JPH01279712A - Method for removing impurity from aluminum alloy - Google Patents

Method for removing impurity from aluminum alloy

Info

Publication number
JPH01279712A
JPH01279712A JP63109782A JP10978288A JPH01279712A JP H01279712 A JPH01279712 A JP H01279712A JP 63109782 A JP63109782 A JP 63109782A JP 10978288 A JP10978288 A JP 10978288A JP H01279712 A JPH01279712 A JP H01279712A
Authority
JP
Japan
Prior art keywords
impurities
aluminum
scrap
segregation
alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63109782A
Other languages
Japanese (ja)
Inventor
Kozo Hoshino
晃三 星野
Hideyoshi Usui
碓井 栄喜
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP63109782A priority Critical patent/JPH01279712A/en
Publication of JPH01279712A publication Critical patent/JPH01279712A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Manufacture And Refinement Of Metals (AREA)

Abstract

PURPOSE:To reclaim a high-purity Al-Mg alloy from Al scrap by actively incorporating specific amounts of Mg at the time of refining Al scrap by a segregation method and removing impurities by separation so as to remarkably reduce an Si impurity in particular. CONSTITUTION:At the time of refining Al return scrap containing Si, Fe, and Cu as impurities by a segregation method and reducing these impurities, 2-8wt.% of Mg is actively added to Al scrap as raw material, and these are melted and then solidified by cooling at <=15mm/hr average solidification rate, by which Si, Fe, and Cu are segregated and separated and an Al-Mg alloy of extremely high purity can be easily reclaimed from the above Al scrap.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明はアルミニウム合金中の不純物の除去法に係り、
特にMgを有効成分として許容し得るアルミニウム合金
中の不純物を除去する方法に関するものである。
[Detailed Description of the Invention] (Industrial Application Field) The present invention relates to a method for removing impurities in an aluminum alloy,
In particular, the present invention relates to a method for removing impurities from an aluminum alloy that can contain Mg as an active ingredient.

(従来の技術) 超高純度アルミニウムを原料として得られるアルミニウ
ム製品の代表例としては、電解コンデンサー用高純箔、
磁気ディスク用基盤などが知られている。
(Conventional technology) Typical examples of aluminum products made from ultra-high purity aluminum are high purity foil for electrolytic capacitors,
Substrates for magnetic disks are known.

このようなアルミニウム製品を製造する場合、製品材料
を原料(リターン・スクラップ)として再利用できるな
らば資源の有効利用の観点から望ましいことである。し
かし、これらの製品向けに溶解、鋳造及び圧延を行った
アルミニウム合金材料は、炉中及び圧延後の取扱いによ
るゴミ混入などに起因するFe、SL等で汚染されてお
り、そのままでは原料としての再利用はできず、低コス
トでのアルミニウムの高純度化法が望まれているところ
である。
When manufacturing such aluminum products, it is desirable from the viewpoint of effective resource utilization if the product materials can be reused as raw materials (return scraps). However, the aluminum alloy materials melted, cast, and rolled for these products are contaminated with Fe, SL, etc. due to dust mixed in during handling in the furnace and after rolling, and cannot be recycled as raw materials if left as is. However, there is a need for a low-cost method for purifying aluminum.

ところで、高純度アルミニウムの高純度化法、すなわち
、不純物を除去する方法に関しては、従来より 1)三層式電解法 2)分別結晶法(偏析法) 等を始めとして幾つかの方法が知られている。
By the way, several methods have been known for purifying high-purity aluminum, that is, for removing impurities, including 1) three-layer electrolysis method, 2) fractional crystallization method (segregation method), etc. ing.

