JP5415066B2 - Metal purification method and apparatus, refined metal, casting, metal product and electrolytic capacitor - Google Patents

Metal purification method and apparatus, refined metal, casting, metal product and electrolytic capacitor Download PDF

Info

Publication number
JP5415066B2
JP5415066B2 JP2008332037A JP2008332037A JP5415066B2 JP 5415066 B2 JP5415066 B2 JP 5415066B2 JP 2008332037 A JP2008332037 A JP 2008332037A JP 2008332037 A JP2008332037 A JP 2008332037A JP 5415066 B2 JP5415066 B2 JP 5415066B2
Authority
JP
Japan
Prior art keywords
metal
purification
cooling body
peripheral speed
average peripheral
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2008332037A
Other languages
Japanese (ja)
Other versions
JP2009174053A (en
Inventor
靖久 萩原
勝起 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Showa Denko KK
Original Assignee
Showa Denko KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Denko KK filed Critical Showa Denko KK
Priority to JP2008332037A priority Critical patent/JP5415066B2/en
Publication of JP2009174053A publication Critical patent/JP2009174053A/en
Application granted granted Critical
Publication of JP5415066B2 publication Critical patent/JP5415066B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Manufacture And Refinement Of Metals (AREA)

Description

本発明は金属の精製方法及び装置に関し,更に詳しく言えば、偏析凝固法の原理を利用して共晶不純物を含むアルミニウム、ケイ素、マグネシウム、鉛、亜鉛等の金属から、共晶不純物の含有量を元の金属よりも少なくし,高純度の金属を製造する方法及び装置に関し、さらには前記方法により精製された金属、この金属を用いた鋳造品、金属製品及び電解コンデンサに関する。   The present invention relates to a metal purification method and apparatus, and more specifically, the content of eutectic impurities from metals such as aluminum, silicon, magnesium, lead, and zinc containing eutectic impurities using the principle of segregation solidification. The present invention relates to a method and an apparatus for producing a high-purity metal with a smaller amount than the original metal, and further relates to a metal purified by the above-described method, a cast product using the metal, a metal product, and an electrolytic capacitor.

この種金属の精製方法として、精製用溶湯保持炉内に入れられた共晶不純物を含む溶融金属中に回転冷却体を浸漬し、回転冷却体内に冷却流体を供給しつつこの冷却体を回転させてその周面により純度の高い精製金属を晶出させる方法が知られている(例えば特許文献1参照)。   As a method for purifying this kind of metal, a rotating cooling body is immersed in a molten metal containing eutectic impurities placed in a refined molten metal holding furnace, and the cooling body is rotated while supplying a cooling fluid to the rotating cooling body. A method of crystallizing a purified metal having a high purity on the peripheral surface is known (for example, see Patent Document 1).

この方法では、冷却体周面への凝固速度が遅いほど、晶出した金属の純度が高くなることがわかっている。ところで、冷却体周面の温度が低い状態のまま冷却体を精製すべき溶融金属中に浸漬すると、その周面への凝固速度が速くなる。このような凝固速度が大きな状態で晶出した金属は冷却体との密着性が悪く、精製初期の段階で冷却体の回転による遠心力によって非常に剥離しやすい。また、剥離が多いと精製金属重量が小さくなるという問題がある。   In this method, it has been found that the slower the solidification rate on the peripheral surface of the cooling body, the higher the purity of the crystallized metal. By the way, when the cooling body is immersed in the molten metal to be purified while the temperature of the peripheral surface of the cooling body is low, the solidification rate on the peripheral surface is increased. Such a metal crystallized at a high solidification rate has poor adhesion to the cooling body, and is very easily peeled off by the centrifugal force caused by the rotation of the cooling body in the initial stage of purification. Moreover, there is a problem that the weight of the refined metal is reduced when there is a lot of peeling.

このような剥離に対処する方法として、回転冷却体周面に剥離防止用凹溝を設けることが提案されている(特許文献2参照)。
昭公昭61−3385号公報 特開昭62−280334号公報
As a method for coping with such peeling, it has been proposed to provide a groove for preventing peeling on the circumferential surface of the rotating cooling body (see Patent Document 2).
Shoko Sho 61-3385 JP 62-280334 A

しかし、回転冷却体周面に剥離防止用凹溝を設ける方法だけでは不十分であり、剥離を防ぐことは出来ず、このため精製金属重量が少なくなってしまうという問題を、依然として解決できなかった。   However, the method of providing the groove for preventing peeling on the peripheral surface of the rotating cooling body is not sufficient, and peeling cannot be prevented, and thus the problem that the weight of the refined metal is still not solved. .

この発明は、このような事情に鑑みてなされたものであって、凝固速度が大きな状態で晶出した金属が、精製初期の段階で冷却体から剥離するのを防止することにより、精製金属重量を大きくすることができる金属精製法及び装置を提供し、さらには前記方法により精製された金属、この金属を用いた鋳造品、金属製品及び電解コンデンサを提供することを課題とする。   The present invention has been made in view of such circumstances, and prevents the metal crystallized at a high solidification rate from peeling from the cooling body at the early stage of purification, thereby reducing the weight of the purified metal. It is an object of the present invention to provide a metal refining method and apparatus capable of increasing the size, and further to provide a metal refined by the above method, a cast product using the metal, a metal product, and an electrolytic capacitor.

