle distance of 20 μm or less.
And such an aluminum alloy for castings is applied as a piston for internal combustion engines.
[0007]
[Action]
When casting an Al-Si alloy melt, if the solidification rate is low, the crystallized material does not crystallize uniformly and finely, and the coarse crystallized material is formed because there is a sufficient liquid phase around the generated crystallized material. This is because there is enough time for space and growth. For example, it was calculated by a thermal equilibrium calculation of the Al-12.6% Si-4.2% Cu-0.5% Fe-0.4% Mn-4.5% Ni alloy used in the example of Patent Document 2. The state diagram is shown in FIG.
When the molten aluminum alloy having this composition is solidified, AlFeSi is first crystallized at about 609 ° C., then primary Si is crystallized, and then crystallization of the α-Al phase starts. Further, Al 9 FeNi and Al 3 Ni are crystallized in this order, and when the solidus reaches about 531 ° C., Al 3 Ni 2 and Al 5 Cu 2 Mg 8 Si 6 are crystallized. When the solidification rate is low, AlFeSi, primary crystal Si, and Al 9 FeNi grow sufficiently. In order to prevent these crystallized substances from growing, the solid-liquid coexistence region [the region from the crystallization start temperature of AlFeSi (about 609 ° C.) to the solidus temperature (about 531 ° C.)] in FIG. Need to be done. Therefore, in the prior art, it was necessary to use a die casting method having a high cooling rate.
[0008]
In addition, it was calculated by thermal equilibrium calculation of an Al-12% Si-3% Cu-2.5% Ni-1.0% Mg-0.2% Fe alloy, which is a typical composition of an Al-Si alloy for casting. The state diagram is also shown in FIG. When the molten aluminum alloy having this composition is solidified, primary crystal Si is first crystallized at about 568 ° C., and then crystallization of the α-Al phase starts. Next, crystallization of Al 3 Ni starts. Further, at around 531 ° C., Ni 3 (NiCu) 2 and Mg 2 Si appear. Although it is narrower than the solid-liquid coexisting region of the alloy of Patent Document 2, the solid-liquid coexisting region (about 568 ° C. to about 531 ° C.) is still wide. When the solidification rate is low, the primary crystal Si grows sufficiently, and thereafter, Al 3 Ni also grows sufficiently and is replaced by large Al 3 Ni 2 . For this reason, a high-strength casting which sufficiently satisfies the recent high strength requirements for pistons has not been obtained.
Note that, as common to FIGS. 1 and 2 and the following FIG. 3, Si is crystallized as primary Si above the crystallization temperature of the α-Al phase, and thereafter as eutectic Si. Al 3 Ni becomes a raw material of Al 3 Ni 2 in the middle, so that Al 3 Ni almost disappears.
[0009]
Therefore, the present inventors have searched for a component composition in which the temperature width of the solid-liquid coexistence region is narrow in FIGS. 1 and 2 and a crystallized substance having a similar crystallization temperature is crystallized. When Si and various Al-Ni intermetallic compounds are crystallized almost simultaneously, it is possible to suppress different types of crystallized substances from becoming coarser each other, and even if the solidification rate is low, the crystallized substances are finely uniform and high. It will be distributed by density.
For example, FIG. 3 shows a phase diagram calculated by a thermal equilibrium calculation of an Al-10% Si-7% Cu-5% Ni-1.0% Mg-0.2% Fe alloy. The crystallization start temperature of the first crystallized product (Al 9 FeNi) of this alloy is about 553 ° C., and the solidus temperature is about 525 ° C. From this figure, it can be seen that the temperature range of the solid-liquid coexistence region is narrow, and eutectic Si and various Al-Ni-based intermetallic compounds are crystallized almost simultaneously. When casting an aluminum alloy melt having such a component composition, the crystallized substances mutually suppress their growth without increasing the cooling rate (solidification rate), so that the crystallized substances are uniformly and finely distributed, The α-Al phase, which is a matrix, has a finely divided metal structure, so that high-temperature strength can be improved.
[0010]
In addition, the component compositions specified in the claims were calculated from the above viewpoints by performing thermal equilibrium calculations for various component compositions, predicting the optimum alloy composition from the calculation results, and confirming the predicted alloy composition through repeated preliminary experiments. This is set based on the result.
If the component composition of the present invention is adopted, excellent high-temperature strength can be obtained even in a low-speed and low-pressure casting method such as gravity casting. When casting by a high-pressure casting method such as a high-speed and high-pressure die casting method or a low-speed and high-pressure molten metal forging method, crystal grains and crystallized substances are further refined, and the occurrence of microshrinkage can be suppressed, so that more excellent High temperature strength will be obtained.
Also, by applying a heat treatment such as artificial aging to the cast ingot, artificial aging after casting quenching, or applying artificial aging after solution treatment, to control the strength of the matrix, higher strength Can be obtained in the same manner as the conventional casting Al-Si alloy.
[0011]
Hereinafter, the components and contents of the aluminum alloy for castings of the present invention will be described in detail.
Si: 9.5 to 11.5 mass%