前者の三層式電解法は、電解槽の中に陽極合金M(原料
層)、電解浴層及びアルミニウム層を保持し、最上層の
アルミニウム層中に陰極を浸して電解精製することによ
り、陰極反応及び陽極反応により不純物を電解層及び陽
極合金層に析出させて精製アルミニウムを得る方法であ
る。また、分別結晶法は、凝固の際の偏析を利用した高
純度化法であり、アルミニウム溶湯中に冷却管を入れ、
溶湯を冷却し微小な初晶を晶出させ、これを圧縮して粒
間不純物を押し出すプロセスを含む方法である(「金属
」、1988年1月号、p、8〜13参照)。
The former three-layer electrolysis method holds an anode alloy M (raw material layer), an electrolytic bath layer, and an aluminum layer in an electrolytic tank, and immerses the cathode in the topmost aluminum layer for electrolytic refining. This is a method for obtaining purified aluminum by depositing impurities in an electrolytic layer and an anode alloy layer through reaction and anodic reaction. In addition, the fractional crystallization method is a high purification method that utilizes segregation during solidification.
This method involves a process of cooling the molten metal to crystallize minute primary crystals, and compressing the crystals to push out intergranular impurities (see "Metal", January 1988 issue, p. 8-13).

(発明が解決しようとする課題) しかし、何種類かの不純物を含有することが多いリター
ン・スクラップの高純度化に対しては、三層式電解法は
好ましい方法ではない。
(Problems to be Solved by the Invention) However, the three-layer electrolysis method is not a preferable method for highly purifying return scrap that often contains several types of impurities.

また1分別結晶法はリターン・スクラップの高純度化に
も使用できる方法であるが、この方法においても、例え
ば、特開昭62−158830号の試験例2で実証され
ている如く、精製条件(同化期間、加圧力等)を多少変
えても、得られたアルミニウム中の不純物量については
、Feに比してSiの含有量が高い(Si/Fa>1.
5)ことが問題とされてきた。したがって、不純物とし
てのSi含有量が非常に少ないことが要求される場合に
は、 ■切捨て部を増す。
In addition, the one-fraction crystallization method can also be used to improve the purity of return scrap, but even in this method, the refining conditions ( Even if the assimilation period, pressing force, etc.) are changed slightly, the amount of impurities in the obtained aluminum is higher than that of Fe (Si/Fa>1.
5) has been considered a problem. Therefore, if it is required that the content of Si as an impurity be extremely small, (1) increase the truncated portion;

■全体の純度を上げる(平均凝固速度を遅くする)。■Increase the overall purity (slow down the average coagulation rate).

■三層式電解法にて精製したアルミニウムを多量に添加
する。
■ Add a large amount of aluminum purified by three-layer electrolysis method.

等の対応がなされていた。Such measures were taken.

しかし乍ら、これらの対応策は歩留の低下、精製の長時
間化、原料費の増大等のため、何れもコストアップとな
るもので、リターン・スクラップの再利用の手段として
の高純化度法としては望ましい方法ではなく、低コスト
で極少Si含有量を得る方法の開発が望まれていた。
However, these countermeasures result in lower yields, longer refining times, increased raw material costs, etc., all of which increase costs. This is not a desirable method, and there has been a desire to develop a method that can obtain an extremely low Si content at low cost.

本発明は、か〜る要請に応えるべくなされたものであっ
て、アルミニウム材料について低コストでリターン・ス
クラップの高純度化を可能にする不純物除去法を提供す
るものである。
The present invention has been made in response to these demands, and provides an impurity removal method that enables return scrap from aluminum materials to be highly purified at low cost.

(課題を解決するための手段) 前記目的を達成するため1本発明者は、アルミニウム材
料の用途別の有効成分を勘案して、従来の分別結晶法、
すなわち、偏析法の問題点について分析し、高純度化を
可能にする方法を見い出すべき鋭意研究を重ねた。
(Means for Solving the Problems) In order to achieve the above object, the inventors of the present invention have developed the conventional fractional crystallization method,
In other words, we analyzed the problems with the segregation method and conducted intensive research to find a method that would make it possible to achieve high purity.

その結果、偏析法によりアルミニウム材料中の不純物含
有量を低減するに際し、Mgを積極的に含有させるなら
ば、Mg以外の不純物、特に従来除去が困難であったS
iを効果的に除去できることを見い出し、本発明をなし
たものである。
As a result, when reducing the impurity content in aluminum materials by segregation method, if Mg is actively included, impurities other than Mg, especially S, which has been difficult to remove in the past, have been found.
The present invention was made based on the discovery that i can be effectively removed.

以下に本発明を更に詳細に説明する。The present invention will be explained in more detail below.

