JP2019077895A - REGENERATION METHOD OF Al ALLOY - Google Patents

REGENERATION METHOD OF Al ALLOY Download PDF

Info

Publication number
JP2019077895A
JP2019077895A JP2017203364A JP2017203364A JP2019077895A JP 2019077895 A JP2019077895 A JP 2019077895A JP 2017203364 A JP2017203364 A JP 2017203364A JP 2017203364 A JP2017203364 A JP 2017203364A JP 2019077895 A JP2019077895 A JP 2019077895A
Authority
JP
Japan
Prior art keywords
molten metal
alloy
concentration
compound
mass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2017203364A
Other languages
Japanese (ja)
Inventor
琢真 箕浦
Takuma Minoura
琢真 箕浦
盾 八百川
Jun Yaokawa
盾 八百川
岩田 靖
Yasushi Iwata
靖 岩田
川原 博
Hiroshi Kawahara
博 川原
加瑞馬 日比
Kazuma Hibi
加瑞馬 日比
川畑 博之
Hiroyuki Kawabata
博之 川畑
功志郎 北山
Koshiro Kitayama
功志郎 北山
紀幸 上野
Noriyuki Ueno
紀幸 上野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Toyota Central R&D Labs Inc
Original Assignee
Toyota Motor Corp
Toyota Central R&D Labs Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp, Toyota Central R&D Labs Inc filed Critical Toyota Motor Corp
Priority to JP2017203364A priority Critical patent/JP2019077895A/en
Publication of JP2019077895A publication Critical patent/JP2019077895A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Manufacture And Refinement Of Metals (AREA)

Abstract

To provide a regeneration method of an Al alloy capable of a regenerated Al alloy (molten metal) of which Fe concentration are effectively reduced, while using a scrap consisting of an Al alloy cast or the like as a raw material.SOLUTION: There is provided a regeneration method of an Al alloy having a preparation process for melting an Al alloy raw material and preparing a first molten metal having a composition of the molten metal of Mg+Zn≥13 mass% (Mg≥0 mass%, Zn≥0 mass%), a holding process for holding the first molten metal at a separation temperature at which an Fe compound is crystallized, an extraction process for extracting a second molten metal by removing at least a part of non-dissolved solid such as the Fe compound crystallized from the first molten metal, iron rubbish or the like. By the regeneration method, the crystallized Fe compound is easily separated, and a regenerated Al alloy molten metal with low concentration of Fe can be effectively obtained. By the regeneration method, reduction of Mn concentration is also achieved, and it is preferable that initial Mg concentration of the first molten metal is set at 0.5 mass% or more.SELECTED DRAWING: Figure 4

Description

本発明は、スクラップ等から再生Al合金を得る方法に関する。   The present invention relates to a method of obtaining recycled Al alloy from scrap and the like.

最近の環境意識等の高揚に伴い、様々な部材や装置の軽量化が進められており、アルミニウム合金(単に「Al合金」という。)の使用量は増加しつつある。新規なAlの製造(精錬)には多量のエネルギーが必要である。これに比べて、Al合金のスクラップの再溶解に必要なエネルギーは僅かである。このため、Al合金のスクラップをリサイクルして利用することが望まれる。   With the recent rise in environmental awareness and the like, weight reduction of various members and devices has been promoted, and the use amount of aluminum alloy (simply referred to as "Al alloy") is increasing. A large amount of energy is required for the production (refining) of new Al. In comparison, less energy is required to remelt Al alloy scrap. Therefore, it is desirable to recycle scraps of Al alloy for use.

Al合金スクラップを再溶解すると、通常、その溶湯中には、Fe、Si、Cu、Mg、Zn等の元素も混在する。スクラップから再生Al合金を得るためには不要元素(不純物元素)または過剰元素を取り除く必要がある。そのような元素の除去方法として、関連する記載が下記の文献にある。   When the Al alloy scrap is remelted, in general, elements such as Fe, Si, Cu, Mg and Zn are mixed in the molten metal. In order to obtain a reclaimed Al alloy from scrap, it is necessary to remove unnecessary elements (impurity elements) or excess elements. Related descriptions are given in the following documents as methods for removing such elements.

米国特許第2464610号U.S. Pat. No. 2,464,610 米国特許第5741348号U.S. Pat. No. 5,741,348 特開2002−155322号JP 2002-155322 A 米国特許第4734127号U.S. Pat. No. 4,734,127 WO2013/168213WO 2013/168213 WO2013/168214WO 2013/168214

古河電工時報104号(平成11年7月)25-30Furukawa Electric Times No. 104 (July 1999) 25-30 Metallurgical Transactions 5(1974)785-787Metallurgical Transactions 5 (1974) 785-787 Material Transactions, JIM.38(1997)622-699Material Transactions, JIM. 38 (1997) 622-699

