JPH0754073A - Refining method for aluminum scrap - Google Patents

Refining method for aluminum scrap

Info

Publication number
JPH0754073A
JPH0754073A JP20408093A JP20408093A JPH0754073A JP H0754073 A JPH0754073 A JP H0754073A JP 20408093 A JP20408093 A JP 20408093A JP 20408093 A JP20408093 A JP 20408093A JP H0754073 A JPH0754073 A JP H0754073A
Authority
JP
Japan
Prior art keywords
molten metal
aluminum
intermetallic compound
cooling body
concentration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP20408093A
Other languages
Japanese (ja)
Inventor
Tomoo Dobashi
倫男 土橋
Terumi Kanamori
照己 金森
Takaaki Murakami
高明 村上
Hiroshi Watanabe
寛 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikkei Techno Research Co Ltd
Nippon Light Metal Co Ltd
Original Assignee
Nikkei Techno Research Co Ltd
Nippon Light Metal Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikkei Techno Research Co Ltd, Nippon Light Metal Co Ltd filed Critical Nikkei Techno Research Co Ltd
Priority to JP20408093A priority Critical patent/JPH0754073A/en
Publication of JPH0754073A publication Critical patent/JPH0754073A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To refine an aluminum material having an objective compdn. from the melt of aluminum scrap by utilizing segregation solidification. CONSTITUTION:The melt M of the aluminum having a compsn. in which a part of impurities are crystallized as the primary crystals of intermetallic compds. is housed into a refining vessel 10 where the molten metal M is held at a temp. above the solidification point of alpha-Al and the molten metal A is coold while a rotary cooling body 30 immersed in the molten metal M is kept rotated. The intermetallic compds. are grown as a solid S on the surface of the rotary cooling body 30 and an alpha-Al layer is grown on the surface of the solid S as the molten metal M is purified according to the crystallization of the intermetallic compds. The rotary cooling body 30 is then taken out of the molten metal M and the alpha-Al is melted and separated at a temp. at which the intermitallic comds. do not melt. The impurity concns. of the solid S and the residual molten metal are controlled by adjusting the stirring intensity and solidifying speed and, therefore, plural kinds of the aluminum materials varying in the objective compsn. are obtd. by one time of the refining stage.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、溶解原料に含まれてい
る不純物を晶出分離しながら、目標組成をもつアルミニ
ウム材料を得る精製方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a refining method for obtaining an aluminum material having a target composition while crystallizing and separating impurities contained in a molten raw material.

【0002】[0002]

【従来の技術】アルミニウム溶湯に含まれているFe等
の不純物を分離除去するため、Mnを添加し、Mnと不
純物との間で金属間化合物を生成させ、晶出した金属間
化合物を分離する方法が採用されている。たとえば、特
開昭57−2134号公報ではAl−Mn系金属間化合
物を添加し、特開昭59−12731号公報ではMn又
はAl−MnとMg又はAl−Mgとを併用添加してい
る。何れの方法においても、不純物の一部であるFe
は、Al−Fe−Mn系金属間化合物として分離除去さ
れる。
2. Description of the Related Art In order to separate and remove impurities such as Fe contained in molten aluminum, Mn is added, an intermetallic compound is generated between Mn and the impurity, and a crystallized intermetallic compound is separated. The method has been adopted. For example, in JP-A-57-2134, an Al-Mn-based intermetallic compound is added, and in JP-A-59-12731, Mn or Al-Mn and Mg or Al-Mg are added together. In any method, Fe which is a part of impurities
Is separated and removed as an Al-Fe-Mn-based intermetallic compound.

【0003】[0003]

【発明が解決しようとする課題】Mn系等の添加材によ
って溶湯中の不純物を金属間化合物として除去する方法
は、不純物としてSiをほとんど含んでいない溶湯に適
用対象が特定され、Siを含んでいる溶湯では成り立た
ない。たとえば、多量のSiを含む溶湯に適用しても、
SiがMnとの間で金属間化合物を形成しないことか
ら、Si等の不純物を金属間化合物として晶出分離でき
ない。また、不純物を分離除去するため、過剰のMn系
添加材を溶湯に添加することが必要とされる。その結
果、精製後のアルミニウム材料に多量のMnが含まれ、
アルミニウム合金の用途に制約を受ける。しかも、除去
される不純物は、Mnとの間で金属間化合物を形成する
元素に限られ、Mnとの間に金属間化合物を生成しない
不純物元素は分離除去されない。
The method of removing impurities in a molten metal as an intermetallic compound by using an additive such as Mn is specified for a molten metal containing almost no Si as an impurity. It does not work with molten metal. For example, when applied to a molten metal containing a large amount of Si,
Since Si does not form an intermetallic compound with Mn, impurities such as Si cannot be crystallized and separated as an intermetallic compound. Further, in order to separate and remove impurities, it is necessary to add an excess Mn-based additive to the molten metal. As a result, the purified aluminum material contains a large amount of Mn,
Restricted to aluminum alloy applications. Moreover, the impurities to be removed are limited to the elements that form an intermetallic compound with Mn, and the impurity elements that do not form an intermetallic compound with Mn are not separated and removed.

