JPH0754070A - Refining method for aluminum scrap - Google Patents

Refining method for aluminum scrap

Info

Publication number
JPH0754070A
JPH0754070A JP20408293A JP20408293A JPH0754070A JP H0754070 A JPH0754070 A JP H0754070A JP 20408293 A JP20408293 A JP 20408293A JP 20408293 A JP20408293 A JP 20408293A JP H0754070 A JPH0754070 A JP H0754070A
Authority
JP
Japan
Prior art keywords
molten metal
aluminum
cooling body
rotary cooling
refining
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP20408293A
Other languages
Japanese (ja)
Other versions
JP3237330B2 (en
Inventor
Tomoo Dobashi
倫男 土橋
Terumi Kanamori
照己 金森
Takaaki Murakami
高明 村上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Light Metal Co Ltd
Original Assignee
Nippon Light Metal Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Light Metal Co Ltd filed Critical Nippon Light Metal Co Ltd
Priority to JP20408293A priority Critical patent/JP3237330B2/en
Publication of JPH0754070A publication Critical patent/JPH0754070A/en
Application granted granted Critical
Publication of JP3237330B2 publication Critical patent/JP3237330B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Manufacture And Refinement Of Metals (AREA)

Abstract

PURPOSE:To produce refined aluminum having low concns. of the impurities from the melt of aluminum scrap by utilizing segregation solidification. CONSTITUTION:The molten metal M having a compsn. in which a part of impurities are crystallized as primary crystals of intermetallic compds. is housed into a refining vessel 10 where the molten metal M is cooled down to a temp. right above the solidification point of alpha-Al to settle the impurities as the intermetallic compds. I of Al-Si-Fe-Mn, etc., on the bottom of the refining vessel 10. A cooling medium g is then fed to a rotary cooling body 30 or this rotary cooling body 30 is immersed into the molten metal M and the purified aluminum is crystallized and solidified as a solid A on the surface of the rotary cooling member 30. As a result, the intermetallic compds. I is not taken into the solid A and, therefore, the lowering in the purity of the molten metal M by the intermetallic compds. I does not arise and the refined aluminum having the low concns. of Fe and Mn is obtd.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、溶解原料に含まれてい
る不純物を晶出分離しながら、目標組成をもつアルミニ
ウム材料を得る精製方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a refining method for obtaining an aluminum material having a target composition while crystallizing and separating impurities contained in a molten raw material.

【0002】[0002]

【従来の技術】アルミニウム溶湯に含まれているFe等
の不純物を分離除去するため、Mnを添加し、Mnと不
純物との間で金属間化合物を生成させ、晶出した金属間
化合物を分離する方法が採用されている。たとえば、特
開昭57−2134号公報ではAl−Mn系金属間化合
物を添加し、特開昭59−12731号公報ではMn又
はAl−MnとMg又はAl−Mgとを併用添加してい
る。何れの方法においても、不純物の一部であるFe
は、Al−Fe−Mn系金属間化合物として分離除去さ
れる。
2. Description of the Related Art In order to separate and remove impurities such as Fe contained in molten aluminum, Mn is added, an intermetallic compound is generated between Mn and the impurity, and a crystallized intermetallic compound is separated. The method has been adopted. For example, in JP-A-57-2134, an Al-Mn-based intermetallic compound is added, and in JP-A-59-12731, Mn or Al-Mn and Mg or Al-Mg are added together. In any method, Fe which is a part of impurities
Is separated and removed as an Al-Fe-Mn-based intermetallic compound.

【0003】[0003]

【発明が解決しようとする課題】Mn系等の添加材を使
用した精製方法では、Fe及びMnの除去ができるだけ
であり、得られた精製アルミニウムのFe濃度も0.5
重量%程度が限界である。しかも、Mnの添加によって
不純物を分離除去するとき、過剰量のMn添加を必要と
することから、精製後のアルミニウム材料に多量のMn
が含まれる。また、特開昭57−82437号公報で紹
介されている方法でアルミニウム原料を精製すると、初
晶として金属間化合物が晶出する系では晶出するアルミ
ニウムの結晶強度が弱い。そのため、冷却管の回転速度
が外周速2.5〜8m/秒まで上昇すると、冷却体表面
に晶出したアルミニウムの一部が離脱して溶湯に移行
し、見掛け上の凝固速度が低下する。最悪の場合、凝固
体の成長可能な厚さに上限が加わる事態も生じる。
In the refining method using an additive such as Mn, only Fe and Mn can be removed, and the Fe concentration of the obtained refined aluminum is 0.5.
The limit is about wt%. Moreover, when impurities are separated and removed by adding Mn, it is necessary to add an excessive amount of Mn. Therefore, a large amount of Mn is added to the purified aluminum material.
Is included. Further, when the aluminum raw material is refined by the method introduced in JP-A-57-82437, the crystal strength of aluminum crystallized is weak in a system in which an intermetallic compound is crystallized as a primary crystal. Therefore, when the rotation speed of the cooling pipe is increased to an outer peripheral speed of 2.5 to 8 m / sec, part of the aluminum crystallized on the surface of the cooling body is released and transferred to the molten metal, and the apparent solidification speed is reduced. In the worst case, an upper limit may be added to the thickness at which the solidified body can grow.

