JPS61210142A - Ni-ti alloy having superior shock resistance and its manufacture - Google Patents

Ni-ti alloy having superior shock resistance and its manufacture

Info

Publication number
JPS61210142A
JPS61210142A JP60051035A JP5103585A JPS61210142A JP S61210142 A JPS61210142 A JP S61210142A JP 60051035 A JP60051035 A JP 60051035A JP 5103585 A JP5103585 A JP 5103585A JP S61210142 A JPS61210142 A JP S61210142A
Authority
JP
Japan
Prior art keywords
alloy
rare earth
earth elements
yttrium
molten
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP60051035A
Other languages
Japanese (ja)
Other versions
JPH0429727B2 (en
Inventor
Toru Degawa
出川 通
Takashi Sato
敬 佐藤
Makoto Ebata
江端 誠
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Engineering and Shipbuilding Co Ltd
Original Assignee
Mitsui Engineering and Shipbuilding Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Engineering and Shipbuilding Co Ltd filed Critical Mitsui Engineering and Shipbuilding Co Ltd
Priority to JP60051035A priority Critical patent/JPS61210142A/en
Publication of JPS61210142A publication Critical patent/JPS61210142A/en
Publication of JPH0429727B2 publication Critical patent/JPH0429727B2/ja
Granted legal-status Critical Current

Links

Abstract

PURPOSE:To obtain an Ni-Ti alloy having superior shock resistance and contg. a very small amount of residual rare earth elements by adding rare earth elements to Ni melted in a vessel lined with a calcia-base material to deoxidize the molten Ni, adding Ti, and solidifying the resulting molten Ni-Ti alloy by cooling. CONSTITUTION:Ni is melted in a vessel lined with a calcia-base material in vacuum or in an Ar atmosphere. Y and other rare earth element such as Ce are added to the molten Ni by such an amount that 50-800ppm rare earth elements remain after solidification by cooling, and they are agitated to deoxidize the molten Ni. A desired amount of Ti is added to the deoxidized molten Ni and the resulting molten Ni-Ti alloy is solidified by cooling to obtain an Ni-Ti alloy contg. 50-800ppm Y and other rare earth element. This Ni-Ti alloy has low oxygen and carbon contents and superior shock resistance and is useful as a shape memory alloy.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は耐衝撃性に優れたNiTi合金及びその製造方
法に係り、特にNiTi形状記憶合金として有用な耐衝
撃性に優れたNiTi合金及びその製造方法に関する。
Detailed Description of the Invention [Industrial Application Field] The present invention relates to a NiTi alloy with excellent impact resistance and a method for producing the same, and in particular to a NiTi alloy with excellent impact resistance useful as a NiTi shape memory alloy and its production method. Regarding the manufacturing method.

[従来の技術] NiTi合金のうち、Ni55重量%、Ti45重量%
(±1〜2重量%)合金は形状記憶効果を示すことから
、近年注目を集めている。
[Prior art] NiTi alloy contains 55% by weight of Ni and 45% by weight of Ti.
(±1 to 2% by weight) Alloys have attracted attention in recent years because they exhibit a shape memory effect.

NiTi合金は、Tiが極めて高活性であることから、
通常の耐火物容器を用いた溶解では良好な合金は得られ
ない、従って、NiTi合金の製造方法としては、従来
よりアーク溶解による方法、あるいは黒鉛坩堝を用いた
高周波溶解等が実施されている。
Since Ti is extremely active in NiTi alloy,
A good alloy cannot be obtained by melting using a normal refractory container. Therefore, as a method for producing NiTi alloys, arc melting, high frequency melting using a graphite crucible, etc. have been conventionally used.

[発明が解決しようとする問題点] しかしながら、上記従来法のうち、アーク溶解による方
法は、均質な合金が得られず、しかも、鋳物を得ること
ができないという欠点を有する。
[Problems to be Solved by the Invention] However, among the above-mentioned conventional methods, the method using arc melting has the disadvantage that a homogeneous alloy cannot be obtained and, moreover, a casting cannot be obtained.