【0004】本発明は、このような問題を解消すべく案
出されたものであり、偏析凝固を利用してFe以外の不
純物の除去も可能にし、過剰のMn添加を必要とするこ
となくSiを含有している場合でもFe,Mn等をAl
−Si−Fe−Mn系金属間化合物として除去し、更に
回転数の調整及び凝固量規制により凝固材と残湯の2種
類、或いは金属間化合物の取扱いによっては3種類の目
標組成をもつアルミニウム合金を得ることを目的とす
る。
The present invention has been devised in order to solve such a problem. It is possible to remove impurities other than Fe by utilizing segregation solidification, and Si without adding excessive Mn. Even if it contains
-Si-Fe-Mn-based intermetallic compounds, and aluminum alloys with two target compositions of solidified material and residual hot water by adjusting the number of revolutions and regulation of solidification amount, or three kinds depending on the handling of intermetallic compounds. Aim to get.

【0005】[0005]

【課題を解決するための手段】本発明の精製方法は、そ
の目的を達成するため、不純物の一部が金属間化合物の
初晶として晶出する組成をもつアルミニウム溶湯を精製
容器に収容し、前記溶湯をα−Alの凝固点以上に保持
し、前記溶湯に浸漬した回転冷却体を回転させながら前
記溶湯を冷却し、前記金属間化合物を凝固体として前記
回転冷却体の表面に成長させ、前記金属間化合物の晶出
に伴う前記溶湯の純化に従って前記凝固体の表面にα−
Alを成長させた後、前記回転冷却体を前記溶湯から取
り出し、前記金属間化合物が溶解しない温度で前記金属
間化合物から前記α−Alを溶解分離することを特徴と
する。
In order to achieve the object, the refining method of the present invention contains an aluminum melt having a composition in which a part of impurities are crystallized as a primary crystal of an intermetallic compound in a refining vessel, The molten metal is held above the freezing point of α-Al, the molten metal is cooled while rotating the rotary cooling body immersed in the molten metal, and the intermetallic compound is allowed to grow on the surface of the rotary cooling body as a solidified body, Α- on the surface of the solidified body according to the purification of the molten metal accompanying the crystallization of the intermetallic compound
After growing Al, the rotary cooling body is taken out of the molten metal, and the α-Al is dissolved and separated from the intermetallic compound at a temperature at which the intermetallic compound does not dissolve.

【0006】[0006]

【作用】本発明が対象とするアルミニウム溶湯は、不純
物の一部がAl−Si−Fe−Mn系等の金属間化合物
の初晶として晶出する組成をもっている。金属間化合物
は、溶湯の冷却過程で回転冷却体の表面に晶出し、凝固
体を形成する。凝固体の成長に伴って溶湯から不純物が
晶出分離されるため、溶湯の純度が上昇する。この状態
で冷却凝固を継続すると、α−Alの晶出が始まり、金
属間化合物を主体とする凝固体の上にα−Alの層が形
成される。α−Alの晶出凝固によって、溶湯中に不純
物が排出される。たとえば、不純物元素であるFeは、
Al−Si−Fe−Mn系金属間化合物として晶出し、
炉底に落下する。そのため、凝固継続中に溶湯のFe濃
度が一定値に維持され、晶出したα−AlのFe濃度も
凝固開始から終了まで一定に維持される。Cr,W等の
他の不純物元素も、Feの一部と置換し、金属間化合物
として溶湯から分離される。
The molten aluminum targeted by the present invention has a composition in which some of the impurities are crystallized as primary crystals of an intermetallic compound such as an Al-Si-Fe-Mn system. The intermetallic compound crystallizes on the surface of the rotary cooling body in the course of cooling the molten metal to form a solidified body. Impurities are crystallized and separated from the molten metal as the solidified body grows, so that the purity of the molten metal increases. When cooling and solidification are continued in this state, crystallization of α-Al starts, and an α-Al layer is formed on the solidified body mainly composed of intermetallic compounds. Impurities are discharged into the molten metal by the crystallization solidification of α-Al. For example, the impurity element Fe is
Crystallized as an Al-Si-Fe-Mn-based intermetallic compound,
Fall to the bottom of the furnace. Therefore, the Fe concentration of the molten metal is maintained at a constant value during continuous solidification, and the Fe concentration of crystallized α-Al is also maintained constant from the start to the end of solidification. Other impurity elements such as Cr and W are also replaced with a part of Fe and separated from the molten metal as an intermetallic compound.