(1)金属間化合物除去法
特許文献1、2および非特許文献は、Fe等の遷移金属元素を金属間化合物(単に「IMC」ともいう。)として溶湯から除去する方法に関する。具体的にいうと、特許文献1では、Al−(11.6〜13.5)%Si−(0.8〜9)%Fe合金に対し、Cr、Mn、Coを添加してFe系金属間化合物を晶出させ、溶湯中のFe量を低減させている。特許文献2では、Al−(0〜12)%Si−(0.49〜2.1)%Fe−(0.37〜1.91)%Mn合金(Cr<0.4%、Ti<0.41%、Zr<0.26%、Mo<0.01%)にMnを添加してFe量の低減を図っている。しかし、Siが8%以下の場合、金属間化合物の除去後も溶湯中に0.5%以上のFeが残存し、その除去効率は低い。非特許文献1は、Al合金溶湯(Fe<1.5%、Mn<1.5%、Si<10%、Cr<0.2%、Mg<1%、Cu<1%%、Ti<0.1%、Ni<1%、Zn<1%)から、FeとMnを同時に0.3%以下にはできないことを報告している。なお、特に断らない限り、本明細書でいう「%」は質量%を意味する。
(1) Method of Removing Intermetallic Compound Patent Documents 1 and 2 and non-patent documents relate to a method of removing a transition metal element such as Fe as an intermetallic compound (also simply referred to as “IMC”) from a molten metal. Specifically, in Patent Document 1, Cr, Mn, and Co are added to an Al- (11.6 to 13.5)% Si- (0.8 to 9)% Fe alloy to crystallize Fe-based intermetallic compounds. , The amount of Fe in the molten metal is reduced. In Patent Document 2, Al- (0 to 12)% Si- (0.49 to 2.1)% Fe- (0.37 to 1.91)% Mn alloy (Cr <0.4%, Ti <0.41%, Zr <0.26%, Mo <0.01) % Is added to reduce the amount of Fe. However, when Si is 8% or less, 0.5% or more of Fe remains in the molten metal even after removal of the intermetallic compound, and the removal efficiency is low. Non-Patent Document 1 is a molten Al alloy (Fe <1.5%, Mn <1.5%, Si <10%, Cr <0.2%, Mg <1%, Cu <1%, Ti <0.1%, Ni <1%) , Zn <1%), it has been reported that Fe and Mn can not be simultaneously reduced to 0.3% or less. In addition, unless otherwise indicated, "%" as used in this specification means mass%.

(2)偏析凝固法、結晶分別法
特許文献3〜6、非特許文献1、2は、Al相が晶出した半凝固状態の溶湯から、Al晶出物を残留液相から分離して不純物を低減する偏析凝固法または結晶分別法に関する。ちなみに、非特許文献1では、半凝固溶湯を圧搾して残留液相を除去している。また非特許文献2では、半凝固溶湯を撹拌してAl晶出物を球状化させて、残留液相と分離している。このような方法は、Al相が晶出するまで溶湯を冷却する必要があり、エネルギーロスが大きい。
(2) Segregation solidification method, crystal fractionation method Patent documents 3-6, non-patent documents 1 and 2 separate the Al crystallized material from the residual liquid phase from the molten metal in the semi-solidified state where the Al phase crystallized out Segregation solidification method or crystal fractionation method to reduce Incidentally, in Non-Patent Document 1, the semi-solidified molten metal is squeezed to remove the remaining liquid phase. Further, in Non-Patent Document 2, the semi-solidified molten metal is stirred to make the Al crystallized product into a sphere and separated from the residual liquid phase. In such a method, it is necessary to cool the molten metal until Al phase crystallizes out, and energy loss is large.

(3)半溶融精製法
非特許文献3は、Al合金(固体)を半溶融状態に加熱して液相と残留Al結晶とに分離し、Al相の固溶限を超える不純物を除去する半溶融精製法に関する。具体的にいうと、非特許文献3では、半溶融状態のAl−8.39%Si−0.06%Mn−0.05%Mg合金を加圧して液相を分離し、残留分からAl−0.96%Si−1.14%Mn−1.56%Mg合金を得ている。この方法では、金属間化合物によるFe、Mnの除去が難しい。また、半溶融状態の残留Al結晶量は温度に依存しているため、本方法を利用できる合金組成が限られる。
(3) Semi-melting purification method Non-Patent Document 3 heats an Al alloy (solid) to a semi-molten state, separates it into a liquid phase and residual Al crystals, and removes impurities exceeding the solid solubility limit of the Al phase. It relates to a melt refining method. Specifically, in Non-Patent Document 3, Al-8.39% Si-0.06% Mn-0.05% Mg alloy in a semi-molten state is pressurized to separate a liquid phase, and Al-0.96% Si-1.14% from the residual component An Mn-1.56% Mg alloy is obtained. In this method, it is difficult to remove Fe and Mn by intermetallic compounds. In addition, since the amount of residual Al crystals in the semi-molten state depends on temperature, the alloy composition that can use this method is limited.

(4)帯溶融法
なお、上述した方法以外にも、Al合金中から不純物を除去する方法として、インゴットを一端側から部分的に加熱・溶融させて、末端側に不純物を集め、加熱を開始した一端側の純度を高める帯溶融法もある。
(4) Zone melting method Besides the method described above, as a method of removing impurities from the Al alloy, the ingot is partially heated and melted from one end side, the impurities are collected at the end side, and heating is started There is also a zone melting method to increase the purity at one end side.

本発明はこのような事情に鑑みて為されたものであり、従来とは異なる方法により、Feを効率的に除去したAl合金(溶湯)を得ることができるAl合金の再生方法を提供することを目的とする。   The present invention has been made in view of such circumstances, and provides a method of regenerating an Al alloy which can obtain an Al alloy (molten metal) from which Fe is efficiently removed by a method different from the prior art. With the goal.

本発明者はこの課題を解決すべく鋭意研究した結果、スクラップ等を溶解したAl合金溶湯に含まれるMgとZnの合計濃度を所定以上とすることにより、その溶湯中に含まれるFeの除去(濃度低減)に成功した。この成果を発展させることにより、以降に述べる本発明を完成するに至った。   The inventors of the present invention conducted intensive studies to solve this problem, and as a result, the total concentration of Mg and Zn contained in the Al alloy melt in which scraps and the like are dissolved is at least a predetermined concentration, thereby removing Fe contained in the melt ( Concentration reduction). The development of this result has led to the completion of the invention described hereinafter.

