JPH04120225A - Manufacture of ti-al series alloy - Google Patents

Manufacture of ti-al series alloy

Info

Publication number
JPH04120225A
JPH04120225A JP23781790A JP23781790A JPH04120225A JP H04120225 A JPH04120225 A JP H04120225A JP 23781790 A JP23781790 A JP 23781790A JP 23781790 A JP23781790 A JP 23781790A JP H04120225 A JPH04120225 A JP H04120225A
Authority
JP
Japan
Prior art keywords
alloy
melting
molten metal
allay
melted
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP23781790A
Other languages
Japanese (ja)
Inventor
Katsuyuki Yoshikawa
吉川 克之
Tatsuhiko Sodo
龍彦 草道
Seiji Nishi
誠治 西
Toshio Onoe
尾上 俊雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP23781790A priority Critical patent/JPH04120225A/en
Publication of JPH04120225A publication Critical patent/JPH04120225A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To reduce the content of oxygen as impurities in an alloy by adding Ca or a Ca-contg. allay to a melted Ti-Al series allay and executing deoxidizing treatment. CONSTITUTION:A Ti-Al allay is melted in a lime crucible in vacuum or in an inert atmosphere. To this melted alloy, metallic Ca or a Ca-contg. allay such as Ca-Al, Ti-Ca or the like is added, and deoxidizing treatment is executed to reduce the content of oxygen in the Ti-Al series allay to be manufactured. The temp. of the molten metal at the time of adding the Ca additive is preferably regulated to a one higher than the liquidus temp. of the Ti-Al series allay to be melted by >=10 deg.C as well as to <=1650 deg.C. The ingot obtd. by casting the molten metal after the deoxidization is subjected to plasma melting, vacuum melting or electron beam melting, by which the Ti-Al series allay in which the content of Ca is reduced and having high purity can be obtd.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明はTi−Al系合金の製造方法に関し、さらに詳
しくは、軽量で、強度、弾性率、耐熱性等に優れたTi
−Al系合金、Ti−Al系金属間化合物等の高純度の
Ti−Al系合金の製造方法に関するものである。
Detailed Description of the Invention [Field of Industrial Application] The present invention relates to a method for producing a Ti-Al alloy, and more specifically, it relates to a method for producing a Ti-Al alloy.
The present invention relates to a method for producing high-purity Ti-Al alloys such as -Al alloys and Ti-Al intermetallic compounds.

[従来技術] 従来より、航空機、自動車、化学プラント等の産業の各
分野において、エンジンの効率等の性能の向上、コスト
軽減、使用期間の長期化等の要望が最近になって増加し
てきており、これを実現するための対策として、高強度
、高弾性率、高耐熱性、高耐蝕性等の特性を有する高性
能・高機能の材料が強(要望されている。
[Prior Art] Recently, in various industrial fields such as aircraft, automobiles, and chemical plants, there have been increasing demands for improvements in performance such as engine efficiency, cost reduction, and longer service life. As a measure to achieve this, there is a strong demand for high-performance and highly functional materials with characteristics such as high strength, high modulus of elasticity, high heat resistance, and high corrosion resistance.

この要望を満足する材料として、注目を集めているもの
に、Ni−Al系やFe−Al系およびTiAl系等の
合金(金属間化合物)が挙げられるが、この合金(金属
間化合物)のなかでも、特に、TiAl系の合金(金属
間化合物)は、軽量、高弾性率、高耐熱性等の優れた特
性を存しているために、その実用化に期待がもたれてい
る。
Materials that are attracting attention as materials that meet this demand include alloys (intermetallic compounds) such as Ni-Al, Fe-Al, and TiAl. However, in particular, TiAl-based alloys (intermetallic compounds) have excellent properties such as light weight, high elastic modulus, and high heat resistance, so there are high expectations for their practical use.

このように優れた特性を有するTi−Al系合金(金属
間化合物)を溶解法により製造する場合には、Ti−A
l系合金は活性なTiおよびA1を主成分としているた
め、Fe、Ah Cu等の金属のように、従来から使用
されてきているアルミナ質、マグネシア質等の耐火物製
坩堝を使用した溶解方法が困難であり、真空アーク溶解
法(Vacuum arc remelting、 V
AR)、プラズマアーク溶解法、電子ビーム溶解法等の
溶解法により製造しなければならないのが現状である。
When producing a Ti-Al alloy (intermetallic compound) with such excellent properties by a melting method, Ti-A
Since l-based alloys are mainly composed of active Ti and Al, they can be melted using crucibles made of refractories such as alumina and magnesia, which have traditionally been used for metals such as Fe and Ah Cu. Vacuum arc remelting, V
Currently, they must be manufactured by melting methods such as AR), plasma arc melting, and electron beam melting.