【0007】必要とするAl−Si−Fe−Mn系金属
間化合物を晶出させるため、アルミニウム溶湯のMn/
Fe比を0.2〜2の範囲に維持することが好ましい。
Mn/Fe比が0.2より小さいと、操業中にMnの必
要量が供給されず、Al−Si−Fe−Mn系金属間化
合物が晶出しなくなる。他方、2を超えるMn/Fe比
では、精製終了後のアルミニウム溶湯に含まれているM
nの濃度が高くなりすぎ、アルミニウム合金原料として
の用途に制約を受ける。Fe濃度は、Mn/Fe比が
0.2以上である限り、特段に規制されるものではな
い。しかし、0.5重量%未満の過度に低いFe濃度で
は、金属間化合物の晶出温度が溶湯の凝固温度近傍まで
低下する。その結果、温度制御が困難になると共に、十
分な晶出分離による精製作用が得られない。
In order to crystallize the required Al-Si-Fe-Mn-based intermetallic compound, Mn of the aluminum melt /
It is preferable to maintain the Fe ratio in the range of 0.2 to 2.
If the Mn / Fe ratio is less than 0.2, the required amount of Mn is not supplied during the operation, and the Al-Si-Fe-Mn-based intermetallic compound does not crystallize. On the other hand, when the Mn / Fe ratio exceeds 2, M contained in the molten aluminum after the refining is completed.
The concentration of n becomes too high, which limits the use as an aluminum alloy raw material. The Fe concentration is not particularly limited as long as the Mn / Fe ratio is 0.2 or more. However, at an excessively low Fe concentration of less than 0.5% by weight, the crystallization temperature of the intermetallic compound drops to near the solidification temperature of the molten metal. As a result, it becomes difficult to control the temperature and a sufficient refining effect by crystallization separation cannot be obtained.

【0008】冷却による凝固の進行に伴って、溶湯中の
Si濃度が上昇する。Si濃度が共晶組成の12重量%
前後になると、冷却による凝固速度が低下し、安定した
条件下で晶出分離を継続させることが困難になる。その
ため、操業性を考慮し、原料であるアルミニウム溶湯
は、Si濃度を10重量%以下に規制したものが好まし
い。Si濃度の上昇は、また溶湯の凝固温度を低下させ
る。したがって、溶湯がより低温まで降温するので、炉
底に沈降するAl−Si−Fe−Mn系金属間化合物の
晶出量が増加し、溶湯のFe濃度が低下する。そのた
め、凝固部のFe濃度も減少し、更に最終アルミニウム
溶湯のFe濃度も低下する。Al−Si−Fe−Mn系
金属間化合物の晶出現象は、原料アルミニウム溶湯のS
i濃度を2重量%以上にするとき、効果的に不純物の晶
出分離に活用される。
With the progress of solidification due to cooling, the Si concentration in the molten metal increases. Si concentration is 12% by weight of eutectic composition
Before and after, the solidification rate due to cooling decreases, and it becomes difficult to continue crystallization separation under stable conditions. Therefore, in consideration of operability, it is preferable that the aluminum melt as a raw material has a Si concentration regulated to 10% by weight or less. The increase in Si concentration also lowers the solidification temperature of the molten metal. Therefore, since the temperature of the molten metal is lowered to a lower temperature, the amount of crystallization of the Al-Si-Fe-Mn intermetallic compound that precipitates on the furnace bottom increases, and the Fe concentration of the molten metal decreases. Therefore, the Fe concentration in the solidified portion also decreases, and the Fe concentration in the final molten aluminum also decreases. The crystallization phenomenon of the Al-Si-Fe-Mn-based intermetallic compound is caused by S of the raw material aluminum melt.
When the i concentration is 2% by weight or more, it is effectively utilized for the crystallization separation of impurities.

【0009】精製対象であるアルミニウムスクラップと
して、不純物が前述した濃度範囲にある原料が常に入手
できるものではない。このような場合、Si,Mn等を
補助的に添加し、溶湯を成分調整する。Si及びMn
は、調整精度が緩やかであることから、高価な金属単体
や母合金の使用は必ずしも必要ではない。たとえば、濃
度の概算値が判明しているアルミニウムスクラップをS
i源及びMn源として使用するとき、資源の有効利用及
び生産コストの低減が図られる。本発明に従った精製方
法は、たとえば図1に示す設備構成の装置を使用して実
施される。精製容器10としては、黒鉛製のルツボ或い
は黒鉛とSiCとを混合焼成したルツボが通常使用され
る。ルツボ本体11を外容器12に入れ、蓋体13を装
着する。蓋体13には、温度制御用のバーナ14を取り
付けても良い。
As an aluminum scrap to be refined, a raw material having impurities in the concentration range described above is not always available. In such a case, Si, Mn, etc. are supplementarily added to adjust the components of the molten metal. Si and Mn
Since the adjustment accuracy is gradual, it is not always necessary to use an expensive simple metal or mother alloy. For example, if aluminum scrap whose concentration is known is
When used as an i source and a Mn source, effective use of resources and reduction of production cost are achieved. The refining method according to the present invention is carried out by using, for example, an apparatus having an equipment configuration shown in FIG. As the refining vessel 10, a graphite crucible or a crucible obtained by mixing and firing graphite and SiC is usually used. The crucible body 11 is put in the outer container 12, and the lid 13 is attached. A burner 14 for temperature control may be attached to the lid 13.