《Al合金の再生方法》
(1)本発明は、Al合金原料の少なくとも一部を溶解して溶湯組成をMg+Zn≧13質量%(Mg≧0質量%、Zn≧0質量%)とした第1溶湯を調製する調製工程と、Fe化合物が晶出する分離温度で該第1溶湯を保持する保持工程と、該第1溶湯からFe化合物または鉄くず等の未溶解固体の少なくとも一部を除去した第2溶湯を抽出する抽出工程と、を備えたAl合金の再生方法である。
<< Regeneration method of Al alloy >>
(1) The present invention is a preparation step of preparing a first molten metal in which at least a part of an Al alloy raw material is melted to make a molten metal composition Mg + Zn ≧ 13 mass% (Mg ≧ 0 mass%, Zn ≧ 0 mass%) A holding step of holding the first molten metal at a separation temperature at which the Fe compound crystallizes out, and an extraction of extracting the second molten metal from which at least a portion of undissolved solid such as Fe compound or iron scrap is removed from the first molten metal A method of regenerating an Al alloy comprising the steps of:

(2)本発明のAl合金の再生方法(単に「再生方法」という。)によれば、Al合金原料を溶解した第1溶湯から、晶出した鉄化合物(単に「Fe化合物」という。)や未溶解の鉄くずを容易に除去でき、Fe濃度を十分に低減させた再生Al合金を効率的に得ることできる。この再生Al合金は、固相状態ではなく液相状態(つまり溶湯状態)として得られるため、再溶解等を行わずに、そのまま再生地金として出荷したり、再利用することも可能である。 (2) According to the method for regenerating the Al alloy of the present invention (simply referred to as "regeneration method"), an iron compound (simply referred to as "Fe compound") crystallized from the first molten metal in which the Al alloy raw material is dissolved Undissolved iron scraps can be easily removed, and a regenerated Al alloy with a sufficiently reduced Fe concentration can be obtained efficiently. Since this regenerated Al alloy is obtained not in a solid state but in a liquid state (that is, in a molten metal state), it is possible to ship it as a reclaimed metal as it is or to reuse it without remelting or the like.

本発明の再生方法により、Fe濃度を低減できるようになった理由は次のように考えられる。第1溶湯のMgおよび/またはZnの濃度を所定以上とすることにより、その溶湯中に高融点なFe化合物が形成されるようになると共に、Al相(特にα−Al)の晶出温度が低下するようになる。これらが相乗的に作用して、Fe化合物の晶出温度域が広がり、Fe化合物の晶出量が増加して、第1溶湯中からより多くのFe化合物を効率的に除去できるようになった。その結果、Fe濃度を十分に低減した第2溶湯が得られるようになったと考えられる。   The reason why Fe concentration can be reduced by the regeneration method of the present invention is considered as follows. By setting the concentration of Mg and / or Zn of the first molten metal to a predetermined value or more, a high melting point Fe compound is formed in the molten metal, and the crystallization temperature of the Al phase (particularly α-Al) is It will decrease. These acted synergistically to expand the crystallization temperature range of the Fe compound and increase the amount of crystallization of the Fe compound so that more Fe compound could be efficiently removed from the first molten metal . As a result, it is considered that a second molten metal having a sufficiently reduced Fe concentration can be obtained.

《その他》
特に断らない限り本明細書でいう「x〜y」は下限値xおよび上限値yを含む。本明細書に記載した種々の数値または数値範囲に含まれる任意の数値を新たな下限値または上限値として「a〜b」のような範囲を新設し得る。
<< Others >>
Unless otherwise stated, “x to y” as used herein includes the lower limit x and the upper limit y. Ranges such as “a to b” may be newly established as new lower limit values or upper limit values for arbitrary numerical values included in various numerical values or numerical ranges described in the present specification.

溶湯温度または液相中のFe濃度と固相率との関係を示すグラフである。It is a graph which shows the relationship between the molten metal temperature or Fe concentration in a liquid phase, and a solid phase rate. Mg濃度とZn濃度が低減可能なFe濃度に及ぼす影響を示す一覧表である。It is a table which shows the influence which Mg concentration and Zn concentration have on the Fe concentration which can be reduced. 初期Mn濃度と低減可能なFe濃度またはMn濃度との関係を示すグラフである。It is a graph which shows the relationship between initial stage Mn concentration, and Fe concentration which can be reduced, or Mn concentration. 各試料に係る金属組織のSEM像である。It is a SEM image of metal structure concerning each sample.

上述した本発明の構成要素に、本明細書中から任意に選択した一つまたは二つ以上の構成要素を付加し得る。本明細書で説明する内容は、方法的な構成要素であっても物(例えば、再生Al合金、再生Al合金部材等)に関する構成要素ともなり得る。   One or more components arbitrarily selected from the present specification may be added to the above-described components of the present invention. The contents described in the present specification can also be components relating to things (eg, recycled Al alloy, recycled Al alloy member, etc.) even if they are method components.

《Feの除去原理》
本発明の再生方法によりFeが除去される原理を図1〜図3を用いて説明する。図1〜図3は、解析ソフト(Thermo-Calc Software AB社製 Thermo-Calc)を用いて、Scheil式に基づいて計算した結果である。
<< Principle of Fe Removal >>
The principle by which Fe is removed by the regeneration method of the present invention will be described with reference to FIGS. FIGS. 1 to 3 show the results calculated based on the Scheil formula using analysis software (Thermo-Calc manufactured by Thermo-Calc Software AB).

(1)Fe除去
Al−2%Si−1%Fe−0.5%Mn−0.5%Cu合金溶湯(単に「ベース溶湯」という。)とAl−2%Si−1%Fe−0.5%Mn−0.5%Cu−10%Mg−10%Zn合金溶湯(単に「10%Mg−10%Zn溶湯」という。)とについて、溶湯温度または液相中のFe濃度と固相率との関係を図1に示した。
(1) Fe removal Al-2% Si-1% Fe-0.5% Mn-0.5% Cu alloy molten metal (simply referred to as "base molten metal") and Al-2% Si-1% Fe-0. Regarding the 5% Mn-0.5% Cu-10% Mg-10% Zn alloy molten metal (simply referred to as "10% Mg-10% Zn molten metal"), the molten metal temperature or the Fe concentration and solid phase ratio in the liquid phase And their relationship are shown in FIG.

