JPS5912731B2 - Method for refining aluminum or aluminum alloy - Google Patents

Method for refining aluminum or aluminum alloy

Info

Publication number
JPS5912731B2
JPS5912731B2 JP12331378A JP12331378A JPS5912731B2 JP S5912731 B2 JPS5912731 B2 JP S5912731B2 JP 12331378 A JP12331378 A JP 12331378A JP 12331378 A JP12331378 A JP 12331378A JP S5912731 B2 JPS5912731 B2 JP S5912731B2
Authority
JP
Japan
Prior art keywords
alloy
metal
amount
aluminum
molten
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP12331378A
Other languages
Japanese (ja)
Other versions
JPS5550442A (en
Inventor
貴一 成田
俊雄 尾上
昭三 池田
弘行 安中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP12331378A priority Critical patent/JPS5912731B2/en
Publication of JPS5550442A publication Critical patent/JPS5550442A/en
Publication of JPS5912731B2 publication Critical patent/JPS5912731B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Manufacture And Refinement Of Metals (AREA)

Description

【発明の詳細な説明】 本発明はアルミニウム又はアルミニウム合金(以下これ
らをまとめてA7を表示することがある)の精製法に関
し、詳細にはA7中に含まれる主として鉄その他クロム
、モリブデン、鉛、ヒ素等の金属不純物を効率的に除去
してAlを精製する方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for refining aluminum or aluminum alloys (hereinafter they may be collectively referred to as A7), and in particular, mainly iron, chromium, molybdenum, lead, etc. contained in A7. The present invention relates to a method of purifying Al by efficiently removing metal impurities such as arsenic.

近年のアルミニウム産業においては、省資源及び地金価
格の安定等のためにAlスクラップの有効利用が検討さ
れている。
In recent years, the aluminum industry has been considering the effective use of Al scrap for resource conservation and stabilization of metal prices.

ところがA7スクラツプには鉄をはじめとする多くの金
属不純物が含まれており、その精製技術が確立されてお
らないから、一部鋳物用合金の原料として使用されてい
る程度で、比較的成分規制の厳しい展伸材用合金の原料
としては殆んど利用されていない。
However, A7 scrap contains many metal impurities, including iron, and the refining technology has not been established, so it is only used as a raw material for some foundry alloys, and its composition is relatively regulated. It is hardly used as a raw material for alloys for wrought materials, which are difficult to manufacture.

これらからA7の精製法について種々の研究が進められ
、■A7中の金属不純物を電解により分離する3層式電
解精製法、■金属不純物法に鉄をA7−珪素−鉄の金属
間化合物として分離する方法、■Al溶湯中に高融点の
Al−マンガン合金を添加して該固相合金に不純物法に
鉄を吸着させ、A7−マンガン合金との金属間化合物と
して除去する方法、等が提案されている。
Based on these studies, various studies have been carried out on refining methods for A7, including (1) a three-layer electrolytic refining method in which metal impurities in A7 are separated by electrolysis, and (2) a metal impurity method in which iron is separated as an intermetallic compound of A7-silicon-iron. A method has been proposed: (1) adding a high-melting-point Al-manganese alloy to molten Al, adsorbing iron to the solid phase alloy using an impurity method, and removing it as an intermetallic compound with the A7-manganese alloy. ing.

ところが前記Qの方法では極めて高純度のAAが得られ
る反面、精製作業が煩雑で且つ精製費用が極めて高く、
スクラップの精製処理法としては不適当である。
However, although method Q above yields AA of extremely high purity, the purification work is complicated and the purification cost is extremely high.
This method is not suitable for refining scrap.

また■の方法では精製工程でA7中に多量の珪素が混入
するから、その用途は極めて特殊なA7−珪素合金に限
定される。
In addition, in method (2), a large amount of silicon is mixed into A7 during the refining process, so its use is limited to extremely special A7-silicon alloys.

これらに比べて前記■の方法は、精製作業が簡単で鉄を
相当低減することができ、またAl中に少量のマンガ/
が混入することがあってもその不純物効果が殆んど表わ
れないから、工業性の点では最も好ましい方法というこ
とができる。
Compared to these methods, method (①) requires simpler refining work and can considerably reduce iron content, and also contains a small amount of manga/magnetic metal in Al.
This method can be said to be the most preferable from an industrial point of view, since even if impurities are mixed in, the effect of the impurities is hardly noticeable.