偏析法(分別結晶法)によりアルミニウムを高純度化す
る場合、前述の公報に示されている如く、理論上精製除
去が可能な元素は、AQとの平衡状態図(第1図参照)
L−おいて に=Cs/C<1 ここで、C3:固相濃度 C:液相濃度 に:平衡分配係数 の関係を満たす状態にある元素である。したがって、F
e、 Si、Cu、 Mn、 Mg、・・・、等のかな
りの元素が偏析法にて低減可能である。にも拘わらず、
従来の偏析法(分別結晶法)では、最大固溶限の大きい
Si、Mg等は除去し雛かった。
When aluminum is highly purified by the segregation method (fractional crystallization method), as shown in the above-mentioned publication, the elements that can theoretically be purified and removed are shown in the equilibrium diagram with AQ (see Figure 1).
In L-=Cs/C<1 Here, C3: Solid phase concentration C: Liquid phase concentration: An element that satisfies the relationship of equilibrium distribution coefficient. Therefore, F
Considerable elements such as e, Si, Cu, Mn, Mg, . . . can be reduced by the segregation method. Despite that,
In the conventional segregation method (fractional crystallization method), Si, Mg, etc., which have a large maximum solid solubility limit, are removed.

しかし、本発明者は種々の実験研究の結果、上記の問題
はあくまでも純アルミニウム原料(地金)を得る高純度
化法においての問題であり、リターン・スクラップ中の
不純物除去という観点に立てば必ずしも障害ではないこ
とを究明するに至ったものである。
However, as a result of various experimental studies, the present inventor has found that the above problem is only a problem in the high purification method of obtaining pure aluminum raw material (base metal), and from the viewpoint of removing impurities from return scrap, it is not necessarily a problem. We have now determined that this is not a disorder.

すなわち、Auへの固溶限が大きく且つ低減し難い元素
であるMgを添加元素(必須元素)と考え、かつ、それ
外の元素を不純物と考える。換言するならば、従来、A
Q−8i、AQ−Fe、AQ−Cu、・・・、等々の3
元系で扱っていた不純物除去法に代えて、[A Q −
Mgl −Fe、[AR−Mgココ−i、[AQ−Mg
l−Cu、・・・、等の擬2元系で扱う不純物除去法を
採用するのである。
That is, Mg, which is an element that has a large solid solubility limit in Au and is difficult to reduce, is considered to be an additive element (essential element), and other elements are considered to be impurities. In other words, conventionally, A
Q-8i, AQ-Fe, AQ-Cu, etc. 3
Instead of the impurity removal method used in the original system, [A Q -
Mgl-Fe, [AR-Mg coco-i, [AQ-Mg
An impurity removal method using a pseudo-binary system such as l-Cu, . . . is adopted.

この擬2元系において、偏析法を適応すると。If we apply the segregation method to this pseudo-binary system.

■ Fe、Mn等は[AQ−Mglとの親和性が殆どな
く、Mgの影響を殆ど受けない。
■Fe, Mn, etc. have almost no affinity with [AQ-Mgl, and are hardly affected by Mg.

■Cu、Znについては、[Au−Mglとの親和性が
高く、Mg含有量が多いほど、Cu、Znが少なくなる
ことが期待される。
(2) Regarding Cu and Zn, it is expected that [they have a higher affinity with Au-Mgl, and the higher the Mg content, the lower the amount of Cu and Zn.

■Siについては、Mg2νt%超でのAQ−Mg−3
iの挙動は明らかでないが、Cu等と類似の挙動をする
ことが期待される。
■For Si, AQ-Mg-3 with more than Mg2νt%
Although the behavior of i is not clear, it is expected to behave similarly to Cu and the like.

すなわち、Mgの含有自体が製品の用途に害を与えるも
のでなければ、不純物除去に際してのMg含有は却って
好ましいものであるとの結論が得られる。したがって、
製品が高純度アルミニウム地金を用いて得られるAQ−
Mg系合金である場合、特に光輝材、磁気ディスク基盤
素材の場合、本偏析法を用いて不純物除去を行うことは
望ましい方法である。
In other words, it can be concluded that the inclusion of Mg is actually preferable when removing impurities, provided that the inclusion of Mg itself does not harm the intended use of the product. therefore,
AQ- products obtained using high-purity aluminum ingots
In the case of Mg-based alloys, especially in the case of bright materials and magnetic disk base materials, it is desirable to remove impurities using this segregation method.

