EP0402288B1 - Process for the separation of calcium and nitrogen from lithium - Google Patents
Process for the separation of calcium and nitrogen from lithium Download PDFInfo
- Publication number
- EP0402288B1 EP0402288B1 EP90420275A EP90420275A EP0402288B1 EP 0402288 B1 EP0402288 B1 EP 0402288B1 EP 90420275 A EP90420275 A EP 90420275A EP 90420275 A EP90420275 A EP 90420275A EP 0402288 B1 EP0402288 B1 EP 0402288B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- lithium
- calcium
- alumina
- nitrogen
- separation
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22B—PRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
- C22B26/00—Obtaining alkali, alkaline earth metals or magnesium
- C22B26/10—Obtaining alkali metals
- C22B26/12—Obtaining lithium
Definitions
- the present invention relates to a process for the separation of calcium and nitrogen from lithium.
- Metallic lithium is generally obtained by igneous electrolysis of lithium chloride which can contain impurities such as calcium chloride.
- This salt is partially dissociated by the electric current and is therefore found in the form of calcium in the metal obtained where it can reach a content of several hundred ppm.
- This element is particularly troublesome when the metal is used in particular to develop aluminum lithium alloys because it tends to degrade their mechanical characteristics.
- lithium during its preparation is sometimes brought into contact with air; as it is particularly sensitive to the action of nitrogen, it tends to form nitrides whose content can also reach several hundred ppm.
- these nitrides are very hard compounds whose presence in alloys will cause trouble not only in terms of their properties but also during their shaping due to their abrasive action on the tools used: ingot mold casting, rolling mill cylinder, extrusion die, etc.
- these nitrides weaken the lithium sheets used as electrodes in electric batteries.
- the insoluble calcium oxide and aluminum nitride can then be separated from the liquid lithium at the same time.
- a single reagent: alumina the two lithium impurities are eliminated simultaneously.
- the small amount of aluminum that can remain in lithium is without drawbacks, especially if it is used for the development of aluminum-lithium alloys.
- alumina is a very common product which can be obtained in a state of high purity and in a sufficiently divided form to react quickly with lithium.
- alumina to be used will depend on the quantities of calcium and nitrogen present in the lithium, but it must be taken into account that they are cumulative, the same fraction of alumina serving simultaneously for the elimination of the two impurities according to the following successive reactions: Al2O3 + 6 Li ⁇ 3Li2O + 2 Al 3Li2O + 3 Ca ⁇ 3 CaO + 6 Li 2Li3N + 2 Al ⁇ 2 AlN + 6 Li
- the quantity of suitable alumina is therefore calculated from the impurity which, because of its content, requires the greatest quantity, but practically quantities of the order of 10% greater by weight than the quantity calculated are used.
- the alumina used preferably has a particle size of less than 3 mm so as to react as quickly as possible with the lithium.
- An improvement of the process consists in agitating the lithium-alumina mixture while it is maintaining temperature.
- the separation of the aluminum nitride and the calcium oxide can be carried out by any known means and, preferably, by filtration. This operation is carried out hot, but to ensure better resistance of the equipment, it is preferable to operate at a temperature below that of the holding, that is to say between 200 and 250 ° C.
- the lithium contained only 20 ppm of calcium, 250 ppm of nitrogen and its aluminum content was 50 ppm.
- the invention finds its application in obtaining quality lithium particularly suitable for the manufacture of aluminum-lithium alloys and electrodes of electric batteries.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Organic Chemistry (AREA)
- General Life Sciences & Earth Sciences (AREA)
- Geology (AREA)
- Manufacturing & Machinery (AREA)
- Life Sciences & Earth Sciences (AREA)
- Metallurgy (AREA)
- Environmental & Geological Engineering (AREA)
- Manufacture And Refinement Of Metals (AREA)
- Removal Of Specific Substances (AREA)
- Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)
- Electrolytic Production Of Metals (AREA)
- Secondary Cells (AREA)
- Battery Electrode And Active Subsutance (AREA)
Abstract
Description
La présente invention est relative à un procédé de séparation du calcium et de l'azote du lithium.The present invention relates to a process for the separation of calcium and nitrogen from lithium.
Le lithium métallique est généralement obtenu par électrolyse ignée de chlorure de lithium qui peut contenir des impuretés telles que le chlorure de calcium. Ce sel est partiellement dissocié par le courant électrique et se retrouve donc sous forme de calcium dans le métal obtenu où il peut atteindre une teneur de plusieurs centaines de ppm.