It is an alloy component which is crystallized as primary crystal Si or eutectic Si to improve heat resistance and wear resistance. It is also an effective component for lowering the coefficient of thermal expansion and improving the flow of molten metal during casting. Further, it reacts with coexisting Mg and precipitates as Mg 2 Si by aging treatment, thereby improving mechanical strength. If the Si content is less than 9.5% by mass, abrasion resistance and high-temperature strength are reduced, and the coefficient of thermal expansion is increased. Conversely, when the Si content exceeds 11.5% by mass, the primary crystal Si grows coarsely from the liquid phase at a relatively high temperature, the elongation is reduced, and the casting temperature needs to be increased from the viewpoint of castability.
[0012]
Cu: 5.0 to 7.7 mass%
It forms a solid solution in the matrix and forms Al 3 (NiCu) 2 when coexisting with Ni, contributing to the improvement of high-temperature strength at 200 to 350 ° C. In addition, the eutectic temperature range of Al-Si is lowered to be substantially the same as the Al-Ni intermetallic compound. In addition, an aging treatment produces an Al 2 Cu intermediate, which contributes to an improvement in matrix strength in a temperature range up to 250 ° C. If the Cu content is less than 5.0% by mass, this effect is not sufficiently obtained. vice versa. If it exceeds 7% by mass, the amount of the Al-Si-Cu-Mg-based low-melting point compound increases, and the elongation is reduced by microshrinkage. Casting cracks are also likely to occur. In addition, the specific gravity of the alloy is increased, and the advantage of weight reduction by using an aluminum alloy is reduced.
[0013]
Ni: 3.5 to 5.5% by mass
Ni forms a high melting point Al-Ni crystallized material, and improves heat resistance and high-temperature strength at around 200 to 350 ° C. Ni also has the effect of improving castability (improving seizure resistance). These effects become remarkable when the content is 3.5% by mass or more. However, when a large amount of Ni exceeding 5.5% by mass is contained, the Al-Ni (FeMn) -based intermetallic compound grows coarsely from the liquid phase at a relatively high temperature, and the elongation is reduced. Around the compound, fine separation of the α phase required for improving the high-temperature strength cannot be obtained. Further, it is necessary to increase the casting temperature. In addition, the specific gravity of the alloy is increased, the advantage of weight reduction by using an aluminum alloy is reduced, and the metal becomes expensive.
[0014]
Mg: 0.55 to 1.5% by mass
An alloy component that forms a solid solution in aluminum ground to strengthen the matrix, precipitates an Mg 2 Si intermediate by aging treatment in the presence of Si, and improves mechanical strength. In addition, the eutectic temperature range of Al-Si is lowered to be substantially the same as the Al-Ni intermetallic compound. When the Mg content is 0.55% by mass or more, a sufficient strengthening effect is obtained. When the Mg content exceeds 1.5% by mass, the amount of the Al-Si-Cu-Mg-based low-melting point compound increases, and elongation due to microshrinkage increases. Lower. In addition, casting cracks are likely to occur.
[0015]
P: 0.003 to 0.1% by mass
It also contributes to suppression of coarsening of primary crystal Si and suppression of excessive miniaturization of eutectic Si. This effect becomes significant at a P content of 0.003% by weight or more. As the content of P increases, the flowability of the molten metal deteriorates, and casting defects such as poor running of the molten metal and the boundary of the molten metal tend to occur. Therefore, the upper limit of the P content is set to 0.1% by mass.
[0016]
Fe: 0.15 to 0.7 mass%
Fe is also an unavoidable impurity, and it is difficult to suppress the content to 0.15% by mass or less, but if it is contained in an amount of 0.2% by mass or more, various intermetallic compounds are generated, resulting in wear resistance. It has the effect of improving heat resistance and high-temperature strength and lowering the coefficient of thermal expansion. Further, when die casting is performed, there is also an effect of preventing seizure on a mold. However, when an excessive amount of Fe exceeding 0.7% by mass is contained, a coarse Al-Ni (FeMn) -based intermetallic compound is generated, and the high-temperature strength and elongation are reduced.
[0017]
Ti: 0.005 to 0.3% by mass, Zr: 0.02 to 0.3% by mass, V: 0.02 to 0.3% by mass, B: 0.001 to 0.1% by mass
Ti, Zr, and B are components added as needed, and have a crystal grain refining effect and improve shrinkability. Each of them is effective alone, but especially when Ti and B coexist, the effect is large even if the added amount is small. Zr also has a function of suppressing the oxidation of the molten metal. V has the effect of increasing the high-temperature strength and also has the function of suppressing the oxidation of the molten metal, similarly to Zr.
The effect of each element is insufficient if the amount is less than the lower limit, and the effect is saturated even if the amount exceeds the upper limit. If Ti and B are excessively added, the TiB 2 cluster grows and coarsens, causing a hard spot. Similarly, if Zr is excessively added, Al 3 Zr grows and inhibits elongation. If V is added excessively, the metal becomes expensive.
[0018]
Mn: 0.1 to 0.7% by mass
Like Fe, it is crystallized as various intermetallic compounds, has the effect of improving wear resistance and high-temperature strength, and lowering the coefficient of thermal expansion. In addition, Mn forms a solid solution in the α-Al phase to strengthen the matrix, and suppresses the generation of coarse needle-like Al-Fe-based crystals. Such an effect becomes remarkable at a Mn content of 0.1% by mass or more. However, if the Mn content exceeds 0.7% by mass, a coarse Al-Ni (FeMn) -based intermetallic compound is generated together with Fe, and the high-temperature strength and elongation are rather reduced.
