WO2019198476A1 - Impurity removal method - Google Patents

Impurity removal method Download PDF

Info

Publication number
WO2019198476A1
WO2019198476A1 PCT/JP2019/012518 JP2019012518W WO2019198476A1 WO 2019198476 A1 WO2019198476 A1 WO 2019198476A1 JP 2019012518 W JP2019012518 W JP 2019012518W WO 2019198476 A1 WO2019198476 A1 WO 2019198476A1
Authority
WO
WIPO (PCT)
Prior art keywords
molten metal
intermetallic compound
impurity removal
removal method
alloy
Prior art date
Application number
PCT/JP2019/012518
Other languages
French (fr)
Japanese (ja)
Inventor
山口 勝弘
憲章 中塚
Original Assignee
株式会社神戸製鋼所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2019042157A external-priority patent/JP7123834B2/en
Application filed by 株式会社神戸製鋼所 filed Critical 株式会社神戸製鋼所
Publication of WO2019198476A1 publication Critical patent/WO2019198476A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B21/00Obtaining aluminium
    • C22B21/06Obtaining aluminium refining
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B9/00General processes of refining or remelting of metals; Apparatus for electroslag or arc remelting of metals
    • C22B9/02Refining by liquating, filtering, centrifuging, distilling, or supersonic wave action including acoustic waves
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B9/00General processes of refining or remelting of metals; Apparatus for electroslag or arc remelting of metals
    • C22B9/05Refining by treating with gases, e.g. gas flushing also refining by means of a material generating gas in situ
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B9/00General processes of refining or remelting of metals; Apparatus for electroslag or arc remelting of metals
    • C22B9/10General processes of refining or remelting of metals; Apparatus for electroslag or arc remelting of metals with refining or fluxing agents; Use of materials therefor, e.g. slagging or scorifying agents