また、最近の研究の結果、Ti−Al系合金の溶解に石
灰坩堝(Cab)を使用することが提案され、使用され
てきつつある。
Furthermore, as a result of recent research, it has been proposed to use a lime crucible (Cab) for melting Ti--Al alloys, and the use is coming into use.

しかして、活性なTi−Al系合金(金属間化合物)を
溶解により製造する上記のような各種の方法があるが、
以下説明する問題点が存在する。
There are various methods such as those mentioned above for manufacturing active Ti-Al alloys (intermetallic compounds) by melting.
There are problems that will be explained below.

真空アーク溶解法で、Ti−Al系合金を溶製する場合
、粒状或いは塊状のTiとAIの原料を、圧縮成形して
棒状の成形体を作成してから、この成形体を消耗電極と
して、真空下でアーク溶解を行ないTi−Al系合金の
鋳塊を製造するのであるが、粒状、塊状のTiとA1原
料を圧縮成形して棒状電極とする作業は、極めて繁雑な
工程を経て行なわれ、多くの労力を必要とするために、
生産性が悪く、経費がかかり過ぎるということは避けら
れず、また、原料となるTiとAIとは融点が大きく相
違しているため、アーク溶解時にTiとA1の溶解速度
が異なる結果、Tiのみが未溶解のままて鋳塊中に混入
することになり、均質な鋳塊を製造することができない
という問題があり、さらに、溶解時の溶湯ブール中の撹
拌が不充分となるため、純Tiと純Alとが均一に混合
する時間的な余裕がなく、鋳塊を構成する成分元素の偏
析が起こり易く、均質な鋳塊を製造することは困難とな
る。このように、未溶解、偏析という問題を軽減するた
めに2回の溶解を行なうこともあるが、溶解するための
繁雑な作業および労力を必要とし、経費が高くなること
は否めない事実である。
When melting a Ti-Al alloy using the vacuum arc melting method, granular or lumpy Ti and AI raw materials are compression-molded to create a rod-shaped compact, and then this compact is used as a consumable electrode. Ti-Al alloy ingots are produced by arc melting under vacuum, but the process of compression molding granular and lumpy Ti and A1 raw materials into rod-shaped electrodes is an extremely complicated process. , because it requires a lot of effort,
It is unavoidable that productivity is poor and costs are too high.Also, since the melting points of Ti and Al, which are the raw materials, are greatly different, the melting speeds of Ti and Al are different during arc melting, resulting in the melting of Ti only. There is a problem that unmelted Ti is mixed into the ingot, making it impossible to produce a homogeneous ingot.Furthermore, since stirring in the molten metal boule during melting is insufficient, pure Ti There is not enough time to uniformly mix the aluminum and pure Al, and the constituent elements constituting the ingot are likely to segregate, making it difficult to produce a homogeneous ingot. In this way, melting is sometimes performed twice to alleviate the problem of undissolved and segregation, but it is an undeniable fact that the process of dissolving requires complicated work and labor, which increases costs. .

また、プラズマアーク溶解法、電子ビーム溶解法におい
ては、原料となる粒状、塊状のTi5Alをコールドハ
ース内で溶解後、水冷鋳型内に注湯するか、コールドハ
ースを使用することな(直接Ti5Alの原料を鋳型内
に装入しながら溶解を行ない、鋳塊を製造する等の溶解
法を行なうのが一般的である。
In addition, in the plasma arc melting method and electron beam melting method, the raw material, granular or lumpy Ti5Al, is melted in a cold hearth and then poured into a water-cooled mold, or without using a cold hearth (directly melting Ti5Al). It is common to perform a melting method such as melting raw materials while charging them into a mold to produce an ingot.

そして、プラズマアーク溶解法、電子ビーム溶解法の場
合、上記に説明した真空アーク溶解法と同様に溶湯ブー
ル内の撹拌が不充分であるので偏析および融点の相違に
よる未溶解が起こり易く、均質な鋳塊を製造することが
できず、さらに、設備に要する費用が高(なるという問
題がある。
In the case of the plasma arc melting method and the electron beam melting method, as in the vacuum arc melting method explained above, stirring in the molten metal boule is insufficient, so segregation and unmelting due to differences in melting points are likely to occur, resulting in a homogeneous product. There are problems in that it is not possible to produce ingots, and the cost of equipment is high.