【0010】精製容器10の外周には、加熱機構20が
外容器12を取り囲んで配置されている。加熱機構20
は、内周側にヒータ21を取り付けた耐火れんが製のヒ
ータブロック22〜24を備え、各ヒータブロック22
〜24の熱量が独立して制御されるものが好ましい。精
製容器10の底部にも、ヒータブロック25を配置す
る。精錬されるアルミニウムスクラップは、精製容器1
0に装入した後、ヒータブロック22〜25からの加熱
によって溶解され、α−Alの凝固点より僅かに高い温
度に保持される。溶融状態に保持された溶湯Mに、回転
冷却体30が浸漬される。回転冷却体30は、軸方向に
ガス通路をもつ内管31の先端部近傍に外管32を嵌め
合せている。内管31は、蓋体13を貫通して上方に延
び、カップリング33を介しモータ34の出力軸35に
接続されている。モータ33から延びたアーム36は、
モータ37で回転される送りネジ38に嵌挿されてい
る。これにより、回転冷却体30は、精製容器10の内
部で昇降自在に回転する。
A heating mechanism 20 is arranged on the outer periphery of the purification container 10 so as to surround the outer container 12. Heating mechanism 20
Is provided with heater blocks 22 to 24 made of refractory bricks having a heater 21 attached to the inner peripheral side thereof.
It is preferable that the calories of .about.24 are independently controlled. The heater block 25 is also arranged at the bottom of the purification container 10. Refining container 1 for aluminum scrap to be refined
After being charged at 0, it is melted by heating from the heater blocks 22 to 25 and is maintained at a temperature slightly higher than the freezing point of α-Al. The rotary cooling body 30 is immersed in the molten metal M held in a molten state. The rotary cooling body 30 has an outer pipe 32 fitted in the vicinity of the tip of an inner pipe 31 having a gas passage in the axial direction. The inner pipe 31 extends upward through the lid 13 and is connected to an output shaft 35 of a motor 34 via a coupling 33. The arm 36 extending from the motor 33 is
It is fitted into a feed screw 38 rotated by a motor 37. As a result, the rotary cooling body 30 rotates in the refining container 10 so as to be vertically movable.

【0011】外管32は、図示するように底面側が閉塞
されており、内管31の下端との間にギャップ39を形
成する。内管31から送り込まれた冷却媒体gは、ギャ
ップ39を経て外管32から放出される。或いは、内管
31及び外管32の二重間構造に代え、所定のガス通路
を形成した黒鉛ブロックを使用することもできる。冷却
媒体gには、空気,非酸化性ガス,霧状の水分を含む空
気等が使用される。冷却媒体gの流動により、外管32
の管壁を介して溶湯Mが冷却され、外管32の周囲に凝
固体Sが成長する。溶湯Mの温度及び凝固体Sの成長速
度は、冷却媒体gの流量制御によって最適に維持され
る。溶湯Mの温度が下がるとき、先ず最初にAl−Si
−Fe−Mn系金属間化合物が回転冷却体30の表面に
凝固体Sとして晶出する。凝固体Sの成長に伴って、残
りの溶湯Mが純化され、温度が更に下がる。そのため、
α−Al層Aが凝固体Sの表面に晶出する。このとき、
回転冷却体30の回転によって、凝固体Sと溶湯Mとの
界面に排出される不純物元素や晶出する金属間化合物I
が溶湯M中に拡散する。
The outer pipe 32 is closed on the bottom surface side as shown in the drawing, and forms a gap 39 with the lower end of the inner pipe 31. The cooling medium g sent from the inner pipe 31 is discharged from the outer pipe 32 through the gap 39. Alternatively, the double block structure of the inner pipe 31 and the outer pipe 32 may be replaced with a graphite block having a predetermined gas passage. As the cooling medium g, air, non-oxidizing gas, air containing mist-like water, or the like is used. Due to the flow of the cooling medium g, the outer pipe 32
The molten metal M is cooled through the tube wall of No. 3, and the solidified body S grows around the outer tube 32. The temperature of the molten metal M and the growth rate of the solidified body S are optimally maintained by controlling the flow rate of the cooling medium g. When the temperature of the molten metal M decreases, first of all Al-Si
The —Fe—Mn-based intermetallic compound crystallizes as a solidified body S on the surface of the rotary cooling body 30. With the growth of the solidified body S, the remaining molten metal M is purified and the temperature further decreases. for that reason,
The α-Al layer A crystallizes on the surface of the solidified body S. At this time,
Due to the rotation of the rotary cooling body 30, the impurity element discharged to the interface between the solidified body S and the molten metal M or the intermetallic compound I that crystallizes out
Diffuses into the molten metal M.