Definitions

  • the present invention relates to a method for removing impurities.
  • Al is considered to be a metal material with excellent recyclability, and many Al products made from Al expanded material such as aluminum cans and die-cast products are remelted after disposal and recycled to new products. Is done.
  • impurities are attached to Al products after disposal, and the concentration of impurity elements gradually increases by repeated recycling, so it is common to cascade-recycle to products with less component specifications. .
  • Non-Patent Document 1 a technique using a three-layer electrolytic refining method or a segregation method in a process of manufacturing an aluminum ingot is disclosed (see Non-Patent Document 1).
  • the added Mn may increase as an impurity.
  • the technique disclosed in Non-Patent Document 1 can in principle remove Fe by this method, the yield may be lowered as a method of refining scrap containing a large amount of impurity elements.
  • the three-layer electrolysis method has poor profitability in Japan where the power cost is high, and the segregation method has a risk that the yield decreases as the impurity concentration of the raw material increases.
  • the above prior art is not sufficient as a method for recycling Al scrap containing a large amount of impurities recovered from the city in Japan.
  • the present invention has been made in view of such circumstances, and an object thereof is to provide an impurity removal method capable of efficiently removing impurities that are mixed in Al or an Al alloy and are difficult to remove from the molten metal.
  • Al or an Al alloy molten metal containing impurities contains Mg, which is an essential element in a JIS-A5000 series Al alloy or the like, at a high concentration, and the molten metal is an Al—Mg binary phase diagram. It was found that an intermetallic compound containing an impurity element as an initial crystal was produced by maintaining the temperature around the liquidus temperature. Based on this finding, it was conceived that the impurity concentration can be reduced by removing the intermetallic compound.
  • the impurity removal method is such that Mg is contained at a high concentration of 11% by mass or more with respect to Al or Al alloy molten metal, and the molten metal is held in a temperature range of 470 ° C. or higher and 650 ° C. or lower, thereby forming an impurity element as an initial crystal.
  • An intermetallic compound containing is efficiently produced.
  • the reason why the effect of the present invention can be obtained is assumed as follows. By adding 11 mass% or more of Mg to the Al or Al alloy molten metal to obtain an Al-Mg alloy containing Mg at a high concentration, the liquidus temperature of the Al or Al alloy molten metal is lowered.
  • an intermetallic compound containing an impurity element generated during solidification of the Al alloy molten metal is likely to be formed as a primary crystal. Further, it is presumed that the activity of the impurity element is increased by Mg, and further the generation of intermetallic compounds is promoted. Then, by removing this intermetallic compound from the molten metal, the impurity concentration can efficiently correspond to the standard concentration of A5000 (Al—Mg alloy) defined by JIS. Moreover, since Mg is an essential element in the A5000 system, a removal step is unnecessary, and the molten metal can be diluted and reused for the Al product.
  • the holding time in the holding step is preferably 5 minutes or more. When the holding time is 5 minutes or longer, the compound can be effectively grown coarsely.
  • the impurity contains Fe and the intermetallic compound contains Al and Fe.
  • the impurity Fe can be efficiently removed from the Al—Mg melt.
  • the impurity contains Si and the intermetallic compound contains Mg and Si.
  • the impurity Si can be efficiently removed from the Al—Mg melt.
  • the impurities include Mn, Co, Ti, V, Zr, Cr or a combination thereof, and the intermetallic compound includes Al and Mn, Co, Ti, V, Zr, Cr, or a combination thereof. preferable.
  • the impurity includes Mn, Co, Ti, V, Zr, Cr or a combination thereof, and the intermetallic compound is Al and Mn, Co, Ti, V, Zr, Cr, or a combination thereof. Therefore, impurities such as Mn, Co, Ti, V, Zr, and Cr can be efficiently removed from the Al—Mg-based molten metal.
  • a cooling pipe supplied with a cooling medium in the separation step is inserted into the molten metal to crystallize the intermetallic compound on the surface of the cooling pipe.
  • a cooling pipe to which a cooling medium is supplied in the separation step is inserted into the molten metal, and locally held at 470 ° C. or more and 650 ° C. or less to crystallize the intermetallic compound on the surface of the cooling pipe. The intermetallic compound can be efficiently separated and removed without cooling the whole.
  • the intermetallic compound can be easily and efficiently removed from the molten metal outside the system.
  • the intermetallic compound is allowed to settle or float by allowing the molten metal to stand in the separation step.
  • the intermetallic compound having a specific gravity different from that of the molten metal can be removed at a low cost by allowing the molten metal to stand in the separation step so that the intermetallic compound settles or floats.
  • the separation step It is preferable to centrifuge the molten metal in the separation step. Since the molten metal is centrifuged in the separation step, the intermetallic compound can be efficiently removed from the molten metal.
  • an inert gas containing N 2 gas, Ar gas or He gas, chlorine gas, flux, or a combination thereof is introduced into the molten metal, and the intermetallic compound is introduced into the bubbles, flux or After adsorbing to these combinations, it is preferably removed by floating and separating.
  • an inert gas containing N 2 gas, Ar gas or He gas, chlorine gas, flux, or a combination thereof is introduced into the molten metal, and the intermetallic compound is introduced into the bubbles, flux or After adsorbing to these combinations, floating and separating, and scraping out the intermetallic compound using a jig or the like, the intermetallic compound can be efficiently removed out of the system.
  • the impurity removal method of the present invention can efficiently remove impurities that are mixed in Al or Al alloy and are difficult to remove from the molten metal.
  • the impurity removal method of the present invention is a method of removing impurities that are mixed in Al or Al alloy and are difficult to remove from the molten metal using Mg, which is a 5000-based essential element.
  • the impurity removal method includes an Mg addition step of adding Mg or Mg alloy to the molten metal, a temperature holding step of holding the molten metal after the adding step in a predetermined temperature range, and an intermetallic compound generated in the holding step. An intermetallic compound separation step of separating.
  • the impurity removal method further includes a cooling step after the temperature holding step.
  • the impurity removal method is a method for efficiently removing metal elements that are difficult to remove in the Al recycling process from the Al—Mg melt.
  • Mg which is an essential element in a JIS-A5000 series Al alloy or the like, is promoted to promote the eutecticization of impurities, and the generated intermetallic compound is separated to remove the impurities.
  • the present invention does not require a step of mixing unnecessary impurities in order to generate an intermetallic compound as conventionally performed, and can improve the yield.
  • the impurity element can be reduced below the allowable value of the JIS-A5000 impurity concentration used as the wrought material.
  • the impurity removal method includes (1) Fe, (2) Si, (3) Mn, Co, Ti, V, Zr, Cr, or a combination thereof as impurities contained in the molten Al or Al alloy. Impurities of all combinations of Fe, Si, Mn, Co, Ti, V, Zr, and Cr listed in the above (1) to (3) are to be removed by the impurity removal method. In the impurity removal method, an intermetallic compound containing these impurities is formed by containing Mg at a high concentration.
  • Fe The element which is most easily mixed and difficult to remove as an impurity element in the molten Al or Al alloy is Fe. Fe is easily mixed from fastening parts and shredder machines. However, since Al is an element that is easily oxidized, an oxidation refining process such as a converter in the steel industry cannot be applied, and it is difficult to remove Fe. In the impurity removal method, Fe can be efficiently removed from the Al or Al alloy molten metal. Therefore, Fe can be reduced below the specified concentration of A5000 series (Al—Mg series alloy) defined by JIS, and horizontal recycling from the stretched material to the stretched material can be facilitated.
  • A5000 series Al—Mg series alloy
  • Si As an impurity element in the molten Al or Al alloy, Si is an element which is likely to be mixed next to Fe and difficult to remove. Si may be a mixture of castings and die-cast products in scrap and a mixture of silica sand containing SiO 2 as a main component.
  • an intermetallic compound containing Si and Mg is formed in the impurity removal method. Therefore, in the impurity removal method, Si can be efficiently removed from the Al or Al alloy molten metal.
  • the impurity removal method also applies to Mn, Co, Ti, V, Zr, Cr or a combination thereof.
  • an intermetallic compound containing Al and Mn, Co, Ti, V, Zr, Cr or a combination thereof is formed. Therefore, in the impurity removal method, the impurity element containing Mn, Co, Ti, V, Zr, Cr, or a combination thereof can be efficiently removed from the Al or Al alloy molten metal.
  • Mn, Ti, V, Zr, and Cr are mixed as an additive element of the Al alloy, an element contained in the crystal grain refining material, metal, or the like.
  • Co is an element contained in the battery and may be mixed from scrap in the future.
  • impurities that can be removed by the impurity removal method various combinations can be selected from Fe, Si, Mn, Co, Ti, V, Zr, and Cr listed in the above (1) to (3). Impurities can be efficiently removed by forming and removing these combinations of intermetallic compounds.
  • Si is included in the intermetallic compound
  • Mg is also included in the intermetallic compound.
  • intermetallic compounds to be removed include intermetallic compounds of Al, Fe, Mn, Co and Cr, intermetallic compounds of Mg and Si, and intermetallic compounds of Al, Ti, V and Zr.
  • Al 13 Fe 4 , Mg 2 Si, Al 6 Mn, Al 9 Co 2 , Al 3 Ti, Al 10 V, Al 3 V, Al 3 Zr and the like can be mentioned.
  • Al 13 Fe 4 , Mg 2 Si, Al 6 Mn, Al 9 Co 2 , Al 3 Ti, Al 10 V, Al 3 V, Al 3 Zr, etc. are Fe, Si, Mn, Co, Ti, V, Zr And other metals of Cr may be included as a trace component.
  • Mg which is an essential element such as a JIS-A5000 series Al alloy
  • Al or Al alloy molten metal contains Mg at a high concentration
  • the formation of an intermetallic compound of impurities in the Al—Mg based molten metal is promoted. Therefore, there is no need to mix unnecessary impurities to generate intermetallic compounds as was done in the past, and metal elements that are difficult to remove in the Al recycling process are efficiently removed from the Al-Mg melt. can do.
  • Mg is not an impurity, a step of removing Mg is unnecessary, and the molten metal can be diluted and used for an Al product.
  • intermetallic compound formation is promoted by the effects (a) and (b) above for the removal of Fe and the effects (a) and (c) for the removal of Si.
  • Other impurity elements can also be removed by any of the effects (a) to (c).
  • Mg or Mg alloy is added to Al or Al alloy molten metal containing impurities.
  • Mg alloy include JIS-MC5 and JIS-MDC2A.
  • the lower limit of the Mg concentration is 11% by mass, preferably 14% by mass, more preferably 17% by mass, and still more preferably 20% by mass or more based on the Al or Al alloy molten metal containing impurities. If the lower limit of the concentration is less than 11% by mass, the effects (a) to (c) described above cannot be sufficiently obtained, and the intermetallic compound may not be sufficiently produced.
  • the upper limit of the Mg concentration is not particularly limited, but when the Mg concentration increases, the amount of dilution increases and the cost increases. Therefore, 50% of the molten Al or Al alloy containing impurities from the economical viewpoint. % By mass is preferable, 40% by mass is more preferable, 30% by mass is further preferable, and 25% by mass is particularly preferable.
  • the molten metal after the adding step is held in a temperature range of 470 ° C. or higher and 650 ° C. or lower for 5 minutes or more, thereby promoting the generation of an intermetallic compound containing an impurity element.
  • the lower limit of the holding temperature is 470 ° C., preferably the higher of 470 ° C. and the liquidus temperature ⁇ 20 ° C., more preferably the higher of 470 ° C. and the liquidus temperature ⁇ 10 ° C. It is. This is because when the holding temperature is lower than 470 ° C., the fluidity of the molten metal is lowered and it is difficult to stably hold the molten metal.
  • the holding temperature is preferably the higher of 470 ° C.
  • the liquidus temperature ⁇ 20 ° C. more preferably the higher of 470 ° C. and the liquidus temperature ⁇ 10 ° C. Since the temperature is used as a reference, the production amount of solid Al can be kept low, and the intermetallic compound can be efficiently separated without reducing the yield of the molten metal.
  • the upper limit of the holding temperature is 650 ° C, preferably 630 ° C, and more preferably 600 ° C. This is because when the holding temperature exceeds 650 ° C., an intermetallic compound is not generated, and as a result, it may be difficult to reduce the impurity concentration.
  • the lower limit of the holding time is preferably 5 minutes, more preferably 10 minutes, and even more preferably 20 minutes for coarse growth of the compound.
  • the upper limit of the holding time is not particularly limited, but 150 minutes is preferable for efficient processing.
  • the molten metal is cooled to a temperature at which only the intermetallic compound is crystallized after the holding step.
  • the intermetallic compound in the molten metal can be crystallized by the cooling step.
  • the cooling means the entire molten metal may be cooled, or a cooling pipe to which a cooling medium is supplied may be inserted into the molten metal to locally lower the temperature of the molten metal.
  • the cooling medium is not particularly limited, and water is an example.
  • the intermetallic compound separation step the intermetallic compound produced in the holding step is separated from the molten metal.
  • the separating means include filtration with a heat-resistant filter, standing of the molten metal, and centrifugal separation of the molten metal.
  • the molten metal contains Fe as an impurity and the intermetallic compound is Al 13 Fe 4 which is an Al—Fe-based intermetallic compound, since Al 13 Fe 4 is paramagnetic, it is adsorbed and fixed by a magnet. You can also. By these methods, Al 13 Fe 4 can be efficiently removed out of the system from the Al—Mg melt.
  • a refractory filter refers to a filter made of a chemically stable oxide that can withstand high temperatures. Examples of the oxide include magnesia, alumina, silica, mullite, zirconia, and the like. Examples of the refractory filter include a ceramic foam filter and a tube filter, and a molten metal filtration device including the refractory filter can be used.
  • an intermetallic compound can be efficiently removed by collecting an intermetallic compound having a large specific gravity from the molten metal using a centrifuge. After centrifugation, only the molten metal with a low impurity concentration is recovered.
  • an inert gas containing N 2 gas, Ar gas or He gas, chlorine gas, flux, or a combination thereof is introduced into the molten metal, and the intermetallic compound is introduced into the bubbles, flux or It can also be removed by floating and separating after adsorbing to these combinations.
  • the intermetallic compound is floated and separated, and the intermetallic compound is scraped and removed using a jig or the like, so that only the molten metal having a low impurity concentration can be efficiently recovered.
  • the flux for example, a mixture of two or more of NaCl, KCl, and MgCl 2 can be used.
  • the molten metal with a high concentration of Mg after the removal of the intermetallic compound is pure aluminum melted in advance or aluminum with a low Mg concentration. It can be used after being mixed with scrap (for example, 1000 series) and diluted to the Mg reference concentration of A5000 series (Al-Mg series alloy) defined by JIS.
  • the dilution step is a step of diluting the molten metal after removal of the intermetallic compound containing a high concentration of Mg so that the Mg concentration is equal to or lower than the standard concentration of the JIS-A5000 system.
  • Mg is not an impurity
  • the process of removing is unnecessary, and the molten metal can be diluted and used for Al products.
  • Mg having a high vapor pressure can be evaporated, and an Al—Mg based molten metal having a low Mg concentration can be obtained.
  • the molten metal after removal of the intermetallic compound containing high concentration of Mg can be used as an Mg intermediate alloy by solidifying with a mold or the like.
  • the impurity removal method can efficiently remove impurities that are mixed in Al or Al alloy and are difficult to remove from the molten metal. Impurities are removed by isolating the produced intermetallic compounds by containing Mg, which is an essential element in a JIS-A5000 series Al alloy or the like in a high concentration to promote compounding of impurities.
  • the present invention does not require a step of mixing unnecessary impurities in order to generate an intermetallic compound as conventionally performed, and can improve the yield.
  • metal elements that are difficult to remove in the Al recycling process can be efficiently reduced below the allowable concentration of the wrought material, so horizontal recycling from the wrought material to the wrought material is possible. Can be realized.
  • Example 1 As shown in Table 1, 0.12 kg of molten Al—Fe alloy was melted at 700 ° C. so that the concentration of Fe was 1.00% by mass after addition of Mg. Next, after adding Mg so that the density
  • Example 2 to 16 The impurity removal treatment of Examples 2 to 16 was performed in the same manner as in Example 1 except that the Mg concentration, holding temperature, and holding time were changed as shown in Table 1. Next, the molten alloy after the impurity removal treatment was collected, and the concentration of the impurity element after the impurity removal treatment was measured by ICP emission spectroscopy.
  • Example 17 After melting the Al—Fe—Si alloy at 700 ° C., Mg is added, and finally 1.5 kg of Al alloy containing 30% by mass of Mg, 1.00% by mass of Fe and 1.00% by mass of Si is prepared. did. Next, the temperature of the molten metal was lowered to 550 ° C. and held for 6 minutes. Next, the molten metal was filtered while pressurizing with an inert gas using a refractory filter. After the molten metal solidified, the ingot after filtration was cut, and the Fe and Si concentrations were analyzed by ICP emission spectrometry.
  • Example 7 in which a molten metal containing an Al—Fe—Si alloy and having an Mg concentration of 11% by mass or more was held in a temperature range of 470 ° C. or more and 650 ° C. or less and the separation step was performed using a heat resistant filter is as follows. , Fe and Si were sufficiently removed.
  • Examples 1 to 17 show that an excellent removal effect can be obtained for all impurities of Fe, Si, Mn, Co, Ti, V, and Cr having different solubility with respect to the Al molten metal. It was. Moreover, since Zr is an element in the same group as Ti, it can be estimated that an excellent removal effect can be obtained for Zr by the impurity removal method of the present invention.
  • the impurity removal method of the present invention can efficiently remove impurities that are mixed in Al or Al alloy and are difficult to remove from the molten metal.
  • the present invention does not require a step of mixing unnecessary impurities to generate an intermetallic compound as conventionally performed, and can improve the yield.
  • the impurity removal method of the present invention can efficiently reduce metal elements that are difficult to remove in the Al recycling process to below the allowable concentration of the wrought material, so horizontal recycling from Al wrought material to wrought material is possible. Can be realized.

Abstract

An impurity removal method of one embodiment comprises: a step for adding Mg or an Mg alloy to Al or an Al alloy melt containing impurities; a step for maintaining the melt after said addition step to within a temperature range of 470 to 650°C; and a step for separating an intermetallic compound generated in said maintenance step from the melt. The Mg concentration in the addition step is at least 11 mass% with respect to the melt.