しかしこの方法は固・液反応によって鉄を吸着除去しよ
うとするものであるから、鉄とA7−マンガン合金との
接触頻度が少なく且つ反応速度も極めて遅い。
However, since this method attempts to adsorb and remove iron through a solid-liquid reaction, the frequency of contact between iron and the A7-manganese alloy is low and the reaction rate is extremely slow.

そのため鉄の除去率は他の方法に比べて相当低く、成分
規制の厳しいAlを得るだめの精製法としての利用価値
は乏しい。
Therefore, the iron removal rate is considerably lower than other methods, and it has little utility as a refining method for obtaining Al, which has strict component regulations.

本発明者等は前述の様な事情のもとで、特に前記■の方
法に着目し、A7−マンガン合金をAgと溶融状態で接
触させれば金属不純物との接触頻度及び反応速度が高め
られ、不純物除去効率を向上できると考え、この着想を
実現すべく研究に着手した。
Under the above-mentioned circumstances, the present inventors paid particular attention to the method (2) above, and found that if the A7-manganese alloy is brought into contact with Ag in a molten state, the frequency of contact with metal impurities and the reaction rate will be increased. We thought that it would be possible to improve impurity removal efficiency, and began research to realize this idea.

その結果、前記■法部ち固・液接触反応に比べれば除去
効率を相当改善できるが、依然満足し得るまでには至ら
なかった。
As a result, the removal efficiency can be considerably improved compared to the solid-liquid contact reaction in method (1), but it is still not satisfactory.

ところがその後更に研究を重ねた結果、精製すべきAl
中にマンガンと共に適量のマグネシウムを添加し、得ら
れる溶融混合物をその共晶温度より若干高いめの温度ま
で冷却してやれば、金属不純物の殆んどがA[−マンガ
ン系金属との金属間化合物として晶析分離されることを
知った。
However, as a result of further research, the Al
If an appropriate amount of magnesium is added together with manganese and the resulting molten mixture is cooled to a temperature slightly higher than its eutectic temperature, most of the metal impurities will be removed as intermetallic compounds with A[-manganese metals. I learned that it is separated by crystallization.

しかもこの工程で鉄はもとより、クロム、モリブデン、
鉛、ヒ素等の不純物も効率良く除去できることを知り、
舷に本発明を完成するに至った。
Moreover, in this process, not only iron but also chromium, molybdenum,
I learned that impurities such as lead and arsenic can be removed efficiently,
The present invention has finally been completed.

即ち本発明に係る精製法とは、金属不純物を含有するA
7又はAA合金溶湯中に、該溶湯に含まれる金属不純物
の0.5〜6倍量に相当するマンガンを含む金属マンガ
ン及び/又はAl−マンガン合金と、該溶湯の0.00
2〜0.1倍量に相当するマグネシウムを含む金属マグ
ネシウム及び/又はA11−Mg合金を添加して溶融混
合し、この混合溶湯を、その共晶点乃至それより50℃
高い温度の範囲まで冷却して保持し、金属不純物をA7
−マンガン系金属との金属間化合物として晶析させて分
離するところに要旨が存在する。
That is, the purification method according to the present invention refers to A containing metal impurities.
7 or AA alloy molten metal, metal manganese and/or Al-manganese alloy containing manganese in an amount equivalent to 0.5 to 6 times the amount of metal impurities contained in the molten metal, and 0.00% of the molten metal.
Magnesium metal and/or A11-Mg alloy containing 2 to 0.1 times the amount of magnesium are added and melted and mixed, and the mixed molten metal is heated to the eutectic point or 50°C below it.
Cool and hold to a high temperature range to remove metal impurities from A7
- The gist is that it is separated by crystallization as an intermetallic compound with manganese metals.

以下図面によりながら本発明の構成及び作用効果を詳細
に説明するが、下記は代表例にすぎず、前・後記の趣旨
に徴して適当に変更して実施することも可能であり、そ
れらはすべて本発明技術の範哨に含まれる。
The configuration and effects of the present invention will be explained below in detail with reference to the drawings, but the following are only representative examples, and it is possible to implement the invention with appropriate changes in accordance with the spirit of the preceding and following. It is included in the scope of the technology of the present invention.