【0012】回転冷却体30は、α−Alが凝固する際
に不純物元素や晶出する金属間化合物Iを溶湯Mに拡散
させる周速で回転する。過度に大きな回転速度では、回
転冷却体30の回転によって発生する渦が大きくなり、
歩留り低下の原因となるアルミニウムの酸化が進行する
ばかりでなく、溶湯Mの飛散によって安全上及び操業上
の不都合を生じる。また、凝固したα−Al層Aが遠心
力によって溶湯M中に飛散し、凝固効率が悪化する。回
転冷却体30の回転速度は、具体的には外周速0.2〜
2m/秒とすることが好ましい。また、溶湯Mの表面に
浮遊している酸化皮膜の巻込みを防止するため、回転冷
却体30を一方向に回転させることが好ましい。α−A
l層Aが設定値まで成長したとき、冷却媒体gの供給及
び回転冷却体30の回転を止め、モータ37を回転させ
て回転冷却体30をルツボ本体11から取り出す。その
後、直ちに精製容器10全体を傾動させ、残りの溶湯M
及び炉底に堆積した金属間化合物Iを排出する。次い
で、回転冷却体30上に晶出したα−Al層Aを、凝固
体Sが溶解しない温度に加熱溶解し、凝固体Sから分離
する。場合によっては、α−Al層Aを機械的に掻き取
り、凝固体Sから分離することもできる。
The rotary cooling body 30 rotates at a peripheral speed at which the impurity element or the intermetallic compound I crystallized when α-Al is solidified is diffused into the molten metal M. At an excessively high rotation speed, the vortex generated by the rotation of the rotary cooling body 30 becomes large,
Not only the oxidation of aluminum, which causes a decrease in yield, progresses, but also the molten metal M is scattered, which causes safety and operational inconvenience. Further, the solidified α-Al layer A scatters in the molten metal M due to the centrifugal force, and the solidification efficiency deteriorates. The rotation speed of the rotary cooling body 30 is, specifically, an outer peripheral speed of 0.2 to
It is preferably 2 m / sec. Further, in order to prevent the oxide film floating on the surface of the molten metal M from being caught, it is preferable to rotate the rotary cooling body 30 in one direction. α-A
When the 1-layer A has grown to the set value, the supply of the cooling medium g and the rotation of the rotary cooling body 30 are stopped, and the motor 37 is rotated to take out the rotary cooling body 30 from the crucible body 11. Immediately thereafter, the entire refining vessel 10 is tilted, and the remaining molten metal M
And the intermetallic compound I deposited on the bottom of the furnace is discharged. Next, the α-Al layer A crystallized on the rotary cooling body 30 is heated and melted at a temperature at which the solidified body S is not melted, and separated from the solidified body S. In some cases, the α-Al layer A can be mechanically scraped and separated from the solidified body S.

【0013】[0013]

【実施例】【Example】

実施例1:内径400mm及び高さ800mmの黒鉛製
ルツボを図1に示す精製装置に装着し、アルミニウム溶
湯を精製した。回転冷却体30としては、外径100m
mの黒鉛管を使用した。Si8重量%,Fe0.8重量
%,Cu3重量%及びMn0.4重量%を含みMn/F
e比が0.5のアルミニウムスクラップ原料溶湯150
kgをルツボ10に装入し、640℃に加熱保持した。
回転冷却体30を、ルツボの底から下端までの高さが2
00mmになるように設定し、外周における周速1.5
m/秒で回転させた。冷媒gとして冷却空気を使用し、
操業全期間を通して3m3 /分の一定流量で供給した。
凝固は、装入した全アルミニウム量の24%で終了させ
た。このときの平均凝固速度は、150mm/時であっ
た。
Example 1: A graphite crucible having an inner diameter of 400 mm and a height of 800 mm was attached to the refining apparatus shown in FIG. 1 to refine an aluminum melt. The rotating cooling body 30 has an outer diameter of 100 m.
m graphite tube was used. Mn / F containing 8 wt% Si, 0.8 wt% Fe, 3 wt% Cu and 0.4 wt% Mn
Aluminum melt raw material 150 with e ratio of 0.5
Kg was charged into the crucible 10 and heated and held at 640 ° C.
The height of the rotary cooling body 30 from the bottom to the bottom of the crucible is 2
The peripheral speed is 1.5 at the outer circumference.
It was rotated at m / sec. Cooling air is used as the refrigerant g,
It was supplied at a constant flow rate of 3 m 3 / min throughout the operation.
Solidification was terminated at 24% of the total aluminum charge. The average solidification rate at this time was 150 mm / hour.