さらに、最近になって、実用化されつつある石灰坩堝を
使用する誘導溶解法は、従来がら使用されてきている誘
導溶解設備をそのまま利用することができるので、設備
に余分な経費を必要とせず、また、坩堝内の原料である
Ti、AIを完全に溶解することができ、かつ、撹拌効
果により均質な溶湯を製造することができ、偏析のない
均質鋳塊を得られるという利点があるが、溶解時、溶解
坩堝材の石灰(Cab)が反応して、溶湯中の酸素量が
増加するという問題がある。
Furthermore, the induction melting method using a lime crucible, which has recently been put into practical use, does not require any extra expense for the equipment because the induction melting equipment that has been used in the past can be used as is. In addition, it has the advantage that the raw materials Ti and AI in the crucible can be completely melted, and a homogeneous molten metal can be produced by the stirring effect, and a homogeneous ingot without segregation can be obtained. There is a problem that during melting, the lime (Cab) of the melting crucible material reacts and the amount of oxygen in the molten metal increases.

このTi−Al系合金(金属間化合物)の本来の特性を
発揮させるためには、不純物量の極めて少ないことが要
求され、特に、酸素量を低減した高純度材の溶製技術の
要望が大きく、従って、従来から使用されている石灰坩
堝による溶解法では、このような要求には充分に対応で
きるものではなかった。
In order to bring out the original properties of this Ti-Al alloy (intermetallic compound), it is required that the amount of impurities be extremely small, and in particular, there is a strong demand for melting technology for high-purity materials with reduced oxygen content. Therefore, the conventionally used dissolution method using a lime crucible has not been able to sufficiently meet such requirements.

[発明が解決しようとする課題] 本発明は上記に説明した従来のTi−Al系合金(金属
間化合物)の溶解法の種々の問題点に鑑み、本発明者が
鋭意研究を行ない、検討を重ねた結果、従来の石灰坩堝
による溶解法よりも、不純物である酸素量を極力低減し
た高純度のTi−Al鋳塊を製造する方法を開発したの
である。
[Problems to be Solved by the Invention] In view of the various problems of the conventional melting method for Ti-Al alloys (intermetallic compounds) explained above, the present inventor has conducted extensive research and studies. As a result of repeated efforts, they developed a method for producing high-purity Ti-Al ingots that minimizes the amount of impurity oxygen compared to the conventional melting method using a lime crucible.

[問題点を解決するための手段] 本発明に係るTi−Al系合金の製造方法は、(1)T
i−Al系合金を石灰坩堝の中で真空或いは不活性雰囲
気中で溶解し、この溶融Ti−Al系合金にCa或いは
Ca含有合金を添加して、脱酸処理を行なうことを特徴
とするTi−Al系合金の製造方法を第1の発明とし、 (2)Tf−Al系合金を石灰坩堝の中で真空或いは不
活性雰囲気中で溶解し、この溶融Ti−Al系合金にC
a或いはCa含有合金を添加して、溶融Ti−Al系合
金の液相線温度の10℃以上で、かつ、1650℃以下
の温度において脱酸処理を行なうことを特徴とするTi
−Al系合金の製造方法を第2の発明とし、 (3)Ti−Al系合金を石灰坩堝の中で真空或いは不
活性雰囲気中で溶解し、この溶融Ti−Al系合金にC
a或いはCa含有合金を添加して、溶融Ti−Al系合
金の液相線温度の10℃以上で、かつ、1650℃以下
の温度において脱酸処理を行なった溶湯を鋳造した鋳塊
を、プラズマ溶解、真空溶解或いは電子ビーム溶解を行
ない、Ca含有量を低減することを特徴とするTi−A
l系合金の製造方法を第3の発明とする3つの発明より
なるものである。
[Means for solving the problems] The method for producing a Ti-Al alloy according to the present invention includes (1) T
A Ti-Al alloy is melted in a lime crucible in vacuum or in an inert atmosphere, and Ca or a Ca-containing alloy is added to the molten Ti-Al alloy for deoxidation treatment. - The first invention is a method for producing an Al-based alloy, (2) melting a Tf-Al-based alloy in a lime crucible in vacuum or an inert atmosphere, and adding carbon to the molten Ti-Al-based alloy.
A or a Ca-containing alloy is added and deoxidation treatment is performed at a temperature of 10°C or higher and 1650°C or lower than the liquidus temperature of the molten Ti-Al alloy.
- A second invention provides a method for producing an Al-based alloy, (3) Melting a Ti-Al-based alloy in a lime crucible in a vacuum or inert atmosphere, and adding carbon to the molten Ti-Al-based alloy.
A or a Ca-containing alloy was added and an ingot was cast from a molten metal that was deoxidized at a temperature of 10°C or higher than the liquidus temperature of the molten Ti-Al alloy and 1650°C or lower. Ti-A characterized by reducing Ca content by melting, vacuum melting or electron beam melting
This invention consists of three inventions, with the third invention being a method for producing an l-based alloy.

本発明に係るTi−Al系合金の製造方法について、以
下詳細に説明する。
The method for manufacturing a Ti-Al alloy according to the present invention will be described in detail below.

従来の石灰坩堝を使用するTi−Al系合金の溶解にお
いては、溶湯中の酸素濃度は石灰坩堝からの汚染により
溶解時間、溶解温度にもよるが、普通、酸素含有量は0
1〜0.2vt%程度になるが、極端な場合には03〜
Q、 5wt%にも達することがある。
When melting a Ti-Al alloy using a conventional lime crucible, the oxygen concentration in the molten metal depends on the melting time and melting temperature due to contamination from the lime crucible, but the oxygen content is usually 0.
It will be about 1 to 0.2vt%, but in extreme cases it will be about 03 to 0.2vt%.
Q: It can reach up to 5wt%.

従って、高純度のTiおよびA1を原料として使用した
としても、溶解時に酸素濃度が増加することは避けられ
なかったので、従来においては、低酸素濃度のTi−A
l系合金を製造することは非常に困難であった。
Therefore, even if high-purity Ti and A1 were used as raw materials, it was unavoidable that the oxygen concentration would increase during melting.
It has been very difficult to produce l-based alloys.

本発明に係るTi−Al系合金の製造方法において、上
記に説明した従来の石灰坩堝によるTi−Al系合金の
溶解における溶湯中の酸素濃度の増加を防止する方法に
ついて研究した結果、溶解時に溶湯中においては第2図
に示すようにCa−0の平衡関係が成立することを見出
し、この平衡関係を利用してCaを溶湯中に添加するこ
とにより、脱酸反応を進行させることにより、酸素濃度
の低減を図るものである。なお、第2図において、○印
は1550〜1570℃、・印は1600〜1620℃
である。
In the method for producing a Ti-Al alloy according to the present invention, as a result of research on a method for preventing an increase in oxygen concentration in the molten metal during melting of the Ti-Al alloy in the conventional lime crucible described above, it was found that It was discovered that an equilibrium relationship of Ca-0 is established in the molten metal as shown in Figure 2, and by adding Ca to the molten metal using this equilibrium relationship, the deoxidation reaction progresses, and oxygen is removed. The purpose is to reduce the concentration. In addition, in Figure 2, ○ marks are 1550 to 1570°C, ・ marks are 1600 to 1620°C.
It is.

即ち、本発明に係るTi−Al系合金の製造方法におい
て、溶湯中にCa(Ca含有合金を含む)を添加するこ
とにより、溶湯中で、 Ca  +  O−+  CaO の脱酸反応を起させ、生成したCaOを浮上分離するか
、或いは、石灰坩堝壁に付着・吸収させることにより、
酸素濃度を低下させるものである。
That is, in the method for producing a Ti-Al alloy according to the present invention, by adding Ca (including Ca-containing alloys) to the molten metal, a deoxidation reaction of Ca + O- + CaO is caused in the molten metal. , by floating and separating the generated CaO, or by adhering and absorbing it to the lime crucible wall,
It lowers oxygen concentration.

この溶湯中に添加するCaとしては、金属Ca、Ca−
A1合金、Ti−Ca合金等を使用することが好ましく
、また、これら以外にTi−Al系合金(金属間化合物
)の特性に悪影響を及ぼすことがない元素とCaとを合
金化した材料を使用することも可能である。
Ca added to this molten metal includes metal Ca, Ca-
It is preferable to use A1 alloy, Ti-Ca alloy, etc., and in addition to these, use a material alloyed with Ca and an element that does not have a negative effect on the properties of Ti-Al alloy (intermetallic compound). It is also possible to do so.

このCa添加材の添加方法としては、溶湯表面への投入
、溶湯中への押込み、粉末による吹込み等何れの方法で
も可能であり、設備、作業性等を考慮して最適の方法を
選択すればよく、反応効率、添加歩留等からみて溶湯中
への押込み、吹込み方法が好ましい方法である。
The Ca additive can be added by any method such as pouring it onto the surface of the molten metal, pushing it into the molten metal, or blowing powder into it, and the most suitable method should be selected taking into account equipment, workability, etc. In view of reaction efficiency, addition yield, etc., the preferred method is the method of pushing or blowing into the molten metal.

また、Ca添加材の添加量は、添加前の溶湯中の酸素濃
度、目標とする酸素濃度から上記反応および添加歩留等
を考慮して決定すればよい。
Further, the amount of the Ca additive may be determined based on the oxygen concentration in the molten metal before addition, the target oxygen concentration, and the above reaction and addition yield.

本発明に係るTi−Al系合金の製造方法において、C
a添加材の添加時の溶湯温度と添加時期が重要なことで
あり、添加時の溶湯温度はTi−Al系合金の組成にも
よるが、溶解するTi−Al系合金の液相線温度の10
℃以上で、かつ、1650℃以下の温度とする。
In the method for producing a Ti-Al alloy according to the present invention, C
The temperature of the molten metal and the timing of the addition of the additive a are important.The molten metal temperature at the time of addition depends on the composition of the Ti-Al alloy, but it depends on the liquidus temperature of the Ti-Al alloy to be melted. 10
The temperature shall be above ℃ and below 1650 ℃.

そして、溶湯温度が液相線温度+10℃未満では、溶湯
の粘性が高(、脱酸生成物であるCaOが容易に浮上分
離し難く、また、溶湯の温度低下等安定した操業が困難
となるものであり、また、1650℃を越える温度では
上記の脱酸反応は進行するけれども、石灰坩堝から酸素
の溶湯への侵入速度が顕著となり、脱酸後酸素量が急増
する結果、脱酸効果が失われてしまうためである。
If the molten metal temperature is lower than the liquidus temperature + 10°C, the viscosity of the molten metal is high (CaO, which is a deoxidation product, is difficult to float and separate easily, and stable operation is difficult due to a drop in the temperature of the molten metal). Furthermore, although the above deoxidation reaction progresses at temperatures exceeding 1650°C, the rate of oxygen penetration from the lime crucible into the molten metal becomes significant, and the amount of oxygen increases rapidly after deoxidation, resulting in a decrease in the deoxidation effect. This is because it will be lost.

さらに、Ca添加材の添加時期は、出湯直前の1〜5分
とするのがよく、出湯直前の1分未満では脱酸生成物の
CaOの浮上分離が不完全となり、また、出湯直前の5
分を越えると石灰坩堝からの酸素の侵入が進行してしま
い、脱酸効果が無(なるからである。
Furthermore, it is best to add the Ca additive 1 to 5 minutes immediately before tapping; if it is less than 1 minute before tapping, the flotation separation of CaO in the deoxidized product will be incomplete;
This is because if the temperature exceeds 10 minutes, the intrusion of oxygen from the lime crucible will progress and the deoxidizing effect will be lost.

本発明に係るTi−Al系合金の溶解方法において、上
記に説明した方法て製造された鋳塊の純度をさらに向上
させる方法として、脱酸後の溶湯を棒状に鋳造して真空
アーク溶解用の消耗電極として、10”〜10−’To
rr程度の真空下の雰囲気により溶解することにより、
脱酸時に残留したCaを蒸発除去し、Ca、酸素共に低
濃度の高純度鋳塊を製造することが可能ある。Ti−A
l系合金溶渦中のCaの蒸気圧は高く、容易に高純度の
TiAl系合金鋳塊を製造することができる。
In the method for melting a Ti-Al alloy according to the present invention, as a method for further improving the purity of the ingot produced by the method described above, the molten metal after deoxidation is cast into a rod shape, and the molten metal is cast into a rod shape for vacuum arc melting. As a consumable electrode, 10"~10-'To
By dissolving in a vacuum atmosphere of about rr,
By evaporating and removing Ca remaining during deoxidation, it is possible to produce a high purity ingot with low concentrations of both Ca and oxygen. Ti-A
The vapor pressure of Ca in the l-based alloy melt is high, and a high-purity TiAl-based alloy ingot can be easily produced.

また、本発明に係るTi−Al系合金の製造方法におい
ては、従来の真空アーク溶解法の問題点を解決すること
ができるものであり、即ち、消耗電極製作のため原料の
圧縮成形工程を省略することができ、消耗電極自身が均
質であるため、鋳塊の偏析および未溶解部分の残存等の
問題は全くなく、品質、経費の面から優れているもので
ある。
In addition, the method for producing Ti-Al alloys according to the present invention can solve the problems of the conventional vacuum arc melting method, that is, the compression molding process of raw materials for manufacturing consumable electrodes can be omitted. Since the consumable electrode itself is homogeneous, there are no problems such as segregation of the ingot or the remaining of unmelted parts, and it is excellent in terms of quality and cost.

また、真空アーク溶解法の代わりに、電子ビーム溶解法
およびプラズマアーク溶解法によっても同様な効果を期
待することができる。
Furthermore, similar effects can be expected by electron beam melting and plasma arc melting instead of vacuum arc melting.

本発明に係るTi−At系合金の製造方法において適用
可能な合金としては、Al25〜60vt%含有するT
iの2元合金は当然としても、この2元合金に他の合金
元素のMn、Cr、V、Ni、Nb、W。
The alloy that can be used in the method for producing a Ti-At alloy according to the present invention includes T containing 25 to 60 vt% of Al.
Of course, the binary alloy of i may contain other alloying elements such as Mn, Cr, V, Ni, Nb, and W.

Ag、Zr、B等を含有させた多元合金等が挙げられる
が、他の合金でも高純度鋳塊が得られるものであれば使
用することができる。
Examples include multi-component alloys containing Ag, Zr, B, etc., but other alloys can also be used as long as a high purity ingot can be obtained.

[実 施 例] 本発明に係るTi−Al系合金の製造方法の実施例を説
明する。
[Example] An example of the method for manufacturing a Ti-Al alloy according to the present invention will be described.

実施例1 純Tiおよび純A1を原料として、AI含有量を種々に
変化させたTi−Al系合金5kgを石灰坩堝を使用し
て、真空誘導溶解炉で溶解を行ない、溶解後、種々の条
件により溶湯を処理してから、鉄製鋳型に鋳造を行なっ
た。
Example 1 Using pure Ti and pure A1 as raw materials, 5 kg of Ti-Al alloy with various AI contents was melted in a vacuum induction melting furnace using a lime crucible, and after melting, various conditions were applied. After processing the molten metal, it was cast into an iron mold.

第1表にその結果を示す。Table 1 shows the results.

なお、溶解時の雰囲気はAr雰囲気、溶湯の成分は浸漬
型サンプラーにより採取した試料を分析した。
The atmosphere during melting was Ar, and the components of the molten metal were analyzed using a sample taken with an immersion sampler.

また、脱酸処理はAl−Ca合金を添加して行ない1.
脱酸処理後3分間保持後溶湯分析サンプルを採取した。
In addition, deoxidation treatment is performed by adding Al-Ca alloy.1.
After being held for 3 minutes after deoxidizing treatment, a sample for molten metal analysis was taken.

第1表の本発明に係るTi−Al系合金の製造方法によ
るNo、1〜No、 10から明らかであるが、脱酸処
理を行なわない溶湯に比較して、脱酸処理を行なった溶
湯の酸素濃度は著しく低下しており、本発明に係るTi
−Al系合金の製造方法が優れていることがわかる。ま
た、脱酸処理時の温度が高い場合のNo、11およびN
o、 12からも明らかなように脱酸の効果は認められ
ない。
It is clear from the No. 1 to No. 10 of the Ti-Al alloy manufacturing method according to the present invention in Table 1 that the molten metal subjected to deoxidation treatment has a higher The oxygen concentration has decreased significantly, and the Ti according to the present invention
- It can be seen that the method for producing Al-based alloys is excellent. In addition, when the temperature during deoxidation treatment is high, No. 11 and N
As is clear from No. 0 and No. 12, no deoxidizing effect was observed.

実施例2 純Tiおよび純A1を原料としてTi−Al系合金を石
灰坩堝により真空誘導溶解を行ない、出湯前に実施例1
と同様に、Al−Ca合金で脱酸処理を行ない、径20
0mm、長さ1000m+aの鋳塊を製作した。
Example 2 Using pure Ti and pure A1 as raw materials, a Ti-Al alloy was subjected to vacuum induction melting in a lime crucible, and Example 1 was prepared before tapping.
Similarly, deoxidizing treatment was performed using Al-Ca alloy, and the diameter was 20 mm.
An ingot with a diameter of 0 mm and a length of 1000 m+a was produced.

この鋳塊を一次消耗電極として真空アーク溶解を行ない
、径2601ml、長さ500mmの鋳塊を作製した。
Vacuum arc melting was performed using this ingot as a primary consumable electrode to produce an ingot with a diameter of 2601 ml and a length of 500 mm.

第2表に一次電極材および真空アーク溶解後の鋳塊の成
分分析値を示す。
Table 2 shows the component analysis values of the primary electrode material and the ingot after vacuum arc melting.

この第2表から明らかであるが、脱酸処理された溶湯か
ら製作した鋳塊を、さらに、真空アーク溶解を行なうこ
とにより、Ca、Oとも低減されている高純度鋳塊を製
造することが可能であることがわかる。
It is clear from Table 2 that by further performing vacuum arc melting on an ingot produced from deoxidized molten metal, a high purity ingot with reduced Ca and O content can be produced. It turns out that it is possible.

第 表 [発明の効果] 以上説明したように、本発明に係るTi−Al系合金の
製造方法は上記の構成であるから、石灰坩堝を使用した
誘導溶解で、Ti−Al系合金を溶解することにより、
製造されるTi−Al系合金中の不純物としての酸素含
有量を著しく低減させることができ、高純度のTi−A
l系合金鋳塊を製造することができるものであり、さら
に、酸素含有量だけではな(、Ca含有量も低減するこ
とができるという優れた効果を有するものである。
Table [Effects of the Invention] As explained above, since the method for producing a Ti-Al alloy according to the present invention has the above configuration, the Ti-Al alloy is melted by induction melting using a lime crucible. By this,
The content of oxygen as an impurity in the produced Ti-Al alloy can be significantly reduced, and high purity Ti-A
It is possible to produce l-based alloy ingots, and has the excellent effect of reducing not only the oxygen content (but also the Ca content).

【図面の簡単な説明】[Brief explanation of drawings]

第1図は溶解時間と酸素含有量との関係を示す図、第2
図は溶解中に溶湯内のCaとOとの関係を示す図である
。 特許出願人 株式会社 神戸製鋼所 入会濃度(y?%)
Figure 1 is a diagram showing the relationship between dissolution time and oxygen content, Figure 2 is a diagram showing the relationship between dissolution time and oxygen content.
The figure shows the relationship between Ca and O in the molten metal during melting. Patent applicant: Kobe Steel, Ltd. Membership concentration (y?%)

Claims (3)

【特許請求の範囲】[Claims] (1)Ti−Al系合金を石灰坩堝の中で真空或いは不
活性雰囲気中で溶解し、この溶融Ti−Al系合金にC
a或いはCa含有合金を添加して、脱酸処理を行なうこ
とを特徴とするTi−Al系合金の製造方法。
(1) A Ti-Al alloy is melted in a lime crucible in vacuum or in an inert atmosphere, and carbon is added to the molten Ti-Al alloy.
A method for producing a Ti-Al alloy, characterized by adding a or a Ca-containing alloy and performing deoxidation treatment.
(2)Ti−Al系合金を石灰坩堝の中で真空或いは不
活性雰囲気中で溶解し、この溶融Ti−Al系合金にC
a或いはCa含有合金を添加して、溶融Ti−Al系合
金の液相線温度の10℃以上で、かつ、1650℃以下
の温度において脱酸処理を行なうことを特徴とするTi
−Al系合金の製造方法。
(2) A Ti-Al alloy is melted in a lime crucible in vacuum or in an inert atmosphere, and carbon is added to the molten Ti-Al alloy.
A or a Ca-containing alloy is added and deoxidation treatment is performed at a temperature of 10°C or higher and 1650°C or lower than the liquidus temperature of the molten Ti-Al alloy.
-A method for producing an Al-based alloy.
(3)Ti−Al系合金を石灰坩堝の中で真空或いは不
活性雰囲気中で溶解し、この溶融Ti−Al系合金にC
a或いはCa含有合金を添加して、溶融Ti−Al系合
金の液相線温度の10℃以上で、かつ、1650℃以下
の温度において脱酸処理を行なった溶湯を鋳造した鋳塊
を、プラズマ溶解、真空溶解或いは電子ビーム溶解を行
ない、Ca含有量を低減することを特徴とするTi−A
l系合金の製造方法。
(3) A Ti-Al alloy is melted in a lime crucible in vacuum or in an inert atmosphere, and carbon is added to the molten Ti-Al alloy.
A or a Ca-containing alloy was added and an ingot was cast from a molten metal that was deoxidized at a temperature of 10°C or higher than the liquidus temperature of the molten Ti-Al alloy and 1650°C or lower. Ti-A characterized by reducing Ca content by melting, vacuum melting or electron beam melting
Method for producing l-based alloy.
JP23781790A 1990-09-07 1990-09-07 Manufacture of ti-al series alloy Pending JPH04120225A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23781790A JPH04120225A (en) 1990-09-07 1990-09-07 Manufacture of ti-al series alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23781790A JPH04120225A (en) 1990-09-07 1990-09-07 Manufacture of ti-al series alloy

Publications (1)

Publication Number Publication Date
JPH04120225A true JPH04120225A (en) 1992-04-21

Family

ID=17020844

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23781790A Pending JPH04120225A (en) 1990-09-07 1990-09-07 Manufacture of ti-al series alloy

Country Status (1)

Country Link
JP (1) JPH04120225A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05303894A (en) * 1992-04-23 1993-11-16 Toshiba Corp Semiconductor storage device
JP2007518569A (en) * 2004-01-21 2007-07-12 ガーフィーアテー ゲーエムベーハー Casting parts manufacturing method
CN100390309C (en) * 2006-09-01 2008-05-28 上海大学 Method of titanium or titanium alloy melting liquid deoxidizing purification
US11319614B2 (en) 2014-11-04 2022-05-03 Kobe Steel, Ltd. Method for deoxidizing Al—Nb—Ti alloy

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05303894A (en) * 1992-04-23 1993-11-16 Toshiba Corp Semiconductor storage device
JP2007518569A (en) * 2004-01-21 2007-07-12 ガーフィーアテー ゲーエムベーハー Casting parts manufacturing method
CN100390309C (en) * 2006-09-01 2008-05-28 上海大学 Method of titanium or titanium alloy melting liquid deoxidizing purification
US11319614B2 (en) 2014-11-04 2022-05-03 Kobe Steel, Ltd. Method for deoxidizing Al—Nb—Ti alloy

Similar Documents

Publication Publication Date Title
CN107587012A (en) A kind of lightweight casting Al Si Li alloy materials and preparation method thereof
US4684506A (en) Master alloy for the production of titanium-based alloys and method for producing the master alloy
RU2673589C2 (en) Ti-Al ALLOY DEOXIDATION METHOD
US4121924A (en) Alloy for rare earth treatment of molten metals and method
JPS5912731B2 (en) Method for refining aluminum or aluminum alloy
JP2989060B2 (en) Low oxygen Ti-Al alloy and method for producing the same
JPH04120225A (en) Manufacture of ti-al series alloy
JP2000096160A (en) Material for vanadium series hydrogen storage alloy and its production
JPS6263626A (en) Production of low oxygen ti alloy
JP2989053B2 (en) Method for producing low oxygen Ti-Al alloy and low oxygen Ti-Al alloy
JPS61210142A (en) Ni-ti alloy having superior shock resistance and its manufacture
JPH0995743A (en) Production of smelted metallic material, smelted metallic material and electron beam melting equipment
US4375371A (en) Method for induction melting
CN110735099A (en) Surface treatment iron removal process for medium carbon steel crucible for smelting magnesium alloys
JP4209964B2 (en) Method for melting and casting metal vanadium and / or metal vanadium alloy
JPH04246137A (en) Production of ti-al alloy
JP2021519389A (en) Silicon-based alloys, their manufacturing methods, and the use of such alloys
US3997332A (en) Steelmaking by the electroslag process using prereduced iron or pellets
JPH0364423A (en) Method for melting intermetallic compound ti-al-base alloy
RU2070228C1 (en) Method of smelting highly chromium nickel alloy
JPH03197624A (en) Vacuum esr method for component control
JPS6082628A (en) Preparation of neodymium alloy
JPS61210141A (en) Ni-ti alloy having superior shock resistance and its manufacture
JP2004353034A (en) PISTON MADE OF Al ALLOY WITH LOW Ca CONTENT
CN117222769A (en) Production of ferrosilicon-vanadium and/or niobium alloys and use thereof