第1図はA I−マンガン(Mn)−鉄(Fe)系の3
元状態図であり、ABCDの領域では初晶゛として(F
eMn)A16の金属間化合物が生成する。
Figure 1 shows A I-manganese (Mn)-iron (Fe) system 3.
This is the original phase diagram, and in the ABCD region, (F
An intermetallic compound of eMn)A16 is produced.

ここでX点で示される組成の溶融混合物に対ゝして、Y
点で示される組成になる如<A7−Mn合金を添加して
完全に溶融させた後、この合金の液相線温度以下で且つ
共晶温度以上のある温度まで冷却して保持すると、(F
eMn)A、g6の金属間化合物が晶出し、溶融物は2
点で示される組成に変化する。
Here, for the molten mixture having the composition indicated by point X, Y
After adding the A7-Mn alloy and completely melting it, cooling and holding it to a certain temperature below the liquidus temperature of this alloy and above the eutectic temperature results in the composition shown by the dots.
eMn)A, g6 intermetallic compound crystallizes, and the melt is 2
The composition changes as shown by the dots.

従ってこの晶析物を分離することによってFe濃度の低
い溶融A1合金を得ることができる。
Therefore, by separating this crystallized product, a molten A1 alloy with a low Fe concentration can be obtained.

しかしながらこの方法ではFeの除去が尚不十分で且つ
A7合金中へのMnの溶存量も相当大きい。
However, with this method, the removal of Fe is still insufficient and the amount of Mn dissolved in the A7 alloy is also quite large.

ところが、AA−Mn合金の添加と同時に或はA l−
Mn合金が完全に溶融した後溶湯を冷却する過程でAl
−Mg合金を添加すると、3元状態図はたとえば第1図
の鎖線で示す状態に変化し、(Fe、Mn )A16の
晶出領域はA B’C’D’となってより低温側に広が
る。
However, at the same time as adding AA-Mn alloy or
In the process of cooling the molten metal after the Mn alloy is completely melted, Al
- When Mg alloy is added, the ternary phase diagram changes to, for example, the state shown by the chain line in Figure 1, and the crystallization region of (Fe, Mn)A16 becomes A B'C'D' and moves to the lower temperature side. spread.

即ち溶融混合物中に更にAl−Mg合金を共存させるこ
とによって共晶温度が低下し、より低温で(Fe、Mn
)kl!6を晶析させることができるから、2点を2
7点まで移動させることが可能になり、この晶析物を同
様に分離除去することによってA7中のFe及びMnの
除去率を大幅に高めることができる。
That is, by further coexisting an Al-Mg alloy in the molten mixture, the eutectic temperature is lowered, and (Fe, Mn
)kl! 6 can be crystallized, so 2 points can be converted into 2
It becomes possible to move up to 7 points, and by similarly separating and removing this crystallized product, the removal rate of Fe and Mn in A7 can be greatly increased.

同第2図はMgの添加効果を示す他の例で、晶析物の分
離除去前・後におけるA7合金中のFe及びMnの陰有
率を示すグラフである。
FIG. 2 is another example showing the effect of Mg addition, and is a graph showing the negative percentages of Fe and Mn in the A7 alloy before and after the separation and removal of crystallized substances.

この結果からも明らかな如く、Mg無添加ではFe及び
Mnの含有率をH線(第1図のB−C線に対応)相当量
まで低減するのが限度であるが、Mgを3%添加すると
■練和当量まで、Mgを6%添加するとJ練和当量まで
、Mgを10係添加するとに練和当量まで、Mgを20
%添加するとL線相当量まで、Fe及びMnの含有率を
低下することができる。
As is clear from this result, without the addition of Mg, the limit is to reduce the content of Fe and Mn to an amount equivalent to the H line (corresponding to the B-C line in Figure 1), but with the addition of 3% Mg. Then, if Mg is added by 6%, it will reach J kneading equivalent, if Mg is added by 10%, it will reach kneading equivalent, and if Mg is added by 10%, it will reach kneading equivalent.
% addition, the content of Fe and Mn can be reduced to the amount equivalent to the L line.

この様に本発明では不純物として鉄を含むA7溶湯に対
してMnと共VCMgを添力目することにより、またM
gの添力U量を増加することによって、Fe及びMnの
含有率を大幅に低下させることができる。
In this way, in the present invention, by adding VCMg together with Mn to the A7 molten metal containing iron as an impurity,
By increasing the amount of additive U in g, the contents of Fe and Mn can be significantly reduced.

また後記実施例でも明確にするが、本発明によればFe
のみならず、クロム、モリブデン、鉛、ヒ素等の金属不
純物についても大幅に低減できることがわかった。
Further, as will be clarified in the examples below, according to the present invention, Fe
It was also found that metal impurities such as chromium, molybdenum, lead, and arsenic could be significantly reduced.

尚第3図は96%Al−2%Mn−2%Feにに対する
Mgの添加率と共晶温度(融点)の関係を測定した結果
を示すもので、Mgは被処理Al材の融点を低下させる
うえでも卓効を示す。
Furthermore, Figure 3 shows the results of measuring the relationship between the addition rate of Mg and the eutectic temperature (melting point) for 96% Al-2% Mn-2% Fe, and Mg lowers the melting point of the Al material to be treated. It is also highly effective in

本発明で使用されるMnは、金属Mn及びA7−Mn合
金の何れの形で用いてもよいが、Al中に添加したとき
可友釣速やかに溶融させるためには、5〜30%程度の
Mnを含QA l−Mn合金が最も望ましい。
Mn used in the present invention may be used in the form of either metal Mn or A7-Mn alloy, but in order to melt it quickly when added to Al, it is necessary to add about 5 to 30% Mn. A QA l-Mn alloy containing QA l-Mn is most desirable.

またMnを添加するときのAl溶湯の温度は、溶融速度
を加味して720〜850°Cが最も好ましい。
Moreover, the temperature of the Al molten metal when adding Mn is most preferably 720 to 850°C, taking into account the melting rate.

このときのMnの添加量は、処理すべきAl溶湯中に含
まれるFe量に対してMn純分として0.5〜6.0倍
量の範囲から選択すべきである。
The amount of Mn added at this time should be selected from a range of 0.5 to 6.0 times the amount of pure Mn relative to the amount of Fe contained in the molten Al to be treated.

しかしてMn量が前記範囲未満では金属間化合物の量が
不足してFeその他の金属不純物を十分に除去すること
ができず、一方前記範囲を越えると、第4図から明らか
なように不純物除去率がほとんど向上せず、また晶出す
る(Fe。
However, if the amount of Mn is less than the above range, the amount of intermetallic compounds is insufficient and it is not possible to remove Fe and other metal impurities sufficiently.On the other hand, if the amount exceeds the above range, as is clear from FIG. The rate is hardly improved, and crystallization occurs (Fe.

Mn)A16の量が増大する結果Al精製物の量が減少
し、歩留りが低下するので実用的でない。
As a result of the increase in the amount of Mn)A16, the amount of Al purified product decreases and the yield decreases, so it is not practical.

またMgも金属Mg或はAl−Mg合金の何れの形で用
いてもよくその添加温度は、Al−Mn合金を添加する
ときの温度よりもやや低いめ(AI−Mg合金の方がA
7溶湯中に融解し易い温度)の700〜800℃の範囲
が最適である。
Mg may also be used in the form of metallic Mg or Al-Mg alloy, and its addition temperature is slightly lower than the temperature when adding Al-Mn alloy (AI-Mg alloy has a higher
7) The optimum temperature range is 700 to 800°C (temperature at which it easily melts in the molten metal).

ここでMgの添加量は、処理すべきAl溶湯全量に対し
て0.002〜0.1倍量の範囲から選択しなければな
りない。
Here, the amount of Mg added must be selected from a range of 0.002 to 0.1 times the total amount of molten aluminum to be treated.

しかして前記範囲未満では共晶温度低下効果が殆んど表
われず、Feをはじめとする金属不純物及びMnの含有
率を十分低下させることができず、一方前記範囲を越え
ると、第5図から明らかなようにFe、Mnはじめ金属
不純物の除去率がそれほど顕著でなくなり、本発明の目
的を達成し得なくなるからである。
However, below the above range, the effect of lowering the eutectic temperature hardly appears, making it impossible to sufficiently reduce the content of metal impurities such as Fe and Mn; on the other hand, below the above range, as shown in FIG. This is because, as is clear from the above, the removal rate of metal impurities including Fe and Mn becomes less remarkable, making it impossible to achieve the object of the present invention.