[0019]
Others It is preferable that impurities are inevitably mixed. For example, Ca deteriorates the flowability of the molten metal and excessively refines the eutectic Si to lower the wear resistance. Therefore, it is preferable to restrict the content to 0.002% by mass or less. For the same reason, the Na content is 0.001% by mass or less, the Sr content is 0.002% by mass or less, the Sb content is 0.05% by mass or less, and the Bi content is 0.1% by mass or less. It is preferable to regulate the content to 003% by mass or less.
[0020]
When the average particle size of the crystallized material is 15 μm or less, the maximum particle size is 100 μm or less, and the distance between the representative particles is 20 μm or less. If the average particle size of the crystallized material is larger than 15 μm, the α-Al phase is finely divided. No sufficient high temperature strength can be obtained. Further, if a crystallized substance having a particle size larger than 100 μm is present, the stress concentration is so high that the crystallized substance is separated from the mother phase, or the crystallized substance itself is crushed to be a starting point of destruction, and the strength is reduced. Further, when the distance between the representative particles exceeds 20 μm, the α-Al phase cannot be finely divided, and sufficient high-temperature strength cannot be obtained.
Such a metal structure can be obtained by casting an alloy having a regulated component composition as described in the claims.
[0021]
【Example】
An aluminum alloy having the composition shown in Table 1 was cast into a piston shape by gravity mold casting (cooling rate: 0.5 to 5 ° C / s). The molten metal holding temperature is 750 ° C. ± 10 ° C., and the mold temperature is 250 ° C.
After subjecting the obtained casting to aging treatment at 220 ° C. for 4 hours, a tensile test piece was collected from the top of the piston. Preheating was performed at the test temperature for 100 hours, and tensile tests were performed at 250 ° C. and 350 ° C. to determine the tensile strength.
At the same time, the structure of the upper portion of the pin hole was observed, and the average particle size, the maximum particle size, and the distance between representative particles of the crystallized product were measured by an image analysis method. The distance between the representative particles was measured by a secondary branch method of dendrite arm spacing measurement recommended by the Casting and Solidification Subcommittee of the Research Committee of the Japan Institute of Light Metals.
Table 2 shows the results.
[0022]
Figure 2004256873
[0023]
Figure 2004256873
[0024]
From Table 2, it is found that Test No. As can be seen from FIG. 4, for example, Nos. 1 to 7 do not crystallize in a coarse crystallized form, indicating that they have excellent high-temperature strength.
On the other hand, in the comparative example, as shown in FIG. 5, for example, the crystal size of the crystallized substance increases, the distance between the particles increases, and the high-temperature strength decreases.
Test No. In No. 8, since the Cu content was small, the crystallization temperature ranges of various Al-Ni-based intermetallic compounds were divided, and the crystallized product became coarse and the tensile strength was lowered. Test No. In No. 9, since the P content was small, the effect of miniaturizing the primary crystal Si was not sufficient, and the primary crystal Si was coarsened to lower the tensile strength. Test No. In No. 10, since the Si content was small, the α-Al phase was crystallized first, and thus the α-Al phase was not sufficiently divided, and the high-temperature strength was not sufficient. Although not shown in Table 2, the thermal expansion coefficient was larger than that of the present invention. Test No. In No. 11, since the Cu content was large, a large amount of the Al-Si-Cu-Mg-based low melting point compound was formed, and the high-temperature strength was reduced. The castability was also poor. Test No. In No. 12, the amount of crystallization was small because the content of Si was large and the contents of Cu and Ni were small, and the tensile strength did not increase because the α-Al phase could not be sufficiently separated. Further, the test No. In No. 13, coarse crystals appeared due to excessive contents of Si and Ni, and castability was poor.
[0025]
【The invention's effect】
As described above, the present invention adjusts the content of alloy components in an Al-Si-based aluminum alloy for casting to narrow the temperature range of a solid-liquid coexistence region at the time of solidification, and almost simultaneously precipitate crystallized substances. By crystallizing, the crystallized material can be uniformly and finely distributed without increasing the cooling rate (solidification rate), and a metal structure in which the α-Al phase as the matrix is finely divided can be obtained. Therefore, an Al-Si-based aluminum alloy for casting excellent in high-temperature strength can be obtained without being affected by the casting method. Thus, a piston for an internal combustion engine having excellent high-temperature strength, high-temperature fatigue strength and wear resistance can be provided at low cost.
[Brief description of the drawings]
FIG. 1 is a phase diagram calculated by a thermal equilibrium calculation of an Al-12.6% Si-4.2% Cu-0.5% Fe-0.4% Mn-4.5% Ni alloy. Phase diagram calculated by thermal equilibrium calculation of 12% Si-3% Cu-2.5% Ni-1.0% Mg-0.2% Fe alloy [FIG. 3] Al-10% Si-7% Cu-5% Phase diagram calculated by thermal equilibrium calculation of Ni-1.0% Mg-0.2% Fe alloy. FIG. 5 illustrates the macrostructure of Test No. 1. Diagram explaining 12 macro organization