Description

不純物除去方法Impurity removal method
 本発明は、不純物除去方法に関する。 The present invention relates to a method for removing impurities.
 近年、炭酸ガス排出抑制の社会的要求から、自動車等の軽量化が世界中で進められており、今後Alの需要は増加すると見込まれる。そして、将来的には需要増に併せてAlスクラップの排出量が増加すると予想される。一般的に、Alは、リサイクル性に優れた金属材料とされており、アルミ缶やダイカスト製品を始めとするAl展伸材からなる多くのAl製品は廃却後再溶解されて新しい製品へリサイクルされる。しかしながら、廃却後のAl製品には不純物が付着しており、リサイクルを繰り返すことで不純物元素の濃度が次第に増加することから、より成分規格の緩い製品へカスケードリサイクルされることが一般的である。 In recent years, weight reduction of automobiles and the like has been promoted all over the world due to social demands for suppressing carbon dioxide emissions, and the demand for Al is expected to increase in the future. In the future, it is expected that the amount of Al scrap discharged will increase as demand increases. In general, Al is considered to be a metal material with excellent recyclability, and many Al products made from Al expanded material such as aluminum cans and die-cast products are remelted after disposal and recycled to new products. Is done. However, impurities are attached to Al products after disposal, and the concentration of impurity elements gradually increases by repeated recycling, so it is common to cascade-recycle to products with less component specifications. .
 Alへの不純物の混入を抑制する方法としては、シュレッディング後の分別技術の高度化が進められている。しかし、付着物の完全除去は困難であることから、最終的にはAl又はAl合金溶湯からの不純物除去技術が必要である。 As a method for suppressing the contamination of impurities into Al, sophistication of the separation technique after shredding is in progress. However, since it is difficult to completely remove deposits, finally, a technique for removing impurities from the molten Al or Al alloy is necessary.
 Al又はAl合金溶湯から不純物を除去する方法については多く報告されており、特に除去困難なFeを除去する方法としては、不純物となるMnをあえて添加してAl-Fe-Mn系金属間化合物を晶出させた後に、遠心分離、吸引等により上記金属間化合物を除去する技術が提案されている(特許文献1及び特許文献2参照)。 Many methods for removing impurities from Al or Al alloy molten metal have been reported. In particular, as a method for removing Fe that is difficult to remove, Mn as an impurity is added and Al—Fe—Mn intermetallic compounds are added. A technique for removing the intermetallic compound by centrifuging, suction or the like after crystallization has been proposed (see Patent Document 1 and Patent Document 2).
 また、Al又はAl合金溶湯から不純物濃度を低減する技術として、アルミ地金を製造する工程で三層式電解精製法や偏析法を用いる技術が開示されている(非特許文献1参照)。 Also, as a technique for reducing the impurity concentration from Al or Al alloy molten metal, a technique using a three-layer electrolytic refining method or a segregation method in a process of manufacturing an aluminum ingot is disclosed (see Non-Patent Document 1).
特開平08-035021号公報Japanese Unexamined Patent Publication No. 08-035021 特開平07-070666号公報Japanese Patent Laid-Open No. 07-070666
 しかしながら、上記特許文献1及び特許文献2に開示の技術では、添加したMnが不純物として増加するおそれがある。また、上記非特許文献1に開示の技術は、原理的に本手法によりFeを除去することは可能であるが、不純物元素を多く含むスクラップを精錬する方法としては歩留が低くなるおそれがある。また、三層電解法は電力コストの高い国内では採算性が悪く、偏析法は原料の不純物濃度が高いほど収率が低下するおそれがある。このように、上記従来技術においては、市中から回収した不純物を多く含むAlスクラップを国内でリサイクルする方法としては十分ではない。 However, in the techniques disclosed in Patent Document 1 and Patent Document 2, the added Mn may increase as an impurity. In addition, although the technique disclosed in Non-Patent Document 1 can in principle remove Fe by this method, the yield may be lowered as a method of refining scrap containing a large amount of impurity elements. . In addition, the three-layer electrolysis method has poor profitability in Japan where the power cost is high, and the segregation method has a risk that the yield decreases as the impurity concentration of the raw material increases. As described above, the above prior art is not sufficient as a method for recycling Al scrap containing a large amount of impurities recovered from the city in Japan.
 従って、Alの展伸材から展伸材への水平リサイクルを実現するためには、品質に悪影響を及ぼす不純物をAl又はAl合金溶湯から除去することができ、展伸材の許容濃度以下に低減することが可能な技術が望まれる。 Therefore, in order to realize horizontal recycling from wrought material of Al to wrought material, impurities that adversely affect quality can be removed from Al or Al alloy molten metal and reduced to below the allowable concentration of wrought material. A technique that can be used is desired.
 本発明は、このような事情に鑑みてなされたものであり、Al又はAl合金中に混入し、除去が困難な不純物について、効率よく溶湯中から除去できる不純物除去方法の提供を目的とする。 The present invention has been made in view of such circumstances, and an object thereof is to provide an impurity removal method capable of efficiently removing impurities that are mixed in Al or an Al alloy and are difficult to remove from the molten metal.
 本発明者は、鋭意研究した結果、不純物を含むAl又はAl合金溶湯に対し、JIS-A5000系のAl合金等で必須元素であるMgを高濃度含有させて溶湯をAl-Mg2元系状態図の液相線温度付近で保持することにより、初晶として不純物元素を含む金属間化合物が生成されることを見出した。この知見に基づき、上記金属間化合物を除去することで不純物濃度を低下可能であることに想到した。 As a result of diligent research, the present inventor has found that Al or an Al alloy molten metal containing impurities contains Mg, which is an essential element in a JIS-A5000 series Al alloy or the like, at a high concentration, and the molten metal is an Al—Mg binary phase diagram. It was found that an intermetallic compound containing an impurity element as an initial crystal was produced by maintaining the temperature around the liquidus temperature. Based on this finding, it was conceived that the impurity concentration can be reduced by removing the intermetallic compound.
 上記課題を解決するためになされた本発明の一態様は、不純物を含むAl又はAl合金溶湯中に、Mg又はMg合金を添加する工程と、上記添加工程後の溶湯を470℃以上650℃以下の温度範囲で保持する工程と、上記保持工程で生成された金属間化合物を上記溶湯から分離する工程とを備え、上記添加工程におけるMgの濃度が上記溶湯に対して11質量%以上である不純物除去方法である。 In one embodiment of the present invention made to solve the above problems, a step of adding Mg or an Mg alloy into an Al or Al alloy molten metal containing impurities, and a molten metal after the adding step of 470 ° C. or more and 650 ° C. or less And a step of separating the intermetallic compound produced in the holding step from the molten metal, and the Mg concentration in the adding step is 11% by mass or more with respect to the molten metal. It is a removal method.
 当該不純物除去方法は、Al又はAl合金溶湯に対し、Mgを11質量%以上として高濃度で含有させて、溶湯を470℃以上650℃以下の温度範囲で保持することにより、初晶として不純物元素を含む金属間化合物が効率よく生成される。本願発明が上記効果を得られる理由としては、以下のように推察される。Al又はAl合金溶湯にMgを11質量%以上添加して、Mgを高濃度含有するAl-Mg合金とすることで、Al又はAl合金溶湯の液相線温度が低下することから、通常Al又はAl合金溶湯の凝固中に生成する不純物元素を含む金属間化合物が、初晶として生成しやすくなると推察される。また、Mgによって不純物元素の活量が増大し、さらに金属間化合物の生成が促されると推察される。そして、この金属間化合物を溶湯から除去することで不純物濃度をJISで規定されるA5000系(Al-Mg系合金)の基準濃度に効率よく対応できる。また、MgはA5000系における必須元素であるため、除去する工程が不要であり、溶湯を希釈してAl製品に再利用することができる。 The impurity removal method is such that Mg is contained at a high concentration of 11% by mass or more with respect to Al or Al alloy molten metal, and the molten metal is held in a temperature range of 470 ° C. or higher and 650 ° C. or lower, thereby forming an impurity element as an initial crystal. An intermetallic compound containing is efficiently produced. The reason why the effect of the present invention can be obtained is assumed as follows. By adding 11 mass% or more of Mg to the Al or Al alloy molten metal to obtain an Al-Mg alloy containing Mg at a high concentration, the liquidus temperature of the Al or Al alloy molten metal is lowered. It is presumed that an intermetallic compound containing an impurity element generated during solidification of the Al alloy molten metal is likely to be formed as a primary crystal. Further, it is presumed that the activity of the impurity element is increased by Mg, and further the generation of intermetallic compounds is promoted. Then, by removing this intermetallic compound from the molten metal, the impurity concentration can efficiently correspond to the standard concentration of A5000 (Al—Mg alloy) defined by JIS. Moreover, since Mg is an essential element in the A5000 system, a removal step is unnecessary, and the molten metal can be diluted and reused for the Al product.
 上記保持工程の保持時間としては、5分以上が好ましい。上記保持時間が5分以上であることで、化合物を効果的に粗大成長させることができる。 The holding time in the holding step is preferably 5 minutes or more. When the holding time is 5 minutes or longer, the compound can be effectively grown coarsely.
 上記不純物がFeを含み、上記金属間化合物がAl及びFeを含有することが好ましい。当該不純物除去方法では、上記不純物がFeを含み、上記金属間化合物がAl及びFeを含有するので、不純物であるFeをAl-Mg系溶湯から効率よく除去できる。 It is preferable that the impurity contains Fe and the intermetallic compound contains Al and Fe. In the impurity removal method, since the impurity contains Fe and the intermetallic compound contains Al and Fe, the impurity Fe can be efficiently removed from the Al—Mg melt.