また黒鉛坩堝による方法においては、合金中に炭素(以
下、Cと略記する。)が混入し易く、高純度のNiTi
合金を製造するのは困難であった。
In addition, in the method using a graphite crucible, carbon (hereinafter abbreviated as C) is likely to be mixed into the alloy, and high-purity NiTi
The alloy was difficult to manufacture.

一方、NiTi合金の機械的性質や形状記憶効果が、合
金の酸素(以下、0と略記する。)含有量によって著し
く影響を受けることは以前から知られていることである
。しかるに、前記従来の方法は、いずれの場合において
も、O含有量の少ないものが得られない、即ち、従来法
では不純物含有量が少ない高純度のNi及びTi原料を
用いて溶解しても、得られる合金のO含有率は1100
0pp以下に保つことは困難である。
On the other hand, it has long been known that the mechanical properties and shape memory effect of NiTi alloys are significantly affected by the oxygen (hereinafter abbreviated as 0) content of the alloy. However, in any case, the conventional method cannot obtain a material with a low O content, that is, even if the conventional method uses high purity Ni and Ti raw materials with a low impurity content and melts them, The O content of the obtained alloy is 1100
It is difficult to maintain it below 0pp.

上記問題点のうち、NiTi合金中のC混入の問題につ
いては、カルシア(Cao)坩堝を用いることにより、
Cの混入を容易に低減できる旨の報告がなされているが
、カルシア坩堝を用いた場合においても、0混入の問題
は解決されていない。
Among the above problems, the problem of C mixing in NiTi alloy can be solved by using a Cao crucible.
Although it has been reported that C contamination can be easily reduced, the problem of zero contamination has not been solved even when a calcia crucible is used.

従って、従来より、NiTi合金中の0混入量を低減す
ることは、高特性のN i T i合金を得るための重
要な改良点とされているが、現時点においては、原料の
吟味や溶解炉の選択などを除いて、本格的な努力はなさ
れておらず、十分満足し得る対策は提案されていない。
Therefore, reducing the amount of 0 mixed in NiTi alloys has traditionally been considered an important improvement point for obtaining NiTi alloys with high properties, but at present, it is difficult to carefully examine raw materials and to No serious efforts have been made, and no satisfactory countermeasures have been proposed, with the exception of the selection of options.

[問題点を解決するための手段] 本発明は上記従来の問題点を解決し、C及び0の含有量
が極めて少ないNiTi合金及びその製造方法を提供す
るものであって。
[Means for Solving the Problems] The present invention solves the above-mentioned conventional problems and provides a NiTi alloy with an extremely low content of C and 0, and a method for manufacturing the same.

イツトリウム及び/又は希土類元素を50〜800pp
m含むことを特徴とする耐衝撃性に優れたNiTi合金
、 及び 内面がカルシア質炉材で構成された容器中にて、真空又
はアルゴン雰囲気下でNiを溶解した′後、イツトリウ
ム及び/又は希土類元素を添加して脱酸処理し、しかる
後Tiを添加する方法であって、冷却固化後にイツトリ
ウム及び/又は希土類元素を50〜800ppm残留さ
せるように添加することを特徴とする耐衝撃性に優れた
N i T i合金の製造方法、 を要旨とするものである。
50-800pp of yttrium and/or rare earth elements
After melting Ni in a vacuum or argon atmosphere in a container whose inner surface is made of a NiTi alloy with excellent impact resistance characterized by containing m and a calcia furnace material, yttrium and/or rare earths are melted. A method of adding elements, deoxidizing treatment, and then adding Ti, which is characterized by adding yttrium and/or rare earth elements such that 50 to 800 ppm of rare earth elements remain after cooling and solidification. Excellent impact resistance. A method for producing a N i Ti alloy.

以下に本発明につぎ詳細に説明する。The present invention will be explained in detail below.

なお、本明細書において「%」は「重量%」を表す。In addition, in this specification, "%" represents "weight %".

本発明のNiTi合金のNi及びTiの組成比は特に制
限はないが、とりわけ本発明は、Ni55%、Ti45
%(±1〜2%)のN1Tt形状記憶合金に適用するの
が有利である。
The composition ratio of Ni and Ti in the NiTi alloy of the present invention is not particularly limited, but in particular, the present invention has a composition ratio of Ni of 55% and Ti of 45%.
% (±1-2%) of N1Tt shape memory alloy.

本発明のNiTi合金は1合金中にイツトリウム及び/
又は希土類元素を50〜800ppm含有する0合金中
にイツトリウム及び/又は希土類元素が50〜800p
pm含有されたNiTi合金は、イツトリウム及び/又
は希土類元素(以下、Rと略記することがある。)の存
在により、合金中に混入した0がRO1R203又はR
O2等の希土類元素酸化物となるため、0含有量が極め
て低減され、その耐衝撃性が大幅に向上する。
The NiTi alloy of the present invention contains yttrium and/or
Or 50 to 800 ppm of yttrium and/or rare earth elements in an alloy containing 50 to 800 ppm of rare earth elements.
PM-containing NiTi alloys have 0 mixed into the alloy due to the presence of yttrium and/or rare earth elements (hereinafter sometimes abbreviated as R).
Since it becomes an oxide of a rare earth element such as O2, the zero content is extremely reduced and its impact resistance is greatly improved.

(生じたイツトリウム及び/又は希土類元素酸化物はス
ラグや炉壁耐火材に吸収される。)合金中のイツトリウ
ム及び/又は希土類元素含有量が50ppmより少ない
と、十分なO含有量低減効果が発揮されず、耐衝撃性の
高い合金が得られない、またイツトリウム及び/又は希
土類元素含有量が800ppmよりも多いと、イツトリ
ウム及び/又は希土類元素が合金の結晶粒界に偏析する
などして、合金が脆くなるため、耐衝撃性が低下するこ
ととなる。特に好ましいイツトリウム及び/又は希土類
元素の含有量は100〜700ppmである。さらに好
ましくは、Zo。
(Yttrium and/or rare earth element oxides produced are absorbed by the slag and furnace wall refractory material.) When the yttrium and/or rare earth element content in the alloy is less than 50 ppm, sufficient O content reduction effect is exhibited. If the yttrium and/or rare earth element content exceeds 800 ppm, the yttrium and/or rare earth element will segregate at the grain boundaries of the alloy, resulting in an alloy with high impact resistance. becomes brittle, resulting in a decrease in impact resistance. A particularly preferred content of yttrium and/or rare earth elements is 100 to 700 ppm. More preferably, Zo.

〜500ppmである。~500 ppm.

希土類元素としては、Ce、Pr、Nd。Rare earth elements include Ce, Pr, and Nd.

Pm、Sm、En、Gd、Tb、 Dy、Ha、Er、
Tm、Yb、Lnのいずれでも良いが、通常はCeを用
いる。これらのイツトリウム及び/又は希土類元素は各
々単独で用いても、2種以上を混合して用いても良い。
Pm, Sm, En, Gd, Tb, Dy, Ha, Er,
Any of Tm, Yb, and Ln may be used, but Ce is usually used. These yttrium and/or rare earth elements may be used alone or in combination of two or more.

次に、このような本発明のNiTi合金の製造方法につ
いて説明する。
Next, a method for manufacturing the NiTi alloy of the present invention will be explained.

本発明の製造方法においては、内面がカルシア質炉材で
構成された容器中にて、真空又はアルゴン雰囲気下で、
まずNiを溶解した後、イツトリウム及び/又は希土類
元素を添加して脱酸処理する。このときのイツトリウム
及び/又は希土類元素の添加量は、後工程でTiを添加
した後に冷却・凝固せしめたときの残留量が含量で50
〜800ppmとなるような量である。この添加量は、
例えば、繰り返し実験しておいて、用いるイツトリウム
及び/又は希土類元素の歩留りを予め求めておき、これ
に基いて決定しても良い。
In the manufacturing method of the present invention, in a container whose inner surface is made of calcia furnace material, under vacuum or argon atmosphere,
First, after dissolving Ni, yttrium and/or rare earth elements are added and deoxidized. The amount of yttrium and/or rare earth elements added at this time is such that the residual amount when cooled and solidified after adding Ti in the subsequent process is 50%.
The amount is such that the amount is ~800 ppm. This addition amount is
For example, the yield of yttrium and/or rare earth elements to be used may be determined in advance through repeated experiments, and the determination may be made based on this.

イツトリウム及び/又は希土類元素の添加方法は、特に
限定はなく、従来より接種等に用いられている各種の方
法が用いられる。
The method of adding yttrium and/or the rare earth element is not particularly limited, and various methods conventionally used for inoculation etc. can be used.

なお、イツトリウム及び/又は希土類元素を添加した後
は、十分に攪拌を行うようにするのが好ましい。
Note that it is preferable to stir sufficiently after adding yttrium and/or rare earth elements.

また、本発明方法においては、イツトリウム及び/又は
希土類元素のNi溶湯への添加に先立って、Ni溶湯中
にアルゴンガスを吹込み、介在物を除去するようにする
のも有用である。
Furthermore, in the method of the present invention, it is also useful to blow argon gas into the Ni molten metal to remove inclusions before adding yttrium and/or rare earth elements to the Ni molten metal.

イツトリウム及び/又は希土類元素を添加した後、引き
続いて溶湯にTiを添加する。
After adding yttrium and/or rare earth elements, Ti is subsequently added to the molten metal.

Ni、Ti原料としては、高純度のものを用いるのが好
ましいが、本発明においては、後工程で添加するイツト
リウム及び/又は希土類元素の脱酸作用により0含有量
を低減できることから、0含有量の比較的高い原料をも
用いることができる。
It is preferable to use high-purity Ni and Ti raw materials, but in the present invention, the 0 content can be reduced by the deoxidizing effect of yttrium and/or rare earth elements added in a later process. Even relatively high raw materials can be used.

本発明において、合金の溶融に用いる容器の内面を構成
するカルシア質炉材としては、カルシア(Cab)、ラ
ルナイト(安定化2CaOesi02)、  メルウィ
ナイト (3Cao11MgO・2Si02)、アノル
サイト (cao・A1203e2sio2)ならびに
CaOを富化したドロマイト等が挙げられる。
In the present invention, calcia furnace materials constituting the inner surface of the container used for melting the alloy include calcia (Cab), larnite (stabilized 2CaOesi02), merwinite (3Cao11MgO・2Si02), anorthite (cao・A1203e2sio2), and CaO. Examples include enriched dolomite.

このようなカルシア質炉材は、そのCaO含有率が20
%以上、特に40%以上のものが好ましい、CaO含有
量の高いカルシア質炉材は酸化物と反応し易く、NiT
i合金溶湯中の酸化物を吸収し、酸化物介在量を大幅に
減少させることができ、また、Ti等に対する安定性が
高いので、高温溶解が可能となる。
Such calcia furnace material has a CaO content of 20
% or more, preferably 40% or more, calcia furnace material with a high CaO content easily reacts with oxides, and NiT
It can absorb oxides in the molten i-alloy, greatly reducing the amount of oxides present, and has high stability against Ti and the like, making it possible to melt at high temperatures.