【0004】しかも、初晶として晶出する金属間化合物
の晶出温度は、α−Alの凝固点に比較して通常数十℃
高い。そのため、不純物は、アルミニウムの晶出に先立
って、金属間化合物として冷却体表面に晶出凝固する。
この凝固層は、その上に晶出する精製アルミニウムの純
度を低下させる原因になるため、原理的にも実用的にも
精製工程に問題を含む。本発明は、このような問題を解
消すべく案出されたものであり、溶湯から不純物を金属
間化合物として予め晶出分離する工程を組み込むことに
より、冷却体表面に晶出するアルミニウムに不純物が混
入することを回避し、高歩留りで精製アルミニウムを得
ることを目的とする。
Moreover, the crystallization temperature of the intermetallic compound crystallized as the primary crystal is usually several tens of degrees Celsius as compared with the freezing point of α-Al.
high. Therefore, the impurities crystallize and solidify on the surface of the cooling body as an intermetallic compound prior to the crystallization of aluminum.
This solidified layer causes a decrease in the purity of the purified aluminum crystallized on the solidified layer, and thus involves a problem in the purification process both in principle and practically. The present invention has been devised to solve such a problem, and by incorporating a step of precipitating and separating impurities as an intermetallic compound from the molten metal, impurities that crystallize on the surface of the cooling body are contaminated with aluminum. The purpose is to avoid the mixture and to obtain purified aluminum with a high yield.

【0005】[0005]

【課題を解決するための手段】本発明の精製方法は、そ
の目的を達成するため、不純物の一部が金属間化合物の
初晶として晶出する組成をもつアルミニウム溶湯を精製
容器に収容し、α−Alの凝固点から最高でも10℃高
い温度範囲に溶湯を保持することにより金属間化合物を
晶出させ精製容器の底部に沈降させた後、溶湯に回転冷
却体を浸漬し、回転冷却体を回転させながら溶湯を冷却
して精製アルミニウムを凝固体として回転冷却体の表面
に成長させることを特徴とする。溶湯に浸漬した回転冷
却体は、精製容器の底部に沈降した金属間化合物が精製
アルミニウムの凝固体に混入しない外周速0.5〜2m
/秒で回転させることが好ましい。回転冷却体は、精錬
の開始段階から溶湯に浸漬しておくこともできる。この
場合、α−Alの凝固点から最高でも10℃高い温度範
囲に溶湯が冷却したとき、回転冷却体に冷却ガスを送り
込み、精製アルミニウムを凝固体として回転冷却体の表
面に成長させる。
In order to achieve the object, the refining method of the present invention contains an aluminum melt having a composition in which a part of impurities are crystallized as a primary crystal of an intermetallic compound in a refining vessel, By holding the molten metal in a temperature range that is 10 ° C. higher than the freezing point of α-Al, the intermetallic compounds are crystallized and settled at the bottom of the refining vessel, and then the rotary cooling body is immersed in the molten metal to form the rotary cooling body. It is characterized in that the molten metal is cooled while being rotated to grow purified aluminum as a solidified body on the surface of the rotary cooling body. The rotary cooling body immersed in the molten metal has an outer peripheral speed of 0.5 to 2 m in which the intermetallic compound settled at the bottom of the refining container does not mix with the solidified body of the refined aluminum.
It is preferable to rotate at a speed of 1 / second. The rotary cooling body can be immersed in the molten metal from the start stage of refining. In this case, when the molten metal is cooled to a temperature range that is higher than the freezing point of α-Al by a maximum of 10 ° C., a cooling gas is fed into the rotary cooling body to grow purified aluminum as a solidified body on the surface of the rotary cooling body.