【0014】凝固終了後、回転冷却体30の回転を止
め、溶湯Mから回転冷却体30を取り出した。直ちに精
製容器10を傾動させ、不純物が濃縮した残湯を晶出し
た金属間化合物Iと共に排出した。回転冷却体30上に
凝固したα−Al層Aは、重量が35kgで、不純物濃
度がFe:0.33重量%,Si:4.2重量%,C
u:1.7重量%及びMn:0.2重量%であった。他
方、残湯にはFe:0.6重量%,Si:8.8重量
%,Cu:3.4重量%及びMn:0.2重量%が含ま
れていた。また、凝固体Sとして晶出した金属間化合物
及び残湯中の金属間化合物Iは、Al−Si−Fe−M
n系で、合計重量が3.5kgであった。
After solidification was completed, the rotation of the rotary cooling body 30 was stopped, and the rotary cooling body 30 was taken out of the molten metal M. Immediately, the purification container 10 was tilted, and the residual hot water in which impurities were concentrated was discharged together with the crystallized intermetallic compound I. The α-Al layer A solidified on the rotary cooling body 30 has a weight of 35 kg and an impurity concentration of Fe: 0.33% by weight, Si: 4.2% by weight, C.
u: 1.7% by weight and Mn: 0.2% by weight. On the other hand, the residual hot water contained 0.6% by weight of Fe, 8.8% by weight of Si, 3.4% by weight of Cu and 0.2% by weight of Mn. Further, the intermetallic compound crystallized as the solidified body S and the intermetallic compound I in the residual hot water are Al-Si-Fe-M.
The n-type had a total weight of 3.5 kg.

【0015】実施例2:実施例1と同じ設備を使用し、
同一の操業条件でSi:6.5重量%.Fe:0.8重
量%,Cu:2.9重量%及びMn0.1重量%を含む
アルミニウム原料溶湯にMnとして1.2kg相当のA
l−Mn合金を添加し、Mn濃度を0.9重量%に、M
n/Fe比を1.125に調整した。調整された溶湯の
凝固量が20%に達したとき冷却を終了し、回転冷却体
30の回転を中止して回転冷却体30を炉外に取り出
し、直ちに残湯及び金属間化合物Iを精製容器10から
排出した。α−Al層Aとして精製されたアルミニウム
は、重量が30kgで、不純物濃度がSi:3.3重量
%,Fe:0.29重量%,Cu:1.5重量%及びM
n0.4重量%であった。残湯中の不純物濃度は、S
i:8.5重量%,Fe:0.45重量%,Cu:3.
5重量%及びMn:0.37重量%であった。また、凝
固体Sとして晶出した金属間化合物及び残湯中の金属間
化合物Iは、Al−Si−Fe−Mn系で、合計重量が
4.1kgであった。
Example 2: Using the same equipment as in Example 1,
Si: 6.5% by weight under the same operating conditions. 1.2 kg of A as Mn in an aluminum raw material molten metal containing Fe: 0.8 wt%, Cu: 2.9 wt% and Mn 0.1 wt%
1-Mn alloy was added to bring the Mn concentration to 0.9% by weight and M
The n / Fe ratio was adjusted to 1.125. When the solidified amount of the adjusted molten metal reaches 20%, the cooling is terminated, the rotation of the rotary cooling body 30 is stopped, the rotary cooling body 30 is taken out of the furnace, and the residual hot water and the intermetallic compound I are immediately purified. Ejected from 10. The aluminum purified as the α-Al layer A has a weight of 30 kg and an impurity concentration of Si: 3.3% by weight, Fe: 0.29% by weight, Cu: 1.5% by weight and M.
It was n 0.4% by weight. The impurity concentration in the residual hot water is S
i: 8.5% by weight, Fe: 0.45% by weight, Cu: 3.
It was 5% by weight and Mn: 0.37% by weight. Further, the intermetallic compound crystallized as the solidified body S and the intermetallic compound I in the residual hot water were Al-Si-Fe-Mn-based and had a total weight of 4.1 kg.

【0016】実施例3:回転冷却体30を外周速2.5
m/秒で回転させ、凝固量が20%に達した時点で冷却
を中止する他は、実施例1と同じ条件で同一原料を精製
した。α−Al層Aとして精製されたアルミニウムは、
不純物濃度がSi:3.9重量%,Fe:0.30重量
%,Cu:1.6重量%及びMn0.19重量%であっ
た。残湯中の不純物濃度は、Si:9.1重量%,F
e:0.6重量%,Cu:3.8重量%及びMn:0.
18重量%であった。この結果を実施例1と比較する
と、凝固部の純度が向上し、その分だけ残湯の純度がF
e,Mnを除き悪化していることが判る。このことか
ら、回転冷却体30の回転速度が精製効率に影響を与え
ていることが確認される。
Embodiment 3: A peripheral speed of the rotary cooling body 30 is set to 2.5.
The same raw material was purified under the same conditions as in Example 1 except that the rotation was carried out at m / sec and the cooling was stopped when the solidification amount reached 20%. Aluminum purified as the α-Al layer A is
The impurity concentrations were Si: 3.9% by weight, Fe: 0.30% by weight, Cu: 1.6% by weight and Mn of 0.19% by weight. The impurity concentration in the residual hot water was Si: 9.1% by weight, F
e: 0.6 wt%, Cu: 3.8 wt% and Mn: 0.
It was 18% by weight. Comparing this result with Example 1, the purity of the solidified portion is improved, and the purity of the residual hot water is F by that amount.
It can be seen that excluding e and Mn, the deterioration has occurred. From this, it is confirmed that the rotation speed of the rotary cooling body 30 affects the purification efficiency.