[作用] NiTi合金中にイー/ )リウム及び/又は希土類元
素を50〜800ppm含有させることにより1合金中
に混入した0がイツトリウム及び/又は希土類元素酸化
物として除かれ、合金の0含有量を大幅に低減すること
ができる。しかも1合金中のイツトリウム及び/又は希
土類元素はイツトリウム及び/又は希土類元素酸化物を
還元することはなく、0含有量は極めて確実に低減され
る。
[Function] By containing 50 to 800 ppm of yttrium and/or rare earth elements in the NiTi alloy, the zero mixed in one alloy is removed as yttrium and/or rare earth element oxides, reducing the zero content of the alloy. can be significantly reduced. Moreover, the yttrium and/or rare earth element in one alloy does not reduce the yttrium and/or rare earth element oxide, and the zero content is extremely reliably reduced.

本発明では、得られるN i T i合金の0含有量を
通常で800ppm以下とすることが可能である。
In the present invention, it is possible to normally reduce the zero content of the obtained N i Ti alloy to 800 ppm or less.

[実施例] 以下に本発明を実施例により更に具体的に説明するが1
本発明はその要旨を超えない限り以下の実施例に限定さ
れるものではない。
[Example] The present invention will be explained in more detail with reference to Examples below.1
The present invention is not limited to the following examples unless it exceeds the gist thereof.

実施例1 電解ニッケル(公称純度99.9%)及びスポンジチタ
ン(酸素含有量0.07%及び0.042%の2種類)
を用い、l溶解あたり合量で0.8Kgとなるように配
合し、Ni55%、Ti45%のNfTi形状記憶合金
の製造を行った。
Example 1 Electrolytic nickel (nominal purity 99.9%) and sponge titanium (two types with oxygen content of 0.07% and 0.042%)
was used to produce a NfTi shape memory alloy containing 55% Ni and 45% Ti by blending so that the total amount was 0.8 kg per liter of melting.

使用に供したCaO坩堝(内径的50mm)は、−級試
薬のCaoを原料とし、これを20メツシユに粉砕後、
坩堝型中へ入れてよくつき固め、固められた坩堝を約9
00℃、4時間電気抵抗炉中で仮焼することにより作成
した。CaO坩堝の組成は第1表に示す通りである。
The CaO crucible (inner diameter 50 mm) used was made from CaO, a -grade reagent, and after pulverizing it into 20 meshes,
Place it in a crucible mold and harden it well.The hardened crucible is about 9
It was created by calcining in an electric resistance furnace at 00°C for 4 hours. The composition of the CaO crucible is shown in Table 1.

第  1  表 Ni原料をCaO坩堝に入れ、これを出力10KW、周
波数70KHzの内熱式誘導炉に入れ。
Table 1 Ni raw material was put into a CaO crucible, and this was put into an internal heating type induction furnace with an output of 10 KW and a frequency of 70 KHz.

lO″″2Paの減圧下でまずNiを溶解し、次いでC
e又はYを、冷却固化した合金中の含有量が0〜110
00ppの間の所定の値となるような量で種々変更して
添加し、脱酸処理を行った。引き続き、高純度アルゴン
ガスを5X103Paまで導入し、Tiの添加を行った
。その後、カルシア製鋳型に鋳込み、  1 OmmX
 I OmmX 1.60mmの角棒試料を鋳造した。
Ni is first dissolved under a reduced pressure of 1O″″2Pa, then C
The content of e or Y in the cooled and solidified alloy is 0 to 110
A deoxidizing treatment was carried out by adding various amounts of chlorine to give a predetermined value between 0.00 pp and 0.00 pp. Subsequently, high purity argon gas was introduced to a pressure of 5×10 3 Pa, and Ti was added. Then, cast into a Calcia mold, 1 OmmX
I OmmX 1.60 mm square bar samples were cast.

得られた試料から0分析用試料を切出し、不活性ガス搬
送溶解−熱伝導度法で0の定量を行った。この結果得ら
れた合金中のCe、Yの含有量とO含有量との関係を第
1図に示す。
A sample for 0 analysis was cut out from the obtained sample, and 0 was quantified by an inert gas transport dissolution-thermal conductivity method. FIG. 1 shows the relationship between the Ce and Y contents and the O content in the resulting alloy.