上記課題は、以下の手段によって解決される。
(1)精製すべき溶融金属中に冷却体を浸漬し、この冷却体を回転させながら冷却体表面に高純度金属を晶出させる金属の精製方法において、精製初期の冷却体の平均周速をそれ以降の平均周速よりも小さく設定し、かつ精製初期の冷却体の最大周速がそれ以降の平均周速を超えないように設定して精製を行うことを特徴とする金属精製方法。
(2)前記精製初期が精製開始から全精製時間×0.1までである前項1に記載の金属精製方法。
(3)精製開始から全精製時間×0.05までの冷却体の平均周速V1とそれ以降の平均周速V3の関係がV1≦V3×0.9に設定されている前項1または2に記載の金属精製方法。
(4)精製開始から全精製時間×0.1までの冷却体の平均周速V1とそれ以降の平均周速V3の関係がV1≦V3×0.9に設定されている前項1または2に記載の金属精製方法。
(5)精製される金属がアルミニウムである前項1〜4のいずれかに記載の金属精製方法。
(6)精製すべき溶融金属を収容する炉体と、前記炉体に収容された溶融金属中に浸漬される冷却体と、前記冷却体を回転させる回転駆動装置と、精製初期の冷却体の平均周速がそれ以降の平均周速よりも小さくなるように、かつ精製初期の冷却体の最大周速がそれ以降の平均周速を超えないように、前記回転駆動装置による冷却体の回転速度を制御する制御手段と、を備えたことを特徴とする金属精製装置。
(7)前記精製初期が精製開始から全精製時間×0.1までである前項6に記載の金属精製装置。
(8)前記制御手段は、精製開始から全精製時間×0.05までの冷却体の平均周速V1とそれ以降の平均周速V3の関係がV1≦V3×0.9となるように、回転駆動装置による冷却体の回転速度を制御する前項6または7に記載の金属精製装置。
(9)前記制御手段は、精製開始から全精製時間×0.1までの冷却体の平均周速V1とそれ以降の平均周速V3の関係がV1≦V3×0.9となるように、回転駆動装置による冷却体の回転速度を制御する前項6または7に記載の金属精製装置。
(10)前項1ないし4のいずれかに記載の方法で精製された精製金属。
(11)前項10に記載の精製金属から製造された鋳造品。
(12)前項11に記載の鋳造品が圧延されてなる金属製品。
(13)前項12に記載の金属製品が電極材として用いられている電解コンデンサ。
The above problem is solved by the following means.
(1) In a metal purification method in which a cooling body is immersed in a molten metal to be purified and a high purity metal is crystallized on the surface of the cooling body while rotating the cooling body, the average peripheral speed of the cooling body at the initial stage of purification is A metal refining method characterized in that the refining is carried out by setting smaller than the average peripheral speed thereafter and setting the maximum peripheral speed of the cooling body at the initial stage of purification so as not to exceed the average peripheral speed thereafter.
(2) The metal purification method according to item 1, wherein the initial stage of purification is from the start of purification to the total purification time × 0.1.
(3) The relationship between the average peripheral speed V1 of the cooling body from the start of purification to the total purification time × 0.05 and the average peripheral speed V3 thereafter is set to V1 ≦ V3 × 0.9. The metal purification method as described.
(4) The relationship between the average peripheral speed V1 of the cooling body from the start of purification to the total purification time × 0.1 and the average peripheral speed V3 thereafter is set to V1 ≦ V3 × 0.9. The metal purification method as described.
(5) The metal purification method according to any one of items 1 to 4, wherein the metal to be purified is aluminum.
(6) A furnace body containing a molten metal to be refined, a cooling body immersed in the molten metal contained in the furnace body, a rotary drive device for rotating the cooling body, and a cooling body at the initial stage of purification The rotational speed of the cooling body by the rotary drive device so that the average peripheral speed is smaller than the average peripheral speed thereafter and the maximum peripheral speed of the cooling body at the initial stage of purification does not exceed the average peripheral speed thereafter. And a control means for controlling the metal refining apparatus.
(7) The metal purification apparatus as described in (6) above, wherein the initial purification period is from the start of purification to the total purification time × 0.1.
(8) The control means is such that the relationship between the average peripheral speed V1 of the cooling body from the start of purification to the total purification time × 0.05 and the average peripheral speed V3 thereafter is V1 ≦ V3 × 0.9. 8. The metal refining device according to 6 or 7 above, wherein the rotational speed of the cooling body is controlled by the rotation drive device.
(9) The control means is such that the relationship between the average peripheral speed V1 of the cooling body from the start of purification to the total purification time × 0.1 and the average peripheral speed V3 thereafter is V1 ≦ V3 × 0.9. 8. The metal refining device according to 6 or 7 above, wherein the rotational speed of the cooling body is controlled by the rotation drive device.
(10) A purified metal purified by the method according to any one of (1) to (4) above.
(11) A casting manufactured from the refined metal according to item 10 above.
(12) A metal product obtained by rolling the casting according to item 11 above.
(13) An electrolytic capacitor in which the metal product according to item 12 is used as an electrode material.

前項(1)に記載の発明によれば、精製初期の冷却体の平均周速をそれ以降の平均周速よりも小さく設定し、かつ精製初期の冷却体の最大周速がそれ以降の平均周速を超えないように設定して精製を行うから、冷却体を精製すべき溶融金属中に浸漬した際の精製初期における凝固速度の大きい晶出金属に対して作用する回転冷却体の遠心力を小さくでき、このため前記晶出金属が回転冷却体から剥離するのを防止できる。こうして、冷却体との密着性が悪い晶出金属の剥離を防止しながら精製を行い、その後、冷却体の周速を大きくし精製効率の高い金属を晶出させる。このように、精製初期の晶出金属の剥離を防止することで、得られる精製金属の重量を大きくすることができる。   According to the invention described in the preceding item (1), the average peripheral speed of the cooling body at the initial stage of purification is set smaller than the average peripheral speed after that, and the maximum peripheral speed of the cooling body at the initial stage of purification is set to the average peripheral speed thereafter. Since the refining is performed so as not to exceed the speed, the centrifugal force of the rotating cooling body acting on the crystallized metal having a high solidification rate at the initial stage of purification when the cooling body is immersed in the molten metal to be purified. Therefore, it is possible to prevent the crystallized metal from being separated from the rotating cooling body. Thus, the purification is performed while preventing the crystallization metal having poor adhesion to the cooling body from being peeled off, and then the peripheral speed of the cooling body is increased to crystallize the metal having a high purification efficiency. Thus, the weight of the purified metal obtained can be increased by preventing the crystallization metal from peeling off at the initial stage of purification.