図1から明らかなように、ベース溶湯の場合、Fe化合物(金属間化合物)の融点が低く、Fe化合物(固相)は殆ど晶出しないため、溶湯中からFeを有効に除去できない。10%Mg−10%Zn溶湯の場合、Fe化合物(金属間化合物)の融点が上昇すると共にAl相(α−Al)の晶出温度も低下する。このため、Fe化合物の晶出量も増加し、573℃で保持した場合、Fe化合物や鉄くず等の未溶解固体の除去後のFe濃度は0.263%まで大幅に低下することがわかる。   As apparent from FIG. 1, in the case of the base molten metal, the melting point of the Fe compound (intermetallic compound) is low, and the Fe compound (solid phase) hardly crystallizes, so Fe can not be effectively removed from the molten metal. In the case of a 10% Mg-10% Zn melt, the melting point of the Fe compound (intermetallic compound) rises and the crystallization temperature of the Al phase (α-Al) also decreases. For this reason, it turns out that Fe content after removal of undissolved solid, such as Fe compound and iron scraps, falls sharply to 0.263%, when crystallization amount of Fe compound also increases and it keeps at 573 ° C.

なお、Fe化合物は、通常、溶湯よりも比重が大きいため、溶湯の下層域へ沈降し、両者は容易に分離され得る。このため本発明によれば、不純物であるFeをFe化合物として効率的に除去できる。また、鉄くず等の未溶解固体が溶湯と接する場合にも、Feは溶湯中に溶け込むことができない。このため、Fe濃度を十分に低減したAl合金溶湯(第2溶湯)が得られる。   Since the Fe compound usually has a specific gravity larger than that of the molten metal, the Fe compound settles to the lower layer area of the molten metal, and both can be easily separated. Therefore, according to the present invention, Fe, which is an impurity, can be efficiently removed as an Fe compound. In addition, even when unmelted solids such as iron scraps come in contact with the molten metal, Fe can not be dissolved in the molten metal. For this reason, a molten Al alloy (second molten metal) having a sufficiently reduced Fe concentration can be obtained.

ちなみに、本明細書でいうFe化合物は、Feを含む化合物(例えば、Feを含む金属間化合物)であれば、その組成や形態を問わない。代表的なFe化合物として、例えば、Al13Feや、Mnを含んだAl15Si(Fe,Mn)等がある。 By the way, as long as the Fe compound mentioned in the present specification is a compound containing Fe (for example, an intermetallic compound containing Fe), its composition or form does not matter. As typical Fe compounds, for example, Al 13 Fe 4 , Al 15 Si 2 (Fe, Mn) 4 containing Mn, etc. are given.

(2)Mg濃度およびZn濃度とFe濃度との関係
Al−2%Si−1%Fe−0.5%Mn−0.5%Cu−(0〜30)%Mg−(0〜30)%Zn合金溶湯について、そのMg濃度およびZn濃度と、低減可能なFe濃度との関係を一覧表として図2に示した。
(2) Relationship between Mg concentration and Zn concentration and Fe concentration Al-2% Si-1% Fe-0.5% Mn-0.5% Cu- (0-30)% Mg- (0-30)% The relationship between the Mg concentration and the Zn concentration, and the Fe concentration that can be reduced is shown as a list in FIG. 2 for the molten Zn alloy.

図2から明らかなように、Mg+Zn≧13%、Mg+Zn≧15%さらにはMg+Zn≧18%となるように、第1溶湯の組成(濃度)を調整することにより、Fe濃度を0.65%以下、0.5%以下、さらには0.4%以下にまで低下させ得ることがわかる。なお、MgとZnの一方の濃度は0%でもよいが、いずれも1%以上、4%以上、7%以上さらには9%以上であると好ましい。   As apparent from FIG. 2, the Fe concentration is 0.65% or less by adjusting the composition (concentration) of the first molten metal so that Mg + Zn ≧ 13%, Mg + Zn ≧ 15%, and further Mg + Zn ≧ 18%. It can be seen that it can be reduced to 0.5% or less, or even 0.4% or less. The concentration of one of Mg and Zn may be 0%, but is preferably 1% or more, 4% or more, 7% or more, and further 9% or more.

(3)Mn濃度
初期のMn濃度が異なるAl−2%Si−1%Fe−(0〜10)%Mn−0.5%Cu−8%Mg−8%Zn合金溶湯(第1溶湯)について、その初期Mn濃度と溶湯中(液相中)に溶解可能なFe、Mnの限界濃度(いわゆる溶解限/単に「Fe濃度」、「Mn濃度」という。)との関係を図3に示した。図3から明らかなように、初期Mn濃度が増加するほど、溶湯中のFe濃度が低減され得ることがわかる。この場合、Fe濃度は0.35%以下、0.3%以下、さらには0.25%以下にまで低下し得ることがわかる。
(3) Mn concentration Al-2% Si-1% Fe- (0-10)% Mn-0.5% Cu-8% Mg-8% Zn alloy molten metal (first molten metal) having different initial Mn concentrations The relationship between the initial Mn concentration and the limit concentrations of Fe and Mn which can be dissolved in the molten metal (in the liquid phase) (so-called dissolution limit / simply referred to as "Fe concentration", "Mn concentration") is shown in FIG. . As apparent from FIG. 3, it can be seen that the Fe concentration in the molten metal can be reduced as the initial Mn concentration increases. In this case, it can be seen that the Fe concentration can be reduced to 0.35% or less, 0.3% or less, or even 0.25% or less.