【0017】[0017]

【発明の効果】以上に説明したように、本発明において
は、初晶が金属間化合物である組成をもつアルミニウム
スクラップの溶湯を偏析凝固させアルミニウムを精製す
るとき、冷却体を回転させてアルミニウム溶湯を撹拌す
ることにより、金属間化合物として晶出する不純物元素
を回転冷却体の表面及び精製容器の底部に沈降させて分
離し、回転冷却体の外側に不純物含有量が減少した純度
の良いα−アルミニウムを得ている。残湯も、金属間化
合物の晶出によって純化される。このとき、回転冷却体
の回転速度を制御すると、金属間化合物を含めて3種類
の製品が同じアルミニウムスクラップ原料から得られ
る。更に、溶湯組成の調整により、精製部は勿論、不純
物が濃縮し易い残湯部においてもFe,Mn濃度を低下
させた製品が得られる。
As described above, in the present invention, when the molten aluminum scrap having a composition in which the primary crystal is an intermetallic compound is segregated and solidified to refine aluminum, the cooling body is rotated to rotate the aluminum molten metal. By stirring, the impurity element crystallized as an intermetallic compound is precipitated on the surface of the rotary cooling body and the bottom of the refining vessel to be separated, and the impurity content is reduced outside the rotary cooling body with good purity α- You are getting aluminum. The residual hot water is also purified by crystallization of the intermetallic compound. At this time, if the rotation speed of the rotary cooling body is controlled, three types of products including intermetallic compounds can be obtained from the same aluminum scrap raw material. Further, by adjusting the composition of the molten metal, it is possible to obtain a product in which the Fe and Mn concentrations are lowered not only in the refining portion but also in the residual molten metal portion where impurities are easily concentrated.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明に従った精製方法を実施する精製装置
の一例
FIG. 1 shows an example of a purification apparatus for carrying out a purification method according to the present invention.

【符号の説明】[Explanation of symbols]

M:アルミニウム溶湯 S:凝固体 A:α−Al
層 I:晶出した金属間化合物 g:冷却媒体 10:精製容器 20:加熱機構 30:回転冷却
M: molten aluminum S: solidified body A: α-Al
Layer I: Crystallized intermetallic compound g: Cooling medium 10: Purification vessel 20: Heating mechanism 30: Rotating cooling body

───────────────────────────────────────────────────── フロントページの続き (72)発明者 村上 高明 静岡県庵原郡蒲原町蒲原161番地 日本軽 金属株式会社蒲原工場内 (72)発明者 渡辺 寛 静岡県庵原郡蒲原町蒲原1丁目34番1号 株式会社日軽技研内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Takaaki Murakami Inventor Takahara Murakami 161 Kambara-cho, Anbara-gun, Shizuoka Prefecture Inside the Kambara Plant of Nippon Light Metal Co., Ltd. Issue Nichiritsu Giken

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 不純物の一部が金属間化合物の初晶とし
て晶出する組成をもつアルミニウム溶湯を精製容器に収
容し、前記溶湯をα−Alの凝固点以上に保持し、前記
溶湯に浸漬した回転冷却体を回転させながら前記溶湯を
冷却し、前記金属間化合物を凝固体として前記回転冷却
体の表面に成長させ、前記金属間化合物の晶出に伴う前
記溶湯の純化に従って前記凝固体の表面にα−Alを成
長させた後、前記回転冷却体を前記溶湯から取り出し、
前記金属間化合物が溶解しない温度で前記金属間化合物
から前記α−Alを溶解分離することを特徴とするアル
ミニウムスクラップの精製方法。
1. An aluminum melt having a composition in which a part of impurities are crystallized as a primary crystal of an intermetallic compound is placed in a refining vessel, the melt is kept at a freezing point of α-Al or higher, and immersed in the melt. Cooling the molten metal while rotating the rotary cooling body, growing the intermetallic compound on the surface of the rotary cooling body as a solidified body, the surface of the solidified body according to the purification of the molten metal accompanying the crystallization of the intermetallic compound After growing α-Al, the rotary cooling body was taken out of the molten metal,
A method for refining aluminum scrap, which comprises dissolving and separating the α-Al from the intermetallic compound at a temperature at which the intermetallic compound does not dissolve.
【請求項2】 Fe濃度が0.5重量%を超えるアルミ
ニウムスクラップを溶解原料とし、α−Al中のFe濃
度が0.5重量%以下であり、且つ不純物が濃縮した残
湯中のFe及びMnが溶解原料中のFe濃度及びMn濃
度以下になることを特徴とする請求項1記載の精製方
法。
2. An aluminum scrap having an Fe concentration of more than 0.5 wt% is used as a melting raw material, the Fe concentration in α-Al is 0.5 wt% or less, and Fe and Fe in the residual hot water in which impurities are concentrated are contained. The refining method according to claim 1, wherein the Mn content is equal to or lower than the Fe concentration and the Mn concentration in the molten raw material.
【請求項3】 アルミニウム溶湯に含まれる不純物元素
のMnとFeとの比Mn/Feが0.2〜2である請求
項1又は2記載の精製方法。
3. The refining method according to claim 1, wherein a ratio Mn / Fe of Mn and Fe of impurity elements contained in the molten aluminum is 0.2 to 2.
【請求項4】 アルミニウム溶湯に不純物元素として含
まれるSiの濃度が2〜10重量%であり、前記α−A
lの凝固点が650℃以下である請求項1〜3の何れか
に記載の精製方法。
4. The concentration of Si contained as an impurity element in the molten aluminum is 2 to 10% by weight, and the α-A
4. The purification method according to claim 1, wherein the freezing point of 1 is 650 ° C. or lower.
【請求項5】 アルミニウム溶湯のMn/Fe比が0.
2〜2及びSi濃度が2〜10重量%となるように、金
属単体,Al母合金,Mn及び/又はSiを多量に含む
スクラップ等の1種又は2種以上を溶湯に添加する請求
項1〜4の何れかに記載の精製方法。
5. The Mn / Fe ratio of the molten aluminum is 0.
2 to 2 and 1 or 2 or more kinds of metal simple substance, Al mother alloy, scrap containing a large amount of Mn and / or Si, etc. are added to the molten metal so that the Si concentration becomes 2 to 10% by weight. 5. The purification method according to any one of 4 to 4.
【請求項6】 溶湯に浸漬した回転冷却体を外周速0.
5〜2m/秒で一方向に回転させる請求項1〜5の何れ
かに記載の精製方法。
6. A rotary cooling body immersed in a molten metal has an outer peripheral speed of 0.
The purification method according to any one of claims 1 to 5, which is rotated in one direction at 5 to 2 m / sec.
JP20408093A 1993-08-18 1993-08-18 Refining method for aluminum scrap Pending JPH0754073A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20408093A JPH0754073A (en) 1993-08-18 1993-08-18 Refining method for aluminum scrap