この様にしてA[溶湯中に適量のMn(又はAl−Mn
合金)とMg(又はAl−Mg合金)を加えて溶融混合
し、これを徐々に冷却することによって(Fe、Mn)
AA6を晶析させるのであるが、溶湯の温度が液相線温
度以上では(F e M n )A16が晶出せず、ま
た共晶温度以下になると(FeMn)A16と共にAl
純品も晶出するから、(FeMn)A16のみの分離は
不可能である。
In this way, A [appropriate amount of Mn (or Al-Mn in the molten metal)]
(Fe, Mn alloy) and Mg (or Al-Mg alloy) are melted and mixed, and this is gradually cooled.
AA6 is crystallized, but if the temperature of the molten metal is above the liquidus temperature, (F e M n )A16 will not crystallize, and if it is below the eutectic temperature, Al together with (FeMn)A16 will crystallize.
Since the pure product also crystallizes, it is impossible to separate only (FeMn)A16.

従って晶析温度は当然共晶温度以上液相線温度以下の範
囲にすべきであるが、本発明者等が、金属間化合物の晶
析による金属不純物の除去率を最大限に高めるべく晶析
温度を種々検討したところ、その共晶温度以上乃至それ
より50°C高い温度の範囲が最適であり、この温度範
囲内で保持することによって(Fe、Mn )A16の
晶析を最も効率よ上行なえることが確認された。
Therefore, the crystallization temperature should naturally be in the range above the eutectic temperature and below the liquidus temperature. After examining various temperatures, we found that the optimum temperature range is above the eutectic temperature or 50°C higher than it, and by keeping it within this temperature range, the crystallization of (Fe, Mn) A16 can be made most efficient. It was confirmed that it can be done.

尚晶析した金属間化合物を溶融Alから分離する手段は
特に限定されず、公知の方法或は今後開発されるであろ
うすべての固・液分離法を適用することができ、具体例
としては、金属間化合物の比重が溶融Alの比重よりも
大きいことを利用した沈降分離法、多孔質材による濾過
分離法、遠心分離法等が代表的なものとして挙げられる
The means for separating the crystallized intermetallic compound from molten Al is not particularly limited, and any known method or any solid/liquid separation method that will be developed in the future can be applied. Typical examples include a sedimentation separation method that utilizes the fact that the specific gravity of an intermetallic compound is greater than that of molten Al, a filtration separation method using a porous material, a centrifugation method, and the like.

本発明は概略以上の様に構成されており且つ実施される
が、要は金属不純物を含むAl溶湯に対して適量のMn
及び/又はAA−MnとMg及び/又はAl−Mgを添
加し、所定温度で金属間化合物を晶析させる方法を採用
することにより、Al溶湯中のFeをはじめメするクロ
ム、モリブデン、鉛、ヒ素等を極めて効率的に除去して
高純度のAA又はA1合金を回収し樽ることになったも
ので、A7スクラツプをはじめとする種々の不純なAl
やA1合金の精製法としての実用価値は頗る大きい。
The present invention is roughly configured and carried out as described above, but the key point is that an appropriate amount of Mn is added to the molten Al containing metal impurities.
By adding AA-Mn and Mg and/or Al-Mg and crystallizing intermetallic compounds at a predetermined temperature, chromium, molybdenum, lead, including Fe in the molten Al can be removed. Arsenic etc. are removed extremely efficiently and high purity AA or A1 alloy is recovered and barreled, and various impure Al alloys such as A7 scrap are recovered.
It has great practical value as a refining method for A1 alloy.

次に本発明の実施例を示す。Next, examples of the present invention will be shown.

比較例 不純物としてFeを含む溶融Alに、Feの1.0〜6
.0倍量に相当するMnを含むAl−Mn合金を850
℃で添加して溶融し、冷却して665℃で30分間保持
した後、晶出した金属間化合物を濾過分離した。
Comparative example: 1.0 to 6 of Fe was added to molten Al containing Fe as an impurity.
.. 850 Al-Mn alloy containing Mn equivalent to 0 times the amount
The mixture was added and melted at 665° C., cooled and held at 665° C. for 30 minutes, and then the crystallized intermetallic compound was separated by filtration.

ここそ晶析前及び晶析分離後における溶融A7中のF→
及びMnの傘有率を測定し、第1表の結果を得冬。
F in molten A7 before crystallization and after crystallization separation →
The umbrella prevalence of Mn and Mn was measured, and the results shown in Table 1 were obtained in winter.

尚この結奥は第2図の○→・に相当する。Note that this end corresponds to ○→・ in Figure 2.

:この結果からも明らかな如く、Feの含有率を相
当低下させることはできるが、その効果は同不満足であ
り、しかも相当多量のMnが混入している。
:As is clear from this result, although the Fe content can be reduced considerably, the effect is unsatisfactory, and moreover, a considerable amount of Mn is mixed.

実施例 1 不純物としてFeを含む溶融A7に、Feの1.35〜
5.0倍量に相当するMnを含むAl−10%Mn合金
を850℃で添加して溶融し、更に750℃に降温して
Mg濃度が3%、6%、10%及び20チとなる様にA
l−30%Mg合全Mg加し、夫々を645℃又は63
0℃、590’C,520℃で30分間保持した後、晶
出した金属間化合物を濾過分離した。
Example 1 Melt A7 containing Fe as an impurity contains 1.35 to 1.35% of Fe.
Al-10%Mn alloy containing 5.0 times the amount of Mn is added and melted at 850°C, and the temperature is further lowered to 750°C, so that the Mg concentration becomes 3%, 6%, 10%, and 20%. Like A
1-30% Mg and total Mg were added and heated to 645°C or 63°C, respectively.
After holding at 0°C, 590'C, and 520°C for 30 minutes, the crystallized intermetallic compounds were separated by filtration.

ここで晶析前及び晶析分離後における溶融AA中のF’
e、Mn及びMgの含有率を測定し、第2表の結果を得
た。
Here, F' in molten AA before crystallization and after crystallization separation
The contents of e, Mn and Mg were measured, and the results shown in Table 2 were obtained.

尚この結果は第2図の△→ム、◇→◆、☆→★ 及び◎
→■ に相当する。
This result corresponds to △→mu, ◇→◆, ☆→★ and ◎ in Figure 2.
→ Corresponds to ■.

この結果からも明らかな様に、Mgを添加することによ
り、Mg無添加の場合(比較例)に比べてFe及びMn
の含有率を相当低下させ得ることが確認できる。
As is clear from this result, by adding Mg, compared to the case without Mg addition (comparative example), Fe and Mn
It can be confirmed that the content of

実施例 2 不純物としてFe及びCrを含む溶融A[に対し、これ
ら不純物の1.15〜1.22倍量に相当するAl−1
0%Mnを850℃で添加して溶融し、更に750℃に
降温した後Mg濃度が6係となるように金属Mgを加え
て溶融し、630°Cで30分間保持する1、その後晶
出した金属間化合物を沢過分離し、晶析分離の前・後に
おける溶融Al中の各金属不純物の含有率を比較した。
Example 2 Molten A containing Fe and Cr as impurities [Al-1 corresponding to 1.15 to 1.22 times the amount of these impurities]
0% Mn was added at 850°C and melted, and after the temperature was further lowered to 750°C, metallic Mg was added and melted so that the Mg concentration was 6 coefficients, and held at 630°C for 30 minutes.1, then crystallized. The resulting intermetallic compounds were filtered and separated, and the content of each metal impurity in the molten Al before and after the crystallization separation was compared.

結果を第3表に示す。The results are shown in Table 3.

実施例 3 不純物としてFe及びMoを含む溶融A[に対し、これ
ら不純物の1.03.1.12倍量に相当するA#−1
0%Mnを850°Cで添加して溶融し、更に750℃
に降温した後Mg濃度が6%となるように金属Mgを加
えて溶融し、以下実施例2と同様にして晶出した金属間
化合物をp過分離し、晶析分離前・後における溶融A7
中の金属不純物の含有率を比較した。
Example 3 Molten A containing Fe and Mo as impurities [A#-1 corresponding to 1.03.1.12 times the amount of these impurities]
0% Mn was added and melted at 850°C, and further heated to 750°C.
After the temperature was lowered to , metal Mg was added and melted so that the Mg concentration was 6%, and the crystallized intermetallic compound was then over-separated in the same manner as in Example 2.
The content of metal impurities was compared.

結果を第4表に示す。実施例 4 不純物としてFe及びpbを含む溶融Alに対し、これ
ら不純物の1.12,1.34倍量に相当するAlAl
−1O1を850°Cで添加し、以下実施例3と同様に
6%相当の金属Mgを添加・溶融して晶出、した金属間
化合物を沢過分離し、晶析分離前・後における溶融Al
中の金属不純物の含有率を比較した。
The results are shown in Table 4. Example 4 For molten Al containing Fe and PB as impurities, AlAl equivalent to 1.12 and 1.34 times the amount of these impurities
-1O1 was added at 850°C, and as in Example 3, 6% of metallic Mg was added and melted to crystallize. Al
The content of metal impurities was compared.

結果を第5表に示す。実施例 5 不純物としてFe及びAsを含む溶融Alに対し、これ
ら不純物の1.01倍量に相当するAA−10%Mnを
850°Cで添加し、以−下実施例3と同様に6%相当
の金属Mgを添加・溶融して晶出した金属間化合物な濾
過分離し、晶析分離前・後における溶融Al中の金属不
純物の含有率を比較した。
The results are shown in Table 5. Example 5 AA-10% Mn corresponding to 1.01 times the amount of these impurities was added to molten Al containing Fe and As as impurities at 850°C, and 6% Mn was added as in Example 3. An intermetallic compound crystallized by adding and melting a corresponding amount of metallic Mg was filtered and separated, and the content of metal impurities in molten Al before and after crystallization separation was compared.

結果を第6表に示す。第3〜6表の結果からも明らかな
如く、本発明ばFeのみならずCr、Mo、Pb、As
等の不純物についても相当の除去効果を発揮することが
理解される。
The results are shown in Table 6. As is clear from the results in Tables 3 to 6, the present invention can be applied not only to Fe but also to Cr, Mo, Pb, As.
It is understood that it also exhibits a considerable removal effect for impurities such as.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はA7−Mn−Fe系及びこれにMgが介在した
ときの3元状態図、第2図はMgの添加効果を例示する
グラフ、第3−図はMgがAl−Mn−Fe系の共晶温
度(融点)に及はす影響を示すグラフ、第4図はM n
/ F e除去率の関係を示すグラフ、第5図はMg
の添加率とFe除去率の関係を示すグラフである。
Figure 1 is a ternary phase diagram of the A7-Mn-Fe system and when Mg is present in it, Figure 2 is a graph illustrating the effect of Mg addition, and Figure 3 is a graph in which Mg is Al-Mn-Fe system. A graph showing the influence on the eutectic temperature (melting point) of M n
/Fe Graph showing the relationship between e removal rates, Figure 5 is Mg
2 is a graph showing the relationship between the addition rate and the Fe removal rate.

Claims (1)

【特許請求の範囲】[Claims] 1 金属不純物を含有するアルミニウム又はアルミニウ
ム合金溶湯中に、該溶湯に含まれる金属不純物の0.5
〜6倍量に相当するマンガンを含む金属マンガン及び/
又はアルミニウムーマンガン合金と、該溶湯の0.00
2〜0.1倍量に相当するマグネシウムを含む金属マグ
ネシウム及び/又はアルミニウムーマグネシウム合金を
添加して溶融混合し、この混合溶湯を、その共晶温度乃
至それより50℃高い温度の範囲まで冷却して保持し、
金属不純物を金属間化合物として晶析分離することを特
徴とするアルミニウム又はアルミニウム合金の精製法。
1 In aluminum or aluminum alloy molten metal containing metal impurities, 0.5 of the metal impurities contained in the molten metal
Metal manganese and/or containing manganese equivalent to ~6 times the amount
or aluminum-manganese alloy and 0.00 of the molten metal
Metal magnesium and/or aluminum-magnesium alloy containing 2 to 0.1 times the amount of magnesium are added and melted and mixed, and the mixed molten metal is cooled to a range of 50°C higher than the eutectic temperature. and hold
A method for refining aluminum or an aluminum alloy, characterized by crystallizing and separating metal impurities as intermetallic compounds.
JP12331378A 1978-10-05 1978-10-05 Method for refining aluminum or aluminum alloy Expired JPS5912731B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12331378A JPS5912731B2 (en) 1978-10-05 1978-10-05 Method for refining aluminum or aluminum alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12331378A JPS5912731B2 (en) 1978-10-05 1978-10-05 Method for refining aluminum or aluminum alloy

Publications (2)

Publication Number Publication Date
JPS5550442A JPS5550442A (en) 1980-04-12
JPS5912731B2 true JPS5912731B2 (en) 1984-03-26

Family

ID=14857451

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12331378A Expired JPS5912731B2 (en) 1978-10-05 1978-10-05 Method for refining aluminum or aluminum alloy