また、前記角棒試料を、各々、長さ55mmに切断し、
鋳肌のままでシャルピー衝撃試験を行い、Ce、Y含有
量と耐衝撃性との関係を求めた。結果を第2図に示す。
In addition, each of the square bar samples was cut into a length of 55 mm,
A Charpy impact test was conducted on the cast surface to determine the relationship between Ce and Y contents and impact resistance. The results are shown in Figure 2.

第2図よりNiTi合金中のCe、Y含有量が50pp
m以上であると耐衝撃特性が大幅に向上することが認め
られる。これは第1図から明らかなように、合金中のC
e含有量が50ppm以上であると、0含有量が極めて
少なくなるためと推察される。また、Ce含有量が80
0ppmを超えると耐衝撃特性が低下するが、これは、
Ce分が合金の粒界に偏析するなどして脆くなるためと
推察される。
From Figure 2, the Ce and Y content in the NiTi alloy is 50pp.
It is recognized that impact resistance properties are significantly improved when it is more than m. As is clear from Figure 1, this is due to C in the alloy.
It is presumed that this is because when the e content is 50 ppm or more, the 0 content becomes extremely small. In addition, the Ce content is 80
If it exceeds 0 ppm, the impact resistance properties will decrease;
It is presumed that this is because the Ce component segregates at the grain boundaries of the alloy, making it brittle.

[効果] 以上詳述した通り、本発明のN i T i合金は、イ
ツトリウム及び/又は希土類元素を50〜800ppm
含むものであり、イツトリウム及び/又は希土類元素の
0吸収効果により、合金中の0含有量が著しく低減され
るため、低酸素NiTi合金となる。しかして、このよ
うな本発明のNiTi合金は、内面がカルシア質炉材で
構成された容器を用い、真空又はアルゴン雰囲気下でN
iを溶解した後、イツトリウム及び/又は希土類元素を
添加して脱酸処理し、次いでTiを添加して溶融させた
後、冷却・固化させる本発明の方法により、容易に製造
される。
[Effect] As detailed above, the N i Ti alloy of the present invention contains 50 to 800 ppm of yttrium and/or rare earth elements.
Due to the zero absorption effect of yttrium and/or rare earth elements, the zero content in the alloy is significantly reduced, resulting in a low oxygen NiTi alloy. Therefore, the NiTi alloy of the present invention can be prepared using a container whose inner surface is made of calcia furnace material, and is heated under a vacuum or argon atmosphere.
After melting i, yttrium and/or rare earth elements are added and deoxidized, Ti is added and melted, and then cooled and solidified.

本発明によれば、 ■ 低酸素で、かつ低炭素含有量のT i N i合金
を容易に得ることができる。
According to the present invention, (1) a TiNi alloy with low oxygen content and low carbon content can be easily obtained;

■ 従って、得られる合金は極めて耐衝撃特性に優れる
(2) Therefore, the resulting alloy has extremely good impact resistance.

■ 極めて均質な組成の合金が得られる。■ An alloy with extremely homogeneous composition can be obtained.

■ 1回の溶融操作で良い。■ Only one melting operation is required.

■ 原料は高酸素含有量のものでも良く、安価な原料で
製造し得る。
■ The raw material may have a high oxygen content and can be manufactured using inexpensive raw materials.

■ ■、■より合金の製造コストを低廉化することがで
きる。
(2) The manufacturing cost of the alloy can be lowered by (2) and (2).

■ 鋳物として鋳造することができる。■ Can be cast as a casting.

等の様々な効果が奏され、工業的に極めて有利である。Various effects such as these are achieved, and it is extremely advantageous industrially.

従って1本発明は、特に優れたNiTi形状記憶合金を
製造するに極めて有利である。
Therefore, the present invention is extremely advantageous in producing particularly excellent NiTi shape memory alloys.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図及び第2図は実施例1で得られた試験結果を示す
グラフであり、第1図は合金中のCe、Y含有量とO含
有量との関係を示し、第2図は合金中のCe、Y含有量
と耐衝撃特性との関係を示す。
Figures 1 and 2 are graphs showing the test results obtained in Example 1. Figure 1 shows the relationship between the Ce and Y contents and O content in the alloy, and Figure 2 shows the relationship between the Ce and Y contents and O content in the alloy. The relationship between the Ce and Y contents and the impact resistance properties is shown.