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20408093A JPH0754073A (en) 1993-08-18 1993-08-18 Refining method for aluminum scrap

Publications (1)

Publication Number Publication Date
JPH0754073A true JPH0754073A (en) 1995-02-28

Family

ID=16484453

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20408093A Pending JPH0754073A (en) 1993-08-18 1993-08-18 Refining method for aluminum scrap

Country Status (1)

Country Link
JP (1) JPH0754073A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104894414A (en) * 2015-05-10 2015-09-09 黄承满 Method for preparing aluminum ingot using waste aluminum as raw material
CN111636007A (en) * 2020-04-29 2020-09-08 上海神富机械科技有限公司 Purification treatment process for radiator section
CN111647781A (en) * 2020-04-29 2020-09-11 上海神富机械科技有限公司 Radiator processing technology

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104894414A (en) * 2015-05-10 2015-09-09 黄承满 Method for preparing aluminum ingot using waste aluminum as raw material
CN111636007A (en) * 2020-04-29 2020-09-08 上海神富机械科技有限公司 Purification treatment process for radiator section
CN111647781A (en) * 2020-04-29 2020-09-11 上海神富机械科技有限公司 Radiator processing technology
CN111636007B (en) * 2020-04-29 2021-05-14 上海神富机械科技有限公司 Purification treatment process for radiator section

Similar Documents

Publication Publication Date Title
US4140494A (en) Method for rapid cooling molten alumina abrasives
US4312850A (en) Semicontinuous process for the manufacture of pure silicon
US4373950A (en) Process of preparing aluminum of high purity
JPS6345112A (en) Purification of silicon
JP3329013B2 (en) Continuous refining method and apparatus for Al-Si aluminum scrap
CN102351188B (en) Method for preparing acicular high-purity silicon aggregates and equipment thereof
JP3237330B2 (en) Purification method of aluminum alloy scrap
US4948102A (en) Method of preparing high-purity metal and rotary cooling member for use in apparatus therefor
JPH02225633A (en) Production of aluminum with high purity
JPH0754073A (en) Refining method for aluminum scrap
JPH0754063A (en) Apparatus for refining aluminum scrap
JP2916645B2 (en) Metal purification method
JP3237438B2 (en) Purification method of aluminum scrap
JPH06299265A (en) Method for refining aluminum scrap
JPH0873959A (en) Method for refining aluminum and device therefor
JP3211622B2 (en) Purification method of aluminum scrap
JPH05295462A (en) Method and apparatus for purifying aluminum
JPH0754074A (en) Refining method for aluminum scrap
JPH05295461A (en) Method and apparatus for purifying aluminum
JP6751604B2 (en) Material purification method and equipment, continuous purification system for high-purity substances
JP5415066B2 (en) Metal purification method and apparatus, refined metal, casting, metal product and electrolytic capacitor
JPH08199254A (en) Rotary cooling body for aluminum refining and method thereof
JPH05295463A (en) Method and apparatus for purifying aluminum
JPH068471B2 (en) Metal refining method
JPS5945739B2 (en) Aluminum refining method