【0006】本発明に従った精製方法は、たとえば図1
に示す設備構成の装置を使用して実施される。精製容器
10としては、黒鉛製のルツボ或いは黒鉛とSiCとを
混合焼成したルツボが通常使用される。ルツボ本体11
を外容器12に入れ、蓋体13を装着する。蓋体13に
は、温度制御用のバーナ14を取り付けても良い。精製
容器10の外周には、加熱機構20が外容器12を取り
囲んで配置されている。加熱機構20は、内周側にヒー
タ21を取り付けた耐火れんが製のヒータブロック22
〜24を備え、各ヒータブロック22〜24の熱量が独
立して制御されるものが好ましい。精製容器10の底部
にも、ヒータブロック25を配置する。精製されるアル
ミニウムスクラップは、精製容器10に装入した後、ヒ
ータブロック22〜25からの加熱によって溶解され、
α−Alの凝固点より僅かに高い温度に保持される。
The purification method according to the present invention is shown in FIG.
It is carried out using the device having the equipment configuration shown in. As the refining vessel 10, a graphite crucible or a crucible obtained by mixing and firing graphite and SiC is usually used. Crucible body 11
Is put in the outer container 12, and the lid 13 is attached. A burner 14 for temperature control may be attached to the lid 13. A heating mechanism 20 is arranged on the outer periphery of the purification container 10 so as to surround the outer container 12. The heating mechanism 20 includes a heater block 22 made of refractory brick with a heater 21 attached to the inner circumference side.
It is preferable that each of the heater blocks 22 to 24 is independently controlled so that the amount of heat of each heater block 22 to 24 is controlled. The heater block 25 is also arranged at the bottom of the purification container 10. The aluminum scrap to be purified is charged into the refining vessel 10 and then melted by heating from the heater blocks 22 to 25,
It is maintained at a temperature slightly above the freezing point of α-Al.

【0007】溶融状態に保持された溶湯Mに、回転冷却
体30が浸漬される。回転冷却体30は、軸方向にガス
通路をもつ内管31の先端部近傍に外管32を嵌め合せ
ている。内管31は、蓋体13を貫通して上方に延び、
カップリング33を介しモータ34の出力軸35に接続
されている。モータ33から延びたアーム36は、モー
タ37で回転される送りネジ38に嵌挿されている。こ
れにより、回転冷却体30は、精製容器10の内部で昇
降自在に回転する。外管32は、図示するように底面側
が閉塞されており、内管31の下端との間にギャップ3
9を形成する。内管31から送り込まれた冷却媒体g
は、ギャップ39を経て外管32から放出される。或い
は、内管31及び外管32の二重間構造に代え、所定の
ガス通路を形成した黒鉛ブロックを使用することもでき
る。
The rotary cooling body 30 is immersed in the molten metal M held in a molten state. The rotary cooling body 30 has an outer pipe 32 fitted in the vicinity of the tip of an inner pipe 31 having a gas passage in the axial direction. The inner pipe 31 extends upward through the lid body 13,
It is connected to an output shaft 35 of a motor 34 via a coupling 33. The arm 36 extending from the motor 33 is fitted into a feed screw 38 rotated by a motor 37. As a result, the rotary cooling body 30 rotates in the refining container 10 so as to be vertically movable. The outer pipe 32 is closed on the bottom surface side as shown in the drawing, and a gap 3 is formed between the outer pipe 32 and the lower end of the inner pipe 31.
9 is formed. Cooling medium g sent from the inner pipe 31
Are emitted from the outer tube 32 through the gap 39. Alternatively, the double block structure of the inner pipe 31 and the outer pipe 32 may be replaced with a graphite block having a predetermined gas passage.

【0008】冷却媒体gには、空気,非酸化性ガス,霧
状の水分を含む空気等が使用される。冷却媒体gの流動
により、外管32の管壁を介して溶湯Mが冷却され、外
管32の周囲に凝固体Aが成長する。溶湯Mの温度及び
凝固体Aの成長速度は、冷却媒体gの流量制御によって
最適に維持される。溶湯Mの降温に従って、Al−Si
−Fe−Mn系等の金属間化合物として不純物Iが晶出
する。晶出した不純物Iは、溶湯Mより大きな比重をも
っているので、溶湯M中を下降して精製容器10の底部
に沈積する。金属間化合物Iの沈積量は、溶湯Mの冷却
に応じて多くなる。
As the cooling medium g, air, non-oxidizing gas, air containing mist-like water, or the like is used. Due to the flow of the cooling medium g, the molten metal M is cooled through the tube wall of the outer tube 32, and the solidified body A grows around the outer tube 32. The temperature of the molten metal M and the growth rate of the solidified body A are optimally maintained by controlling the flow rate of the cooling medium g. According to the temperature drop of the molten metal M, Al-Si
Impurity I crystallizes out as an intermetallic compound such as a —Fe—Mn system. The crystallized impurity I has a larger specific gravity than the molten metal M, and therefore descends in the molten metal M and deposits on the bottom of the refining vessel 10. The amount of the intermetallic compound I deposited increases as the molten metal M is cooled.