 上記不純物がSiを含み、上記金属間化合物がMg及びSiを含有することが好ましい。当該不純物除去方法では、上記不純物がSiを含み、上記金属間化合物がMg及びSiを含有するので、不純物であるSiをAl-Mg系溶湯から効率よく除去できる。 It is preferable that the impurity contains Si and the intermetallic compound contains Mg and Si. In the impurity removal method, since the impurity contains Si and the intermetallic compound contains Mg and Si, the impurity Si can be efficiently removed from the Al—Mg melt.
 上記不純物がMn、Co、Ti、V、Zr、Cr又はこれらの組み合わせを含み、上記金属間化合物がAlと、Mn、Co、Ti、V、Zr、Cr又はこれらの組み合わせとを含有することが好ましい。当該不純物除去方法では、上記不純物がMn、Co、Ti、V、Zr、Cr又はこれらの組み合わせを含み、上記金属間化合物がAlと、Mn、Co、Ti、V、Zr、Cr又はこれらの組み合わせとを含有するので、Mn、Co、Ti、V、Zr、Cr等の不純物をAl-Mg系溶湯から効率よく除去できる。 The impurities include Mn, Co, Ti, V, Zr, Cr or a combination thereof, and the intermetallic compound includes Al and Mn, Co, Ti, V, Zr, Cr, or a combination thereof. preferable. In the impurity removal method, the impurity includes Mn, Co, Ti, V, Zr, Cr or a combination thereof, and the intermetallic compound is Al and Mn, Co, Ti, V, Zr, Cr, or a combination thereof. Therefore, impurities such as Mn, Co, Ti, V, Zr, and Cr can be efficiently removed from the Al—Mg-based molten metal.
 上記分離工程で冷却媒体が供給される冷却管を上記溶湯に挿入し、上記冷却管表面上に上記金属間化合物を晶出させることが好ましい。上記分離工程で冷却媒体が供給される冷却管を上記溶湯に挿入し、局所的に470℃以上650℃以下に保持して上記冷却管表面上に上記金属間化合物を晶出させることで、溶湯全体を冷却することなく、金属間化合物を効率よく分離して除去できる。 It is preferable that a cooling pipe supplied with a cooling medium in the separation step is inserted into the molten metal to crystallize the intermetallic compound on the surface of the cooling pipe. A cooling pipe to which a cooling medium is supplied in the separation step is inserted into the molten metal, and locally held at 470 ° C. or more and 650 ° C. or less to crystallize the intermetallic compound on the surface of the cooling pipe. The intermetallic compound can be efficiently separated and removed without cooling the whole.
 上記分離工程で耐熱性フィルタにより上記溶湯をろ過することが好ましい。上記分離工程で耐熱性フィルタにより上記溶湯をろ過することで、上記溶湯から金属間化合物を系外に簡易に効率よく除去できる。 It is preferable to filter the molten metal with a heat-resistant filter in the separation step. By filtering the molten metal with a heat resistant filter in the separation step, the intermetallic compound can be easily and efficiently removed from the molten metal outside the system.
 上記分離工程で上記溶湯を静置することにより上記金属間化合物を沈降又は浮上させることが好ましい。上記分離工程で上記溶湯を静置することにより上記金属間化合物を沈降又は浮上させることで、上記溶湯と比重の異なる金属間化合物を低コストで除去できる。 It is preferable that the intermetallic compound is allowed to settle or float by allowing the molten metal to stand in the separation step. The intermetallic compound having a specific gravity different from that of the molten metal can be removed at a low cost by allowing the molten metal to stand in the separation step so that the intermetallic compound settles or floats.
 上記分離工程で上記溶湯を遠心分離することが好ましい。上記分離工程で上記溶湯を遠心分離するので、上記溶湯から金属間化合物を効率よく除去できる。 It is preferable to centrifuge the molten metal in the separation step. Since the molten metal is centrifuged in the separation step, the intermetallic compound can be efficiently removed from the molten metal.
 上記分離工程で、Nガス、Arガス若しくはHeガスを含む不活性ガス、塩素ガス、フラックス又はこれらの組み合わせを上記溶湯に投入し、上記金属間化合物を、投入されたガスの気泡、フラックス又はこれらの組み合わせに吸着させた後に浮上分離させて除去することが好ましい。上記分離工程で、Nガス、Arガス若しくはHeガスを含む不活性ガス、塩素ガス、フラックス又はこれらの組み合わせを上記溶湯に投入し、上記金属間化合物を、投入されたガスの気泡、フラックス又はこれらの組み合わせに吸着させた後に浮上分離させ、治具等を用いて金属間化合物を掻き出すことで、金属間化合物を系外に効率よく除去できる。 In the separation step, an inert gas containing N 2 gas, Ar gas or He gas, chlorine gas, flux, or a combination thereof is introduced into the molten metal, and the intermetallic compound is introduced into the bubbles, flux or After adsorbing to these combinations, it is preferably removed by floating and separating. In the separation step, an inert gas containing N 2 gas, Ar gas or He gas, chlorine gas, flux, or a combination thereof is introduced into the molten metal, and the intermetallic compound is introduced into the bubbles, flux or After adsorbing to these combinations, floating and separating, and scraping out the intermetallic compound using a jig or the like, the intermetallic compound can be efficiently removed out of the system.
 本発明の不純物除去方法は、Al又はAl合金中に混入し、除去困難な不純物について、効率よく溶湯中から除去できる。 The impurity removal method of the present invention can efficiently remove impurities that are mixed in Al or Al alloy and are difficult to remove from the molten metal.
 以下、本発明の不純物除去方法の実施形態について詳説する。 Hereinafter, embodiments of the impurity removal method of the present invention will be described in detail.
 本発明の不純物除去方法は、Al又はAl合金に混入し、除去困難な不純物について、5000系の必須元素であるMgを用いて溶湯中から除去する方法である。当該不純物除去方法は、Mg又はMg合金を溶湯に添加するMg添加工程と、上記添加工程後の溶湯を所定の温度範囲で保持する温度保持工程と、上記保持工程で生成された金属間化合物を分離する金属間化合物分離工程とを備える。また、当該不純物除去方法は、上記温度保持工程の後にさらに冷却工程を備える。 The impurity removal method of the present invention is a method of removing impurities that are mixed in Al or Al alloy and are difficult to remove from the molten metal using Mg, which is a 5000-based essential element. The impurity removal method includes an Mg addition step of adding Mg or Mg alloy to the molten metal, a temperature holding step of holding the molten metal after the adding step in a predetermined temperature range, and an intermetallic compound generated in the holding step. An intermetallic compound separation step of separating. The impurity removal method further includes a cooling step after the temperature holding step.
 当該不純物除去方法は、Alリサイクル工程で除去が困難な金属元素を効率よくAl-Mg系溶湯から除去する方法である。JIS-A5000系のAl合金等で必須元素であるMgを高濃度に含有させることにより不純物の共晶化を促し、生成された金属間化合物を分離することにより、不純物の除去を行う。本願発明は、従来行われていたような、金属間化合物を生成させるためにあえて不要な不純物を混入する工程が必要なく、また、歩留まりも向上できる。このように、当該不純物除去方法を用いることにより、展伸材として用いられるJIS-A5000系の不純物濃度の許容値以下に不純物元素を低減することができる。 The impurity removal method is a method for efficiently removing metal elements that are difficult to remove in the Al recycling process from the Al—Mg melt. The inclusion of Mg, which is an essential element in a JIS-A5000 series Al alloy or the like, is promoted to promote the eutecticization of impurities, and the generated intermetallic compound is separated to remove the impurities. The present invention does not require a step of mixing unnecessary impurities in order to generate an intermetallic compound as conventionally performed, and can improve the yield. Thus, by using the impurity removal method, the impurity element can be reduced below the allowable value of the JIS-A5000 impurity concentration used as the wrought material.
 当該不純物除去方法は、Al又はAl合金溶湯中に含まれる不純物として、(1)Fe、(2)Si、(3)Mn、Co、Ti、V、Zr、Cr又はこれらの組み合わせが挙げられる。上記(1)~(3)で列挙されるFe、Si、Mn、Co、Ti、V、Zr、Crの全ての組み合わせの不純物が、当該不純物除去方法による除去の対象となる。当該不純物除去方法は、Mgを高濃度含有させることにより、これらの不純物を含有する金属間化合物が形成される。 The impurity removal method includes (1) Fe, (2) Si, (3) Mn, Co, Ti, V, Zr, Cr, or a combination thereof as impurities contained in the molten Al or Al alloy. Impurities of all combinations of Fe, Si, Mn, Co, Ti, V, Zr, and Cr listed in the above (1) to (3) are to be removed by the impurity removal method. In the impurity removal method, an intermetallic compound containing these impurities is formed by containing Mg at a high concentration.
(1)Fe
 Al又はAl合金溶湯中の不純物元素として最も混入しやすく除去困難な元素はFeである。Feは締結部品、シュレッダー機から容易に混入するが、Alは酸化しやすい元素であるため鉄鋼業における転炉のような酸化精錬工程が適用できず、Feの除去は困難である。当該不純物除去方法では、Al又はAl合金溶湯からFeを効率よく除去することができる。従って、JISで規定されるA5000系(Al-Mg系合金)の規定濃度以下にFeを低減することができるので、Alの展伸材から展伸材への水平リサイクルがより容易化できる。
(1) Fe
The element which is most easily mixed and difficult to remove as an impurity element in the molten Al or Al alloy is Fe. Fe is easily mixed from fastening parts and shredder machines. However, since Al is an element that is easily oxidized, an oxidation refining process such as a converter in the steel industry cannot be applied, and it is difficult to remove Fe. In the impurity removal method, Fe can be efficiently removed from the Al or Al alloy molten metal. Therefore, Fe can be reduced below the specified concentration of A5000 series (Al—Mg series alloy) defined by JIS, and horizontal recycling from the stretched material to the stretched material can be facilitated.
(2)Si
 Al又はAl合金溶湯中の不純物元素として、Feの次に混入しやすく除去困難な元素はSiである。Siはスクラップ中への鋳物・ダイカスト製品の混入や、SiOを主成分とする珪砂の混入が考えられる。当該不純物除去方法においては、Al又はAl合金溶湯の不純物としてSiが含まれる場合、SiとMgを含む金属間化合物が形成される。従って、当該不純物除去方法では、Al又はAl合金溶湯からSiを効率よく除去することができる。
(2) Si