次に本偏析法の条件について説明する。Next, the conditions of this segregation method will be explained.

この偏析法は、アルミニウム溶湯に積極的に適当量のM
gを含有させる点を除き、従来法と同様に実施すること
ができる。
This segregation method actively adds an appropriate amount of M to the molten aluminum.
The method can be carried out in the same manner as the conventional method except that g is included.

この方法でMg含有の効果を得るためのMg量は、実質
的にMgが含有されている限り特に制限されないが、2
wt%以上の含有が望ましく、また理論的上限は存在し
ないが、実質的には溶湯酸化が著しくなるため、8wt
%以下が好ましい。なお、リターン・スクラップ中のM
gの含有量が少なすぎる場合には適当量を添加するとよ
い。
The amount of Mg to obtain the effect of Mg inclusion in this method is not particularly limited as long as it substantially contains Mg, but 2
It is desirable to contain more than 8wt%, and although there is no theoretical upper limit, the oxidation of the molten metal will become significant.
% or less is preferable. In addition, M during return scrap
If the content of g is too small, an appropriate amount may be added.

不純物除去を行う前のアルミニウム素材中の不純物、す
なわち、Mg以外のSi等々の不純物は、理論的にはど
の程度含有されていても不具合はないが1作業効率上、
Fe、SLは0.05すt%以下が望ましい。またTi
及びCrについては、本偏析法によっては含有量が低減
されないので、少ないことが望ましい、その他の元素も
不純物量(0,05%it%)以下である限り、問題は
ない。
Impurities in the aluminum material before impurity removal, that is, impurities such as Si other than Mg, are theoretically acceptable no matter how much they are contained, but in terms of work efficiency,
Fe and SL are desirably 0.05% or less. Also Ti
Since the content of Cr and Cr is not reduced by this segregation method, it is desirable to have a small amount.There is no problem as long as the amount of other elements is also below the impurity amount (0.05% it%).

また、平均凝固速度は遅いほど不純物除去がなされるた
め、15mm/hr以下とすることが望ましい。
Further, since the slower the average solidification rate, the more impurities are removed, it is desirable to set the average solidification rate to 15 mm/hr or less.

次に本発明の実施例を示す。Next, examples of the present invention will be shown.

(実施例) 第1表に示す化学成分を有するアルミニウム又はアルミ
ニウム合金溶湯に対し、平均凝固速度が約6mm/hr
となるような熱勾配を与えて、偏析法により不純物除去
を行った。その結果を第1表に併記する。
(Example) For molten aluminum or aluminum alloy having the chemical components shown in Table 1, the average solidification rate was approximately 6 mm/hr.
Impurities were removed by the segregation method by applying a thermal gradient such that . The results are also listed in Table 1.

第1表から明らかなとおり、Mgが含有しているアルミ
ニウム合金溶湯の場合、Si含有量の低減効果が著しい
ことがわかる。勿論、Fe、Cu等の含有量も低減して
いる。一方、Mgが実質的に含有されていない純アルミ
ニウム溶湯の場合にはSi含有量が多い。
As is clear from Table 1, in the case of molten aluminum alloy containing Mg, the effect of reducing the Si content is remarkable. Of course, the content of Fe, Cu, etc. is also reduced. On the other hand, pure aluminum molten metal containing substantially no Mg has a high Si content.

c以下余白】 (発明の効果) 以上詳述したように、本発明によれば、偏析法によって
アルミニウム材料の不純物除去を行うに際し、Mgを積
極的に含有させるので、Mg以外の不純物、特にSi含
有量を顕著に低減することができ、Mg含有の高純度ア
ルミニウム合金を低コストで提供することが可能となる
。したがって、Mgを有効成分とするアルミニウム合金
の不純物除去に好適である。
[Blank below c] (Effects of the Invention) As detailed above, according to the present invention, when removing impurities from an aluminum material by the segregation method, since Mg is actively included, impurities other than Mg, especially Si The content can be significantly reduced, making it possible to provide a high-purity Mg-containing aluminum alloy at low cost. Therefore, it is suitable for removing impurities from aluminum alloys containing Mg as an active ingredient.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は平衡分配係数(k)が1より小さい合金系の平
衡状態図(横軸:濃度、縦軸:温度)である。 特許出願人  株式会社神戸製鋼所 代理人弁理士 中  村   尚 第1図 ′、j1度→
FIG. 1 is an equilibrium phase diagram (horizontal axis: concentration, vertical axis: temperature) of an alloy system with an equilibrium distribution coefficient (k) smaller than 1. Patent applicant Takashi Nakamura, Patent attorney representing Kobe Steel, Ltd. Figure 1′, j1 degree →

Claims (1)

【特許請求の範囲】[Claims] 偏析法によりアルミニウム材料中の不純物を除去するに
際し、Mgを含有させることにより、Mg以外の不純物
を除去して高純度化することを特徴とするアルミニウム
合金の不純物除去法。
A method for removing impurities from an aluminum alloy, characterized in that when impurities in an aluminum material are removed by a segregation method, impurities other than Mg are removed by incorporating Mg to achieve high purity.
JP63109782A 1988-05-02 1988-05-02 Method for removing impurity from aluminum alloy Pending JPH01279712A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63109782A JPH01279712A (en) 1988-05-02 1988-05-02 Method for removing impurity from aluminum alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63109782A JPH01279712A (en) 1988-05-02 1988-05-02 Method for removing impurity from aluminum alloy

Publications (1)

Publication Number Publication Date
JPH01279712A true JPH01279712A (en) 1989-11-10

Family

ID=14519085

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63109782A Pending JPH01279712A (en) 1988-05-02 1988-05-02 Method for removing impurity from aluminum alloy

Country Status (1)

Country Link
JP (1) JPH01279712A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019198476A1 (en) * 2018-04-09 2019-10-17 株式会社神戸製鋼所 Impurity removal method
JP2019183265A (en) * 2018-04-09 2019-10-24 株式会社神戸製鋼所 Impurity removal method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019198476A1 (en) * 2018-04-09 2019-10-17 株式会社神戸製鋼所 Impurity removal method
JP2019183265A (en) * 2018-04-09 2019-10-24 株式会社神戸製鋼所 Impurity removal method

Similar Documents

Publication Publication Date Title
US6918942B2 (en) Process for production of titanium alloy
EP1727917B1 (en) Method for the purification of a molten metal
WO2019077892A1 (en) Al ALLOY RECOVERY METHOD
JPS5912731B2 (en) Method for refining aluminum or aluminum alloy
JPH01279712A (en) Method for removing impurity from aluminum alloy
JP7423495B2 (en) Impurity removal method
JP2019077896A (en) REGENERATION METHOD OF Al ALLOY
JP4253936B2 (en) Aluminum purification method and use of the obtained aluminum
WO2022168462A1 (en) Impurity removal method and ingot production method
JP4309675B2 (en) Method for producing titanium alloy
JP2002097528A (en) Purification method of aluminum
JPH0885833A (en) Method for refining rare earth metal
US2283884A (en) Purification of metal halide fluxes
WO2023079851A1 (en) Method for removing impurities, method for producing aluminum-based alloy, and method for producing aluminum-based alloy material
JPH04120225A (en) Manufacture of ti-al series alloy
JPH0885832A (en) Method for melting aluminum or aluminum alloy
JPS5931581B2 (en) Demagnesium treatment method for aluminum alloy
JPH09235631A (en) Method for removing iron from iron-containing molten aluminum
JP2019077895A (en) REGENERATION METHOD OF Al ALLOY
JP3462617B2 (en) Purification method of Al or Al alloy
JPH08295961A (en) Method for refining aluminum or aluminum alloy
JP3379232B2 (en) Dissolution method of Al or Al alloy
JPH0754061A (en) Refining method and recycling method for al scarp
US4444585A (en) Process for producing metals in a very high state of purity in respect of eutectic elements
JP2695433B2 (en) Method for adjusting magnesium content of molten aluminum