【0009】溶湯Mが凝固を開始する温度Tは、溶解原
料の成分及び含有量や冷却過程で晶出した不純物の量等
に基づいて予め定まっている。溶湯MがT〜(T+10
℃)の温度範囲まで降温したとき、溶湯Mに回転冷却体
30を浸漬し、或いはすでに浸漬している回転冷却体3
0に冷却媒体gを供給する。これにより、不純物が晶出
分離した溶湯Mが回転冷却体30で冷却され、回転冷却
体30の表面に凝固体Aとして晶出する。このとき、回
転冷却体30が回転しているので、凝固体Aの近傍にあ
る溶湯と母液との間に生じる不純物の濃度勾配が解消さ
れ、金属間化合物の晶出が促進されると共に溶湯Mの冷
却速度も速められる。
The temperature T at which the molten metal M starts to solidify is predetermined based on the components and content of the molten raw material, the amount of impurities crystallized in the cooling process, and the like. Molten metal M is T ~ (T + 10
When the temperature is lowered to a temperature range of (° C.), the rotary cooling body 30 is immersed in the molten metal M, or the rotary cooling body 3 already immersed.
The cooling medium g is supplied to 0. As a result, the molten metal M in which the impurities are crystallized and separated is cooled by the rotary cooling body 30, and crystallized as a solidified body A on the surface of the rotary cooling body 30. At this time, since the rotary cooling body 30 is rotating, the impurity concentration gradient generated between the molten metal and the mother liquor in the vicinity of the solidified body A is eliminated, the crystallization of the intermetallic compound is promoted, and the molten metal M The cooling rate can be increased.

【0010】回転冷却体30は、凝固時に偏析作用で排
出される不純物元素を凝固界面から溶湯Mに拡散させ
る。その結果、回転冷却体30の表面に晶出凝固する凝
固体Aに対する精製効率が良くなる。しかし、回転冷却
体30が高速回転するとき、回転冷却体30の凝固界面
で晶出するアルミニウムの一部が遠心力によって剥離し
溶湯Mに飛散するため、凝固速度を低下させる。したが
って、精製効率に悪影響を与えず且つ凝固速度を大きく
低下させない回転速度として、外周における周速0.5
〜2m/秒で回転冷却体30を回転させることが好まし
い。
The rotary cooling body 30 diffuses the impurity element discharged by the segregation action during solidification into the molten metal M from the solidification interface. As a result, the purification efficiency for the solidified body A that crystallizes and solidifies on the surface of the rotary cooling body 30 is improved. However, when the rotary cooling body 30 rotates at a high speed, a part of aluminum crystallized at the solidification interface of the rotary cooling body 30 is separated by the centrifugal force and scattered into the molten metal M, so that the solidification rate is reduced. Therefore, as the rotation speed that does not adversely affect the purification efficiency and does not significantly reduce the solidification speed, the peripheral speed at the outer circumference is 0.5.
It is preferable to rotate the rotary cooling body 30 at a speed of 2 m / sec.

【0011】溶湯Mの温度がα−Alの凝固点近傍に達
したとき、冷却媒体gの供給を停止し、回転冷却体30
の回転を止め、モータ37を駆動させて回転冷却体30
を精製容器10から取り出す。その後、直ちに精製容器
10を傾動させ、残湯を移湯することにより沈積した金
属間化合物Iから分離される。凝固体Aは、機械的な掻
取り,再溶融等によって回転冷却体30から分離回収さ
れる。金属間化合物Iの分離は、精製終了後に行うこと
に代え、純化されたアルミニウムが凝固体Aとして晶出
する前に行うことも可能である。この場合、温度調整炉
及び精製炉をそれぞれ別個に設け、温度調整炉で凝固を
開始する温度直上まで溶湯を降温させた後、精製炉に移
湯し、精製に収容された溶湯に回転冷却体を浸漬して精
製する。或いは、精製容器10の底部に沈積した金属間
化合物Iを適宜のメタルポンプで吸引除去した後、回転
冷却体30を使用した精製を行うこともできる。
When the temperature of the molten metal M reaches near the freezing point of α-Al, the supply of the cooling medium g is stopped and the rotary cooling body 30
Rotation of the rotary cooling body 30 is stopped by driving the motor 37.
Is taken out from the purification container 10. Immediately thereafter, the refining vessel 10 is tilted and the residual hot water is transferred to separate it from the deposited intermetallic compound I. The solidified body A is separated and collected from the rotary cooling body 30 by mechanical scraping, remelting, or the like. The separation of the intermetallic compound I can be performed before the purified aluminum is crystallized as the solidified body A instead of performing the purification after the purification. In this case, a temperature control furnace and a refining furnace are separately provided, the temperature of the molten metal is lowered to just above the temperature at which solidification is started in the temperature control furnace, then the molten metal is transferred to the refining furnace, and the rotary cooling body is added to the molten metal stored for refining. To immerse and refine. Alternatively, the intermetallic compound I deposited on the bottom of the purification container 10 may be removed by suction with an appropriate metal pump, and then the refrigeration using the rotary cooling body 30 may be performed.