また、第1溶湯中の初期Mn濃度を高めても、液相中(第2溶湯中)のMn濃度は0.2%前後で安定していることもわかった。これにより、例えば、Fe濃度を低下させるためにMnを第1溶湯へ多く添加しても、第2溶湯中のMn濃度は所定範囲内に維持できる。このような第2溶湯は、Mn濃度が低いAl合金(展伸材等)を製造するような場合に好適である。以上を踏まえて、例えば、第1溶湯中の初期Mn濃度を0.5%以上、1%以上、3%以上さらには5%以上とすると好ましい。なお、図3の傾向から、第1溶湯中に含まれるMn(初期Mn)は、主に、Mnを含んだFe化合物として晶出し、沈降すると考えられる。   It was also found that the Mn concentration in the liquid phase (in the second melt) was stable at around 0.2% even if the initial Mn concentration in the first melt was increased. Thereby, for example, even if a large amount of Mn is added to the first molten metal in order to reduce the Fe concentration, the Mn concentration in the second molten metal can be maintained within the predetermined range. Such a second molten metal is suitable for producing an Al alloy (such as a wrought material) having a low Mn concentration. Based on the above, for example, it is preferable to set the initial Mn concentration in the first molten metal to 0.5% or more, 1% or more, 3% or more, and further 5% or more. From the tendency of FIG. 3, it is considered that Mn (initial Mn) contained in the first molten metal mainly crystallizes out and precipitates as a Fe compound containing Mn.

《調製工程》
(1)Al合金原料の少なくとも一部を溶解した溶湯中のMgとZnの濃度を所望範囲とした第1溶湯を調製する。この際、Al合金原料の溶解後の溶湯成分を分析してから、その溶湯へ適量なMg源原料(例えば純Mg、Mg合金、Mg化合物)および/またはZn源原料(例えば純Zn、Zn合金、Zn化合物)を添加して、第1溶湯の組成を調整しても良い。また、MgやZnの酸化・蒸発を抑止するために、Mg源原料やZn源原料の添加時の溶湯温度は、800℃以下、さらには660℃以下であると好ましい。勿論、MgやZnの酸化・蒸発を抑止できる限り、Al合金原料とMg源原料および/またはZn源原料とを同時に溶解して、第1溶湯を調製してもよい。溶解温度(第1溶湯温度)は、少なくともAl合金原料の一部が溶解する温度でも良いが、Al合金スクラップを用いる場合には、鉄くず等が溶け残る温度でもよく、例えば、570〜760℃さらには590〜730℃程度とすればよい。
<< Preparation process >>
(1) A first molten metal is prepared in which the concentration of Mg and Zn in the molten metal in which at least a part of the Al alloy raw material is melted is in a desired range. Under the present circumstances, after analyzing the molten metal component after melt | dissolution of Al alloy raw material, a suitable quantity Mg source raw material (for example, pure Mg, Mg alloy, Mg compound) and / or Zn source raw material (for example pure Zn, Zn alloy) to the molten metal The Zn compound may be added to adjust the composition of the first molten metal. Moreover, in order to suppress oxidation and evaporation of Mg and Zn, the molten metal temperature at the time of addition of the Mg source material and the Zn source material is preferably 800 ° C. or less, and more preferably 660 ° C. or less. Of course, as long as the oxidation and evaporation of Mg and Zn can be suppressed, the first molten metal may be prepared by simultaneously melting the Al alloy raw material and the Mg source raw material and / or the Zn source raw material. The melting temperature (the first molten metal temperature) may be a temperature at which at least a part of the Al alloy raw material melts, but in the case of using an Al alloy scrap, it may be a temperature at which iron scraps remain molten, for example, 570 to 760 ° C. Furthermore, what is necessary is just to be about 590-730 degreeC.

(2)Al合金原料には、主にAl合金のスクラップを用いるとよい。そのAl合金原料は、展伸材でも鋳物でもよい。もっとも、本発明の再生方法では、Mg、ZnさらにはMn濃度が比較的高い第1溶湯から第2溶湯を抽出している。従って、通常、それらの元素を多く含むAl合金展伸材のスクラップが、Al合金原料に含まれていると好ましい。 (2) It is preferable to mainly use scraps of Al alloy as the Al alloy raw material. The Al alloy raw material may be a wrought material or a casting. However, in the regeneration method of the present invention, the second molten metal is extracted from the first molten metal having a relatively high concentration of Mg, Zn and further Mn. Therefore, it is preferable that the scrap of an Al alloy wrought material containing a large amount of these elements is generally included in the Al alloy raw material.

例えば、原料となるAl合金展伸材(スクラップ)は、Al−Mn系合金である3000番系Al合金、Al−Mg系合金である5000番系Al合金、Al−Mg−Si系合金である6000番系Al合金、Al−Zn−Mg(−Cu)系合金である7000番系Al合金のいずれか一つ以上であると好ましい。特に、MgまたはZnを比較的多く含む5000番系Al合金または7000番系Al合金がAl合金原料に含まれると好ましい。ちなみに、Al合金名(番数)は、国際アルミニウム合金名または日本工業規格(JIS H4140)に基づく。なお、Al合金原料は、Al合金以外の金属(例えば鉄鋼材)からなる部材等を伴うものでもよい。   For example, the Al alloy wrought material (scrap), which is a raw material, is an Al-Mn alloy No. 3000 Al alloy, an Al-Mg alloy No. 5000 Al alloy, and an Al-Mg-Si alloy. It is preferable that it is any one or more of 6000-series Al alloy and 7000-series Al alloy which is an Al-Zn-Mg (-Cu) -based alloy. In particular, it is preferable that a 5000-series Al alloy or a 7000-series Al alloy containing a relatively large amount of Mg or Zn be included in the Al alloy raw material. Incidentally, the Al alloy name (number) is based on the international aluminum alloy name or the Japanese Industrial Standard (JIS H4140). The Al alloy raw material may be a member including a metal (for example, a steel material) other than the Al alloy.

ちなみに、第1溶湯中にSiが多く含まれる場合(例えば5%以上)でも、上述した除去原理(メカニズム)により、Feは十分に除去され得る。但し、第2溶湯を展伸材の再生に利用する場合を考えると、第2溶湯は、その全体に対してSi:5%以下、4%以下さらには3%以下であると好ましい。   Incidentally, even if the first molten metal contains a large amount of Si (for example, 5% or more), Fe can be sufficiently removed by the above-described removal principle (mechanism). However, in consideration of the case where the second molten metal is used for regeneration of the wrought material, the second molten metal is preferably Si: 5% or less, 4% or less, or 3% or less with respect to the whole.