Claims (4)

Si:9.5〜11.5質量%,Cu:5.0〜7.7質量%,Ni:3.5〜5.5質量%,Mg:0.55〜1.5質量%,P:0.003〜0.1質量%,Fe:0.15〜0.7質量%を含み、残部が実質的にAlからなることを特徴とする高温強度に優れた鋳物用アルミニウム合金。Si: 9.5 to 11.5% by mass, Cu: 5.0 to 7.7% by mass, Ni: 3.5 to 5.5% by mass, Mg: 0.55 to 1.5% by mass, P: An aluminum alloy for castings excellent in high-temperature strength, comprising 0.003 to 0.1% by mass and Fe: 0.15 to 0.7% by mass, with the balance substantially consisting of Al. さらにTi:0.005〜0.3質量%,Zr:0.02〜0.3質量%,V:0.02〜0.3質量%,B:0.001〜0.1質量%,Mn:0.1〜0.7質量%の少なくとも1種以上を含む請求項1に記載の高温強度に優れた鋳物用アルミニウム合金。Further, Ti: 0.005 to 0.3% by mass, Zr: 0.02 to 0.3% by mass, V: 0.02 to 0.3% by mass, B: 0.001 to 0.1% by mass, Mn The aluminum alloy for castings excellent in high-temperature strength according to claim 1, which contains at least one or more of 0.1 to 0.7% by mass. 晶出物の平均粒径が15μm以下,最大粒径が100μm以下,代表粒子間距離が20μm以下である請求項1又は2に記載の高温強度に優れた鋳物用アルミニウム合金。The aluminum alloy for castings excellent in high-temperature strength according to claim 1 or 2, wherein an average particle size of the crystallized product is 15 µm or less, a maximum particle size is 100 µm or less, and a distance between representative particles is 20 µm or less. 請求項1〜3のいずれか1に記載のアルミニウム合金からなる内燃機関用ピストン。A piston for an internal combustion engine comprising the aluminum alloy according to claim 1.
JP2003049788A 2003-02-26 2003-02-26 Aluminum alloy for casting having excellent high temperature strength Pending JP2004256873A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003049788A JP2004256873A (en) 2003-02-26 2003-02-26 Aluminum alloy for casting having excellent high temperature strength

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003049788A JP2004256873A (en) 2003-02-26 2003-02-26 Aluminum alloy for casting having excellent high temperature strength

Publications (1)

Publication Number Publication Date
JP2004256873A true JP2004256873A (en) 2004-09-16

Family

ID=33115410

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003049788A Pending JP2004256873A (en) 2003-02-26 2003-02-26 Aluminum alloy for casting having excellent high temperature strength

Country Status (1)

Country Link
JP (1) JP2004256873A (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008127579A (en) * 2006-11-16 2008-06-05 Toyama Gokin Kk Aluminum alloy
DE102011083972A1 (en) * 2011-10-04 2013-04-04 Federal-Mogul Nürnberg GmbH Method for producing an engine component and engine component
WO2013050355A1 (en) * 2011-10-04 2013-04-11 Federal-Mogul Nürnberg GmbH Method for producing an engine component and engine component
WO2013050358A1 (en) * 2011-10-04 2013-04-11 Federal-Mogul Nürnberg GmbH Method for producing an engine component and engine component
WO2013050322A3 (en) * 2011-10-04 2013-07-18 Federal-Mogul Nürnberg GmbH Method for producing an engine component, and engine component
DE102012220765A1 (en) * 2012-11-14 2014-05-15 Federal-Mogul Nürnberg GmbH Method for producing an engine component, engine component and use of an aluminum alloy
WO2014104037A1 (en) * 2012-12-25 2014-07-03 日本軽金属株式会社 METHOD FOR MANUFACTURING ALUMINUM ALLOY IN WHICH Al-Fe-Si-BASED COMPOUND IS MINIATURIZED
JP2014528357A (en) * 2011-10-07 2014-10-27 マーレ インターナショナル ゲゼルシャフト ミット ベシュレンクテルハフツングMAHLE International GmbH FORGING DEVICE FOR PRODUCING PISTON MATERIAL AND METHOD FOR PRODUCING PISTON MATERIAL USING THE FORGING DEVICE
JP2015518536A (en) * 2012-03-28 2015-07-02 マーレ インターナショナル ゲゼルシャフト ミット ベシュレンクテルハフツングMAHLE International GmbH Method for manufacturing aluminum piston
DE102014209102A1 (en) * 2014-05-14 2015-11-19 Federal-Mogul Nürnberg GmbH Method for producing an engine component, engine component and use of an aluminum alloy
WO2018042494A1 (en) * 2016-08-29 2018-03-08 日本軽金属株式会社 High-strength aluminum alloy, internal combustion engine piston comprising said alloy, and method for producing internal combustion engine piston
US11391238B2 (en) 2019-05-16 2022-07-19 Mahel International GmbH Process for producing an engine component, engine component and the use of an aluminum alloy

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008127579A (en) * 2006-11-16 2008-06-05 Toyama Gokin Kk Aluminum alloy
DE102011083972A1 (en) * 2011-10-04 2013-04-04 Federal-Mogul Nürnberg GmbH Method for producing an engine component and engine component
WO2013050355A1 (en) * 2011-10-04 2013-04-11 Federal-Mogul Nürnberg GmbH Method for producing an engine component and engine component
WO2013050356A1 (en) * 2011-10-04 2013-04-11 Federal-Mogul Nürnberg GmbH Method for producing an engine component and engine component
WO2013050358A1 (en) * 2011-10-04 2013-04-11 Federal-Mogul Nürnberg GmbH Method for producing an engine component and engine component
WO2013050322A3 (en) * 2011-10-04 2013-07-18 Federal-Mogul Nürnberg GmbH Method for producing an engine component, and engine component
JP2014528357A (en) * 2011-10-07 2014-10-27 マーレ インターナショナル ゲゼルシャフト ミット ベシュレンクテルハフツングMAHLE International GmbH FORGING DEVICE FOR PRODUCING PISTON MATERIAL AND METHOD FOR PRODUCING PISTON MATERIAL USING THE FORGING DEVICE
JP2015518536A (en) * 2012-03-28 2015-07-02 マーレ インターナショナル ゲゼルシャフト ミット ベシュレンクテルハフツングMAHLE International GmbH Method for manufacturing aluminum piston
CN104812921A (en) * 2012-11-14 2015-07-29 菲特尔莫古纽伦堡公司 Method for producing an engine component, engine component, and use of an aluminium alloy
US10022788B2 (en) 2012-11-14 2018-07-17 Federal-Mogul Nurnberg Gmbh Method for producing an engine component, engine component, and use of an aluminium alloy
WO2014076174A1 (en) * 2012-11-14 2014-05-22 Federal-Mogul Nürnberg GmbH Method for producing an engine component, engine component, and use of an aluminium alloy
DE102012220765A1 (en) * 2012-11-14 2014-05-15 Federal-Mogul Nürnberg GmbH Method for producing an engine component, engine component and use of an aluminum alloy
JP2016505382A (en) * 2012-11-14 2016-02-25 フェデラル−モーグル ニュルンベルグ ゲゼルシャフト ミット ベシュレンクテル ハフツング Method for manufacturing engine components, use of engine components and aluminum alloys
JP2018114556A (en) * 2012-11-14 2018-07-26 フェデラル−モーグル ニュルンベルグ ゲゼルシャフト ミット ベシュレンクテル ハフツング Method for manufacturing engine component, engine component, and use of aluminium alloy
WO2014104037A1 (en) * 2012-12-25 2014-07-03 日本軽金属株式会社 METHOD FOR MANUFACTURING ALUMINUM ALLOY IN WHICH Al-Fe-Si-BASED COMPOUND IS MINIATURIZED
JP2014125645A (en) * 2012-12-25 2014-07-07 Nippon Light Metal Co Ltd METHOD OF PRODUCING ALUMINUM ALLOY WITH Al-Fe-Si TYPE COMPOUND MICRONIZED
US20150344992A1 (en) * 2012-12-25 2015-12-03 Nippon Light Metal Company Ltd. Manufacturing method of aluminum alloy in which al-fe-si compound is refined
US9657372B2 (en) 2012-12-25 2017-05-23 Nippon Light Metal Company, Ltd. Manufacturing method of aluminum alloy in which Al—Fe—Si compound is refined
EP3143173B1 (en) * 2014-05-14 2019-12-11 Federal-Mogul Nürnberg GmbH Method for producing an engine component, engine component, and use of an aluminum alloy
DE102014209102A1 (en) * 2014-05-14 2015-11-19 Federal-Mogul Nürnberg GmbH Method for producing an engine component, engine component and use of an aluminum alloy
US11280292B2 (en) 2014-05-14 2022-03-22 Federal-Mogul Nurnberg Gmbh Method for producing an engine component, engine component, and use of an aluminum alloy
WO2018042494A1 (en) * 2016-08-29 2018-03-08 日本軽金属株式会社 High-strength aluminum alloy, internal combustion engine piston comprising said alloy, and method for producing internal combustion engine piston
JPWO2018042494A1 (en) * 2016-08-29 2019-03-14 日本軽金属株式会社 High strength aluminum alloy, piston for internal combustion engine made of the alloy, and method for manufacturing piston for internal combustion engine
US11549461B2 (en) 2016-08-29 2023-01-10 Nippon Light Metal Company, Ltd. High strength aluminum alloy, internal combustion engine piston comprising said alloy, and method for manufacturing internal combustion engine piston
US11391238B2 (en) 2019-05-16 2022-07-19 Mahel International GmbH Process for producing an engine component, engine component and the use of an aluminum alloy