Cet élément est particulièrement gênant quand le métal sert notamment à élaborer des alliages aluminium lithium car il tend à dégrader leurs caractéristiques mécaniques.
Par ailleurs, le lithium au cours de sa préparation est parfois mis au contact de l'air; comme il est particulièrement sensible à l'action de l'azote, il a tendance à former des nitrures dont la teneur peut atteindre également plusieurs centaines de ppm. Or, ces nitrures sont des composés très durs dont la présence dans les alliages va être la cause d'ennuis non seulement au niveau de leurs propriétés mais aussi lors de leur mise en forme du fait de leur action abrasive sur l'outillage utilisé: lingotière de coulée, cylindre de laminoir, matrice d'extrusion, etc. En particulier, ces nitrures fragilisent les feuilles de lithium utilisées comme électrodes dans les batteries électriques.Metallic lithium is generally obtained by igneous electrolysis of lithium chloride which can contain impurities such as calcium chloride. This salt is partially dissociated by the electric current and is therefore found in the form of calcium in the metal obtained where it can reach a content of several hundred ppm.
This element is particularly troublesome when the metal is used in particular to develop aluminum lithium alloys because it tends to degrade their mechanical characteristics.
Furthermore, lithium during its preparation is sometimes brought into contact with air; as it is particularly sensitive to the action of nitrogen, it tends to form nitrides whose content can also reach several hundred ppm. However, these nitrides are very hard compounds whose presence in alloys will cause trouble not only in terms of their properties but also during their shaping due to their abrasive action on the tools used: ingot mold casting, rolling mill cylinder, extrusion die, etc. In particular, these nitrides weaken the lithium sheets used as electrodes in electric batteries.
D'où la nécessité de débarrasser le lithium du calcium et de l'azote qu'il contient ou tout au moins d'abaisser la teneur en ces impuretés à une valeur généralement inférieure à 100 ppm avant de l'utiliser à l'état de métal ou d'alliage.Hence the need to rid lithium of the calcium and nitrogen it contains or at least to reduce the content of these impurities to a value generally less than 100 ppm before using it in the state of metal or alloy.
En ce qui concerne la séparation du calcium, elle n'est pas possible par filtration car sa solubilité dans le lithium est relativement grande. De même si la distillation s'avère être un procédé convenable pour épurer le lithium en sodium et en potassium, par contre elle est peu efficace vis à vis des éléments alcalinoterreux et notamment du calcium.
Certes, on sait que certains composés du calcium tels que l'oxyde CaO sont insolubles dans le lithium mais, a priori, on peut penser que vouloir oxyder le calcium in situ va provoquer également une oxydation du lithium. En fait, on a constaté que l'oxygène introduit dans le lithium avait tendance à se fixer préférentiellement sur le calcium.
Aussi en ajoutant une quantité d'oxygène calculée pour fixer la totalité du calcium présent et en filtrant ensuite le lithium, il est possible d'effectuer une épuration en calcium jusqu'à des teneurs compatibles avec les spécifications des fabricants d'aluminium-lithium.
Il existe plusieurs façons d'introduire l'oxygène dans le lithium.
- soit en faisant barboter de l'oxygène gazeux dans le lithium liquide, mais cette méthode n'est pas très commode car la réaction peut être localement violente et risque d'entraîner rapidement le colmatage de la tuyauterie d'amenée de l'oxygène par l'oxyde de lithium.
- soit en ajoutant de l'oxyde de lithium dans le lithium fondu de manière à produire la réaction suivante:
Li₂O+Ca → CaO + 2 Li
Cette méthode est très intéressante car elle réalise l'épuration sans entraîner d'autres pollutions. L'oxyde de lithium n'est cependant pas un produit commercial et il faut donc d'abord le produire, ce qui grève les frais d'épuration.As regards the separation of calcium, it is not possible by filtration because its solubility in lithium is relatively high. Similarly, if distillation proves to be a suitable process for purifying lithium into sodium and potassium, on the other hand it is not very effective with respect to alkaline earth elements and in particular calcium.
Admittedly, it is known that certain calcium compounds such as the oxide CaO are insoluble in lithium but, a priori, one can think that wanting to oxidize calcium in situ will also cause oxidation of lithium. In fact, it has been found that the oxygen introduced into the lithium tends to bind preferentially to the calcium.
Also by adding a quantity of oxygen calculated to fix all of the calcium present and then filtering the lithium, it is possible to carry out a calcium purification up to contents compatible with the specifications of the manufacturers of aluminum-lithium.
There are several ways to introduce oxygen into lithium.
- either by bubbling gaseous oxygen into the liquid lithium, but this method is not very convenient because the reaction can be locally violent and risks rapidly leading to the clogging of the oxygen supply piping by the lithium oxide.
- either by adding lithium oxide to the molten lithium so as to produce the following reaction:
Li₂O + Ca → CaO + 2 Li
This method is very interesting because it performs the purification without causing other pollution. Lithium oxide is however not a commercial product and must therefore be produced first, which increases the cost of purification.
En outre, ces méthodes d'oxydation ne semblent pas apporter de solution à la séparation de l'azote du lithium sous forme de nitrure. En effet parmi les méthodes connues, on peut citer par exemple celle qui est exposée dans le brevet US 4781756 et qui consiste à ajouter une quantité stoechiométrique d'aluminium de manière à obtenir la réaction Li₃N + Al → AlN + 3Li puis à séparer le nitrure d'aluminium formé. Or, ce n'est pas l'aluminium qui permettra d'oxyder le calcium.
D'où les études qui ont été entreprises par la demanderesse pour trouver une autre solution qui convienne simultanément à l'élimination des deux types d'impuretés et dans la mesure du possible en employant un seul réactif.In addition, these oxidation methods do not seem to provide a solution to the separation of nitrogen from lithium in the form of nitride. Indeed, among the known methods, there may be mentioned, for example, that which is set out in US Pat. formed aluminum. However, it is not aluminum that will oxidize calcium.
Hence the studies which have been undertaken by the applicant to find another solution which is suitable simultaneously for the elimination of the two types of impurities and as far as possible by employing a single reagent.
Ces études ont abouti à un procédé caractérisé en ce que l'on ajoute au lithium de l'alumine divisée de manière à former du nitrure d'aluminium et de l'oxyde de calcium insolubles et on sépare à chaud lesdits insolubles pour récupérer le lithium liquide purifié.These studies have led to a process characterized in that insoluble alumina is added to the lithium so as to form insoluble aluminum nitride and calcium oxide and the said insoluble matter is hot separated to recover the lithium. purified liquid.
Dans ces conditions, une partie du lithium réduit l'oxyde d'aluminium et se transforme en oxyde de lithium qui va servir à oxyder le calcium suivant la réaction décrite plus haut. Par ailleurs, l'aluminium qui s'est formé lors de la réduction de l'alumine par le lithium va réagir avec le nitrure de lithium pour donner le nitrure d'aluminium comme dans l'US 4781756.Under these conditions, part of the lithium reduces the aluminum oxide and turns into lithium oxide which will be used to oxidize the calcium according to the reaction described above. Furthermore, the aluminum which is formed during the reduction of alumina by lithium will react with the lithium nitride to give the aluminum nitride as in US 4781756.
L'oxyde de calcium et le nitrure d'aluminium insolubles peuvent alors être séparés en même temps du lithium liquide. On réalise ainsi, avec un seul réactif: l'alumine, l'élimination simultanée des deux impuretés du lithium.
La petite quantité d'aluminium qui peut rester dans le lithium est sans inconvénients notamment s'il sert à l'élaboration des alliages aluminium-lithium.
Par ailleurs, l'alumine est un produit très courant que l'on peut se procurer dans un état de grande pureté et sous forme suffisamment divisée pour réagir rapidement avec le lithium.The insoluble calcium oxide and aluminum nitride can then be separated from the liquid lithium at the same time. In this way, with a single reagent: alumina, the two lithium impurities are eliminated simultaneously.
The small amount of aluminum that can remain in lithium is without drawbacks, especially if it is used for the development of aluminum-lithium alloys.
In addition, alumina is a very common product which can be obtained in a state of high purity and in a sufficiently divided form to react quickly with lithium.
Les quantités d'alumine à mettre en oeuvre dépendront des quantités de calcium et d'azote présentes dans le lithium, mais il faut tenir compte du fait qu'elles sont cumulatives, une même fraction d'alumine servant simultanément à l'élimination des deux impuretés suivant les réactions successives suivantes:
Al₂O₃ + 6 Li → 3Li₂O + 2 Al
3Li₂O + 3 Ca → 3 CaO + 6 Li
2Li3N + 2 Al → 2 AlN+6 Li
The quantities of alumina to be used will depend on the quantities of calcium and nitrogen present in the lithium, but it must be taken into account that they are cumulative, the same fraction of alumina serving simultaneously for the elimination of the two impurities according to the following successive reactions:
Al₂O₃ + 6 Li → 3Li₂O + 2 Al
3Li₂O + 3 Ca → 3 CaO + 6 Li
2Li3N + 2 Al → 2 AlN + 6 Li
On constate que la quantité d'alumine suffisante pour éliminer 3 atomes grammes de calcium permettra également d'éliminer 2 atomes grammes d'azote.
On calcule donc la quantité d'alumine convenable à partir de l'impureté qui en raison de sa teneur en exige la plus grande quantité, mais pratiquement on utilise des quantités de l'ordre de 10% supérieure en poids à la quantité calculée.
L'alumine mise en oeuvre a de préférence une granulométrie inférieure à 3 mm de manière à réagir le plus rapidement possible avec le lithium.It is found that the amount of alumina sufficient to remove 3 gram atoms of calcium will also remove 2 gram atoms of nitrogen.
The quantity of suitable alumina is therefore calculated from the impurity which, because of its content, requires the greatest quantity, but practically quantities of the order of 10% greater by weight than the quantity calculated are used.
The alumina used preferably has a particle size of less than 3 mm so as to react as quickly as possible with the lithium.
Néanmoins, il est préférable pour faciliter les réactions de maintenir le bain de lithium fondu entre 400 et 500°C pendant 1 heure au moins avant d'effectuer la séparation des insolubles qui se sont formés.
Un perfectionnement du procédé consiste à agiter le mélange lithium-alumine pendant son maintien en température.However, it is preferable to facilitate the reactions to maintain the molten lithium bath between 400 and 500 ° C for at least 1 hour before carrying out the separation of the insolubles which have formed.
An improvement of the process consists in agitating the lithium-alumina mixture while it is maintaining temperature.
La séparation du nitrure d'aluminium et de l'oxyde de calcium peut s'effectuer par tout moyen connu et, de préférence, par filtration.
Cette opération s'effectue à chaud, mais pour assurer une meilleure tenue du matériel, il est préférable d'opérer à une température inférieure à celle du maintien c'est-à-dire entre 200 et 250°C.The separation of the aluminum nitride and the calcium oxide can be carried out by any known means and, preferably, by filtration.
This operation is carried out hot, but to ensure better resistance of the equipment, it is preferable to operate at a temperature below that of the holding, that is to say between 200 and 250 ° C.
L'invention peut être illustrée à l'aide des exemples d'application suivants:The invention can be illustrated with the aid of the following application examples:
A 100 kg de lithium contenant 250 ppm de calcium et 120 ppm d'azote, on a ajouté 50 grammes d'alumine de granulométrie 0,5 mm et porté l'ensemble à 480°C pendant 8 heures.
Après refroidissement et filtration à 220°C, le lithium ne contenait plus que 40 ppm de calcium et 60 ppm d'azote et sa teneur en aluminium était de 130 ppm.To 100 kg of lithium containing 250 ppm of calcium and 120 ppm of nitrogen, 50 grams of alumina with a particle size of 0.5 mm were added and the whole was brought to 480 ° C. for 8 hours.
After cooling and filtration to 220 ° C., the lithium contained only 40 ppm of calcium and 60 ppm of nitrogen and its aluminum content was 130 ppm.
A 100 kg de lithium contenant 200 ppm de calcium et 1500 ppm d'azote, on a ajouté 500 g d'alumine de granulométrie 1 mm et on a porté l'ensemble à 480°C pendant 8 heures.To 100 kg of lithium containing 200 ppm of calcium and 1500 ppm of nitrogen, 500 g of alumina with a particle size of 1 mm were added and the whole was brought to 480 ° C. for 8 hours.
Après filtration dur bougie PORAL classe 20 à 220°C, le lithium ne contenait plus que 20 ppm de calcium, 250 ppm d'azote et sa teneur en aluminium était de 50 ppm.After filtration through PORAL class 20 candle at 220 ° C., the lithium contained only 20 ppm of calcium, 250 ppm of nitrogen and its aluminum content was 50 ppm.
L'invention trouve son application dans l'obtention de lithium de qualité particulièrement apte à la fabrication d'alliages d'aluminium-lithium et d'électrodes de batteries électrique.The invention finds its application in obtaining quality lithium particularly suitable for the manufacture of aluminum-lithium alloys and electrodes of electric batteries.
Claims (6)
- Process for the separation of calcium and nitrogen from lithium, characterized in that divided alumina is added to the melted lithium, so as to form aluminium nitride and calcium oxide in insoluble form and that said insoluble substances are separated hot in order to recover the purified liquid lithium.
- Process according to claim 1, characterized in that the alumina is added in the form of powder with a grain size below 3 mm.
- Process according to claim 1, characterized in that the lithium and the alumina are kept at between 400 and 500°C for at least one hour prior to carrying out separation.
- Process according to claim 1, characterized in that the lithium and the alumina are stirred throughout the temperature maintenance period.
- Process according to claim 1, characterized in that separation takes place by filtration.
- Process according to claim 1, characterized in that separation takes place at a temperature between 200 and 250°C.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
FR8908144A FR2649416B1 (en) | 1989-06-09 | 1989-06-09 | PROCESS FOR SEPARATING CALCIUM AND LITHIUM NITROGEN |
FR8908144 | 1989-06-09 |
Publications (3)
Publication Number | Publication Date |
---|---|
EP0402288A2 EP0402288A2 (en) | 1990-12-12 |
EP0402288A3 EP0402288A3 (en) | 1991-09-18 |
EP0402288B1 true EP0402288B1 (en) | 1994-09-21 |
Family
ID=9382902
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP90420275A Expired - Lifetime EP0402288B1 (en) | 1989-06-09 | 1990-06-07 | Process for the separation of calcium and nitrogen from lithium |
Country Status (9)
Country | Link |
---|---|
US (1) | US5019158A (en) |
EP (1) | EP0402288B1 (en) |
JP (1) | JPH0653952B2 (en) |
AT (1) | ATE111965T1 (en) |
CA (1) | CA2018409C (en) |
DD (1) | DD294973A5 (en) |
DE (1) | DE69012660T2 (en) |
ES (1) | ES2060116T3 (en) |
FR (1) | FR2649416B1 (en) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6200541B1 (en) * | 1997-10-28 | 2001-03-13 | Bp Amoco Corporation | Composite materials for membrane reactors |
CN101642815A (en) * | 2009-09-04 | 2010-02-10 | 黄启新 | Method for preparing metal lithium at high temperature employing the electrical conductivity of molten slag |
CN106756105B (en) * | 2016-12-19 | 2018-10-30 | 天齐锂业股份有限公司 | The drop of nitride removes method in lithium metal or lithium alloy |
CN107058761B (en) * | 2016-12-19 | 2019-06-11 | 天齐锂业股份有限公司 | The method that drop removes nitride in lithium metal or lithium alloy |
US20190280292A1 (en) * | 2018-03-08 | 2019-09-12 | Seeo, Inc. | Lithium metal foils with low defect density |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3287109A (en) * | 1963-05-31 | 1966-11-22 | Dow Chemical Co | Oxygen removal from alkali metals |
US4528032A (en) * | 1984-01-10 | 1985-07-09 | The United States Of America As Represented By The United States Department Of Energy | Lithium purification technique |
US4781756A (en) * | 1987-07-02 | 1988-11-01 | Lithium Corporation Of America | Removal of lithium nitride from lithium metal |
-
1989
- 1989-06-09 FR FR8908144A patent/FR2649416B1/en not_active Expired - Lifetime
-
1990
- 1990-05-16 US US07/524,451 patent/US5019158A/en not_active Expired - Lifetime
- 1990-06-04 JP JP2146045A patent/JPH0653952B2/en not_active Expired - Fee Related
- 1990-06-06 CA CA002018409A patent/CA2018409C/en not_active Expired - Lifetime
- 1990-06-07 AT AT90420275T patent/ATE111965T1/en not_active IP Right Cessation
- 1990-06-07 DD DD90341415A patent/DD294973A5/en not_active IP Right Cessation
- 1990-06-07 ES ES90420275T patent/ES2060116T3/en not_active Expired - Lifetime
- 1990-06-07 EP EP90420275A patent/EP0402288B1/en not_active Expired - Lifetime
- 1990-06-07 DE DE69012660T patent/DE69012660T2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
FR2649416B1 (en) | 1991-11-29 |
JPH0368792A (en) | 1991-03-25 |
ES2060116T3 (en) | 1994-11-16 |
DE69012660D1 (en) | 1994-10-27 |
EP0402288A2 (en) | 1990-12-12 |
JPH0653952B2 (en) | 1994-07-20 |
US5019158A (en) | 1991-05-28 |
DD294973A5 (en) | 1991-10-17 |
FR2649416A1 (en) | 1991-01-11 |
EP0402288A3 (en) | 1991-09-18 |
CA2018409A1 (en) | 1990-12-09 |
CA2018409C (en) | 1995-12-19 |
DE69012660T2 (en) | 1995-02-09 |
ATE111965T1 (en) | 1994-10-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
RU2753365C2 (en) | Improved solder and method for producing high-purity lead | |
FR2540483A1 (en) | PROCESS FOR PRODUCING PURE SILICON, IN PARTICULAR FOR SOLAR CELLS | |