《保持工程》
調製工程で得られた第1溶湯は、Fe化合物が晶出し、それら固相と残部液相との分離が可能となる温度に保持する。この際、α−Alが晶出する温度まで第1溶湯を冷却すると、晶出したFe化合物の効率的な分離が困難となる。そこで、Alが晶出しない温度範囲内であって、Fe化合物が晶出する範囲の温度(分離温度)で第1溶湯を保持するとよい。分離温度は、第1溶湯の合金組成に応じて調整され得るが、例えば、(α−Alの晶出開始温度)+(5〜30℃さらには10〜20℃)とすると好ましい。より具体的にいうと、例えば、540〜620℃さらには550〜600℃の範囲内で調整されるとよい。
<< holding process >>
The first molten metal obtained in the preparation step is maintained at a temperature at which Fe compounds crystallize and separation of the solid phase and the remaining liquid phase is possible. At this time, if the first molten metal is cooled to a temperature at which α-Al crystallizes, efficient separation of the crystallized Fe compound becomes difficult. Therefore, it is preferable to hold the first molten metal at a temperature (separation temperature) in a range where the Al compound does not crystallize out and the Fe compound crystallizes out. The separation temperature may be adjusted according to the alloy composition of the first molten metal, but is preferably, for example, (α-Al crystallization start temperature) + (5 to 30 ° C., further 10 to 20 ° C.). More specifically, for example, the temperature may be adjusted within the range of 540 to 620 ° C., and more preferably 550 to 600 ° C.

保持工程は、Fe化合物の晶出とその粒成長を促すために、徐冷工程であると好ましい。例えば、冷却速度が0.5〜10℃/分さらには2〜7℃/分の範囲で徐冷されると好ましい。ここでいう冷却速度は、保持工程の開始時から次の抽出工程の開始時に至るまでの間において、その温度差を所要時間で除した平均値である。なお、第1溶湯の初期温度から分離温度へ至るまで間の温度域で保持時間を設けて、Fe化合物の晶出を促したり、その粗大化を図ってもよい。このときの保持工程は、保持時間に応じて冷却速度がより小さくなった徐冷工程となる。   The holding step is preferably a slow cooling step in order to promote the crystallization of the Fe compound and the grain growth thereof. For example, it is preferable that the cooling rate is gradually cooled in the range of 0.5 to 10 ° C./minute, and more preferably 2 to 7 ° C./minute. The cooling rate referred to herein is an average value obtained by dividing the temperature difference by the required time from the start of the holding step to the start of the next extraction step. In addition, a holding time may be provided in a temperature range from the initial temperature of the first molten metal to the separation temperature to promote crystallization of the Fe compound or to achieve coarsening thereof. The holding step at this time is a slow cooling step in which the cooling rate is reduced according to the holding time.

《抽出工程》
第1溶湯から晶出したFe化合物または鉄くず等の未溶解固体の少なくとも一部を除去することより、Feの濃度を低減した第2溶湯を得ることができる。第2溶湯の抽出は、溶湯の入った坩堝中から固相であるFe化合物を、フィルター等で漉して除去して行うこともできる。もっとも、溶湯よりも比重が大きいFe化合物は溶湯下層に沈降し易い。そこで、第2溶湯の抽出は、溶湯の入った坩堝の中間(中層域〜上層域)から、Feの濃度が低下した(上澄み)溶湯だけを取り出して行ってもよい。いずれにしても、液相状態の第2溶湯を抽出する本工程は、分離温度と同様の温度域でなされるとよい。なお、調製工程で未溶解であった残留固体(例えば、Al合金原料の一部に含まれていた鉄くず等)も、抽出工程で除かれると好ましい。
Extraction process
By removing at least a part of the undissolved solid such as the Fe compound or iron scraps crystallized from the first molten metal, it is possible to obtain the second molten metal in which the concentration of Fe is reduced. The extraction of the second molten metal can also be carried out by removing the Fe compound, which is a solid phase, from the crucible containing the molten metal with a filter or the like. However, an Fe compound having a specific gravity larger than that of the molten metal tends to settle in the lower layer of the molten metal. Therefore, extraction of the second molten metal may be performed by taking out only the (supernatant) molten metal having a reduced concentration of Fe from the middle (middle to upper layer) of the crucible containing the molten metal. In any case, the present step of extracting the second molten metal in the liquid phase may be performed in the same temperature range as the separation temperature. In addition, it is preferable that residual solids not dissolved in the preparation step (for example, iron scraps and the like contained in part of the Al alloy raw material) are also removed in the extraction step.

抽出した第2溶湯は、一旦凝固させることなく、そのまま展伸材等の製造に供されると好ましい。第2溶湯は、その利用前に、さらに精製されたり、純Al(新塊)や合金源が添加されて、所望成分に調整されてもよい(成分調整工程)。勿論、第2溶湯は、一旦凝固された後、展伸材等の原料となる再生鋳塊(インゴット)として供給されてもよい。   It is preferable that the extracted second molten metal is used as it is for producing a wrought material or the like without being solidified once. The second molten metal may be further refined or pure Al (new block) or an alloy source may be added to adjust it to a desired component before using it (component adjustment step). Of course, after the second molten metal is solidified once, it may be supplied as a recycled ingot (ingot) which is a raw material for a wrought material or the like.

本発明でいう第1溶湯を想定して、Fe、Mg、ZnおよびMnを含むAl合金溶湯を調製した。その各層域から抽出した溶湯を凝固させた試料を用いて、それぞれの金属組織観察と成分測定を行った。このような具体例に基づいて本発明をより詳しく説明する。   Assuming the first molten metal in the present invention, an Al alloy molten metal containing Fe, Mg, Zn and Mn was prepared. The metal structure observation and the component measurement of each were performed using the sample which solidified the molten metal extracted from the each layer area | region. The present invention will be described in more detail based on such specific examples.