前項(2)に記載の発明によれば、精製初期の晶出金属の剥離を安定的に防止することができる。   According to the invention described in the preceding item (2), separation of the crystallized metal at the initial stage of purification can be stably prevented.

前項(3)に記載の発明によれば、精製開始から全精製時間×0.05までの冷却体の平均周速V1とそれ以降の平均周速V3の関係がV1≦V3×0.9に設定されているから、凝固速度が大きく冷却体との密着性が悪い晶出金属の初期の剥離防止効果を有効に発揮させることができる。   According to the invention described in the preceding item (3), the relationship between the average peripheral speed V1 of the cooling body from the start of purification to the total purification time × 0.05 and the average peripheral speed V3 thereafter is V1 ≦ V3 × 0.9. Since it is set, the effect of preventing the initial separation of the crystallized metal having a high solidification rate and poor adhesion to the cooling body can be exhibited effectively.

前項(4)に記載の発明によれば、精製開始から全精製時間×0.1までの冷却体の平均周速V1とそれ以降の平均周速V3の関係がV1≦V3×0.9に設定されているから、凝固速度が大きく冷却体との密着性が悪い晶出金属の初期の剥離防止効果をさらに有効に発揮させることができる。   According to the invention described in the preceding item (4), the relationship between the average peripheral speed V1 of the cooling body from the start of purification to the total purification time × 0.1 and the average peripheral speed V3 thereafter is V1 ≦ V3 × 0.9. Since it is set, the effect of preventing the initial separation of the crystallized metal having a high solidification rate and poor adhesion to the cooling body can be exhibited more effectively.

前項(5)に記載の発明によれば、凝固速度が大きく冷却体との密着性が悪い晶出アルミニウムの精製初期における剥離を防止して、アルミニウム塊の精製重量を大きくすることができる。   According to the invention described in the above item (5), it is possible to prevent separation of crystallized aluminum having a high solidification rate and poor adhesion to a cooling body at the initial stage of purification, thereby increasing the purified weight of the aluminum lump.

前項(6)に記載の発明によれば、凝固速度が大きく冷却体との密着性が悪い晶出金属の精製初期の剥離を防止して、得られる精製金属の重量を大きくできる精製装置となしうる。   According to the invention described in the preceding item (6), there is provided a refining device capable of preventing the separation of the crystallized metal having a high solidification rate and poor adhesion to the cooling body at an early stage of purification and increasing the weight of the obtained refined metal. sell.

前項(7)に記載の発明によれば、精製初期の晶出金属の剥離を安定的に防止することができる精製装置となしうる。   According to the invention described in the preceding item (7), a purification apparatus capable of stably preventing the separation of the crystallized metal at the initial stage of purification can be obtained.

前項(8)に記載の発明によれば、凝固速度が大きく冷却体との密着性が悪い晶出金属の初期の剥離防止効果を有効に発揮させることができる精製装置となしうる。   According to the invention described in the preceding item (8), a purification apparatus capable of effectively exhibiting the initial peeling prevention effect of a crystallized metal having a high solidification rate and poor adhesion to a cooling body can be obtained.

前項(9)に記載の発明によれば、凝固速度が大きく冷却体との密着性が悪い晶出金属の初期の剥離防止効果をさらに有効に発揮させることができる精製装置となしうる。   According to the invention described in the preceding item (9), it can be a purification apparatus capable of further effectively exhibiting the effect of preventing the initial separation of a crystallized metal having a high solidification rate and poor adhesion to a cooling body.

前項(10)に記載の発明によれば、重量の大きな精製金属となしうる。   According to the invention described in item (10) above, it can be a refined metal having a large weight.

前項(11)に記載の発明によれば、重量の大きな精製金属から製造された鋳造品となしうる。   According to the invention described in the preceding item (11), it can be a casting manufactured from a refined metal having a large weight.

前項(13)に記載の発明によれば、重量の大きな精製金属から製造された圧延金属製品となしうる。   According to the invention described in the preceding item (13), a rolled metal product manufactured from a refined metal having a large weight can be obtained.

前項(14)に記載の発明によれば、重量の大きな精製金属から製造された電極材が用いられた電解コンデンサとなしうる。   According to the invention described in item (14) above, an electrolytic capacitor using an electrode material manufactured from a refined metal having a large weight can be obtained.

以下、この発明の一実施形態を説明する。   An embodiment of the present invention will be described below.

図1はこの発明の一実施形態に係る金属精製装置の概略構成と、これを用いた金属精製方法を説明するための図である。   FIG. 1 is a diagram for explaining a schematic configuration of a metal refining apparatus according to an embodiment of the present invention and a metal refining method using the same.

図1において、1は溶湯保持炉であり、この溶湯保持炉1の内部に溶融金属2が収容保持されている。保持炉1の上方には回転冷却体3が上下左右移動自在に配置されるとともに、金属精製時には冷却体3が下方移動して、溶湯保持炉1内の溶融金属2中に浸漬されるものとなされている。また、図示は省略したが、溶湯保持炉1と平行する配置で、精製金属掻き落とし装置が設置され、冷却体3に晶出した金属を掻き落として回収することができるものとなされている。さらに、溶湯保持炉1内の溶融金属2は、一定の温度となるよう加熱炉内に配置され、保持炉1の外側から加熱されるようになっている。   In FIG. 1, reference numeral 1 denotes a molten metal holding furnace, and a molten metal 2 is accommodated and held in the molten metal holding furnace 1. A rotating cooling body 3 is disposed above the holding furnace 1 so as to be movable up and down, left and right. At the time of metal refining, the cooling body 3 moves downward and is immersed in the molten metal 2 in the molten metal holding furnace 1. Has been made. Moreover, although illustration was abbreviate | omitted, the refined metal scraping apparatus is installed by the arrangement | positioning parallel to the molten metal holding furnace 1, and the metal crystallized in the cooling body 3 can be scraped off and collect | recovered. Furthermore, the molten metal 2 in the molten metal holding furnace 1 is arranged in the heating furnace so as to have a constant temperature, and is heated from the outside of the holding furnace 1.

前記冷却体には、回転軸31を介してモータ等の回転駆動装置4が連結され、冷却体3に回転力を付与できるようになっている。この回転駆動装置4の回転速度、換言すれば冷却体3の回転速度は制御部5により可変制御可能となされており、これにより後述するように、精製初期の冷却体3の平均周速を精製中の平均周速よりも小さく設定し、かつ精製初期の冷却体の最大周速がそれ以降の平均周速を超えないように設定することができるものとなされている。   A rotation driving device 4 such as a motor is connected to the cooling body via a rotating shaft 31 so that a rotational force can be applied to the cooling body 3. The rotational speed of the rotation drive device 4, in other words, the rotational speed of the cooling body 3 can be variably controlled by the control unit 5, thereby refining the average peripheral speed of the cooling body 3 at the initial stage of purification as will be described later. The average peripheral speed is set to be smaller than the average peripheral speed, and the maximum peripheral speed of the cooling body in the initial purification stage can be set not to exceed the average peripheral speed thereafter.

図1(a)に示すように、前記回転冷却体3を溶湯保持炉1内の溶融金属2に浸漬し、内部に冷却流体を供給しつつ回転させ、冷却体1の周面に精製金属6をゆっくり晶出させる。この順序は特に限定するものではなく、回転冷却体3を回転させながら溶融金属2に浸漬させても問題はない。共晶不純物は液相中に排出されて凝固界面近傍の液相中に共用不純物の不純物濃化層が出来るが、回転冷却体3と溶融金属2との相対速度によって不純物濃化層中の不純物が液相全体に分散させられる。この状態で凝固を進行させると、図1(b)に示すように、冷却体3の周面には元の溶融金属2よりはるかに高純度の金属塊6が得られる。   As shown in FIG. 1 (a), the rotary cooling body 3 is immersed in the molten metal 2 in the molten metal holding furnace 1 and rotated while supplying a cooling fluid therein, and the purified metal 6 is disposed on the peripheral surface of the cooling body 1. Crystallize slowly. This order is not particularly limited, and there is no problem even if the rotating cooling body 3 is immersed in the molten metal 2 while rotating. The eutectic impurities are discharged into the liquid phase to form a common impurity impurity concentration layer in the liquid phase near the solidification interface. The impurities in the impurity concentration layer are formed by the relative speed between the rotating cooling body 3 and the molten metal 2. Is dispersed throughout the liquid phase. When solidification proceeds in this state, a metal lump 6 having a purity much higher than that of the original molten metal 2 is obtained on the peripheral surface of the cooling body 3 as shown in FIG.

この回転冷却体3の周面の高純度金属塊6は、ある一定時間経過後に溶融金属2から冷却体3と共に引き上げられ、冷却体3から掻き落として回収される。こののち冷却体3は再度溶湯保持炉1内の溶融金属2に浸潰され、金属精製に供される。この工程は繰り返し実施され連統的に金属精製が行われる。   The high-purity metal lump 6 on the peripheral surface of the rotary cooling body 3 is pulled up together with the cooling body 3 from the molten metal 2 after a certain period of time, and is scraped off and recovered from the cooling body 3. After that, the cooling body 3 is again crushed in the molten metal 2 in the molten metal holding furnace 1 and used for metal refining. This process is repeated and metal purification is continuously performed.

この工程において、精製金属掻き落とし後の冷却体は溶融金属の温度より明確に低い温度となる。そのため溶融金属2に再度浸漬した時に冷却体3の同面に接する溶融金属2は、冷却体3への熱拡散により急激に凝固してしまう。このとき凝固した金属は急激に冷却されるため冷却体3への密着が悪く、このため精製途中で精製金属塊6が剥離してしまうことが多く、その場合には一定時間の精製後に得られる精製塊重量が小さくなってしまう。このように非常に不安定な精製工程となり、結果として生産効率が悪いものとなる。   In this step, the cooling body after scraping off the purified metal has a temperature clearly lower than the temperature of the molten metal. Therefore, the molten metal 2 that is in contact with the same surface of the cooling body 3 when dipped in the molten metal 2 abruptly solidifies due to thermal diffusion to the cooling body 3. At this time, the solidified metal is rapidly cooled, so the adhesion to the cooling body 3 is poor, and therefore, the refined metal lump 6 often peels off during the purification, and in this case, it is obtained after a certain period of purification. The refined lump weight is reduced. In this way, the purification process becomes very unstable, resulting in poor production efficiency.

そこで、この発明は、冷却体3の浸漬直後に晶出した、冷却体3との密着性の悪い金属精製塊6の冷却体3からの剥離を防止するため、精製初期に回転冷却体3の周速を意図的に小さくして金属精製塊6へ作用する遠心力を減少させるものである。つまり、精製初期の冷却体の平均周速をそれ以降の平均周速よりも小さく設定し、かつ精製初期の冷却体の最大周速がそれ以降の平均周速を超えないように設定して精製を行うものである。   Therefore, in the present invention, in order to prevent the metal refined lump 6 having poor adhesion with the cooling body 3 crystallized immediately after the cooling body 3 from being immersed from the cooling body 3, The centrifugal force acting on the metal refined lump 6 is reduced by intentionally reducing the peripheral speed. In other words, the average peripheral speed of the cooling body at the initial stage of purification is set to be smaller than the average peripheral speed thereafter, and the maximum peripheral speed of the cooling body at the initial stage of purification is set not to exceed the average peripheral speed thereafter. Is to do.

この方法によれば、冷却体3の浸漬直後に晶出した精製金属は、回転冷却体3の平均周速が低速であり、かつ最大周速が小さいために剥離が防止され、その後は周速を大きくすることにより、晶出した金属精製塊6は図1(c)に示すように剥離することもなく成長し安定した精製が可能となり、最終的に得られる精製金属重量が大きくなる。   According to this method, the purified metal crystallized immediately after the immersion of the cooling body 3 is prevented from peeling because the average peripheral speed of the rotating cooling body 3 is low and the maximum peripheral speed is small, and thereafter the peripheral speed is reduced. As shown in FIG. 1 (c), the crystallized metal refined mass 6 grows without peeling and can be stably refined, and the finally obtained refined metal weight increases.

ここで、精製初期とは、例えば、精製開始から全精製時間×0.1までの時間をいう。全精製時間×0.1を超える時間まで平均周速を小さくしても、精製金属の剥離防止効果が飽和するのみならず、生産性の低下を招いて最終的に得られる精製金属重量を大きくすることができない恐れがある。   Here, the initial stage of purification refers to, for example, the time from the start of purification to the total purification time × 0.1. Even if the average peripheral speed is reduced to a time exceeding the total purification time x 0.1, not only does the effect of preventing the peeling of the purified metal saturate, but also the productivity of the purified metal that is finally obtained is increased and the weight of the purified metal is increased. There is a fear that you can not.

具体的には、精製開始から全精製時間×0.05までの冷却体3の平均周速V1を、それ以降の平均周速V3に対してV1≦V3×0.9に設定して精製を行うのが良いが、更に確実な効果を得るためには、精製開始から全精製時間×0.1までは冷却体3の平均周速V1で精製を行い、それ以降は平均周速V3(ただしV1≦V3×0.9)で精製を行うのがよい。   Specifically, the average peripheral speed V1 of the cooling body 3 from the start of purification to the total purification time × 0.05 is set to V1 ≦ V3 × 0.9 with respect to the average peripheral speed V3 thereafter, and purification is performed. In order to obtain a more reliable effect, purification is performed at the average peripheral speed V1 of the cooling body 3 from the start of purification until the total purification time × 0.1, and thereafter the average peripheral speed V3 (however, V1 ≦ V3 × 0.9).

また、精製初期の冷却体3の最大周速V2がそれ以降の平均周速以上であると、たとえ精製初期の冷却体3の平均周速V1をそれ以降の平均周速V3よりも小さく設定しても、最大周速によって生じる遠心力により、精製金属が剥離する恐れがあることから、精製初期の冷却体の最大周速V2をそれ以降の平均周速V3を超えないように設定する必要がある。好ましくは、精製初期の冷却体3の最大周速V2をそれ以降の平均周速V3の0.95倍以下に設定するのが望ましい。   Further, if the maximum peripheral speed V2 of the cooling body 3 in the initial stage of purification is equal to or higher than the average peripheral speed thereafter, the average peripheral speed V1 of the cooling body 3 in the initial stage of purification is set smaller than the average peripheral speed V3 thereafter. However, since the refined metal may be peeled off due to the centrifugal force generated by the maximum peripheral speed, it is necessary to set the maximum peripheral speed V2 of the cooling body at the initial stage of purification not to exceed the average peripheral speed V3 thereafter. is there. Preferably, it is desirable to set the maximum peripheral speed V2 of the cooling body 3 at the initial stage of purification to 0.95 times or less of the average peripheral speed V3 thereafter.

この金属精製装置において、溶湯保持炉1は単独であっても良いし連結樋によって複数の保持炉が互いに連通状に接続されていても構わない。単独の場合は精製を繰り返すと溶融金属の不純物濃度が増すために、精製した金属の純度が悪化してしまう。そのために定期的に溶融金属を入れ替えるのが良い。連結樋によって互いに連結した場合は、一端から新たな溶融金属を注ぎこめば溶融金属2が、隣接する溶湯保持炉1に流出し、高濃度の溶融金属がそのまま溶湯保持炉1に滞留することはなく、このため溶融金属を入れ替える必要がない。また最下流の溶湯保持炉1から流出した溶融金属は、精製に適さない濃度となるので排出される。   In this metal refining apparatus, the molten metal holding furnace 1 may be a single one, or a plurality of holding furnaces may be connected to each other by a connecting rod. In the case of a single substance, when the purification is repeated, the impurity concentration of the molten metal increases, so that the purity of the purified metal is deteriorated. Therefore, it is better to replace the molten metal regularly. When they are connected to each other by a connecting rod, if a new molten metal is poured from one end, the molten metal 2 flows out to the adjacent molten metal holding furnace 1 and the high concentration molten metal stays in the molten metal holding furnace 1 as it is. Therefore, it is not necessary to replace the molten metal. Further, the molten metal that has flowed out of the most downstream molten metal holding furnace 1 is discharged because it has a concentration that is not suitable for purification.

回転冷却体3は黒鉛、セラミックス製等が望ましいが、これに限るものではない。高温の溶融金属と接触するために回転冷却体3も高温となるので、この高温で溶融せず、極端な強度低下をしないものであれば良く、金属製であっても構わない。   The rotary cooling body 3 is preferably made of graphite or ceramics, but is not limited thereto. Since the rotary cooling body 3 also becomes high temperature due to contact with the high-temperature molten metal, it may be any metal as long as it does not melt at this high temperature and does not cause an extreme decrease in strength.

回転冷却体3を冷却するための冷媒も特に限定はされず、窒索ガス、二酸化炭素ガス、アルゴンガス、圧縮エアー等を使用できるが、コストの面で圧縮エアーが推奨される。   The refrigerant for cooling the rotary cooling body 3 is not particularly limited, and nitriding gas, carbon dioxide gas, argon gas, compressed air, and the like can be used, but compressed air is recommended in terms of cost.

精製金属は、共晶不純物を含むアルミニウム、ケイ素、マグネシウム、鉛、亜鉛等の金属を挙げうる。特にアルミニウムを精製する際、アルミニウムと包晶を生成する不純物が含まれる場合には、ホウ素添加および撹拌を行うのが良い。ホウ素添加および撹拌を行うことで、ホウ素が溶融金属中に含まれているTi、V、Zr等の包晶不純物と反応してTiB2、VB2、ZrB2等の不溶性ホウ化物が生成される。余剰のホウ素は、共晶不純物にして除去される。上記ホウ化物は、溶湯保持炉1内で冷却体3の回転により生じる遠心力によって冷却体3から遠ざけられ、冷却体3の周面に晶出したアルミニウムに含まれることはない。また、溶湯保持炉1が連結樋によって互いに連通状に接続されている場合は、最上流にホウ素添加用るつぼを配置しておくのがよい。ホウ素は一般的にアルミニウムに添加された母合金ロッドとして溶融金属中に供給される。   The refined metal may include metals such as aluminum, silicon, magnesium, lead, and zinc containing eutectic impurities. In particular, when aluminum is purified, if impurities that generate peritectic crystals with aluminum are contained, boron addition and stirring are preferably performed. By adding boron and stirring, boron reacts with peritectic impurities such as Ti, V, and Zr contained in the molten metal, and insoluble borides such as TiB2, VB2, and ZrB2 are generated. Excess boron is removed as eutectic impurities. The boride is separated from the cooling body 3 by the centrifugal force generated by the rotation of the cooling body 3 in the molten metal holding furnace 1 and is not contained in the aluminum crystallized on the peripheral surface of the cooling body 3. In addition, when the molten metal holding furnaces 1 are connected to each other by connecting rods, it is preferable to arrange a boron addition crucible in the uppermost stream. Boron is generally supplied into the molten metal as a master alloy rod added to aluminum.

上記により精製された金属は、各種の加工や用途に用いることで優れた特性や機能を発揮させることができる。一例を挙げると、精製金属を鋳造に用いて鋳造品を製作しても良いし、この鋳造品を圧延して各種の金属板や金属箔として用いても良い。また、この金属箔を例えばアルミニウム電解コンデンサの電極材として用いてもよい。   The metal refine | purified by the above can exhibit the outstanding characteristic and function by using for various processes and uses. For example, a refined metal may be used for casting to produce a cast product, or the cast product may be rolled and used as various metal plates or metal foils. Moreover, you may use this metal foil as an electrode material of an aluminum electrolytic capacitor, for example.

[実施例]
不純物として主にFe:500ppm、Si:400ppmが含まれるアルミニウム溶湯を精製保持炉内に入れ、精製炉ヒーターの電力を調整し665℃の温度に保持する。その後、温度を調整した上端部の外径が150mmであるテーパー形状の回転冷却体を溶湯中に浸潰し、以下に示す速度で回転させながら、7分間回転冷却体周面に精製アルミニウムを晶出させた。なお回転冷却体内には圧縮エアーを直接当てて冷却させた。
(1)冷却体の回転数を、精製開始から全精製時間×0.05まで平均周速V1:2.7m/sec、最大周速V2:2.9m/sec、それ以降周速3.1m/sec(従って平均周速V3も3.1m/sec)に設定して、5回の精製実験を実施した結果、精製塊重量は平均で6.1kgであった。また、精製中に発生した剥離回数を精製開始後の時間経過とともに調査したところ、表1の通りであり、精製開始から全精製時間×0.05以内での剥離発生率は減少した。
[Example]
A molten aluminum containing mainly Fe: 500 ppm and Si: 400 ppm as impurities is placed in a refining holding furnace, and the power of the refining furnace heater is adjusted and maintained at a temperature of 665 ° C. Then, a tapered rotating cooling body with an outer diameter of 150 mm at the upper end adjusted for temperature is immersed in the molten metal, and purified aluminum is crystallized on the peripheral surface of the rotating cooling body for 7 minutes while rotating at the speed shown below. I let you. The rotating cooling body was cooled by directly applying compressed air.
(1) The number of rotations of the cooling body is from the start of purification to the total purification time × 0.05, average peripheral speed V1: 2.7 m / sec, maximum peripheral speed V2: 2.9 m / sec, and thereafter peripheral speed 3.1 m / Sec (therefore, the average peripheral speed V3 was also set to 3.1 m / sec). As a result of performing the purification experiment five times, the weight of the purified lump was 6.1 kg on average. Further, the number of peelings that occurred during the purification was investigated with the passage of time after the start of purification, as shown in Table 1, and the rate of peeling occurred within the total purification time × 0.05 from the start of purification.

Figure 0005415066
Figure 0005415066

(2)冷却体の回転数を、精製開始から全精製時間×0.1まで平均周速V1:2.7m/sec、最大周速V2:2.9m/sec、それ以降周速3.1m/sec(従って平均周速V3も3.1m/sec)に設定して、5回の精製実験を実施した結果、精製塊重量は平均で6.14kgであった。また、精製中に発生した剥離回数を精製開始後の時間経過とともに調査したところ、表2の通りであり、精製開始から全精製時間×0.1以内での剥離発生率は減少した。 (2) The number of rotations of the cooling body was changed from the start of purification to the total purification time × 0.1, average peripheral speed V1: 2.7 m / sec, maximum peripheral speed V2: 2.9 m / sec, and thereafter peripheral speed 3.1 m. / Sec (therefore, the average peripheral speed V3 was also set to 3.1 m / sec). As a result of conducting the purification experiment five times, the weight of the purified lump was 6.14 kg on average. Further, the number of peelings occurred during the purification was investigated with the passage of time after the start of purification, as shown in Table 2, and the rate of peeling occurred within the total purification time × 0.1 from the start of purification.

Figure 0005415066
Figure 0005415066

[従来例]
不純物として主にFe:500ppm、Si:400ppmが含まれるアルミニウム溶湯を精製保持炉内に入れ、精製炉ヒーターの電力を調整し665℃の温度に保持する。その後、温度を調整した上端部の外径が150mmであるテーパー形状の回転冷却体を溶湯中に浸潰し、周速3.1m/secの一定速度で回転させながら、7分間回転冷却体周面に精製アルミニウムを晶出させた。なお回転冷却体内には圧縮エアーを直接当てて冷却させた。
[Conventional example]
A molten aluminum containing mainly Fe: 500 ppm and Si: 400 ppm as impurities is placed in a refining holding furnace, and the power of the refining furnace heater is adjusted and maintained at a temperature of 665 ° C. After that, a tapered cooling cooling body having an outer diameter of 150 mm whose temperature is adjusted at the upper end is crushed in the molten metal and rotated at a constant speed of 3.1 m / sec. Purified aluminum was crystallized. The rotating cooling body was cooled by directly applying compressed air.

5回の精製実験を実施した結果、精製塊重量は平均で6.0kgであった。また、精製中に発生した剥離回数を精製開始後の時間経過とともに調査したところ、表3の通りであり、精製開始から全精製時間×0.05までは全ての精製で剥離が発生した。   As a result of conducting the purification experiment five times, the weight of the purified lump was 6.0 kg on average. Further, the number of peelings that occurred during purification was examined with the passage of time after the start of purification, as shown in Table 3, and peeling occurred in all purifications from the start of purification to the total purification time × 0.05.

Figure 0005415066
Figure 0005415066

この発明の一実施形態に係る金属精製装置の概略構成と、これを用いた金属精製方法を説明するための図である。It is a figure for demonstrating the schematic structure of the metal purification apparatus which concerns on one Embodiment of this invention, and the metal purification method using the same.

符号の説明Explanation of symbols

1 溶湯保持炉
2 溶融金属(溶湯)
3 冷却体
4 回転駆動装置
5 制御部
6 精製金属塊
1 Molten metal holding furnace 2 Molten metal (molten metal)
3 Cooling body 4 Rotation drive device 5 Control unit 6 Refined metal block

Claims (8)

精製すべき溶融金属中に冷却体を浸漬し、この冷却体を回転させながら冷却体表面に高純度金属を晶出させる金属の精製方法において、
前記冷却体を前記溶融金属中へ浸漬したときを精製開始とし、この精製開始から前記冷却体を前記溶融金属から引き上げたときまでを全精製時間とするときに、精製開始から全精製時間×0.1までの精製初期の冷却体の平均周速をそれ以降の平均周速よりも小さく設定し、かつ精製初期の冷却体の最大周速がそれ以降の平均周速を超えないように設定して精製を行うことを特徴とする金属精製方法。
In a metal purification method in which a cooling body is immersed in a molten metal to be purified, and a high-purity metal is crystallized on the surface of the cooling body while rotating the cooling body.
When the cooling body is immersed in the molten metal, the purification starts, and when the cooling body is pulled from the molten metal to the total purification time, the total purification time from the start of purification × 0 Set the average peripheral speed of the cooling body at the initial stage of purification up to 1 smaller than the average peripheral speed after that, and set the maximum peripheral speed of the cooling body at the initial stage of purification not to exceed the average peripheral speed thereafter. A metal purification method characterized by performing purification.
精製開始から全精製時間×0.05までの冷却体の平均周速V1とそれ以降の平均周速V3の関係がV1≦V3×0.9に設定されている請求項1に記載の金属精製方法。2. The metal refining according to claim 1, wherein the relationship between the average peripheral speed V1 of the cooling body from the start of refining to the total refining time × 0.05 and the average peripheral speed V3 thereafter is set to V1 ≦ V3 × 0.9. Method. 精製開始から全精製時間×0.1までの冷却体の平均周速V1とそれ以降の平均周速V3の関係がV1≦V3×0.9に設定されている請求項1または2に記載の金属精製方法。The relationship between the average peripheral speed V1 of the cooling body from the start of purification to the total purification time x 0.1 and the average peripheral speed V3 thereafter is set to V1 ≤ V3 x 0.9. Metal purification method. 精製される金属がアルミニウムである請求項1〜3のいずれかに記載の金属精製方法。The metal purification method according to claim 1, wherein the metal to be purified is aluminum. 精製すべき溶融金属を収容する炉体と、A furnace body containing the molten metal to be refined;
前記炉体に収容された溶融金属中に浸漬される冷却体と、A cooling body immersed in the molten metal contained in the furnace body;
前記冷却体を回転させる回転駆動装置と、A rotation drive device for rotating the cooling body;
前記冷却体を前記溶融金属中へ浸漬したときを精製開始とし、この精製開始から前記冷却体を前記溶融金属から引き上げたときまでを全精製時間とするときに、精製開始から全精製時間×0.1までの精製初期の冷却体の平均周速がそれ以降の平均周速よりも小さくなるように、かつ精製初期の冷却体の最大周速がそれ以降の平均周速を超えないように、前記回転駆動装置による冷却体の回転速度を制御する制御手段と、When the cooling body is immersed in the molten metal, the purification starts, and when the cooling body is pulled from the molten metal to the total purification time, the total purification time from the start of purification × 0 .1 so that the average peripheral speed of the cooling body in the initial stage of purification becomes smaller than the average peripheral speed thereafter, and the maximum peripheral speed of the cooling body in the initial stage of purification does not exceed the average peripheral speed thereafter. Control means for controlling the rotational speed of the cooling body by the rotary drive device;
を備えたことを特徴とする金属精製装置。A metal refining apparatus characterized by comprising:
前記制御手段は、精製開始から全精製時間×0.05までの冷却体の平均周速V1とそれ以降の平均周速V3の関係がV1≦V3×0.9となるように、回転駆動装置による冷却体の回転速度を制御する請求項5に記載の金属精製装置。The control means is a rotary drive device so that the relationship between the average peripheral speed V1 of the cooling body from the start of purification to the total purification time × 0.05 and the average peripheral speed V3 thereafter is V1 ≦ V3 × 0.9. The metal refining device according to claim 5, wherein the rotation speed of the cooling body is controlled. 前記制御手段は、精製開始から全精製時間×0.1までの冷却体の平均周速V1とそれ以降の平均周速V3の関係がV1≦V3×0.9となるように、回転駆動装置による冷却体の回転速度を制御する請求項5または6に記載の金属精製装置。The control means is a rotary drive device so that the relationship between the average peripheral speed V1 of the cooling body from the start of purification to the total purification time × 0.1 and the average peripheral speed V3 thereafter is V1 ≦ V3 × 0.9. The metal refining device according to claim 5, wherein the rotational speed of the cooling body is controlled by the gas generator. 請求項1ないし3のいずれかに記載の方法で精製された精製金属。A purified metal purified by the method according to claim 1.
JP2008332037A 2007-12-27 2008-12-26 Metal purification method and apparatus, refined metal, casting, metal product and electrolytic capacitor Active JP5415066B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008332037A JP5415066B2 (en) 2007-12-27 2008-12-26 Metal purification method and apparatus, refined metal, casting, metal product and electrolytic capacitor

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2007335961 2007-12-27
JP2007335961 2007-12-27
JP2008332037A JP5415066B2 (en) 2007-12-27 2008-12-26 Metal purification method and apparatus, refined metal, casting, metal product and electrolytic capacitor

Publications (2)

Publication Number Publication Date
JP2009174053A JP2009174053A (en) 2009-08-06
JP5415066B2 true JP5415066B2 (en) 2014-02-12

Family

ID=41029433

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008332037A Active JP5415066B2 (en) 2007-12-27 2008-12-26 Metal purification method and apparatus, refined metal, casting, metal product and electrolytic capacitor

Country Status (1)

Country Link
JP (1) JP5415066B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105648236A (en) * 2016-01-22 2016-06-08 南通泰德电子材料科技有限公司 Purifying method for ultra-pure aluminum

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06136470A (en) * 1992-10-26 1994-05-17 Showa Alum Corp Production of aluminum material for extra-high voltage al electrolytic capacitor
JP3674322B2 (en) * 1997-08-08 2005-07-20 住友化学株式会社 Aluminum purification method and its use
JP4253936B2 (en) * 1998-07-27 2009-04-15 住友化学株式会社 Aluminum purification method and use of the obtained aluminum
JP2002097528A (en) * 2000-09-22 2002-04-02 Sumitomo Chem Co Ltd Purification method of aluminum
JP4397714B2 (en) * 2003-03-18 2010-01-13 昭和電工株式会社 Raw material for aluminum purification
JP5134817B2 (en) * 2006-12-28 2013-01-30 昭和電工株式会社 Metal purification method and apparatus, refined metal, casting, metal product and electrolytic capacitor

Also Published As

Publication number Publication date
JP2009174053A (en) 2009-08-06

Similar Documents

Publication Publication Date Title
JPS6345112A (en) Purification of silicon
JP3329013B2 (en) Continuous refining method and apparatus for Al-Si aluminum scrap
JP5134817B2 (en) Metal purification method and apparatus, refined metal, casting, metal product and electrolytic capacitor
JP5074762B2 (en) Metal purification method and apparatus, refined metal, casting, metal product and electrolytic capacitor
JP5479729B2 (en) Metal purification method and apparatus, refined metal, casting, metal product and electrolytic capacitor
JPH07206420A (en) Production of high-purity silicon
CN111321303A (en) Substance refining method
JP3237330B2 (en) Purification method of aluminum alloy scrap
JP5415066B2 (en) Metal purification method and apparatus, refined metal, casting, metal product and electrolytic capacitor
JP5634704B2 (en) Metal purification method and apparatus, refined metal, casting, metal product and electrolytic capacitor
JP4378820B2 (en) Aluminum purification method and its use
JP4134836B2 (en) Method for refining aluminum or aluminum alloy
JP5594958B2 (en) Substance purification method and substance purification equipment
JP5410702B2 (en) Metal purification method and apparatus, refined metal, casting, metal product and electrolytic capacitor
JP5069728B2 (en) Aluminum purification method, high-purity aluminum material, method for producing aluminum material for electrolytic capacitor electrode, and aluminum material for electrolytic capacitor electrode
JP2916645B2 (en) Metal purification method
JP2008163418A (en) Metal-refining method and apparatus, refined metal, casting, metal product and electrolytic capacitor
JP6342660B2 (en) Metal purification apparatus and metal purification method
WO1997003922A1 (en) Process for producing high-purity silicon
JP5594953B2 (en) Cooling body, metal refining apparatus and method
JP5128167B2 (en) Metal refining method, metal refining device, refined metal, casting, metal product and electrolytic capacitor
JP3721804B2 (en) Aluminum purification method and use thereof
JP6118579B2 (en) Metal purification method and metal purification apparatus
JP5594952B2 (en) Cooling body, metal refining apparatus and method
JP3695287B2 (en) Aluminum purification method and use thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110920

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130730

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130927

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131022

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131113

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5415066

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: R3D02

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250