【0012】[0012]

【作用】たとえば、不純物として多量のSi,Fe,M
n等を含むアルミニウムスクラップを溶解した溶湯Mを
冷却するとき、先ずAl−Si−Fe−Mn系金属間化
合物として不純物が晶出する。晶出した金属間化合物I
は、比重差によって溶湯を降下し、精製容器10の底部
に沈積する。その結果、残った溶湯Mは、不純物が除去
された純度の高いアルミニウムとなる。そこで、溶湯M
を回転冷却体30の表面に凝固させると、精製アルミニ
ウムが凝固体Aとして得られる。このように、不純物が
金属間化合物Iとして晶出するタイミングと、純化され
たアルミニウムが回転冷却体30の表面に晶出凝固する
タイミングとをずらせることによって、簡単な操作によ
ってアルミニウム溶湯が精製される。純化されたアルミ
ニウムが回転冷却体の表面に晶出するタイミングは、溶
湯Mが凝固開始する直上の温度に設定される。溶湯Mが
凝固開始する直前になったとき、溶湯Mに回転冷却体3
0を浸漬し、或いはすでに浸漬している回転冷却体Mに
冷却媒体gを送り込む。回転冷却体30を溶湯Mに浸漬
するタイミングは、溶湯Mの温度を連続測定することに
よって容易に知ることができる。純化されたアルミニウ
ムは、金属間化合物Iとして晶出した不純物から分離さ
れた状態で回転冷却体30の表面に凝固する。
Function: For example, a large amount of Si, Fe, M as impurities
When the molten metal M in which aluminum scrap containing n or the like is melted is cooled, impurities are first crystallized as an Al-Si-Fe-Mn-based intermetallic compound. Crystallized intermetallic compound I
Due to the difference in specific gravity, the molten metal descends and deposits on the bottom of the refining vessel 10. As a result, the remaining molten metal M becomes high-purity aluminum from which impurities have been removed. Therefore, molten metal M
When solidified on the surface of the rotary cooling body 30, purified aluminum is obtained as a solidified body A. In this way, by shifting the timing at which the impurities are crystallized as the intermetallic compound I and the timing at which the purified aluminum is crystallized and solidified on the surface of the rotary cooling body 30, the molten aluminum can be purified by a simple operation. It The timing at which the purified aluminum crystallizes on the surface of the rotary cooling body is set to the temperature immediately above where the molten metal M starts to solidify. When the molten metal M is about to start solidification, the rotary cooling body 3 is added to the molten metal M.
0 is immersed, or the cooling medium g is sent to the rotary cooling body M which is already immersed. The timing of immersing the rotary cooling body 30 in the molten metal M can be easily known by continuously measuring the temperature of the molten metal M. The purified aluminum solidifies on the surface of the rotary cooling body 30 while being separated from the impurities crystallized as the intermetallic compound I.

【0013】[0013]