Similar Documents

Publication Publication Date Title
JP4765400B2 (en) Aluminum alloy for semi-solid casting, aluminum alloy casting and manufacturing method thereof
JP2010528187A (en) Aluminum alloy formulations for reducing hot cracking susceptibility
EP1147237B1 (en) Hypereutectic aluminium-silicon alloy product for semisolid forming
JP2004256873A (en) Aluminum alloy for casting having excellent high temperature strength
JP5691477B2 (en) Al-Si alloy and method for producing the same
JP4328321B2 (en) Piston for internal combustion engine
JP3448990B2 (en) Die-cast products with excellent high-temperature strength and toughness
JPH0762200B2 (en) Abrasion resistant aluminum alloy casting rod for forging and its manufacturing method
JP3430684B2 (en) Die-cast internal combustion engine parts excellent in high-temperature strength, wear resistance and vibration damping properties, and a method for manufacturing the same
JPH08104937A (en) Aluminum alloy for internal combustion engine piston excellent in high temperature strength and its production
EP0559694B1 (en) Method of preparing improved hyper-eutectic alloys and composites based thereon
JP2005187896A (en) Heat resistant magnesium alloy casting
JP2005240129A (en) Heat resistant magnesium alloy casting
JP2730423B2 (en) Hypereutectic Al-Si alloy excellent in workability and manufacturing method
JP3283550B2 (en) Method for producing hypereutectic aluminum-silicon alloy powder having maximum crystal grain size of primary silicon of 10 μm or less
JPH06306521A (en) Hyper-eutectic al-si series alloy for casting and casting method
JPH09296245A (en) Aluminum alloy for casting
JP2005187895A (en) Heat resistant magnesium alloy casting
JP2004225121A (en) Alloy for die casting piston
JPH06279904A (en) Production of hyper-eutectic al-si alloy for forging and forging stock
JP3915739B2 (en) Aluminum alloy for casting with excellent high temperature strength
JPH06271966A (en) Aluminum alloy material for casting
JPS61259829A (en) Production of wear resistant aluminum alloy extrudate
JP4065977B2 (en) Aluminum alloy for casting with excellent high temperature strength
JP2019077895A (en) REGENERATION METHOD OF Al ALLOY