Country Status (1)

Country Link
JP (1) JPS5912731B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0415544Y2 (en) * 1987-01-08 1992-04-08
WO1994011540A1 (en) * 1992-11-16 1994-05-26 Meisei Kako Co., Ltd. Process for producing alloy utilizing aluminum dross

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2524490B1 (en) * 1982-03-31 1988-05-13 Pechiney Aluminium PROCESS FOR OBTAINING VERY HIGH PURITY ALUMINUM IN EUTECTIC ELEMENTS
NL1000456C2 (en) * 1995-05-31 1996-12-03 Hoogovens Aluminium Bv Process for refining an aluminum scrap melt, and aluminum alloy from refined aluminum scrap.
EP1288319B1 (en) * 2001-09-03 2004-06-30 Corus Technology BV Method for the purification of an aluminium alloy
NL1019105C2 (en) 2001-10-03 2003-04-04 Corus Technology B V Method and device for controlling the proportion of crystals in a liquid-crystal mixture.
EP1380658A1 (en) 2002-07-05 2004-01-14 Corus Technology BV Method for fractional crystallisation of a molten metal
EP1380659A1 (en) 2002-07-05 2004-01-14 Corus Technology BV Method for fractional crystallisation of a metal
CA2543564C (en) 2003-11-19 2010-05-04 Corus Technology Bv Method of cooling molten metal during fractional crystallisation
CN100406594C (en) 2004-03-19 2008-07-30 阿勒里斯瑞士有限公司 Method for the purification of a molten metal
US8313554B2 (en) 2006-06-22 2012-11-20 Aleris Switzerland Gmbh Method for the separation of molten aluminium and solid inclusions
EP2032725B1 (en) 2006-06-28 2010-07-28 Aleris Switzerland GmbH Crystallisation method for the purification of a molten metal, in particular recycled aluminium
EP2047002B1 (en) 2006-07-07 2011-03-23 Aleris Switzerland GmbH Method for metal purification and separation of purified metal from a metal mother liquid such as aluminium melt
JP6864704B2 (en) * 2019-01-16 2021-04-28 株式会社豊田中央研究所 How to regenerate Al alloy
JP7414592B2 (en) * 2020-03-10 2024-01-16 株式会社豊田中央研究所 Al alloy regeneration method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0415544Y2 (en) * 1987-01-08 1992-04-08
WO1994011540A1 (en) * 1992-11-16 1994-05-26 Meisei Kako Co., Ltd. Process for producing alloy utilizing aluminum dross

Also Published As

Publication number Publication date
JPS5550442A (en) 1980-04-12

Similar Documents

Publication Publication Date Title
JPS5912731B2 (en) Method for refining aluminum or aluminum alloy
JP2007529625A (en) Method for purifying molten metal
WO2019077892A1 (en) Al ALLOY RECOVERY METHOD
JPH0322453B2 (en)
US3257199A (en) Thermal reduction
JP7123834B2 (en) Impurity removal method
NO162303B (en) Flat roof.
JP2019077896A (en) REGENERATION METHOD OF Al ALLOY
JP6864704B2 (en) How to regenerate Al alloy
EP0402288B1 (en) Process for the separation of calcium and nitrogen from lithium
US2373515A (en) Purification of magnesium
JP3784331B2 (en) Method for purifying gold-containing gallium and method for collecting gold from gallium containing gold
JP3379188B2 (en) Dissolution method of aluminum alloy product scrap
US4444585A (en) Process for producing metals in a very high state of purity in respect of eutectic elements
WO2023079851A1 (en) Method for removing impurities, method for producing aluminum-based alloy, and method for producing aluminum-based alloy material
JPH0885833A (en) Method for refining rare earth metal
JP2002097528A (en) Purification method of aluminum
JP7414592B2 (en) Al alloy regeneration method
JPH09235632A (en) Method for removing manganese from manganese-containing molten aluminum
US2283884A (en) Purification of metal halide fluxes
JPH04120225A (en) Manufacture of ti-al series alloy
JP2019077895A (en) REGENERATION METHOD OF Al ALLOY
JPH09235631A (en) Method for removing iron from iron-containing molten aluminum
JPH01279712A (en) Method for removing impurity from aluminum alloy
JP3721804B2 (en) Aluminum purification method and use thereof