FR2827592A1 (en) | Process for preparing photovoltaic quality silicon comprises oxygen or chlorine refining, re-melting, transfer of molten silicon to plasma refining in crucible furnace, refining under plasma and pouring into mold under controlled atmosphere | |
WO2019077892A1 (en) | Al ALLOY RECOVERY METHOD | |
EP0402288B1 (en) | Process for the separation of calcium and nitrogen from lithium | |
JPS5912731B2 (en) | Method for refining aluminum or aluminum alloy | |
JP7123834B2 (en) | Impurity removal method | |
FR2617504A1 (en) | PROCESS FOR THE REMOVAL OF LITHIUM NITRIDE FROM LIQUID METAL LITHIUM | |
US7892318B2 (en) | Crystallisation method for the purification of a molten metal, in particular recycled aluminium | |
FR2720385A1 (en) | Silicon alloy for the synthesis of alkyl or aryl halosilanes containing aluminum, calcium and copper. | |
FR2514786A1 (en) | Bismuth removal from molten lead - using mixt. of calcium-magnesium alloy granules, pref. of eutectic compsn. | |
JP2000045087A (en) | Production of high purity bismuth | |
JP3784331B2 (en) | Method for purifying gold-containing gallium and method for collecting gold from gallium containing gold | |
US20150336802A1 (en) | Method of purifying silicon | |
CA1185436A (en) | Process for the manufacture of aluminium with high purity eutectic elements | |
SU1271096A1 (en) | Method of processing anode deposits of electrolytic refining of aluminium | |
JP3784332B2 (en) | Purification method of gallium | |
JPH09235632A (en) | Method for removing manganese from manganese-containing molten aluminum | |
FR2519026A1 (en) | METHOD FOR REFINING IMPURED LEAD | |
BE362425A (en) | ||
JPH07207367A (en) | Production of al or al alloy | |
FR2687692A1 (en) | Process for refining crude magnesium | |
JPH07207370A (en) | Production of al or al alloy | |
JP2009293113A (en) | Treatment method for aluminum molten metal | |
BE393804A (en) |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Kind code of ref document: A2 Designated state(s): AT DE ES GB IT NL SE |
|
PUAL | Search report despatched |
Free format text: ORIGINAL CODE: 0009013 |
|
AK | Designated contracting states |
Kind code of ref document: A3 Designated state(s): AT DE ES GB IT NL SE |
|
17P | Request for examination filed |
Effective date: 19911008 |
|
17Q | First examination report despatched |
Effective date: 19931005 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AT DE ES GB IT NL SE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRE;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.SCRIBED TIME-LIMIT Effective date: 19940921 |
|
REF | Corresponds to: |
Ref document number: 111965 Country of ref document: AT Date of ref document: 19941015 Kind code of ref document: T |
|
REF | Corresponds to: |
Ref document number: 69012660 Country of ref document: DE Date of ref document: 19941027 |
|
GBT | Gb: translation of ep patent filed (gb section 77(6)(a)/1977) |
Effective date: 19941007 |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FG2A Ref document number: 2060116 Country of ref document: ES Kind code of ref document: T3 |
|
EAL | Se: european patent in force in sweden |
Ref document number: 90420275.1 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed | ||
REG | Reference to a national code |
Ref country code: GB Ref legal event code: IF02 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: AT Payment date: 20040517 Year of fee payment: 15 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: SE Payment date: 20040524 Year of fee payment: 15 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: ES Payment date: 20040608 Year of fee payment: 15 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: NL Payment date: 20040629 Year of fee payment: 15 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20050607 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: ES Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20050608 Ref country code: SE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20050608 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20060101 |
|
EUG | Se: european patent has lapsed | ||
NLV4 | Nl: lapsed or anulled due to non-payment of the annual fee |
Effective date: 20060101 |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FD2A Effective date: 20050608 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20080507 Year of fee payment: 19 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20080527 Year of fee payment: 19 |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20090607 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20090607 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20100101 |