【実施例】内径200mm及び高さ600mmの黒鉛製
ルツボを図1に示す精製装置に装着し、溶湯を精製し
た。回転冷却体30としては、外径100mmの黒鉛管
を使用した。表1に不純物濃度を示すα−Alの凝固点
が約595℃のアルミニウムスクラップ原料溶湯35k
gをルツボに装入し、640℃に加熱した。溶融が完了
した時点で、溶湯Mに回転冷却体30を深さ160mm
で浸漬し、自然放冷により溶湯30を徐々に冷却した。
この段階では、回転冷却体30に冷却媒体gを供給しな
かった。溶湯Mが温度603℃に降温した時点で、冷却
媒体gとして冷却空気を流量400リットル/分で回転
冷却体30に供給した。40分後に冷却空気の供給を停
止し、回転冷却体30を精製容器10から取り出した。
回転冷却体30の表面に形成された凝固体Aは、加熱溶
融により回転冷却体30から分離回収された。得られた
精製アルミニウムは、表1に示す不純物濃度をもってい
た。このときの回収率は、20%であった。また、精製
容器10の底部に、3.4kgのAl−Si−Fe−M
n系の金属間化合物Iが沈積していた。
EXAMPLE A graphite crucible having an inner diameter of 200 mm and a height of 600 mm was mounted on the refining apparatus shown in FIG. 1 to refine the molten metal. As the rotary cooling body 30, a graphite tube having an outer diameter of 100 mm was used. Table 1 shows the impurity concentration of α-Al, the freezing point of the aluminum scrap raw material molten metal of about 595 ℃ 35k
g was placed in a crucible and heated to 640 ° C. When the melting is completed, the rotary cooling body 30 is placed in the melt M to a depth of 160 mm.
The molten metal 30 was gradually cooled by natural cooling.
At this stage, the cooling medium g was not supplied to the rotary cooling body 30. When the temperature of the molten metal M was lowered to a temperature of 603 ° C., cooling air was supplied to the rotary cooling body 30 as a cooling medium g at a flow rate of 400 liters / minute. After 40 minutes, the supply of cooling air was stopped, and the rotary cooling body 30 was taken out of the purification container 10.
The solidified body A formed on the surface of the rotary cooling body 30 was separated and collected from the rotary cooling body 30 by heating and melting. The purified aluminum thus obtained had the impurity concentrations shown in Table 1. The recovery rate at this time was 20%. In addition, at the bottom of the purification container 10, 3.4 kg of Al-Si-Fe-M is used.
The n-type intermetallic compound I was deposited.

【0014】比較のため、同じ溶湯Mに、金属間化合物
Iが晶出する温度620℃で回転冷却体30を浸漬し、
浸漬直後から流量400リットル/分で冷却空気を供給
しながら溶湯Mを冷却した。このときに得られた精製ア
ルミニウムの不純物濃度を、表1に比較例として併せ示
す。表1から明らかなように、回転冷却体30による冷
却をα−Alの凝固点(約595℃)直上の温度で開始
したとき、精製アルミニウム中のFe濃度及びMn濃度
が大幅に下がっていることが判る。これは、溶湯Mから
最初に晶出する金属間化合物Iが凝固体Aに取り込まれ
ることなく、精製容器10の底部に沈降分離されたこと
を示す。また、溶湯Mが603℃に降温した時点で回転
冷却体30を溶湯Mに浸漬した場合でも、同様にFe及
びMn濃度が低下した精製アルミニウムが得られた。
For comparison, the rotary cooling body 30 is immersed in the same melt M at a temperature of 620 ° C. at which the intermetallic compound I crystallizes,
Immediately after the immersion, the molten metal M was cooled while supplying cooling air at a flow rate of 400 liters / minute. The impurity concentration of the purified aluminum obtained at this time is also shown in Table 1 as a comparative example. As is apparent from Table 1, when the cooling by the rotary cooling body 30 is started at a temperature just above the freezing point (about 595 ° C.) of α-Al, the Fe concentration and the Mn concentration in the refined aluminum are significantly lowered. I understand. This indicates that the intermetallic compound I that first crystallized from the molten metal M was not taken into the solidified body A, but was precipitated and separated at the bottom of the purification container 10. Further, even when the rotary cooling body 30 was immersed in the molten metal M at the time when the molten metal M was cooled to 603 ° C., refined aluminum in which Fe and Mn concentrations were similarly reduced was obtained.

【0015】[0015]

【表1】 [Table 1]

【0016】[0016]

【発明の効果】以上に説明したように、本発明において
は、初晶が金属間化合物である組成をもつアルミニウム
スクラップの溶湯を偏析凝固させアルミニウムを精製す
るとき、不純物が金属間化合物として溶湯から沈降した
後で、純化されたアルミニウムを回転冷却体の表面に凝
固させている。そのため、アルミニウム溶湯の冷却過程
で晶出する金属間化合物の影響を受けることなく、純度
の高い精製アルミニウムが安定操業条件の下で得られ
る。
As described above, according to the present invention, when the molten aluminum scrap having the composition in which the primary crystal is an intermetallic compound is segregated and solidified to refine aluminum, impurities are removed from the molten metal as an intermetallic compound. After settling, purified aluminum is solidified on the surface of the rotary cooling body. Therefore, purified aluminum with high purity can be obtained under stable operating conditions without being affected by the intermetallic compound crystallized during the cooling process of the molten aluminum.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明に従った精製方法を実施する精製装置
の一例
FIG. 1 shows an example of a purification apparatus for carrying out a purification method according to the present invention.