Claims (2)

【特許請求の範囲】[Claims] (1)イットリウム及び/又は希土類元素を50〜80
0ppm含むことを特徴とする耐衝撃性に優れたNiT
i合金。
(1) 50 to 80 yttrium and/or rare earth elements
NiT with excellent impact resistance characterized by containing 0 ppm
i-alloy.
(2)内面がカルシア質炉材で構成された容器中にて、
真空又はアルゴン雰囲気下でNiを溶解した後、希土類
元素を添加して脱酸処理し、しかる後Tiを添加する方
法であって、冷却固化後に希土類元素を50〜800p
pm残留させるように添加することを特徴とする耐衝撃
性に優れたNiTi合金の製造方法。
(2) In a container whose inner surface is made of calcia furnace material,
This is a method in which Ni is dissolved in vacuum or in an argon atmosphere, then a rare earth element is added and deoxidized, and then Ti is added.
A method for producing a NiTi alloy with excellent impact resistance, characterized in that the NiTi alloy is added so that pm remains.
JP60051035A 1985-03-14 1985-03-14 Ni-ti alloy having superior shock resistance and its manufacture Granted JPS61210142A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60051035A JPS61210142A (en) 1985-03-14 1985-03-14 Ni-ti alloy having superior shock resistance and its manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60051035A JPS61210142A (en) 1985-03-14 1985-03-14 Ni-ti alloy having superior shock resistance and its manufacture

Publications (2)

Publication Number Publication Date
JPS61210142A true JPS61210142A (en) 1986-09-18
JPH0429727B2 JPH0429727B2 (en) 1992-05-19

Family

ID=12875545

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60051035A Granted JPS61210142A (en) 1985-03-14 1985-03-14 Ni-ti alloy having superior shock resistance and its manufacture

Country Status (1)

Country Link
JP (1) JPS61210142A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100347323C (en) * 2004-12-29 2007-11-07 同济大学 Ti-Ni base shape memory alloy and method for preparing same
US8801875B2 (en) 2007-12-21 2014-08-12 Cook Medical Technologies Llc Radiopaque alloy and medical device made of this alloy
US9074274B2 (en) 2009-11-17 2015-07-07 Cook Medical Technologies Llc Nickel-titanium-rare earth alloy and method of processing the alloy
US9103006B2 (en) 2006-09-06 2015-08-11 Cook Medical Technologies Llc Nickel-titanium alloy including a rare earth element
US9212409B2 (en) 2012-01-18 2015-12-15 Cook Medical Technologies Llc Mixture of powders for preparing a sintered nickel-titanium-rare earth metal (Ni-Ti-RE) alloy
US10000827B2 (en) 2011-10-21 2018-06-19 University Of Limerick Method of forming a sintered nickel-titanium-rare earth (Ni—Ti—RE) alloy
JP2019518135A (en) * 2016-04-20 2019-06-27 フォート ウェイン メタルズ リサーチ プロダクツ コープ. Nickel-titanium-yttrium alloy with reduced oxide inclusions

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4871332A (en) * 1971-12-28 1973-09-27
JPS58157935A (en) * 1982-03-13 1983-09-20 Hitachi Metals Ltd Shape memory alloy
JPS59116341A (en) * 1982-12-24 1984-07-05 Sumitomo Electric Ind Ltd Production of shape memory alloy material

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4871332A (en) * 1971-12-28 1973-09-27
JPS58157935A (en) * 1982-03-13 1983-09-20 Hitachi Metals Ltd Shape memory alloy
JPS59116341A (en) * 1982-12-24 1984-07-05 Sumitomo Electric Ind Ltd Production of shape memory alloy material

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100347323C (en) * 2004-12-29 2007-11-07 同济大学 Ti-Ni base shape memory alloy and method for preparing same
US9103006B2 (en) 2006-09-06 2015-08-11 Cook Medical Technologies Llc Nickel-titanium alloy including a rare earth element
US9873933B2 (en) 2006-09-06 2018-01-23 Cook Medical Technologies Llc Nickel-titanium alloy including a rare earth element
US8801875B2 (en) 2007-12-21 2014-08-12 Cook Medical Technologies Llc Radiopaque alloy and medical device made of this alloy
US9074274B2 (en) 2009-11-17 2015-07-07 Cook Medical Technologies Llc Nickel-titanium-rare earth alloy and method of processing the alloy
US10000827B2 (en) 2011-10-21 2018-06-19 University Of Limerick Method of forming a sintered nickel-titanium-rare earth (Ni—Ti—RE) alloy
US10563291B2 (en) 2011-10-21 2020-02-18 University Of Limerick Method of forming a sintered nickel-titanium-rare earth (Ni—Ti—Re) alloy
US9212409B2 (en) 2012-01-18 2015-12-15 Cook Medical Technologies Llc Mixture of powders for preparing a sintered nickel-titanium-rare earth metal (Ni-Ti-RE) alloy
JP2019518135A (en) * 2016-04-20 2019-06-27 フォート ウェイン メタルズ リサーチ プロダクツ コープ. Nickel-titanium-yttrium alloy with reduced oxide inclusions
US11155900B2 (en) 2016-04-20 2021-10-26 Fort Wayne Metals Research Products Corp. Nickel-titanium-yttrium alloys with reduced oxide inclusions

Also Published As

Publication number Publication date
JPH0429727B2 (en) 1992-05-19

Similar Documents

Publication Publication Date Title
US4684506A (en) Master alloy for the production of titanium-based alloys and method for producing the master alloy
JPS61210142A (en) Ni-ti alloy having superior shock resistance and its manufacture
CN105603257A (en) Production method of high-quality ferrotitanium
JP2989060B2 (en) Low oxygen Ti-Al alloy and method for producing the same
JPS61210141A (en) Ni-ti alloy having superior shock resistance and its manufacture
JPH03236434A (en) Nickel-base alloy in which each content of sulfur, oxygen and nitrogen extremely low
JP2003089825A (en) Method for producing high purity metal and alloy
JPH0621303B2 (en) Method for producing low oxygen Ti alloy
JP4209964B2 (en) Method for melting and casting metal vanadium and / or metal vanadium alloy
US4375371A (en) Method for induction melting
CN105779820B (en) The production method of low impurity content ferrotianium
JP2004307985A (en) PROCESS FOR MANUFACTURING Al ALLOY CONTAINING LITTLE Ca, AND BASE METAL FOR MANUFACTURING Al ALLOY CONTAINING LITTLE Ca
JPH0673464A (en) Production of high purity stainless steel
JPH0645831B2 (en) Method for melting Al-Li alloy
JPH04120225A (en) Manufacture of ti-al series alloy
JP5173283B2 (en) Nickel-based alloy and manufacturing method thereof
JPS6263634A (en) Ti alloy excellent in corrosion resistance and fatigue resistance and its production
JP2002294354A (en) Method for manufacturing hydrogen storage alloy
JP4183955B2 (en) Method for producing hydrogen storage alloy
EP0007062B1 (en) Preparation of phosphorus-containing metallic glass-forming alloy melts
JP2004353034A (en) PISTON MADE OF Al ALLOY WITH LOW Ca CONTENT
JPH04246137A (en) Production of ti-al alloy
JPS63227740A (en) Production of alloy for permanent magnet
WO2023224512A1 (en) Iron-carbon melt modifier and method of manufacturing same
JP2003171723A (en) Method for manufacturing metal vanadium, and method for manufacturing hydrogen storing alloy