As an impurity element in the molten Al or Al alloy, Si is an element which is likely to be mixed next to Fe and difficult to remove. Si may be a mixture of castings and die-cast products in scrap and a mixture of silica sand containing SiO 2 as a main component. In the impurity removal method, when Si is contained as an impurity of Al or Al alloy molten metal, an intermetallic compound containing Si and Mg is formed. Therefore, in the impurity removal method, Si can be efficiently removed from the Al or Al alloy molten metal.
(3)Mn、Co、Ti、V、Zr、Cr又はこれらの組み合わせ
 Al又はAl合金溶湯中の不純物元素としてMn、Co、Ti、V、Zr、Cr又はこれらの組み合わせについても、当該不純物除去方法においては、Alと、Mn、Co、Ti、V、Zr、Cr又はこれらの組み合わせとを含有する金属間化合物が形成される。従って、当該不純物除去方法では、Al又はAl合金溶湯から上記Mn、Co、Ti、V、Zr、Cr又はこれらの組み合わせを含む不純物元素を効率よく除去することができる。なお、Mn、Ti、V、Zr及びCrは、Al合金の添加元素や、結晶粒微細化材、地金等に含まれる元素として混入する。また、Coは電池に含まれる元素で、将来的にスクラップから混入する可能性がある。
(3) Mn, Co, Ti, V, Zr, Cr or a combination thereof As for the impurity element in Al or Al alloy molten metal, the impurity removal method also applies to Mn, Co, Ti, V, Zr, Cr or a combination thereof. In, an intermetallic compound containing Al and Mn, Co, Ti, V, Zr, Cr or a combination thereof is formed. Therefore, in the impurity removal method, the impurity element containing Mn, Co, Ti, V, Zr, Cr, or a combination thereof can be efficiently removed from the Al or Al alloy molten metal. In addition, Mn, Ti, V, Zr, and Cr are mixed as an additive element of the Al alloy, an element contained in the crystal grain refining material, metal, or the like. Co is an element contained in the battery and may be mixed from scrap in the future.
 当該不純物除去方法が除去可能な不純物としては、上記(1)~(3)で列挙されるFe、Si、Mn、Co、Ti、V、Zr及びCrの中から種々の組み合わせを選択できる。これらの組み合わせの金属間化合物を形成して除去することで、不純物の除去を効率よく行うことができる。但し、金属間化合物にSiを含める場合は、Mgも金属間化合物に含まれる。除去の対象となる金属間化合物としては、例えばAl、Fe、Mn、Co及びCrの金属間化合物、Mg及びSiの金属間化合物、Al、Ti、V及びZrの金属間化合物を挙げることができ、より具体的には、Al13Fe、MgSi、AlMn、AlCo、AlTi、Al10V、AlV、AlZr等を挙げることができる。上記Al13Fe、MgSi、AlMn、AlCo、AlTi、Al10V、AlV、AlZr等は、Fe、Si、Mn、Co、Ti、V、Zr及びCrのうちのその他の金属を微量成分として含んでいてもよい。 As the impurities that can be removed by the impurity removal method, various combinations can be selected from Fe, Si, Mn, Co, Ti, V, Zr, and Cr listed in the above (1) to (3). Impurities can be efficiently removed by forming and removing these combinations of intermetallic compounds. However, when Si is included in the intermetallic compound, Mg is also included in the intermetallic compound. Examples of intermetallic compounds to be removed include intermetallic compounds of Al, Fe, Mn, Co and Cr, intermetallic compounds of Mg and Si, and intermetallic compounds of Al, Ti, V and Zr. More specifically, Al 13 Fe 4 , Mg 2 Si, Al 6 Mn, Al 9 Co 2 , Al 3 Ti, Al 10 V, Al 3 V, Al 3 Zr and the like can be mentioned. Al 13 Fe 4 , Mg 2 Si, Al 6 Mn, Al 9 Co 2 , Al 3 Ti, Al 10 V, Al 3 V, Al 3 Zr, etc. are Fe, Si, Mn, Co, Ti, V, Zr And other metals of Cr may be included as a trace component.
 以下、各工程について説明する。 Hereinafter, each process will be described.
<Mg添加工程>
 Mg添加工程では、不純物を含むAl又はAl合金溶湯に対し、JIS-A5000系のAl合金等で必須元素であるMgを添加して高濃度に含有させる。Al又はAl合金溶湯が、Mgを高濃度に含有することで、Al-Mg系溶湯中の不純物の金属間化合物化が促進される。従って、従来行われていたような、金属間化合物を生成させるためにあえて不要な不純物を混入する工程が必要なく、Alリサイクル工程で除去が困難な金属元素を効率よくAl-Mg系溶湯から除去することができる。また、Mgは不純物でないため、Mgを除去する工程が不要であり、溶湯を希釈してAl製品に用いることができる。
<Mg addition process>
In the Mg addition step, Mg, which is an essential element such as a JIS-A5000 series Al alloy, is added to Al or Al alloy molten metal containing impurities and contained at a high concentration. When the Al or Al alloy molten metal contains Mg at a high concentration, the formation of an intermetallic compound of impurities in the Al—Mg based molten metal is promoted. Therefore, there is no need to mix unnecessary impurities to generate intermetallic compounds as was done in the past, and metal elements that are difficult to remove in the Al recycling process are efficiently removed from the Al-Mg melt. can do. Moreover, since Mg is not an impurity, a step of removing Mg is unnecessary, and the molten metal can be diluted and used for an Al product.
 上記Mg添加工程による効果としては、以下の効果を挙げることができる。
(a)液相線温度が下がるため低温で溶湯を保持でき、化合物の生成が促進される。
(b)Mgが不純物元素の活量を増加させることで、化合物の生成が促進される。
(c)添加したMgが直接不純物元素と反応して金属間化合物を生成する。
上記(a)、(b)、(c)又はこれらの組み合わせによる効果により、不純物を溶湯中で金属間化合物化させることができる。
The following effects can be mentioned as an effect by the said Mg addition process.
(A) Since the liquidus temperature is lowered, the molten metal can be held at a low temperature, and the production of the compound is promoted.
(B) The formation of the compound is promoted by increasing the activity of the impurity element by Mg.
(C) The added Mg directly reacts with the impurity element to form an intermetallic compound.
Due to the effects of the above (a), (b), (c), or a combination thereof, impurities can be made into an intermetallic compound in the molten metal.
 例えばFeの除去に関しては上記(a)、(b)の効果、Siの除去に関しては(a)、(c)の効果によって金属間化合物化が促進すると考えられる。その他の不純物元素についても(a)~(c)のいずれかの効果により除去できる。 For example, it is considered that intermetallic compound formation is promoted by the effects (a) and (b) above for the removal of Fe and the effects (a) and (c) for the removal of Si. Other impurity elements can also be removed by any of the effects (a) to (c).
 Mg添加工程では、不純物を含むAl又はAl合金溶湯中に、Mg又はMg合金を添加する。Mg合金としては、例えばJIS-MC5、JIS-MDC2Aが挙げられる。 In the Mg addition step, Mg or Mg alloy is added to Al or Al alloy molten metal containing impurities. Examples of the Mg alloy include JIS-MC5 and JIS-MDC2A.
 Mgの濃度の下限としては、不純物を含むAl又はAl合金溶湯に対して11質量%であり、14質量%が好ましく、17質量%がより好ましく、20質量%以上が更に好ましい。上記濃度の下限が11質量%未満では上記(a)~(c)の効果を十分に得ることができず、十分に金属間化合物が生成されないおそれがある。 The lower limit of the Mg concentration is 11% by mass, preferably 14% by mass, more preferably 17% by mass, and still more preferably 20% by mass or more based on the Al or Al alloy molten metal containing impurities. If the lower limit of the concentration is less than 11% by mass, the effects (a) to (c) described above cannot be sufficiently obtained, and the intermetallic compound may not be sufficiently produced.
 また、Mgの濃度の上限としては、特に限定されないが、Mgの濃度が高くなると希釈量が増えてコストが上昇することから、経済的な観点より不純物を含むAl又はAl合金溶湯に対して50質量%が好ましく、40質量%がより好ましく、30質量%がさらに好ましく、25質量%が特に好ましい。 Further, the upper limit of the Mg concentration is not particularly limited, but when the Mg concentration increases, the amount of dilution increases and the cost increases. Therefore, 50% of the molten Al or Al alloy containing impurities from the economical viewpoint. % By mass is preferable, 40% by mass is more preferable, 30% by mass is further preferable, and 25% by mass is particularly preferable.
<温度保持工程>
 温度保持工程では、上記添加工程後の溶湯を470℃以上650℃以下の温度範囲で5分以上保持することにより、不純物元素を含む金属間化合物の生成が促進される。
<Temperature holding process>
In the temperature holding step, the molten metal after the adding step is held in a temperature range of 470 ° C. or higher and 650 ° C. or lower for 5 minutes or more, thereby promoting the generation of an intermetallic compound containing an impurity element.
 Al-Mg系合金におけるMgの濃度が11質量%以上50質量%以下のAl-Mg系合金のAl-Mg2元系状態図の液相線温度は以下の式で表される。
(1)Al-Mg系合金におけるMgの濃度が11質量%以上35質量%未満の場合
 Al-Mg2元系状態図の液相線温度(℃)=-6.6×Mg濃度(質量%)+680(2)Al-Mg系合金におけるMgの濃度が35質量%以上50質量%以下の場合
 Al-Mg2元系状態図の液相線温度(℃)=450
The liquidus temperature of the Al—Mg binary phase diagram of an Al—Mg alloy having an Mg concentration of 11 mass% or more and 50 mass% or less in the Al—Mg alloy is expressed by the following equation.
(1) When the Mg concentration in the Al—Mg-based alloy is 11 mass% or more and less than 35 mass% Liquidus temperature (° C.) of the Al—Mg binary phase diagram = −6.6 × Mg concentration (mass%) +680 (2) When the Mg concentration in the Al—Mg alloy is 35% by mass or more and 50% by mass or less The liquidus temperature (° C.) of the Al—Mg binary system phase diagram = 450
 本発明者は、金属間化合物の生成と溶湯からの分離性の観点から、溶湯の保持温度を規定した。上記保持温度の下限としては、470℃であり、好ましくは470℃及び上記液相線温度-20℃のいずれか高い方、より好ましくは470℃及び液相線温度-10℃のいずれか高い方である。保持温度が470℃未満の場合、溶湯の流動性が低下するので、安定して溶湯を保持することが困難となるためである。
 上記保持温度が、好ましくは470℃及び上記液相線温度-20℃のいずれか高い方、より好ましくは470℃及び液相線温度-10℃のいずれか高い方であることで、液相線温度を基準としているので固体Alの生成量を低く抑えることができ、溶湯の歩留を低下させずに金属間化合物を効率的に分離できる。
 一方、上記保持温度の上限としては、650℃であり、630℃が好ましく、600℃がより好ましい。保持温度が650℃を超える場合、金属間化合物が生成せず、結果として不純物濃度を下げることが困難となるおそれがあるためである。