【符号の説明】[Explanation of symbols]

M:溶湯 A:凝固体 g:冷却媒体 10:精製容器 20:加熱機構 30:回転冷却
M: molten metal A: solidified body g: cooling medium 10: refining vessel 20: heating mechanism 30: rotary cooling body

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 不純物の一部が金属間化合物の初晶とし
て晶出する組成をもつアルミニウム溶湯を精製容器に収
容し、α−Alの凝固点から最高でも10℃高い温度範
囲に前記溶湯を保持することにより前記金属間化合物を
晶出させ前記精製容器の底部に沈降させた後、前記溶湯
に回転冷却体を浸漬し、該回転冷却体を回転させながら
前記溶湯を冷却して精製アルミニウムを凝固体として前
記回転冷却体の表面に成長させることを特徴とするアル
ミニウムスクラップの精製方法。
1. An aluminum melt having a composition in which a part of impurities are crystallized as a primary crystal of an intermetallic compound is contained in a refining vessel, and the melt is kept at a temperature range higher than the freezing point of α-Al by at most 10 ° C. By crystallizing the intermetallic compound and allowing it to settle at the bottom of the refining vessel, immersing a rotary cooling body in the molten metal, and cooling the molten metal while rotating the rotary cooling body to solidify purified aluminum. A method for refining aluminum scrap, characterized by growing as a body on the surface of the rotary cooling body.
【請求項2】 精製開始段階で回転冷却体を溶湯に浸漬
し、前記溶湯の冷却により不純物を金属間化合物として
炉底に晶出沈降分離し、α−Alの凝固点から最高でも
10℃高い温度範囲に前記溶湯が冷却したとき、前記回
転冷却体に冷却ガスを送り込み、精製アルミニウムを凝
固体として前記回転冷却体の表面に成長させることを特
徴とするアルミニウムスクラップの精製方法。
2. A rotary cooling body is immersed in a molten metal at the start of refining, and impurities are crystallized and precipitated as intermetallic compounds on the bottom of the furnace by cooling the molten metal to obtain a temperature 10 ° C. higher than the freezing point of α-Al at the maximum. A method for refining aluminum scrap, characterized in that, when the molten metal is cooled to a range, a cooling gas is sent to the rotary cooling body to grow purified aluminum as a solidified body on the surface of the rotary cooling body.
【請求項3】 精製容器の底部に沈降した金属間化合物
が精製アルミニウムの凝固体に混入しない外周速0.5
〜2m/秒で、溶湯に浸漬した回転冷却体を回転させる
請求項1又は2記載の精製方法。
3. An outer peripheral speed of 0.5 at which an intermetallic compound settled at the bottom of a refining vessel is not mixed into a solidified body of refined aluminum.
The refining method according to claim 1 or 2, wherein the rotary cooling body immersed in the molten metal is rotated at a speed of 2 m / sec.
JP20408293A 1993-08-18 1993-08-18 Purification method of aluminum alloy scrap Expired - Fee Related JP3237330B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20408293A JP3237330B2 (en) 1993-08-18 1993-08-18 Purification method of aluminum alloy scrap

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20408293A JP3237330B2 (en) 1993-08-18 1993-08-18 Purification method of aluminum alloy scrap

Publications (2)

Publication Number Publication Date
JPH0754070A true JPH0754070A (en) 1995-02-28
JP3237330B2 JP3237330B2 (en) 2001-12-10

Family

ID=16484488

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20408293A Expired - Fee Related JP3237330B2 (en) 1993-08-18 1993-08-18 Purification method of aluminum alloy scrap

Country Status (1)