《試料の製造》
(1)調製工程
原料を黒鉛坩堝(高さ130mm×口径105mm×底径70mm、口厚10mm)に入れて860℃まで加熱して溶解した。原料は、溶湯の合金組成がAl−1%Si−1%Fe−1%Mn−0.5%Cu−10%Mg−20%Znとなるように配合した。但し、Mg源原料(純Mg)およびZn源原料(純Zn)は、それ以外の原料を予め溶解して、温度を760℃まで低下させた溶湯へ添加した。これにより、MgおよびZnの酸化や蒸発を抑止した。こうして、約700gの初期溶湯(第1溶湯)を調製した。
<< Production of samples >>
(1) Preparation process The raw material was put into a graphite crucible (height 130 mm × diameter 105 mm × bottom diameter 70 mm, mouth thickness 10 mm) and heated to 860 ° C. to melt. The raw materials were blended such that the alloy composition of the molten metal was Al-1% Si-1% Fe-1% Mn-0.5% Cu-10% Mg-20% Zn. However, the Mg source material (pure Mg) and the Zn source material (pure Zn) were added to the molten metal whose temperature was lowered to 760 ° C. by previously dissolving the other materials. This suppressed the oxidation and evaporation of Mg and Zn. Thus, about 700 g of an initial molten metal (first molten metal) was prepared.

初期溶湯の一部を分析用型(φ40mm×30mm)に注湯し、室内で放冷して自然凝固させた。こうして初期溶湯分析用の試料0を得た。   A portion of the initial molten metal was poured into a mold for analysis (φ 40 mm × 30 mm), allowed to cool indoors, and allowed to spontaneously solidify. Thus, Sample 0 for initial melt analysis was obtained.

(2)保持工程
初期溶湯を565℃(α−Alの晶出開始温度+5℃)まで、30分間かけて炉冷した。この冷却後の溶湯から、上層部、中層部および下層部分の各領域にある溶湯を次のようにして抽出し、凝固させた。
(2) Holding Step The initial molten metal was furnace-cooled to 565 ° C. (α-Al crystallization start temperature + 5 ° C.) for 30 minutes. The molten metal in each region of the upper layer part, the middle layer part and the lower layer part was extracted and solidified from the molten metal after the cooling as follows.

溶湯の上層部(厚さ約10mmの表層部分)はスプーンで採取し、分析用型(φ40mm×30mm)内で自然凝固させた。こうして上層部分析用の試料1を得た。   The upper layer portion of the molten metal (the surface layer portion with a thickness of about 10 mm) was collected with a spoon and allowed to spontaneously solidify in an analysis die (φ 40 mm × 30 mm). Thus, sample 1 for upper layer analysis was obtained.

上層部を除去した後の溶湯は、JIS H 5202:2010に記載の金型試験片採取用供試材製造鋳型(約30mm×40mm×200mm)へ注湯し、自然凝固させた。こうして中層部分析用の試料2を得た。   The molten metal after removal of the upper layer portion was poured into a mold (about 30 mm × 40 mm × 200 mm) for producing a test material for collecting a mold specimen according to JIS H 5202: 2010, and was naturally solidified. Thus, a sample 2 for middle layer analysis was obtained.

中層部の注湯後に坩堝底に残留した凝固部をそのまま坩堝ごと室内で放冷して凝固させた。こうして下層部分析用の試料3を得た。   The solidified portion remaining at the bottom of the crucible after pouring of the middle layer was allowed to cool together with the crucible and allowed to solidify in the room. Thus, a sample 3 for lower layer analysis was obtained.

《試料の分析》
各試料の断面を、走査型電子顕微鏡(SEM)で組織観察すると共に、蛍光X線分析によりFe濃度とMn濃度を分析した。この結果をまとめて図4に示した。なお、試料0〜2の観察・分析は、試料底面から高さ10mmの位置における水平断面の中央部(φ20mm)について行った。また試料3の観察・分析は、試料底面から高さ5mmの位置における水平断面の中央部(φ20mm)について行った。
<< Analysis of sample >>
The cross section of each sample was observed with a scanning electron microscope (SEM) and the Fe concentration and the Mn concentration were analyzed by fluorescent X-ray analysis. The results are summarized in FIG. The observation and analysis of Samples 0 to 2 were performed on the central portion (φ 20 mm) of the horizontal cross section at a height of 10 mm from the bottom of the sample. The observation and analysis of sample 3 were performed on the central portion (φ 20 mm) of the horizontal cross section at a position 5 mm high from the bottom of the sample.

《評価》
図4から明らかなように、上層部の試料1は、Fe濃度(組成)が初期状態の試料0より少し低下している。下層部の試料3では、Fe化合物が多く晶出しており、Fe濃度やMn濃度が初期状態の試料0よりも大幅に増加していた。それらの中間である試料2では、Fe化合物の晶出は少なく、Fe濃度およびMn濃度が大幅に低減されていることがわかる。具体的にいうと、中層部では、Fe濃度が0.587%(初期)→0.137%まで低減し、Mn濃度が0.786%(初期)→0.291%まで低減していた。
"Evaluation"
As apparent from FIG. 4, in the sample 1 of the upper layer portion, the Fe concentration (composition) is slightly lower than that of the sample 0 in the initial state. In the sample 3 of the lower layer portion, a large amount of Fe compound was crystallized, and the Fe concentration and the Mn concentration were significantly increased as compared with the sample 0 in the initial state. In sample 2 which is in the middle of them, it is found that the crystallization of the Fe compound is small and the Fe concentration and the Mn concentration are significantly reduced. Specifically, in the middle layer, the Fe concentration was reduced to 0.587% (initial) → 0.137%, and the Mn concentration was reduced to 0.786% (initial) → 0.291%.

以上のことから、本発明の再生方法によれば、スクラップ等のAl合金原料から、Fe濃度(さらにはMn濃度)を十分に低減した再生Al合金(溶湯)を得ることができることが確認された。   From the above, according to the regeneration method of the present invention, it was confirmed that a regenerated Al alloy (molten metal) having a sufficiently reduced Fe concentration (further, a Mn concentration) can be obtained from an Al alloy raw material such as scrap. .

Claims (6)

Al合金原料の少なくとも一部を溶解して溶湯組成をMg+Zn≧13質量%(Mg≧0質量%、Zn≧0質量%)とした第1溶湯を調製する調製工程と、
Fe化合物が晶出する分離温度で該第1溶湯を保持する保持工程と、
該第1溶湯から晶出したFe化合物の少なくとも一部を除去した第2溶湯を抽出する抽出工程と、
を備えたAl合金の再生方法。
Preparing the first molten metal by melting at least a part of the Al alloy raw material and setting the molten metal composition to Mg + Zn ≧ 13 mass% (Mg ≧ 0 mass%, Zn ≧ 0 mass%);
A holding step of holding the first molten metal at a separation temperature at which the Fe compound crystallizes out;
Extracting the second molten metal from which at least a portion of the Fe compound crystallized out of the first molten metal is removed;
A method of regenerating Al alloy provided with
前記第1溶湯は、その全体に対してMn:0.5質量%以上である請求項1に記載のAl合金の再生方法。   The method according to claim 1, wherein the first molten metal is 0.5 mass% or more of Mn based on the whole. 前記第2溶湯は、その全体に対してSi:5質量%以下である請求項1〜3のいずれかに記載のAl合金の再生方法。   The method for regenerating an Al alloy according to any one of claims 1 to 3, wherein the second molten metal is Si: 5% by mass or less based on the whole. 前記Al合金原料は、Al合金展伸材のスクラップを含む請求項1〜3のいずれかに記載のAl合金の再生方法。   The method for regenerating an Al alloy according to any one of claims 1 to 3, wherein the Al alloy raw material includes scraps of an Al alloy wrought material. 前記Al合金展伸材は、3000番系Al合金、5000番系Al合金、6000番系Al合金または7000番系Al合金のいずれかを含む請求項4に記載のAl合金の再生方法。   The method for regenerating an Al alloy according to claim 4, wherein the Al alloy wrought material includes any of No. 3000 series Al alloy, No. 5000 series Al alloy, No. 6000 series Al alloy and No. 7000 series Al alloy. 前記保持工程は、冷却速度が0.5〜10℃/分である請求項1〜5のいずれかに記載のAl合金の再生方法。   The said holding | maintenance process is a cooling rate of 0.5-10 degrees C / min, The reproduction | regeneration method of Al alloy in any one of Claims 1-5.
JP2017203364A 2017-10-20 2017-10-20 REGENERATION METHOD OF Al ALLOY Pending JP2019077895A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017203364A JP2019077895A (en) 2017-10-20 2017-10-20 REGENERATION METHOD OF Al ALLOY

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017203364A JP2019077895A (en) 2017-10-20 2017-10-20 REGENERATION METHOD OF Al ALLOY

Publications (1)

Publication Number Publication Date
JP2019077895A true JP2019077895A (en) 2019-05-23

Family

ID=66626373

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017203364A Pending JP2019077895A (en) 2017-10-20 2017-10-20 REGENERATION METHOD OF Al ALLOY

Country Status (1)

Country Link
JP (1) JP2019077895A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023079851A1 (en) 2021-11-04 2023-05-11 株式会社神戸製鋼所 Method for removing impurities, method for producing aluminum-based alloy, and method for producing aluminum-based alloy material

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023079851A1 (en) 2021-11-04 2023-05-11 株式会社神戸製鋼所 Method for removing impurities, method for producing aluminum-based alloy, and method for producing aluminum-based alloy material

Similar Documents

Publication Publication Date Title
JP6667485B2 (en) Recycling method of Al alloy
US20200190630A1 (en) Master alloy for casting a modified copper alloy and casting method using the same
US20080299001A1 (en) Aluminum alloy formulations for reduced hot tear susceptibility
JP5582982B2 (en) Aluminum alloy and method for producing the same
JP7274457B2 (en) Recycling method of aluminum alloy and its refining
Qin et al. Microstructure evolution of in situ Mg2Si/Al–Si–Cu composite in semisolid remelting processing
JP6439792B2 (en) Al-Si-Mg-based aluminum alloy for casting excellent in specific rigidity, strength and ductility, cast member made thereof and road wheel for automobile
EP2885437A1 (en) Al-nb-b master alloy for grain refining
JP6800128B2 (en) How to regenerate Al alloy
JP2004256873A (en) Aluminum alloy for casting having excellent high temperature strength
JP7123834B2 (en) Impurity removal method
JP2019077895A (en) REGENERATION METHOD OF Al ALLOY
JP5785836B2 (en) Copper alloys and castings
JP2010000514A (en) Method for producing magnesium alloy member
JP6864704B2 (en) How to regenerate Al alloy
WO2019198476A1 (en) Impurity removal method
KR102655019B1 (en) Impurity removal method
Pacyniak et al. Hypoeutectic Al-Si alloy doped with chromium, tungsten and molybdenum designated for pressure die casting
Szymczak et al. Hypoeutectic silumin to pressure die casting with vanadium and tungsten
JP7414592B2 (en) Al alloy regeneration method
WO2023079851A1 (en) Method for removing impurities, method for producing aluminum-based alloy, and method for producing aluminum-based alloy material
JP2023070039A (en) Method for removing impurities, method for producing aluminum-based alloy, and method for producing aluminum-based alloy material
US20240167122A1 (en) Selective Removal of Impurities from Molten Aluminum
KR101888357B1 (en) Manufacturing method of magnesium and magnesium alloy ingots containing low contents of iron
KR20240072227A (en) Impurity removal method, aluminum-based alloy manufacturing method, and aluminum-based alloy material manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190306

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20191003

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20191210

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20200623