This inventor prescribed | regulated the retention temperature of a molten metal from a viewpoint of the production | generation of an intermetallic compound, and the separability from a molten metal. The lower limit of the holding temperature is 470 ° C., preferably the higher of 470 ° C. and the liquidus temperature −20 ° C., more preferably the higher of 470 ° C. and the liquidus temperature −10 ° C. It is. This is because when the holding temperature is lower than 470 ° C., the fluidity of the molten metal is lowered and it is difficult to stably hold the molten metal.
The holding temperature is preferably the higher of 470 ° C. and the liquidus temperature −20 ° C., more preferably the higher of 470 ° C. and the liquidus temperature −10 ° C. Since the temperature is used as a reference, the production amount of solid Al can be kept low, and the intermetallic compound can be efficiently separated without reducing the yield of the molten metal.
On the other hand, the upper limit of the holding temperature is 650 ° C, preferably 630 ° C, and more preferably 600 ° C. This is because when the holding temperature exceeds 650 ° C., an intermetallic compound is not generated, and as a result, it may be difficult to reduce the impurity concentration.
 上記保持時間の下限としては、化合物を粗大成長させるために5分が好ましく、10分がより好ましく、20分がさらに好ましい。一方、保持時間の上限としては、特に限定されないが、効率的な処理を行うために150分が好ましい。 The lower limit of the holding time is preferably 5 minutes, more preferably 10 minutes, and even more preferably 20 minutes for coarse growth of the compound. On the other hand, the upper limit of the holding time is not particularly limited, but 150 minutes is preferable for efficient processing.
<冷却工程>
 冷却工程では、上記保持工程後に上記溶湯を金属間化合物のみ晶出する温度まで冷却する。冷却工程により、上記溶湯中の金属間化合物を晶出させることができる。冷却手段としては、溶湯全体を冷却してもよいし、冷却媒体が供給される冷却管を上記溶湯に挿入し、局所的に溶湯を低温化してもよい。冷却媒体が供給される冷却管を用いる場合、冷却媒体としては、特に限定されず、例えば水が挙げられる。
<Cooling process>
In the cooling step, the molten metal is cooled to a temperature at which only the intermetallic compound is crystallized after the holding step. The intermetallic compound in the molten metal can be crystallized by the cooling step. As the cooling means, the entire molten metal may be cooled, or a cooling pipe to which a cooling medium is supplied may be inserted into the molten metal to locally lower the temperature of the molten metal. When the cooling pipe to which the cooling medium is supplied is used, the cooling medium is not particularly limited, and water is an example.
<金属間化合物分離工程>
 上記金属間化合物分離工程では、上記保持工程で生成された金属間化合物を上記溶湯から分離する。金属間化合物を分離して除去することで、溶湯から系外に効率的に除去できるので、不純物をJISで規定されるAl合金の許容濃度以下に効率よく低減できる。分離手段としては、例えば耐熱性フィルタによるろ過、溶湯の静置、溶湯の遠心分離等が挙げられる。なお、溶湯が不純物としてFeを含み、金属間化合物がAl-Fe系金属間化合物であるAl13Feである場合、Al13Feが常磁性であることから磁石で吸着させて固定することもできる。これらの方法により、Al13FeをAl-Mg系溶湯から系外に効率的に除去することができる。
<Intermetallic compound separation process>
In the intermetallic compound separation step, the intermetallic compound produced in the holding step is separated from the molten metal. By separating and removing the intermetallic compound, it can be efficiently removed from the molten metal to the outside of the system, so that impurities can be efficiently reduced below the allowable concentration of the Al alloy specified by JIS. Examples of the separating means include filtration with a heat-resistant filter, standing of the molten metal, and centrifugal separation of the molten metal. In addition, when the molten metal contains Fe as an impurity and the intermetallic compound is Al 13 Fe 4 which is an Al—Fe-based intermetallic compound, since Al 13 Fe 4 is paramagnetic, it is adsorbed and fixed by a magnet. You can also. By these methods, Al 13 Fe 4 can be efficiently removed out of the system from the Al—Mg melt.
[冷却管による金属間化合物の晶出]
 上述の冷却媒体が供給される冷却管を用いる場合、分離工程として冷却媒体が供給される冷却管を上記溶湯に挿入し、局所的に470℃以上650℃以下に保持して上記冷却管表面上に上記金属間化合物を晶出させることもできる。冷却管を用いて、冷却管表面上に金属間化合物を晶出させることで、溶湯全体を冷却して温度を下げることなく、効率よく金属間化合物を晶出させることができる。
[Crystal crystallization of intermetallic compounds by cooling pipe]
When using the cooling pipe to which the cooling medium is supplied, the cooling pipe to which the cooling medium is supplied is inserted into the molten metal as a separation step, and is locally held at 470 ° C. or more and 650 ° C. or less on the surface of the cooling pipe. It is also possible to crystallize the intermetallic compound. By using the cooling pipe to crystallize the intermetallic compound on the surface of the cooling pipe, the intermetallic compound can be efficiently crystallized without cooling the entire molten metal and lowering the temperature.
[耐熱性フィルタによるろ過]
 耐熱性フィルタを用いて上記溶湯をろ過することにより、溶湯から金属間化合物を簡易に効率よく除去できる。耐熱性フィルタとしては、例えば耐火物製フィルタが挙げられる。耐火物製フィルタとは、高温度に耐え,化学的に安定な酸化物等からなるフィルタをいう。上記酸化物としては、例えばマグネシア、アルミナ、シリカ、ムライト、ジルコニア等が挙げられる。耐火物製フィルタとしては、例えばセラミックフォームフィルタやチューブフィルタが挙げられ、耐火物製フィルタを具備する溶湯のろ過装置を使用することができる。
[Filtration with heat-resistant filter]
By filtering the molten metal using a heat resistant filter, the intermetallic compound can be easily and efficiently removed from the molten metal. An example of the heat resistant filter is a refractory filter. A refractory filter refers to a filter made of a chemically stable oxide that can withstand high temperatures. Examples of the oxide include magnesia, alumina, silica, mullite, zirconia, and the like. Examples of the refractory filter include a ceramic foam filter and a tube filter, and a molten metal filtration device including the refractory filter can be used.
[溶湯の静置]
 上記溶湯を静置することにより溶湯と比重の異なる金属間化合物を浮上又は沈降させる。溶湯の静置により分離させることで、金属間化合物を低コストで除去できる。そして、金属間化合物の浮上物を除去した後に、金属間化合物の沈降物が残存した状態の容器を傾けて上澄みだけを回収する方法、上記上澄みのみを上方から吸引管により吸引する方法等により、不純物濃度の低い溶湯のみを回収する。
[Lease of molten metal]
By allowing the molten metal to stand, an intermetallic compound having a specific gravity different from that of the molten metal is levitated or settled. By separating by allowing the molten metal to stand, the intermetallic compound can be removed at low cost. And, after removing the floating substance of the intermetallic compound, by tilting the container in the state where the precipitate of the intermetallic compound remains, the method of collecting only the supernatant, the method of sucking only the supernatant from above with a suction tube, etc. Collect only molten metal with low impurity concentration.
[溶湯の遠心分離]
 また、遠心分離機を用いて上記溶湯から比重の大きい金属間化合物を捕集することにより、金属間化合物を効率よく除去できる。遠心分離後は、不純物濃度の低い溶湯のみを回収する。
[Centrifuged molten metal]
Moreover, an intermetallic compound can be efficiently removed by collecting an intermetallic compound having a large specific gravity from the molten metal using a centrifuge. After centrifugation, only the molten metal with a low impurity concentration is recovered.
[金属間化合物の浮上分離]
 上記分離工程で、Nガス、Arガス若しくはHeガスを含む不活性ガス、塩素ガス、フラックス又はこれらの組み合わせを上記溶湯に投入し、上記金属間化合物を、投入されたガスの気泡、フラックス又はこれらの組み合わせに吸着させた後に浮上分離させて除去することもできる。上記金属間化合物を浮上分離させて、治具等を用いて金属間化合物を掻き出して除去し、効率よく不純物濃度の低い溶湯のみを回収することができる。上記フラックスとしては、例えばNaCl、KCl及びMgClのうちの2つ以上を組み合わせた混合物を用いることができる。
[Floating separation of intermetallic compounds]
In the separation step, an inert gas containing N 2 gas, Ar gas or He gas, chlorine gas, flux, or a combination thereof is introduced into the molten metal, and the intermetallic compound is introduced into the bubbles, flux or It can also be removed by floating and separating after adsorbing to these combinations. The intermetallic compound is floated and separated, and the intermetallic compound is scraped and removed using a jig or the like, so that only the molten metal having a low impurity concentration can be efficiently recovered. As the flux, for example, a mixture of two or more of NaCl, KCl, and MgCl 2 can be used.
 以上の工程を組み合わせることで不純物濃度の低いAl-Mg系溶湯を得ることができる。 By combining the above steps, it is possible to obtain an Al—Mg molten metal having a low impurity concentration.
<希釈工程>
 上記Mg添加工程、上記温度保持工程、冷却工程及び金属間化合物分離工程が終了し、上記金属間化合物を除去後のMgが高濃度の溶湯は、事前に溶融した純Al又はMg濃度の低いアルミスクラップ(例えば1000系)と混合して、JISで規定されるA5000系(Al-Mg系合金)のMg基準濃度にまで希釈して使用することができる。希釈工程は、高濃度のMgを含有する金属間化合物除去後の溶湯を希釈して、Mgの濃度を上記JIS-A5000系の基準濃度以下にする工程である。このように、Mgは不純物でないため、除去する工程が不要であり、溶湯を希釈してAl製品に用いることができる。また、高濃度のMgを含有する金属間化合物除去後の溶湯を真空下で保持することにより蒸気圧の大きいMgが蒸発し、Mg濃度が低いAl-Mg系溶湯を得ることもできる。
<Dilution process>
When the Mg addition step, the temperature holding step, the cooling step, and the intermetallic compound separation step are finished, the molten metal with a high concentration of Mg after the removal of the intermetallic compound is pure aluminum melted in advance or aluminum with a low Mg concentration. It can be used after being mixed with scrap (for example, 1000 series) and diluted to the Mg reference concentration of A5000 series (Al-Mg series alloy) defined by JIS. The dilution step is a step of diluting the molten metal after removal of the intermetallic compound containing a high concentration of Mg so that the Mg concentration is equal to or lower than the standard concentration of the JIS-A5000 system. Thus, since Mg is not an impurity, the process of removing is unnecessary, and the molten metal can be diluted and used for Al products. Further, by holding the molten metal after removal of the intermetallic compound containing high concentration of Mg under vacuum, Mg having a high vapor pressure can be evaporated, and an Al—Mg based molten metal having a low Mg concentration can be obtained.
 なお、高濃度のMgを含有する金属間化合物除去後の溶湯は、鋳型等で固めることによりMg中間合金として使用することもできる。 It should be noted that the molten metal after removal of the intermetallic compound containing high concentration of Mg can be used as an Mg intermediate alloy by solidifying with a mold or the like.
 当該不純物除去方法は、Al又はAl合金中に混入し、除去困難な不純物について、効率よく溶湯中から除去できる。JIS-A5000系のAl合金等で必須元素であるMgを高濃度に含有させて不純物の化合物化を促し、生成された金属間化合物を分離することにより、不純物の除去を行う。本願発明は、従来行われていたような、金属間化合物を生成させるためにあえて不要な不純物を混入する工程が必要なく、また、歩留まりも向上できる。 The impurity removal method can efficiently remove impurities that are mixed in Al or Al alloy and are difficult to remove from the molten metal. Impurities are removed by isolating the produced intermetallic compounds by containing Mg, which is an essential element in a JIS-A5000 series Al alloy or the like in a high concentration to promote compounding of impurities. The present invention does not require a step of mixing unnecessary impurities in order to generate an intermetallic compound as conventionally performed, and can improve the yield.
 当該不純物除去方法によれば、Alリサイクル工程で除去が困難な金属元素を効率よく展伸材の許容濃度以下に低減することができるので、Alの展伸材から展伸材への水平リサイクルを実現することができる。 According to the impurity removal method, metal elements that are difficult to remove in the Al recycling process can be efficiently reduced below the allowable concentration of the wrought material, so horizontal recycling from the wrought material to the wrought material is possible. Can be realized.
 今回開示された実施の形態は全ての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は、上記実施形態の構成に限定されるものではなく、請求の範囲によって示され、請求の範囲と均等の意味及び範囲内での全ての変更が含まれることが意図される。 The embodiment disclosed this time should be considered as illustrative in all points and not restrictive. The scope of the present invention is not limited to the configuration of the embodiment described above, but is defined by the scope of the claims, and is intended to include all modifications within the meaning and scope equivalent to the scope of the claims.
 以下、実施例によって本発明をさらに詳細に説明するが、本発明はこれらの実施例に限定されるものではない。 Hereinafter, the present invention will be described in more detail with reference to examples, but the present invention is not limited to these examples.
[実施例1]
 表1に示すように、Mg添加後にFeの濃度が1.00質量%となるようにAl-Fe合金溶湯0.12kgを700℃で溶融した。次に、溶湯に対する濃度が20質量%となるようにMgを添加した後、溶湯の温度を560℃まで下げて35分間保持し、静置した。次に、溶湯の入ったるつぼを炉外に出して放冷し、溶湯を凝固させた後、鋳塊の下部を切断し、試料上部のFe濃度をICP発光分光分析法にて分析した。
[Example 1]
As shown in Table 1, 0.12 kg of molten Al—Fe alloy was melted at 700 ° C. so that the concentration of Fe was 1.00% by mass after addition of Mg. Next, after adding Mg so that the density | concentration with respect to a molten metal might be 20 mass%, the temperature of the molten metal was lowered | hung to 560 degreeC, hold | maintained for 35 minutes, and left still. Next, the crucible containing the molten metal was taken out of the furnace and allowed to cool. After the molten metal was solidified, the lower part of the ingot was cut, and the Fe concentration in the upper part of the sample was analyzed by ICP emission spectrometry.
[実施例2~実施例16]
 Mg濃度、保持温度及び保持時間を表1のように変更したこと以外は実施例1と同様にして、実施例2~実施例16の不純物除去処理を実施した。次に、不純物除去処理後の合金溶湯を採取し、不純物除去処理後の不純物元素の濃度をICP発光分光分析法により測定した。
[Examples 2 to 16]
The impurity removal treatment of Examples 2 to 16 was performed in the same manner as in Example 1 except that the Mg concentration, holding temperature, and holding time were changed as shown in Table 1. Next, the molten alloy after the impurity removal treatment was collected, and the concentration of the impurity element after the impurity removal treatment was measured by ICP emission spectroscopy.
[実施例17]
 Al-Fe-Si合金を700℃で溶解後にMgを添加し、最終的にMgを30質量%、Feを1.00質量%、Siを1.00質量%含有するAl合金1.5kgを作成した。次に、溶湯の温度を550℃まで下げて6分間保持した。次に、耐火物製のフィルタを用いて不活性ガスで加圧しながら溶湯をろ過した。溶湯が凝固した後、ろ過後の鋳塊を切断し、Fe及びSi濃度をICP発光分光分析法にて分析した。
[Example 17]
After melting the Al—Fe—Si alloy at 700 ° C., Mg is added, and finally 1.5 kg of Al alloy containing 30% by mass of Mg, 1.00% by mass of Fe and 1.00% by mass of Si is prepared. did. Next, the temperature of the molten metal was lowered to 550 ° C. and held for 6 minutes. Next, the molten metal was filtered while pressurizing with an inert gas using a refractory filter. After the molten metal solidified, the ingot after filtration was cut, and the Fe and Si concentrations were analyzed by ICP emission spectrometry.
 これらの評価結果を表1に示す。 These evaluation results are shown in Table 1.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
[評価結果]
 表1に示すように、溶湯を470℃以上650℃以下の温度範囲で保持し、Mg濃度が11質量%以上であり、静置により分離工程を実施した実施例1~実施例5は、いずれもFeが十分除去されていた。また、実施例1~実施例5のように、Al又はAl合金溶湯中の不純物がFeの場合、当該不純物除去方法の処理条件を変更することにより、展伸材として用いられるJIS-A5000系のFeの基準値に幅広く対応可能であることが示された。
 また、実施例1~実施例5と同様に、溶湯を470℃以上650℃以下の温度範囲で保持し、Mg濃度が11質量%以上であり、静置により分離工程を実施した実施例6~実施例7は、いずれもSiが十分除去されていた。実施例8~実施例10は、いずれもMnが十分除去されていた。実施例11~実施例12は、いずれもTiが十分除去されていた。実施例13~実施例14は、いずれもCrが十分除去されていた。実施例15は、Vが十分除去されていた。実施例16は、Coが十分除去されていた。
 さらに、Al-Fe-Si合金を含み、Mg濃度が11質量%以上である溶湯を470℃以上650℃以下の温度範囲で保持し、耐熱性フィルタを用いて分離工程を実施した実施例17は、Fe及びSiが十分除去されていた。
[Evaluation results]
As shown in Table 1, Examples 1 to 5 in which the molten metal was maintained in a temperature range of 470 ° C. or more and 650 ° C. or less, the Mg concentration was 11% by mass or more, and the separation step was performed by standing, Also, Fe was sufficiently removed. Further, as in Examples 1 to 5, when the impurity in the molten Al or Al alloy is Fe, by changing the treatment conditions of the impurity removal method, the JIS-A5000 series used as the wrought material can be used. It was shown that it can respond widely to the reference value of Fe.
As in Examples 1 to 5, the molten metal was held in a temperature range of 470 ° C. to 650 ° C., the Mg concentration was 11% by mass, and the separation step was performed by standing. In Example 7, Si was sufficiently removed. In all of Examples 8 to 10, Mn was sufficiently removed. In all of Examples 11 to 12, Ti was sufficiently removed. In all of Examples 13 to 14, Cr was sufficiently removed. In Example 15, V was sufficiently removed. In Example 16, Co was sufficiently removed.
Further, Example 17 in which a molten metal containing an Al—Fe—Si alloy and having an Mg concentration of 11% by mass or more was held in a temperature range of 470 ° C. or more and 650 ° C. or less and the separation step was performed using a heat resistant filter is as follows. , Fe and Si were sufficiently removed.
 実施例1~実施例17の結果から、Al溶湯に対して溶解度の異なるFe、Si、Mn、Co、Ti、V及びCrの全ての不純物に対して優れた除去効果が得られることが示された。また、ZrはTiと同族の元素であることから、Zrについても本発明の不純物除去方法により優れた除去効果が得られると推測できる。 The results of Examples 1 to 17 show that an excellent removal effect can be obtained for all impurities of Fe, Si, Mn, Co, Ti, V, and Cr having different solubility with respect to the Al molten metal. It was. Moreover, since Zr is an element in the same group as Ti, it can be estimated that an excellent removal effect can be obtained for Zr by the impurity removal method of the present invention.
 以上のように、本発明の不純物除去方法は、Al又はAl合金中に混入し、除去困難な不純物について、効率よく溶湯中から除去できる。また、本願発明は、従来行われていたような、金属間化合物を生成させるためにあえて不要な不純物を混入する工程が必要なく、また、歩留まりも向上できる。 As described above, the impurity removal method of the present invention can efficiently remove impurities that are mixed in Al or Al alloy and are difficult to remove from the molten metal. In addition, the present invention does not require a step of mixing unnecessary impurities to generate an intermetallic compound as conventionally performed, and can improve the yield.
 本発明の不純物除去方法は、Alリサイクル工程で除去が困難な金属元素を効率よく展伸材の許容濃度以下に低減することができるので、Alの展伸材から展伸材への水平リサイクルを実現することができる。
 
The impurity removal method of the present invention can efficiently reduce metal elements that are difficult to remove in the Al recycling process to below the allowable concentration of the wrought material, so horizontal recycling from Al wrought material to wrought material is possible. Can be realized.

Claims (10)

  1.  不純物を含むAl又はAl合金溶湯中に、Mg又はMg合金を添加する工程と、
     上記添加工程後の溶湯を470℃以上650℃以下の温度範囲で保持する工程と、
     上記保持工程で生成された金属間化合物を上記溶湯から分離する工程と
     を備え、
     上記添加工程におけるMgの濃度が上記溶湯に対して11質量%以上である不純物除去方法。
    Adding Mg or Mg alloy into Al or Al alloy molten metal containing impurities;
    Maintaining the molten metal after the addition step in a temperature range of 470 ° C. or more and 650 ° C. or less;
    Separating the intermetallic compound produced in the holding step from the molten metal,
    The impurity removal method whose Mg density | concentration in the said addition process is 11 mass% or more with respect to the said molten metal.
  2.  上記保持工程の保持時間が5分以上である請求項1に記載の不純物除去方法。 The method for removing impurities according to claim 1, wherein the holding time of the holding step is 5 minutes or more.
  3.  上記不純物がFeを含み、
     上記金属間化合物がAl及びFeを含有する請求項1に記載の不純物除去方法。
    The impurities include Fe;
    The impurity removal method according to claim 1, wherein the intermetallic compound contains Al and Fe.
  4.  上記不純物がSiを含み、
     上記金属間化合物がMg及びSiを含有する請求項1に記載の不純物除去方法。
    The impurities include Si;
    The impurity removal method according to claim 1, wherein the intermetallic compound contains Mg and Si.
  5.  上記不純物がMn、Co、Ti、V、Zr、Cr又はこれらの組み合わせを含み、
     上記金属間化合物がAlと、Mn、Co、Ti、V、Zr、Cr又はこれらの組み合わせとを含有する請求項1に記載の不純物除去方法。
    The impurities include Mn, Co, Ti, V, Zr, Cr or combinations thereof,
    The impurity removal method according to claim 1, wherein the intermetallic compound contains Al and Mn, Co, Ti, V, Zr, Cr, or a combination thereof.
  6.  上記分離工程で冷却媒体が供給される冷却管を上記溶湯に挿入し、上記冷却管表面上に上記金属間化合物を晶出させる請求項1から請求項5のいずれか1項に記載の不純物除去方法。 The impurity removal according to any one of claims 1 to 5, wherein a cooling pipe to which a cooling medium is supplied in the separation step is inserted into the molten metal, and the intermetallic compound is crystallized on the surface of the cooling pipe. Method.
  7.  上記分離工程で耐熱性フィルタにより上記溶湯をろ過する請求項1から請求項5のいずれか1項に記載の不純物除去方法。 The impurity removal method according to any one of claims 1 to 5, wherein the molten metal is filtered by a heat-resistant filter in the separation step.
  8.  上記分離工程で上記溶湯を静置することにより上記金属間化合物を沈降又は浮上させる請求項1から請求項5のいずれか1項に記載の不純物除去方法。 The impurity removal method according to any one of claims 1 to 5, wherein the intermetallic compound is allowed to settle or float by allowing the molten metal to stand in the separation step.
  9.  上記分離工程で上記溶湯を遠心分離する請求項1から請求項5のいずれか1項に記載の不純物除去方法。 The impurity removal method according to any one of claims 1 to 5, wherein the molten metal is centrifuged in the separation step.
  10.  上記分離工程で、Nガス、Arガス若しくはHeガスを含む不活性ガス、塩素ガス、フラックス又はこれらの組み合わせを上記溶湯に投入し、上記金属間化合物を、投入されたガスの気泡、フラックス又はこれらの組み合わせに吸着させた後に浮上分離させて除去する請求項1から請求項5のいずれか1項に記載の不純物除去方法。
     
    In the separation step, an inert gas containing N 2 gas, Ar gas or He gas, chlorine gas, flux, or a combination thereof is introduced into the molten metal, and the intermetallic compound is introduced into the bubbles, flux or The impurity removal method according to any one of claims 1 to 5, wherein the impurity is removed by floating separation after being adsorbed by the combination.
PCT/JP2019/012518 2018-04-09 2019-03-25 Impurity removal method WO2019198476A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2018074779 2018-04-09
JP2018-074779 2018-04-09
JP2019042157A JP7123834B2 (en) 2018-04-09 2019-03-08 Impurity removal method
JP2019-042157 2019-03-08

Publications (1)

Publication Number Publication Date
WO2019198476A1 true WO2019198476A1 (en) 2019-10-17

Family

ID=68164222

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/012518 WO2019198476A1 (en) 2018-04-09 2019-03-25 Impurity removal method

Country Status (1)

Country Link
WO (1) WO2019198476A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110904340A (en) * 2019-12-10 2020-03-24 武翠莲 Method for removing harmful elements and impurities in iron-containing mixture by centrifugation
WO2023079851A1 (en) * 2021-11-04 2023-05-11 株式会社神戸製鋼所 Method for removing impurities, method for producing aluminum-based alloy, and method for producing aluminum-based alloy material

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01279712A (en) * 1988-05-02 1989-11-10 Kobe Steel Ltd Method for removing impurity from aluminum alloy
JPH0754070A (en) * 1993-08-18 1995-02-28 Nippon Light Metal Co Ltd Refining method for aluminum scrap
JPH07207361A (en) * 1994-01-17 1995-08-08 Kobe Steel Ltd Method for refining molten al or al alloy
JPH09111359A (en) * 1995-05-31 1997-04-28 Hoogovens Alum Bv Method for refining melt of aluminum scrap and aluminum alloy obtained from the refined melt
JPH09235632A (en) * 1996-02-29 1997-09-09 Kobe Steel Ltd Method for removing manganese from manganese-containing molten aluminum
JPH11229055A (en) * 1998-02-17 1999-08-24 Kobe Steel Ltd Method for purifying aluminum or aluminum alloy
JP2000239757A (en) * 1998-12-25 2000-09-05 Kobe Steel Ltd Method and flux for refining molten aluminum alloy

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01279712A (en) * 1988-05-02 1989-11-10 Kobe Steel Ltd Method for removing impurity from aluminum alloy
JPH0754070A (en) * 1993-08-18 1995-02-28 Nippon Light Metal Co Ltd Refining method for aluminum scrap
JPH07207361A (en) * 1994-01-17 1995-08-08 Kobe Steel Ltd Method for refining molten al or al alloy
JPH09111359A (en) * 1995-05-31 1997-04-28 Hoogovens Alum Bv Method for refining melt of aluminum scrap and aluminum alloy obtained from the refined melt
JPH09235632A (en) * 1996-02-29 1997-09-09 Kobe Steel Ltd Method for removing manganese from manganese-containing molten aluminum
JPH11229055A (en) * 1998-02-17 1999-08-24 Kobe Steel Ltd Method for purifying aluminum or aluminum alloy
JP2000239757A (en) * 1998-12-25 2000-09-05 Kobe Steel Ltd Method and flux for refining molten aluminum alloy

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110904340A (en) * 2019-12-10 2020-03-24 武翠莲 Method for removing harmful elements and impurities in iron-containing mixture by centrifugation
WO2023079851A1 (en) * 2021-11-04 2023-05-11 株式会社神戸製鋼所 Method for removing impurities, method for producing aluminum-based alloy, and method for producing aluminum-based alloy material

Similar Documents

Publication Publication Date Title
JP5184075B2 (en) Method for purifying molten metal
JP6667485B2 (en) Recycling method of Al alloy
JP2014062328A (en) Process for recycling aluminium alloy scrap coming from the aeronautical industry
JP7123834B2 (en) Impurity removal method
WO2019198476A1 (en) Impurity removal method
US7892318B2 (en) Crystallisation method for the purification of a molten metal, in particular recycled aluminium
JP6800128B2 (en) How to regenerate Al alloy
KR102655019B1 (en) Impurity removal method
JP6864704B2 (en) How to regenerate Al alloy
TWI465577B (en) Method to purify aluminum and use of purified aluminum to purify silicon
RU2524016C2 (en) Decarburisation of aluminium produced by carbothermy
WO2023079851A1 (en) Method for removing impurities, method for producing aluminum-based alloy, and method for producing aluminum-based alloy material
JP2002097528A (en) Purification method of aluminum
JP7414592B2 (en) Al alloy regeneration method
TWI488808B (en) Addition of sodium carbonate to solvent metal
WO2022168462A1 (en) Impurity removal method and ingot production method
JP2023070039A (en) Method for removing impurities, method for producing aluminum-based alloy, and method for producing aluminum-based alloy material
JP2019077895A (en) REGENERATION METHOD OF Al ALLOY
CN117845089A (en) Method for removing Fe element from cast aluminum alloy
CN117802344A (en) Method for upgrading and recycling cast aluminum alloy
JPH07207375A (en) Method for melting scrap of product made of al alloy
JPH09235631A (en) Method for removing iron from iron-containing molten aluminum
JPH09235632A (en) Method for removing manganese from manganese-containing molten aluminum
JPH0867926A (en) Method for melting aluminum-magnesium based alloy scrap
JPH07207367A (en) Production of al or al alloy

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19785736

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19785736

Country of ref document: EP

Kind code of ref document: A1