Country Link
JP (1) JP3237330B2 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL1000456C2 (en) * 1995-05-31 1996-12-03 Hoogovens Aluminium Bv Process for refining an aluminum scrap melt, and aluminum alloy from refined aluminum scrap.
JP2008163419A (en) * 2006-12-28 2008-07-17 Showa Denko Kk Metal-refining method and apparatus, refined metal, casting, metal product and electrolytic capacitor
JP2008266703A (en) * 2007-04-18 2008-11-06 Showa Denko Kk Metal refining method, metal refining apparatus, refined metal, casting, metal product and electrolytic capacitor
WO2019198476A1 (en) * 2018-04-09 2019-10-17 株式会社神戸製鋼所 Impurity removal method
JP2019183265A (en) * 2018-04-09 2019-10-24 株式会社神戸製鋼所 Impurity removal method
CN110950368A (en) * 2020-01-06 2020-04-03 郑州卓玉新材料有限公司 Preparation method of low-sodium corundum
CN111032890A (en) * 2017-08-16 2020-04-17 美铝美国公司 Method for recycling aluminum alloy and purification method thereof
CN111321303A (en) * 2016-06-02 2020-06-23 昭和电工株式会社 Substance refining method
CN113026109A (en) * 2021-03-08 2021-06-25 中国科学院过程工程研究所 Device and method for preparing high-purity metal through rotary segregation purification
CN114199021A (en) * 2021-12-31 2022-03-18 昆明理工大学 Device and method for treating low-vanadium titanium aluminum waste and preparing high-quality aluminum

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL1000456C2 (en) * 1995-05-31 1996-12-03 Hoogovens Aluminium Bv Process for refining an aluminum scrap melt, and aluminum alloy from refined aluminum scrap.
EP0745693A1 (en) * 1995-05-31 1996-12-04 Hoogovens Aluminium Bv Method of refining a melt of aluminium scrap melt and aluminium alloy obtained from the refined melt
US5741348A (en) * 1995-05-31 1998-04-21 Hoogovens Aluminium Bv Method for refining an aluminium scrap smelt
JP2008163419A (en) * 2006-12-28 2008-07-17 Showa Denko Kk Metal-refining method and apparatus, refined metal, casting, metal product and electrolytic capacitor
JP2008266703A (en) * 2007-04-18 2008-11-06 Showa Denko Kk Metal refining method, metal refining apparatus, refined metal, casting, metal product and electrolytic capacitor
CN111321303A (en) * 2016-06-02 2020-06-23 昭和电工株式会社 Substance refining method
CN111032890A (en) * 2017-08-16 2020-04-17 美铝美国公司 Method for recycling aluminum alloy and purification method thereof
JP2019183265A (en) * 2018-04-09 2019-10-24 株式会社神戸製鋼所 Impurity removal method
WO2019198476A1 (en) * 2018-04-09 2019-10-17 株式会社神戸製鋼所 Impurity removal method
CN110950368A (en) * 2020-01-06 2020-04-03 郑州卓玉新材料有限公司 Preparation method of low-sodium corundum
CN113026109A (en) * 2021-03-08 2021-06-25 中国科学院过程工程研究所 Device and method for preparing high-purity metal through rotary segregation purification
CN113026109B (en) * 2021-03-08 2022-03-29 中国科学院过程工程研究所 Device and method for preparing high-purity metal through rotary segregation purification
CN114199021A (en) * 2021-12-31 2022-03-18 昆明理工大学 Device and method for treating low-vanadium titanium aluminum waste and preparing high-quality aluminum

Also Published As

Publication number Publication date
JP3237330B2 (en) 2001-12-10

Similar Documents

Publication Publication Date Title
EP2198077B1 (en) Method for processing silicon powder to obtain silicon crystals
EP0027052B1 (en) Process for purifying aluminum
JPS6345112A (en) Purification of silicon
JP3329013B2 (en) Continuous refining method and apparatus for Al-Si aluminum scrap
JP3237330B2 (en) Purification method of aluminum alloy scrap
EP0375308A1 (en) Process and apparatus for producing high purity aluminum
US4948102A (en) Method of preparing high-purity metal and rotary cooling member for use in apparatus therefor
JPH07206420A (en) Production of high-purity silicon
JPH107491A (en) High-purity single crystal copper and its production and production unit therefor
JPH0873959A (en) Method for refining aluminum and device therefor
JP2002155322A (en) Method and equipment for refining aluminum or aluminum alloy
JPH0754063A (en) Apparatus for refining aluminum scrap
JP2916645B2 (en) Metal purification method
JPS58104132A (en) Purifying method for aluminum
JP3237438B2 (en) Purification method of aluminum scrap
JP2004043972A (en) Method for refining aluminum or aluminum alloy
JPH0754073A (en) Refining method for aluminum scrap
JPH0754074A (en) Refining method for aluminum scrap
JPH06299265A (en) Method for refining aluminum scrap
JPH09194964A (en) Method for refining aluminum
JP3211622B2 (en) Purification method of aluminum scrap
JPH05295461A (en) Method and apparatus for purifying aluminum
JPH05295463A (en) Method and apparatus for purifying aluminum
JP3430821B2 (en) Aluminum purification method
JPH0797641A (en) Method for refining aluminum scrap

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081005

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091005

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091005

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101005

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees