JP5634704B2 - Metal purification method and apparatus, refined metal, casting, metal product and electrolytic capacitor - Google Patents

Metal purification method and apparatus, refined metal, casting, metal product and electrolytic capacitor Download PDF

Info

Publication number
JP5634704B2
JP5634704B2 JP2009281582A JP2009281582A JP5634704B2 JP 5634704 B2 JP5634704 B2 JP 5634704B2 JP 2009281582 A JP2009281582 A JP 2009281582A JP 2009281582 A JP2009281582 A JP 2009281582A JP 5634704 B2 JP5634704 B2 JP 5634704B2
Authority
JP
Japan
Prior art keywords
metal
swirling flow
molten metal
cooling body
flow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009281582A
Other languages
Japanese (ja)
Other versions
JP2010159490A (en
Inventor
萩原 靖久
靖久 萩原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Showa Denko KK
Original Assignee
Showa Denko KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Denko KK filed Critical Showa Denko KK
Priority to JP2009281582A priority Critical patent/JP5634704B2/en
Publication of JP2010159490A publication Critical patent/JP2010159490A/en
Application granted granted Critical
Publication of JP5634704B2 publication Critical patent/JP5634704B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Manufacture And Refinement Of Metals (AREA)

Description

本発明は金属の精製方法及び装置に関し,更に詳しく言えば、偏析凝固法の原理を利用して共晶不純物を含むアルミニウム、ケイ素、マグネシウム、鉛、亜鉛等の金属から、共晶不純物の含有量を元の金属よりも少なくし,高純度の金属を製造する方法及び装置に関し、さらには前記方法により精製された金属、この金属を用いた鋳造品、金属製品及び電解コンデンサに関する。   The present invention relates to a metal purification method and apparatus, and more specifically, the content of eutectic impurities from metals such as aluminum, silicon, magnesium, lead, and zinc containing eutectic impurities using the principle of segregation solidification. The present invention relates to a method and an apparatus for producing a high-purity metal with a smaller amount than the original metal, and further relates to a metal purified by the above-described method, a cast product using the metal, a metal product, and an electrolytic capacitor.

アルミニウム中に不純物、特にアルミニウムと共晶を生成するFe、Si、Cu等の不純物が含まれている場合、これらの不純物を除去して高純度のアルミニウムを得るためには、このアルミニウムを溶融し、これを冷却して凝固させる際の初晶アルミニウムを選択的に取り出すことが効果的であるという原理は周知である。   If aluminum contains impurities, especially impurities such as Fe, Si, and Cu that form eutectic with aluminum, in order to remove these impurities and obtain high-purity aluminum, this aluminum is melted. The principle that it is effective to selectively remove primary crystal aluminum when it is cooled and solidified is well known.

従来から上記原理を利用した種々のアルミニウムの精製法が提案されている。例えば、特許文献1には、容器1に収容されたアルミニウムの溶湯2と、溶湯2中に浸漬された冷却体3の外周部との相対速度が1600〜8000mm/secとなるように冷却体3を回転させることによって、凝固界面近傍の不純物の濃縮層を薄くし、精製アルミニウム5の純度を高くすることが提案されている。   Conventionally, various aluminum purification methods using the above principle have been proposed. For example, Patent Document 1 discloses that the cooling body 3 has a relative speed of 1600 to 8000 mm / sec between the molten aluminum 2 housed in the container 1 and the outer periphery of the cooling body 3 immersed in the molten metal 2. It is proposed that the concentration layer of impurities in the vicinity of the solidification interface is thinned and the purity of the purified aluminum 5 is increased by rotating.

また、特許文献2には、冷却体を中心に冷却体の周囲で溶融アルミニウムに働く遠心加速度が0.01m/s2以上1500m/s2以下になるように溶融アルミニウムの溶湯を回転させ、且つガス気泡を溶湯中に導入し、ガス気泡を溶湯に働く遠心力の反作用の力によって、凝固界面に移動させ、浮上しながら該凝固界面及びその近傍を通過することにより、凝固界面に生じる不純物濃化層を効率よく除去できる手段が提案されている。 In Patent Document 2, the molten aluminum melt is rotated so that the centrifugal acceleration acting on the molten aluminum around the cooling body is 0.01 m / s 2 or more and 1500 m / s 2 or less, By introducing gas bubbles into the melt and moving the gas bubbles to the solidification interface by the reaction force of the centrifugal force acting on the melt, and passing through the solidification interface and its vicinity while rising, the concentration of impurities generated at the solidification interface is increased. Means that can efficiently remove the stratified layer have been proposed.

しかしながら、特許文献1に記載された技術においては、得られるアルミニウムの不純物を十分に除去できていなかった。   However, in the technique described in Patent Document 1, impurities of aluminum obtained cannot be sufficiently removed.

また、特許文献2に記載されたような方法でも、ガス気泡を導入し、凝固界面を擦過して濃化層を薄くしたとしてもその効果には限界があり、高い精製効率を得ることができないという問題があった。   Even in the method described in Patent Document 2, even if gas bubbles are introduced and the coagulation interface is rubbed to thin the concentrated layer, the effect is limited, and high purification efficiency cannot be obtained. There was a problem.

そこで、特許文献3には、精製炉内にバッフルプレートを設置し、冷却体の回転によって発生する溶湯の旋回流を抑止することにより、溶湯の連れ回りを抑止して冷却体の溶湯に対する周速の増大を図ることにより、不純物の除去を効率的に行う方法が開示されている。   Therefore, in Patent Document 3, a baffle plate is installed in the refining furnace, and the swirling flow of the molten metal generated by the rotation of the cooling body is suppressed, so that the revolving of the molten metal is suppressed and the peripheral speed of the cooling body relative to the molten metal. A method is disclosed for efficiently removing impurities by increasing the amount of.

特公昭61−3385号公報Japanese Patent Publication No.61-3385 特許第3674322号公報Japanese Patent No. 3673322 特許昭61−170527号公報Japanese Patent No. 61-170527

しかし、精製炉内に旋回流抑止部材としてのバッフルプレートを設置する方法では次のような欠点があった。   However, the method of installing a baffle plate as a swirl flow suppressing member in the refining furnace has the following drawbacks.

即ち、冷却体の回転によって精製炉内の溶湯が撹拌されることにより、溶湯中に気泡や酸化物が生じるが、溶湯の旋回流がバッフルプレートによって抑止される結果、気泡や酸化物の流れも抑止され、これらの気泡や酸化物を多く含む溶湯の部分が、溶湯の表面に近い部分に残留されてしまう。溶湯のうちこのような気泡や酸化物が多く含まれる部分は少ない部分に較べて熱伝導が悪いため、気泡や酸化物が溶湯の表面部分に残留すると、この表面部分は溶湯の他の部分からの熱が伝わりにくい状態となり、また大気により冷却されることも相俟って、溶湯表面で溶融金属が凝固しやすくなるという問題があった。   That is, the melt in the refining furnace is agitated by the rotation of the cooling body to generate bubbles and oxides in the melt, but the swirling flow of the melt is suppressed by the baffle plate. The portion of the molten metal that is suppressed and contains a large amount of these bubbles and oxides remains in the portion close to the surface of the molten metal. The portion of the molten metal that contains a lot of bubbles and oxides has poor heat conduction compared to the portion that has few bubbles, so if bubbles or oxides remain on the surface of the molten metal, this surface portion will be removed from other parts of the molten metal. In combination with the fact that the heat of the metal is difficult to be transferred and being cooled by the atmosphere, there is a problem that the molten metal is easily solidified on the surface of the molten metal.

本発明はこのような実情に鑑みてなされたものであり、旋回流抑止部材の溶融金属中への設置により、不純物の除去を効率的に行うものでありながら、精製中に生じる気泡や酸化物が溶湯の表面近傍へ残留するのを防止して溶湯表面の凝固を防止することができる金属精製法及び装置を提供し、さらには前記方法により精製された金属、この金属を用いた鋳造品、金属製品及び電解コンデンサを提供することを課題とする。   The present invention has been made in view of such circumstances, and bubbles and oxides generated during purification can be efficiently removed by installing the swirl flow suppressing member in the molten metal. Provides a metal refining method and apparatus capable of preventing the melt from remaining near the surface of the melt and preventing solidification of the surface of the melt, and further, a metal refined by the method, a cast product using the metal, It is an object to provide a metal product and an electrolytic capacitor.

上記課題は、以下の手段によって解決される。
(1)容器に収容された精製すべき金属の溶湯中に冷却体を浸漬し、この冷却体を前記容器に対して相対的に回転させながら冷却体表面に高純度金属を晶出させる金属の精製方法において、前記冷却体の回転によって引き起こされる溶湯の旋回流を抑止するように、旋回流抑止部材を溶湯中に配置して精製を行い、精製途中で前記旋回流抑止部材の旋回流に対する抑止力を低下させることを特徴とする金属精製方法。
(2)前記旋回流抑止部材の旋回流に対する抑止力の低下が、旋回流抑止部材の旋回流に対する前面投影面積を縮小させることによって行われる前項1に記載の金属精製方法。
(3)旋回流抑止部材を溶湯中で移動または回転させることによって、旋回流抑止部材の旋回流に対する前面投影面積を縮小させる前項2に記載の金属精製方法。
(4)旋回流抑止部材の溶湯への浸漬部分の面積を変化させることによって、旋回流抑止部材の旋回流に対する前面投影面積を縮小させる前項2に記載の金属精製方法。
(5)前記旋回流抑止部材の旋回流に対する抑止力の低下が、溶湯中における回転冷却体から離れた旋回流の流速の遅い箇所への旋回流抑止部材の移動によって行われる前項1に記載の金属精製方法。
(6)旋回流抑止部材の旋回流に対する抑止力の低下を、精製開始から全精製時間×0.5以降に実施する前項1〜5のいずれかに記載の金属精製方法。
(7)前記抑止力低下後の旋回流抑止部材の旋回流に対する前面投影面積は、精製中の最大前面投影面積×0.5以下である前項2〜4のいずれかに記載の金属精製方法。
(8)精製される金属がアルミニウムである前項1〜7のいずれかに記載の金属精製方法。
(9)精製すべき金属の溶湯を収容する容器と、前記容器に収容された溶湯中に浸漬される冷却体と、前記冷却体または前記容器の少なくとも一方を回転させる回転駆動装置と、前記冷却体または前記容器の少なくとも一方の回転によって引き起こされる溶湯の旋回流を抑止するように、溶湯中に配置される旋回流抑止部材と、精製途中で前記旋回流抑止部材の旋回流に対する抑止力を低下させる手段と、を備えたことを特徴とする金属精製装置。
(10)前記旋回流抑止部材の旋回流に対する抑止力を低下させる手段が、旋回流抑止部材の旋回流に対する前面投影面積を縮小させる手段である前項9に記載の金属精製装置。
(11)前記旋回流抑止部材の旋回流に対する前面投影面積を縮小させる手段が、旋回流抑止部材を溶湯中で移動または回転させる手段である前項10に記載の金属精製装置。
(12)前記旋回流抑止部材の旋回流に対する前面投影面積を縮小させる手段が、旋回流抑止部材の溶湯への浸漬部分の面積を変化させる手段である前項10に記載の金属精製装置。
(13)前記旋回流抑止部材の旋回流に対する抑止力を低下させる手段が、溶湯中における回転冷却体から離れた旋回流の流速の遅い箇所へ旋回流抑止部材を移動させる手段である前項9に記載の金属精製装置。
(14)前項1ないし8のいずれかに記載の方法で精製された精製金属。
(15)前項14に記載の精製金属から製造された鋳造品。
(16)前項15に記載の鋳造品が圧延されてなる金属製品。
(17)前項16に記載の金属製品が電極材として用いられている電解コンデンサ。
The above problem is solved by the following means.
(1) A metal body that immerses a cooling body in a metal melt to be purified contained in a container and crystallizes high purity metal on the surface of the cooling body while rotating the cooling body relative to the container. In the refining method, in order to suppress the swirling flow of the molten metal caused by the rotation of the cooling body, the swirl flow suppressing member is disposed in the molten metal for purification, and the swirling flow suppressing member suppresses the swirling flow during the refining. A metal refining method characterized by reducing the force.
(2) The metal refining method according to the above item (1), wherein the reduction of the deterring force of the swirling flow restraining member with respect to the swirling flow is performed by reducing the front projection area of the swirling flow inhibiting member with respect to the swirling flow.
(3) The metal refining method according to item 2, wherein the swirl flow restraining member is moved or rotated in the molten metal to reduce the front projected area of the swirl flow restraining member with respect to the swirling flow.
(4) The metal refining method according to item 2 above, wherein the front projected area of the swirling flow restraining member with respect to the swirling flow is reduced by changing the area of the portion of the swirling flow inhibiting member immersed in the molten metal.
(5) The decrease in the deterring force with respect to the swirling flow of the swirling flow deterring member is performed by moving the swirling flow deterring member to a location where the flow velocity of the swirling flow away from the rotating cooling body in the molten metal is slow. Metal purification method.
(6) The metal refining method according to any one of the preceding items 1 to 5, wherein the decrease in the deterring force of the swirling flow deterring member with respect to the swirling flow is carried out from the start of purification to the total refining time × 0.5 or later.
(7) The metal refining method according to any one of the preceding items 2 to 4, wherein a front projected area of the swirling flow of the swirling flow suppressing member after the deterring force is reduced is a maximum front projected area being refined x 0.5 or less.
(8) The metal purification method according to any one of items 1 to 7, wherein the metal to be purified is aluminum.
(9) A container for storing a molten metal to be purified, a cooling body immersed in the molten metal stored in the container, a rotation driving device for rotating at least one of the cooling body or the container, and the cooling The swirl flow restraining member disposed in the molten metal so as to restrain the swirl flow of the molten metal caused by the rotation of at least one of the body and the container, and the deterring force against the swirl flow of the swirl flow restraining member during purification is reduced. And a metal refining device.
(10) The metal refining device according to item 9 above, wherein the means for reducing the deterring force of the swirling flow restraining member with respect to the swirling flow is a means for reducing a front projected area of the swirling flow with respect to the swirling flow.
(11) The metal refining device according to item 10 above, wherein the means for reducing the front projected area of the swirling flow restraining member with respect to the swirling flow is a means for moving or rotating the swirling flow inhibiting member in the molten metal.
(12) The metal refining device according to the above item 10, wherein the means for reducing the projected area of the front surface of the swirling flow restraining member with respect to the swirling flow is a means for changing the area of the portion of the swirling flow inhibiting member immersed in the molten metal.
(13) In the preceding item 9, wherein the means for reducing the deterring force of the swirling flow restraining member with respect to the swirling flow is a means for moving the swirling flow inhibiting member to a place where the swirling flow is slow in the molten metal and away from the rotating cooling body. The metal purification apparatus as described.
(14) A purified metal purified by the method according to any one of 1 to 8 above.
(15) A casting manufactured from the refined metal according to item 14 above.
(16) A metal product obtained by rolling the casting according to item 15 above.
(17) An electrolytic capacitor in which the metal product according to item 16 is used as an electrode material.

前項(1)に記載の発明によれば、冷却体の容器に対する相対的な回転によって引き起こされる溶湯の旋回流を抑止するように、旋回流抑止部材を溶湯中に配置して精製を行うから、冷却体の回転によって発生する溶湯の旋回流が抑止され、冷却体の溶湯に対する周速の増大を図ることができ、不純物の除去を効率的に行うことができる。また、精製途中で前記旋回流抑止部材の旋回流に対する抑止力を低下させるから、この抑止力の低下により、溶湯中に発生した気泡や酸化物の旋回流に沿った流れが回復する結果、前記気泡や酸化物が溶湯中に分散され、溶湯の表面近傍へ残留するのを防止することができる。このため、溶湯の表面が凝固しやすくなるという問題を解消することができる。   According to the invention described in the preceding item (1), since the swirl flow suppressing member is disposed in the molten metal so as to suppress the swirling flow of the molten metal caused by the relative rotation of the cooling body with respect to the container, purification is performed. The swirling flow of the molten metal generated by the rotation of the cooling body is suppressed, the peripheral speed of the cooling body relative to the molten metal can be increased, and impurities can be removed efficiently. Further, since the deterring force against the swirling flow of the swirling flow deterring member is reduced during the purification, the flow along the swirling flow of bubbles and oxides generated in the molten metal is recovered due to the decrease in the deterring force. It is possible to prevent bubbles and oxides from being dispersed in the molten metal and remaining near the surface of the molten metal. For this reason, the problem that the surface of the molten metal is easily solidified can be solved.

前項(2)に記載の発明によれば、旋回流抑止部材の旋回流に対する前面投影面積を縮小させることによって、旋回流抑止部材の旋回流に対する抑止力を確実に低下させることができる。   According to the invention described in the preceding item (2), by reducing the front projection area of the swirling flow restraining member with respect to the swirling flow, the deterring force of the swirling flow inhibiting member with respect to the swirling flow can be reliably reduced.

前項(3)に記載の発明によれば、旋回流抑止部材を溶湯中で移動または回転させることによって、旋回流抑止部材の旋回流に対する前面投影面積を容易に且つ確実に縮小させることができる。   According to the invention described in item (3) above, the front projected area of the swirling flow restraining member with respect to the swirling flow can be easily and reliably reduced by moving or rotating the swirling flow inhibiting member in the molten metal.

前項(4)に記載の発明によれば、旋回流抑止部材の溶湯への浸漬部分の面積を変化させることによって、旋回流抑止部材の旋回流に対する前面投影面積を容易に且つ確実に縮小させることができる。   According to the invention described in item (4) above, the front projection area of the swirl flow restraining member with respect to the swirling flow can be easily and reliably reduced by changing the area of the swirl flow restraining member immersed in the molten metal. Can do.

前項(5)に記載の発明によれば、溶湯中における回転冷却体から離れた旋回流の流速の遅い箇所へ旋回流抑止部材を移動させることによって、旋回流抑止部材の旋回流に対する抑止力を確実に低下させることができる。   According to the invention described in item (5) above, the swirl flow restraining member is moved to a location where the flow velocity of the swirl flow away from the rotating cooling body in the molten metal is slow, thereby suppressing the swirl flow deterring member against the swirl flow. It can be reliably lowered.

前項(6)に記載の発明によれば、旋回流抑止部材の旋回流に対する抑止力の低下を、精製開始から全精製時間×0.5以降に実施するから、精製中に生じる気泡や酸化物の溶湯表面への残留防止効果を効率的に発揮させることができる。   According to the invention described in the preceding item (6), since the reduction of the deterring force against the swirling flow of the swirling flow deterring member is carried out from the start of purification to the total refining time × 0.5 or later, bubbles and oxides generated during refining The residual preventing effect on the molten metal surface can be efficiently exhibited.

前項(7)に記載の発明によれば、抑止力低下後の旋回流抑止部材の旋回流に対する前面投影面積は、精製中の最大前面投影面積×0.5以下であるから、精製中に生じる気泡や酸化物の溶湯表面近傍への残留防止効果を効率的に発揮させることができる。   According to the invention described in item (7) above, the front projection area for the swirling flow of the swirling flow restraining member after the deterring force is reduced is equal to or less than the maximum front projected area during refining × 0.5 or less, and thus occurs during refining. It is possible to efficiently exert the effect of preventing bubbles and oxides from remaining near the molten metal surface.

前項(8)に記載の発明によれば、精製効率の高いアルミニウムを得ることができる。   According to the invention described in item (8), aluminum with high purification efficiency can be obtained.

前項(9)に記載の発明によれば、旋回流抑止部材により冷却体の溶湯に対する周速の増大を図ることにより、不純物の除去を効率的に行うことができる一方、精製途中で旋回流抑止部材の旋回流に対する抑止力を低下させることにより、溶湯中に発生した気泡や酸化物を溶湯中に分散させて溶湯表面近傍へ残留するのを防止できる金属精製装置となしうる。   According to the invention described in item (9) above, the swirl flow restraining member can efficiently remove impurities by increasing the peripheral speed of the cooling body relative to the molten metal. By reducing the deterring force against the swirling flow of the member, it is possible to provide a metal refining device that can prevent bubbles and oxides generated in the molten metal from being dispersed in the molten metal and remaining in the vicinity of the molten metal surface.

前項(10)に記載の発明によれば、旋回流抑止部材の旋回流に対する前面投影面積を縮小させることによって、旋回流抑止部材の旋回流に対する抑止力を確実に低下させることができる金属精製装置となしうる。   According to the invention described in the above item (10), the metal refining device can reliably reduce the deterring force of the swirling flow suppressing member against the swirling flow by reducing the front projection area of the swirling flow suppressing member with respect to the swirling flow. It can be done.

前項(11)に記載の発明によれば、旋回流抑止部材を溶湯中で移動または回転させることによって、旋回流抑止部材の旋回流に対する前面投影面積を容易に且つ確実に縮小させることができる金属精製装置となしうる。   According to the invention described in item (11) above, the metal that can easily and reliably reduce the front projected area of the swirling flow suppressing member with respect to the swirling flow by moving or rotating the swirling flow suppressing member in the molten metal. It can be a purification device.

前項(12)に記載の発明によれば、旋回流抑止部材の溶湯への浸漬部分の面積を変化させることによって、旋回流抑止部材の旋回流に対する前面投影面積を容易に且つ確実に縮小させることができる金属精製装置となしうる。   According to the invention described in item (12) above, the front projection area of the swirl flow restraining member with respect to the swirling flow can be easily and reliably reduced by changing the area of the swirl flow restraining member immersed in the molten metal. It can be a metal refining device that can

前項(13)に記載の発明によれば、溶湯中における回転冷却体から離れた旋回流の流速の遅い箇所へ旋回流抑止部材を移動させることによって、旋回流抑止部材の旋回流に対する抑止力を確実に低下させることができる金属精製装置となしうる。   According to the invention described in the preceding item (13), the swirl flow restraining member is moved to a location where the swirl flow is slow from the rotating cooling body in the molten metal, so that the swirl flow deterring member has a deterring force against the swirl flow. It can be a metal refining device that can be reliably lowered.

前項(14)に記載の発明によれば、不純物が少なく精製効率の良い精製金属となしうる。   According to the invention described in the preceding item (14), it can be a purified metal with less impurities and good purification efficiency.

前項(15)に記載の発明によれば、不純物が少なく精製効率の良い精製金属から製造された鋳造品となしうる。   According to the invention described in the above item (15), it can be a cast product made from a refined metal with few impurities and good purification efficiency.

前項(16)に記載の発明によれば、不純物が少なく精製効率の良い精製金属から製造された圧延金属製品となしうる。   According to the invention described in the above item (16), it can be a rolled metal product produced from a refined metal with less impurities and good purification efficiency.

前項(17)に記載の発明によれば、不純物が少なく精製効率の良い精製金属から製造された電極材が用いられた電解コンデンサとなしうる。   According to the invention described in the preceding item (17), an electrolytic capacitor using an electrode material manufactured from a refined metal with less impurities and good purification efficiency can be obtained.

この発明の一実施形態に係る金属精製装置の概略構成と、これを用いた金属精製方法を説明するための図である。It is a figure for demonstrating the schematic structure of the metal purification apparatus which concerns on one Embodiment of this invention, and the metal purification method using the same. 図1の溶湯保持炉1の上方を水平面で切断したときの切断位置から見た下面図である。It is the bottom view seen from the cutting position when the upper part of the molten metal holding furnace 1 of FIG. 1 is cut | disconnected by a horizontal surface. 旋回流抑止部材の旋回流に対する前面投影面積を縮小するための具体的な方法の一つを説明するための図であり、図2と同様の下面図である。It is a figure for demonstrating one of the specific methods for reducing the front projection area with respect to the swirling flow of a swirling flow suppression member, and is a bottom view similar to FIG. 旋回流抑止部材の旋回流に対する抑止力を低下させるための他の方法を説明するための図であり、図2と同様の下面図である。It is a figure for demonstrating the other method for reducing the deterrent force with respect to the swirl flow of a swirl | vortex flow suppression member, and is a bottom view similar to FIG.

以下、この発明の一実施形態を説明する。   An embodiment of the present invention will be described below.

図1はこの発明の一実施形態に係る金属精製装置の概略構成と、これを用いた金属精製方法を説明するための図、図2は図1の溶湯保持炉1の上方を水平面で切断したときの切断位置から見た下面図である。   FIG. 1 is a diagram for explaining a schematic configuration of a metal refining apparatus according to an embodiment of the present invention and a metal refining method using the same, and FIG. 2 is a horizontal plane cut above the molten metal holding furnace 1 of FIG. It is the bottom view seen from the cutting position.

図1において、1は溶融金属の溶湯2を収容する容器としての溶湯保持炉であり、この溶湯保持炉1の内部に溶湯2が収容保持されている。保持炉1の上方には回転冷却体3が上下左右移動自在に配置されるとともに、金属精製時には冷却体3が下方移動して、溶湯保持炉1内の溶湯2中に浸漬されるものとなされている。また、図示は省略したが、溶湯保持炉1の側方近傍には精製金属掻き落とし装置が設置され、溶湯保持炉1の溶湯2から引き上げられ移動してきた冷却体3に晶出した金属を、前記精製金属掻き落とし装置により掻き落として回収することができるものとなされている。さらに、溶湯保持炉1内の溶湯2は、一定の温度となるよう加熱炉内に配置され、保持炉1の外側から加熱されるようになっている。   In FIG. 1, reference numeral 1 denotes a molten metal holding furnace as a container for containing a molten metal 2, and the molten metal 2 is accommodated and held in the molten metal holding furnace 1. A rotary cooling body 3 is arranged above the holding furnace 1 so as to be movable up and down and left and right. At the time of metal refining, the cooling body 3 moves downward and is immersed in the molten metal 2 in the molten metal holding furnace 1. ing. Although not shown, a refined metal scraping device is installed in the vicinity of the side of the molten metal holding furnace 1, and the metal crystallized in the cooling body 3 pulled up and moved from the molten metal 2 of the molten metal holding furnace 1, The purified metal scraping device can be scraped off and collected. Further, the molten metal 2 in the molten metal holding furnace 1 is arranged in the heating furnace so as to have a constant temperature, and is heated from the outside of the holding furnace 1.

前記冷却体3には、回転軸31を介してモータ等の回転駆動及び移動装置4が連結され、冷却体3に回転力を付与できるとともに、上下左右に移動できるようになっている。   A rotating drive and moving device 4 such as a motor is connected to the cooling body 3 via a rotating shaft 31 so that a rotational force can be applied to the cooling body 3 and it can move up and down and right and left.

また、溶湯保持炉1内には冷却体3の周囲に複数個の旋回流抑止部材(バッフルプレート)61、62が設置されている。各旋回流抑止部材61、62は、縦長の翼板からなり、上端部における幅方向の一端に連結された軸部63を介して、モータ等の回転駆動及び移動装置7に連結され、回転方向及び、上下、左右、前後各方向へ自在に移動できるものとなされている。   Further, a plurality of swirl flow restraining members (baffle plates) 61 and 62 are installed around the cooling body 3 in the molten metal holding furnace 1. Each swirl flow restraining member 61, 62 is composed of a vertically long blade, and is connected to a rotational drive and moving device 7 such as a motor via a shaft portion 63 connected to one end in the width direction at the upper end portion. In addition, it can move freely in the vertical and horizontal directions and the front and rear directions.

図1(a)及び図2に示すように、前記回転冷却体3を溶湯保持炉1内の溶湯2に浸漬するとともに、旋回流抑止部材61、62をその幅方向が溶湯保持炉1及び冷却体3の径方向に合致する態様で溶湯2に浸漬し、回転冷却体3をその内部に冷却流体を供給しつつ図2の矢印Aで示す方向に回転させ、冷却体1の周面に精製金属5をゆっくり晶出させる。この順序は特に限定するものではなく、回転冷却体3を回転させながら溶湯2に浸漬させても問題はない。共晶不純物は液相中に排出されて凝固界面近傍の液相中に共晶不純物の不純物濃化層が出来るが、回転冷却体3と溶湯2との相対速度によって不純物濃化層中の不純物が液相全体に分散させられる。   As shown in FIGS. 1A and 2, the rotary cooling body 3 is immersed in the molten metal 2 in the molten metal holding furnace 1, and the swirl flow restraining members 61 and 62 are arranged in the width direction of the molten metal holding furnace 1 and cooled. 2 is immersed in the molten metal 2 in a manner matching the radial direction of the body 3, and the rotating cooling body 3 is rotated in the direction indicated by the arrow A in FIG. The metal 5 is slowly crystallized out. This order is not particularly limited, and there is no problem even if the rotary cooling body 3 is immersed in the molten metal 2 while rotating. The eutectic impurities are discharged into the liquid phase to form an impurity concentrated layer of the eutectic impurities in the liquid phase near the solidification interface. The impurities in the impurity concentrated layer are formed by the relative speed between the rotating cooling body 3 and the molten metal 2. Is dispersed throughout the liquid phase.

また、回転冷却体3の溶湯保持炉1に対する回転によって、溶湯2には回転冷却体3の回転方向と同じ方向への旋回流が生じるが、溶湯2中に幅方向が溶湯保持炉1の径方向に合致する態様で配置された旋回流抑止部材61、62によって、前記旋回流が抑止され、冷却体3の溶湯2に対する周速の増大が図られ、不純物の除去を効率的に行うことができる。   Further, the rotation of the rotary cooling body 3 with respect to the molten metal holding furnace 1 causes a swirling flow in the molten metal 2 in the same direction as the rotational direction of the rotary cooling body 3, but the width direction in the molten metal 2 is the diameter of the molten metal holding furnace 1. The swirl flow restraining members 61 and 62 arranged in a manner matching the direction restrain the swirl flow, increase the peripheral speed of the cooling body 3 with respect to the molten metal 2, and efficiently remove impurities. it can.

この状態で凝固を進行させると、図1(b)に示すように、冷却体3の周面には元の溶湯2の溶融金属よりはるかに高純度の晶出金属5が得られる。なお、晶出金属の純度に大きな影響を及ぼさない範囲で冷却体3の底面に金属が晶出していても構わない。   When solidification proceeds in this state, as shown in FIG. 1 (b), a crystallized metal 5 having a much higher purity than the molten metal of the original molten metal 2 is obtained on the peripheral surface of the cooling body 3. Note that the metal may be crystallized on the bottom surface of the cooling body 3 within a range that does not significantly affect the purity of the crystallized metal.

なお、この実施形態では、冷却体3を回転させるものとしたが、溶湯保持炉2を回転させても良いし、冷却体3と溶湯保持炉2を共に回転させても良く、要は冷却体3が溶湯保持炉2に対して相対的に回転していればよい。   In this embodiment, the cooling body 3 is rotated. However, the molten metal holding furnace 2 may be rotated, or both the cooling body 3 and the molten metal holding furnace 2 may be rotated. 3 should just be rotating relatively with respect to the molten metal holding furnace 2.

また、溶湯保持炉1は単独であっても良いし連結樋によって複数の保持炉が互いに連通状に接続されていても構わない。単独の場合は精製を繰り返すと溶湯の不純物濃度が増すために、精製した金属の純度が悪化してしまう。そのために定期的に溶湯を入れ替えるのが良い。連結樋によって互いに連結した場合は、一端から新たな溶湯を注ぎこめば溶湯2が、隣接する溶湯保持炉1に流出し、高濃度の溶湯がそのまま溶湯保持炉1に滞留することはなく、このため溶湯を溶湯保持炉1毎にバッチ操作にて入れ替える必要がない。また最下流の溶湯保持炉1から流出した溶湯は、精製に適さない濃度となるので排出される。   Moreover, the molten metal holding furnace 1 may be independent, and a plurality of holding furnaces may be connected to each other by connecting rods. In the case of a single substance, when the purification is repeated, the impurity concentration of the molten metal increases, so that the purity of the purified metal is deteriorated. Therefore, it is better to replace the molten metal regularly. When they are connected to each other by the connecting rod, the molten metal 2 flows out into the adjacent molten metal holding furnace 1 if a new molten metal is poured from one end, and the high concentration molten metal does not stay in the molten metal holding furnace 1 as it is. Therefore, it is not necessary to replace the molten metal for each molten metal holding furnace 1 by batch operation. Further, the molten metal flowing out from the most downstream molten metal holding furnace 1 is discharged because it has a concentration unsuitable for purification.

回転冷却体3は黒鉛、セラミックス製等が望ましいが、これに限るものではない。高温の溶湯と接触するために回転冷却体3も高温となるので、この高温で溶融せず、極端な強度低下をしないものであれば良く、金属製であっても構わない。   The rotary cooling body 3 is preferably made of graphite or ceramics, but is not limited thereto. Since the rotary cooling body 3 also becomes high temperature in contact with the high-temperature molten metal, it may be any metal as long as it does not melt at this high temperature and does not cause an extreme decrease in strength, and may be made of metal.

同様に、旋回流抑止部材61、62も黒鉛、セラミックス製等が望ましいが、これに限るものではない。高温の溶湯と接触するために旋回流抑止部材61、62も高温となるので、この高温で溶融せず、極端な強度低下をしないものであれば良い。また、溶湯上に突き出た部分によって冷却されてしまい、溶湯表面が凝固しやすい場合などは、旋回流抑止部材表面を断熱性を持った部材で覆う構造とすることもできる。この場合の断熱性を持った部材としてケイ酸カルシウムを推奨できる。   Similarly, the swirl flow restraining members 61 and 62 are desirably made of graphite, ceramics or the like, but are not limited thereto. Since the swirl flow restraining members 61 and 62 also become high temperature because they come into contact with the high-temperature molten metal, any member that does not melt at this high temperature and does not cause an extreme decrease in strength may be used. Moreover, when it cools by the part which protruded on the molten metal and the molten metal surface is easy to solidify, it can also be set as the structure which covers the swirl | flow-current suppression member surface with the member with heat insulation. In this case, calcium silicate can be recommended as a member having heat insulating properties.

回転冷却体3を冷却するための冷媒も特に限定はされず、窒索ガス、二酸化炭素ガス、アルゴンガス、圧縮エアー等を使用できるが、コストの面で圧縮エアーが推奨される。   The refrigerant for cooling the rotary cooling body 3 is not particularly limited, and nitriding gas, carbon dioxide gas, argon gas, compressed air, and the like can be used, but compressed air is recommended in terms of cost.

精製金属は、共晶不純物を含むアルミニウム、ケイ素、マグネシウム、鉛、亜鉛等の金属を挙げうる。特にアルミニウムを精製する際、アルミニウムと包晶を生成する不純物が含まれる場合には、ホウ素添加および撹拌を行うのが良い。ホウ素添加および撹拌を行うことで、ホウ素が溶湯中に含まれているTi、V、Zr等の包晶不純物と反応してTiB
2、VB2、ZrB2等の不溶性ホウ化物が生成される。余剰のホウ素は、共晶不純物にして除去される。上記ホウ化物は、溶湯保持炉1内で冷却体3の回転により生じる遠心力によって冷却体3から遠ざけられ、冷却体3の周面に晶出したアルミニウムに含まれることはない。また、溶湯保持炉1が連結樋によって互いに連通状に接続されている場合は、最上流にホウ素添加用るつぼを配置しておくのがよい。ホウ素は一般的にアルミニウムに添加された母合金ロッドとして溶湯中に供給される。
The refined metal may include metals such as aluminum, silicon, magnesium, lead, and zinc containing eutectic impurities. In particular, when aluminum is purified, if impurities that generate peritectic crystals with aluminum are contained, boron addition and stirring are preferably performed. By adding boron and stirring, boron reacts with peritectic impurities such as Ti, V, Zr, etc. contained in the molten metal, and TiB
2 , insoluble borides such as VB 2 and ZrB 2 are produced. Excess boron is removed as eutectic impurities. The boride is separated from the cooling body 3 by the centrifugal force generated by the rotation of the cooling body 3 in the molten metal holding furnace 1 and is not contained in the aluminum crystallized on the peripheral surface of the cooling body 3. In addition, when the molten metal holding furnaces 1 are connected to each other by connecting rods, it is preferable to arrange a boron addition crucible in the uppermost stream. Boron is generally supplied into the melt as a master alloy rod added to aluminum.

この回転冷却体3の周面の晶出金属5は、ある一定時間経過後に溶湯2から冷却体3と共に引き上げられ、冷却体3から掻き落として回収される。こののち冷却体3は再度溶湯保持炉1内の溶湯2に浸潰され、金属精製に供される。この工程は繰り返し実施され連統的に金属精製が行われる。   The crystallized metal 5 on the peripheral surface of the rotating cooling body 3 is pulled up together with the cooling body 3 from the molten metal 2 after a certain time has elapsed, and is scraped off and recovered from the cooling body 3. After that, the cooling body 3 is again crushed in the molten metal 2 in the molten metal holding furnace 1 and used for metal refining. This process is repeated and metal purification is continuously performed.

ところで、冷却体3の回転によって溶湯保持炉1内の溶湯2が撹拌されることにより、溶湯2中に気泡や酸化物が生じる。前述したように、溶湯2中には、溶湯2の旋回流を抑止する態様で旋回流抑止部材61、62が配置されているから、溶湯2の旋回流が旋回流抑止部材61、62によって抑止される結果、生成された前記気泡や酸化物の流れも抑止され、これらの気泡や酸化物が溶湯の表面近傍に残留してしまう。溶湯のうちこれらの気泡や酸化物を含む部分は他の部分からの熱伝導が悪く、また溶湯2の表面が大気により冷却されるため、放置しておくと、溶湯2の表面が凝固しやすくなる。   By the way, when the molten metal 2 in the molten metal holding furnace 1 is agitated by the rotation of the cooling body 3, bubbles and oxides are generated in the molten metal 2. As described above, the swirl flow restraining members 61 and 62 are arranged in the molten metal 2 in such a manner that the swirl flow of the melt 2 is restrained, so that the swirl flow of the molten metal 2 is restrained by the swirl flow restraining members 61 and 62. As a result, the flow of the generated bubbles and oxides is also suppressed, and these bubbles and oxides remain near the surface of the molten metal. The portion of the molten metal containing these bubbles and oxides has poor heat conduction from the other portions, and the surface of the molten metal 2 is cooled by the atmosphere. Therefore, if left as it is, the surface of the molten metal 2 tends to solidify. Become.

そこで、この実施形態では、精製途中において、図2に示すように、旋回流抑止部材61、62の各軸部63を約90度回転駆動することにより、旋回流抑止部材61、62の幅方向が溶湯2の旋回流の方向(図2の矢印B及びC方向)に沿う向きとなるように回転させる。すると、溶湯2の旋回流に対する旋回流抑止部材61、62の抑止力が低下し、旋回流に沿った気泡や酸化物の流れが回復する結果、前記気泡や酸化物が溶湯2中に分散され、溶湯の表面部へ残留するのが防止される。   Therefore, in this embodiment, as shown in FIG. 2, during the refining, the shaft portions 63 of the swirl flow restraining members 61 and 62 are rotated about 90 degrees to thereby rotate the swirl flow restraining members 61 and 62 in the width direction. Is rotated in a direction along the direction of the swirling flow of the molten metal 2 (the directions of arrows B and C in FIG. 2). Then, the deterring force of the swirl flow restraining members 61 and 62 with respect to the swirl flow of the molten metal 2 is reduced and the flow of bubbles and oxides along the swirl flow is recovered. As a result, the bubbles and oxides are dispersed in the melt 2. Residual to the surface of the molten metal is prevented.

このような旋回流抑止部材61、62による溶湯2の旋回流に対する抑止力の低下は、精製開始から全精製時間×0.5以降に実施するのがよい。精製開始から全精製時間×0.5までは、気泡や酸化物の量もまだ少なく、旋回流抑止部材61、62により旋回流を抑止して、冷却体3の溶湯2に対する周速を増大することにより、不純物の除去を行った方が効率的である一方、精製開始から全精製時間×0.5以降には、気泡や酸化物の量も多くなり、これら気泡や酸化物の溶湯表面近傍への残留防止効果を効率的に発揮させることができるからである。   Such a decrease in the deterring force against the swirling flow of the molten metal 2 by the swirling flow deterring members 61 and 62 is preferably carried out after the total refining time × 0.5. From the start of purification until the total purification time × 0.5, the amount of bubbles and oxides is still small, and the swirling flow is restrained by the swirling flow restraining members 61 and 62, and the peripheral speed of the cooling body 3 with respect to the molten metal 2 is increased. Therefore, it is more efficient to remove impurities. On the other hand, the amount of bubbles and oxides increases after the total purification time x 0.5 after the start of purification, and the vicinity of the melt surface of these bubbles and oxides. This is because it is possible to efficiently exhibit the effect of preventing the residue from remaining.

また、旋回流抑止部材61、62による溶湯2の旋回流に対する抑止力の低下の具体的方法は、上記のように旋回流抑止部材61、62を回動させる方法に限定されることはなく、どのような方法であっても良い。   Further, the specific method of reducing the deterring force against the swirling flow of the molten metal 2 by the swirling flow deterring members 61, 62 is not limited to the method of rotating the swirling flow deterring members 61, 62 as described above. Any method may be used.

例えば、旋回流抑止部材61、62を回動させる方法も含めて、旋回流抑止部材61、62の旋回流に対する前面投影面積を縮小させるように、旋回流抑止部材61、62を回転、移動、変形等することによって、旋回流に対する抑止力を低下させるのが、より簡単でかつ確実な方法として推奨される。   For example, including the method of rotating the swirl flow restraining members 61, 62, the swirl flow restraining members 61, 62 are rotated and moved so as to reduce the front projection area of the swirl flow restraining members 61, 62 with respect to the swirl flow. It is recommended as a simpler and more reliable method to reduce the deterrence against the swirling flow by deformation or the like.

ここで、旋回流抑止部材61、62の旋回流に対する前面投影面積とは、図2に示すように、冷却体3の回転中心を通る仮想垂直面8を冷却体3の回転中心の回りに回転させたときに、旋回流抑止部材61、62が溶湯2内において仮想垂直面8を横切る面積をいう。この面積が小さくなるように、旋回流抑止部材61、62を回転、移動、変形することで、溶湯2の旋回流に対する抑止力を低下させることができる。   Here, the front projected area of the swirl flow restraining members 61 and 62 with respect to the swirl flow is that the virtual vertical plane 8 passing through the rotation center of the cooling body 3 is rotated around the rotation center of the cooling body 3 as shown in FIG. This means an area where the swirl flow restraining members 61 and 62 cross the virtual vertical surface 8 in the molten metal 2. By rotating, moving, and deforming the swirl flow restraining members 61 and 62 so as to reduce this area, the deterring force of the molten metal 2 against swirl flow can be reduced.

旋回流抑止部材61、62の旋回流に対する前面投影面積を縮小するための具体的な方法として、図2に示したように、旋回流抑止部材61、62を回動させる方法の他、図3(b)に示すように、旋回流抑止部材61、62を溶湯2内で他の位置に平行移動させても良い。このような平行移動により、図3(a)の回転の場合と同様に、溶湯2の旋回流に対する抑止力を低下させることができる。   As a specific method for reducing the front projected area of the swirl flow restraining members 61 and 62 with respect to the swirl flow, as shown in FIG. 2, in addition to the method of rotating the swirl flow restraining members 61 and 62, FIG. As shown in (b), the swirl flow restraining members 61 and 62 may be translated to other positions in the molten metal 2. Such a parallel movement can reduce the deterrence against the swirling flow of the molten metal 2 as in the case of the rotation of FIG.

なお、平行移動でなく、旋回流抑止部材61、62の元の状態における幅方向の線と、移動後における幅方向の線とが交差する状態に、移動後の旋回流抑止部材61、62の向きを傾斜させても良い。   It should be noted that the swirl flow restraining members 61 and 62 after the movement are not in a parallel movement but in a state where the width direction line in the original state of the swirl flow restraining members 61 and 62 intersects the width direction line after the movement. The direction may be inclined.

また、旋回流抑止部材61、62を上方に移動させ、あるいは溶湯保持炉1を下方に移動させ、旋回流抑止部材61、62の溶湯2への浸漬部分の面積を変化させることによって、旋回流抑止部材61、62の旋回流に対する前面投影面積を縮小しても良い。旋回流抑止部材61、62を溶湯2から完全に引き上げることにより、旋回流抑止部材61、62の旋回流に対する前面投影面積はゼロとなる。   Further, the swirl flow restraining members 61 and 62 are moved upward or the molten metal holding furnace 1 is moved downward to change the area of the portion of the swirl flow restraining members 61 and 62 immersed in the molten metal 2 to thereby change the swirl flow. You may reduce the front projection area with respect to the turning flow of the suppression members 61 and 62. FIG. By completely pulling up the swirl flow restraining members 61 and 62 from the molten metal 2, the front projection area of the swirl flow restraining members 61 and 62 with respect to the swirl flow becomes zero.

ここで、前記抑止力低下後の旋回流抑止部材61、62の旋回流に対する前面投影面積が、精製中の最大前面投影面積×0.5以下となるように設定するのがよい。精製中の最大前面投影面積×0.5を超える前面投影面積では、旋回流に対する抑止力を低下させることによる溶湯2の表面近傍への気泡や酸化物の残留防止効果が小さくなる恐れがある。   Here, it is preferable to set the front projected area of the swirling flow restraining members 61 and 62 after the deterring force is reduced to the maximum front projected area during refining × 0.5 or less. When the front projection area exceeds the maximum front projection area × 0.5 during refining, the effect of preventing bubbles and oxides from remaining near the surface of the molten metal 2 by reducing the deterrent against swirling flow may be reduced.

特に好ましくは、抑止力低下後の旋回流抑止部材61、62の旋回流に対する前面投影面積が、精製中の最大前面投影面積×0.3以下、最も好適には精製中の最大前面投影面積×0.25以下となるように設定するのがよい。   Particularly preferably, the front projected area of the swirling flow of the swirling flow restraining members 61 and 62 after reduction of the deterring force is a maximum front projected area during purification × 0.3 or less, most preferably the maximum front projected area during refining × It is preferable to set it to be 0.25 or less.

また、旋回流抑止部材61、62の旋回流に対する前面投影面積を縮小することによって、旋回流に対する抑止力を低下させるのではなく、図4に示すような方法を採用しても良い。   Further, by reducing the front projected area of the swirl flow restraining members 61 and 62 with respect to the swirl flow, the deterring force against the swirl flow may not be reduced, but a method as shown in FIG. 4 may be adopted.

即ち、溶湯2の旋回流は回転冷却体3の回転によって引き起こされるので、図4(a)に矢印の大きさで示すように、溶湯2の旋回流の流速分布は、回転冷却体3の近傍で大きく、溶湯保持炉1の径方向外方に到るに従って徐々に小さくなり、溶湯保持炉1の近傍で小となる。   That is, since the swirling flow of the molten metal 2 is caused by the rotation of the rotating cooling body 3, the flow velocity distribution of the swirling flow of the molten metal 2 is in the vicinity of the rotating cooling body 3 as shown by the size of the arrow in FIG. And gradually decreases toward the outside in the radial direction of the molten metal holding furnace 1 and decreases in the vicinity of the molten metal holding furnace 1.

そこで、旋回流に対する抑止力の非低下時は、図4(b)の旋回流抑止部材61のように、旋回流抑止部材61、62を冷却体3の近傍に位置させて、流速の大きな旋回流を抑止して全体として大きな抑止力を生じさせ、旋回流に対する抑止力の低下時には、図4(b)の旋回流抑止部材62のように、旋回流抑止部材61、62を溶湯保持炉1の近傍まで径方向外方にスライドさせて、流速の大きな旋回流の抑止を解放し、全体としての抑止力を低下させる構成としても良い。   Therefore, when the deterrence against the swirling flow is not reduced, swirl flow inhibiting members 61 and 62 are positioned in the vicinity of the cooling body 3 as in the swirling flow inhibiting member 61 of FIG. The flow is suppressed to generate a large deterring force as a whole, and when the deterring force against the swirling flow is reduced, the swirl flow deterring members 61 and 62 are connected to the molten metal holding furnace 1 like the swirling flow deterring member 62 of FIG. It is good also as a structure which slides to radial direction outward to the vicinity of, and releases suppression of the swirling flow with a large flow velocity, and reduces the suppression force as a whole.

尚、以上の説明では、全ての旋回流抑止部材61、62を旋回流に対する抑止力低下方向に移動または回動等させるものとしたが、少なくとも1つを抑止力低下方向に移動または回動等させれば良い。   In the above description, all the swirling flow restraining members 61 and 62 are moved or rotated in the direction of decreasing the deterring force against the swirling flow, but at least one of them is moved or rotated in the deterring force decreasing direction. You can do it.

上記により精製された金属は、各種の加工や用途に用いることで優れた特性や機能を発揮させることができる。一例を挙げると、精製金属を鋳造に用いて鋳造品を製作しても良いし、この鋳造品を圧延して各種の金属板や金属箔として用いても良い。また、この金属箔を例えばアルミニウム電解コンデンサの電極材として用いてもよい。   The metal refine | purified by the above can exhibit the outstanding characteristic and function by using for various processes and uses. For example, a refined metal may be used for casting to produce a cast product, or the cast product may be rolled and used as various metal plates or metal foils. Moreover, you may use this metal foil as an electrode material of an aluminum electrolytic capacitor, for example.

[実施例1]
不純物として主にFe:500ppm、Si:400ppmが含まれるアルミニウム溶湯を精製保持炉内に入れ、精製炉ヒーターの電力を調整し665℃の温度に保持する。その後、温度を調整した上端部の外径が150mmであるテーパー形状の回転冷却体を溶湯中に浸潰するとともに、図1及び図2に示すように、保持炉の直径方向に沿う態様で、冷却体を挟んで2枚の旋回流抑止部材を溶湯中に浸漬した。そして、冷却体を周速3.1m/secの一定速度で回転させながら、5分間、冷却体の周面に精製アルミニウムを晶出させた。なお、回転冷却体内には圧縮エアーを直接当てて冷却させた。
[Example 1]
A molten aluminum containing mainly Fe: 500 ppm and Si: 400 ppm as impurities is placed in a refining holding furnace, and the power of the refining furnace heater is adjusted and maintained at a temperature of 665 ° C. Thereafter, the tapered outer cooling body having an outer diameter of 150 mm whose temperature is adjusted is crushed in the molten metal, and as shown in FIG. 1 and FIG. 2, along the diameter direction of the holding furnace, Two swirl flow restraining members were immersed in the molten metal with the cooling body interposed therebetween. Then, purified aluminum was crystallized on the peripheral surface of the cooling body for 5 minutes while rotating the cooling body at a constant speed of 3.1 m / sec. The rotating cooling body was cooled by directly applying compressed air.

前記2枚の旋回流抑止部材を表1に示すように、溶湯から完全に引き上げまたは図2に示すように90度回転させて精製を行ったときの、得られた晶出金属に含まれる不純物と精製効率及びその評価、溶湯表面の評価を表1に示す。   Impurities contained in the crystallized metal obtained when the two swirling flow restraining members are completely pulled up from the molten metal as shown in Table 1 or purified by rotating 90 degrees as shown in FIG. Table 1 shows the purification efficiency, its evaluation, and the evaluation of the molten metal surface.

なお、いずれの場合も、精製終了後、溶湯表面の気泡、酸化物は溶湯旋回流に巻き込まれて溶湯中に分散した。   In any case, after the purification was completed, bubbles and oxides on the surface of the molten metal were entrained in the molten metal swirl and dispersed in the molten metal.

Figure 0005634704
Figure 0005634704

表1の結果からわかるように、本実施品はいずれも精製効率、溶湯表面の評価が良いものであった。   As can be seen from the results in Table 1, all of the products of the present invention had good purification efficiency and evaluation of the molten metal surface.

[従来例1]
不純物として主にFe:500ppm、Si:400ppmが含まれるアルミニウム溶湯を精製保持炉内に入れ、精製炉ヒーターの電力を調整し665℃の温度に保持する。その後、温度を調整した上端部の外径が150mmであるテーパー形状の回転冷却体を溶湯中に浸潰し、周速3.1m/secの一定速度で回転させながら、5分間、回転冷却体の周面に精製アルミニウムを晶出させた。なお、回転冷却体内には圧縮エアーを直接当てて冷却させた。
[Conventional example 1]
A molten aluminum containing mainly Fe: 500 ppm and Si: 400 ppm as impurities is placed in a refining holding furnace, and the power of the refining furnace heater is adjusted and maintained at a temperature of 665 ° C. After that, the tapered rotating cooling body having an outer diameter of 150 mm whose temperature is adjusted is immersed in the molten metal and rotated at a constant speed of 3.1 m / sec for 5 minutes while rotating the rotating cooling body. Purified aluminum was crystallized on the peripheral surface. The rotating cooling body was cooled by directly applying compressed air.

上記により得られた晶出金属に含まれる不純物と精製効率、溶湯表面の状態を調べたところ、表2のとおりであり、精製効率の良くないものであった。   The impurities contained in the crystallized metal obtained as described above, the purification efficiency, and the state of the molten metal surface were examined. As shown in Table 2, the purification efficiency was poor.

Figure 0005634704
Figure 0005634704

[従来例2]
旋回流抑止部材を移動も回転もさせることなく精製終了まで同一配置状態に保持した以外は、上記実施例と同一の条件で実験を行い、得られた晶出金属に含まれる不純物と精製効率、溶湯表面を調べたところ、表3のとおりであり、精製効率は良好であったが、溶湯表面に気泡、酸化物が多く集積した。
[Conventional example 2]
Except that the swirl flow suppression member was kept in the same arrangement state until the end of purification without moving or rotating, the experiment was performed under the same conditions as in the above example, impurities contained in the obtained crystallization metal and the purification efficiency, When the molten metal surface was examined, it was as shown in Table 3. The purification efficiency was good, but many bubbles and oxides accumulated on the molten metal surface.

Figure 0005634704
Figure 0005634704

1 溶湯保持炉(容器)
2 溶湯
3 冷却体
4 回転駆動及び移動装置
5 晶出金属
61、62 旋回流抑止部材
7 回転駆動及び移動装置
1 Molten metal holding furnace (container)
2 Molten metal 3 Cooling body 4 Rotation drive and movement device 5 Crystallized metal 61, 62 Swirl flow inhibiting member 7 Rotation drive and movement device

Claims (17)

容器に収容された精製すべき金属の溶湯中に冷却体を浸漬し、この冷却体を前記容器に対して相対的に回転させながら冷却体表面に高純度金属を晶出させる金属の精製方法において、
前記冷却体の回転によって引き起こされる溶湯の旋回流を抑止するように、旋回流抑止部材を溶湯中に配置して精製を行い、精製途中で前記旋回流抑止部材の旋回流に対する抑止力を低下させることを特徴とする金属精製方法。
In a metal refining method, a cooling body is immersed in a metal melt to be purified contained in a container, and a high purity metal is crystallized on the surface of the cooling body while rotating the cooling body relative to the container. ,
In order to suppress the swirling flow of the molten metal caused by the rotation of the cooling body, the swirl flow suppressing member is disposed in the molten metal for purification, and the deterring force of the swirling flow suppressing member on the swirling flow is reduced during the purification. The metal purification method characterized by the above-mentioned.
前記旋回流抑止部材の旋回流に対する抑止力の低下が、旋回流抑止部材の旋回流に対する前面投影面積を縮小させることによって行われる請求項1に記載の金属精製方法。   The metal refining method according to claim 1, wherein the reduction of the deterring force of the swirling flow restraining member with respect to the swirling flow is performed by reducing the front projection area of the swirling flow inhibiting member with respect to the swirling flow. 旋回流抑止部材を溶湯中で移動または回転させることによって、旋回流抑止部材の旋回流に対する前面投影面積を縮小させる請求項2に記載の金属精製方法。   The metal refining method according to claim 2, wherein the swirl flow restraining member is moved or rotated in the molten metal to reduce a front projection area of the swirl flow restraining member with respect to the swirl flow. 旋回流抑止部材の溶湯への浸漬部分の面積を変化させることによって、旋回流抑止部材の旋回流に対する前面投影面積を縮小させる請求項2に記載の金属精製方法。   The metal refining method according to claim 2, wherein the front projected area of the swirl flow suppressing member with respect to the swirling flow is reduced by changing an area of the portion of the swirl flow suppressing member immersed in the molten metal. 前記旋回流抑止部材の旋回流に対する抑止力の低下が、溶湯中における回転冷却体から離れた旋回流の流速の遅い箇所への旋回流抑止部材の移動によって行われる請求項1に記載の金属精製方法。   2. The metal refining according to claim 1, wherein the reduction of the deterring force of the swirling flow restraining member with respect to the swirling flow is performed by movement of the swirling flow inhibiting member to a location where the swirling flow has a slow flow velocity away from the rotating cooling body in the molten metal. Method. 旋回流抑止部材の旋回流に対する抑止力の低下を、精製開始から全精製時間×0.5以降に実施する請求項1〜5のいずれかに記載の金属精製方法。   The metal refining method according to any one of claims 1 to 5, wherein the deterring force of the swirling flow restraining member is reduced by a total refining time x 0.5 or later from the start of refining. 前記抑止力低下後の旋回流抑止部材の旋回流に対する前面投影面積は、精製中の最大前面投影面積×0.5以下である請求項2〜4のいずれかに記載の金属精製方法。   5. The metal refining method according to claim 2, wherein the front projected area of the swirling flow of the swirling flow inhibiting member after the deterring force is reduced is a maximum front projected area during refining × 0.5 or less. 精製される金属がアルミニウムである請求項1〜7のいずれかに記載の金属精製方法。   The metal purification method according to claim 1, wherein the metal to be purified is aluminum. 精製すべき金属の溶湯を収容する容器と、
前記容器に収容された溶湯中に浸漬される冷却体と、
前記冷却体または前記容器の少なくとも一方を回転させる回転駆動装置と、
前記冷却体または前記容器の少なくとも一方の回転によって引き起こされる溶湯の旋回流を抑止するように、溶湯中に配置される旋回流抑止部材と、
精製途中で前記旋回流抑止部材の旋回流に対する抑止力を低下させる手段と、
を備えたことを特徴とする金属精製装置。
A container for containing a molten metal to be purified;
A cooling body immersed in the molten metal contained in the container;
A rotation drive device that rotates at least one of the cooling body or the container;
A swirl flow restraining member disposed in the molten metal so as to deter swirl of the molten metal caused by rotation of at least one of the cooling body or the container;
Means for reducing the deterring force against the swirling flow of the swirling flow deterring member during refining;
A metal refining apparatus characterized by comprising:
前記旋回流抑止部材の旋回流に対する抑止力を低下させる手段が、旋回流抑止部材の旋回流に対する前面投影面積を縮小させる手段である請求項9に記載の金属精製装置。   The metal refining device according to claim 9, wherein the means for reducing the deterring force of the swirling flow restraining member with respect to the swirling flow is a means for reducing a front projection area of the swirling flow inhibiting member with respect to the swirling flow. 前記旋回流抑止部材の旋回流に対する前面投影面積を縮小させる手段が、旋回流抑止部材を溶湯中で移動または回転させる手段である請求項10に記載の金属精製装置。   The metal refining device according to claim 10, wherein the means for reducing the front projected area of the swirling flow restraining member with respect to the swirling flow is a means for moving or rotating the swirling flow inhibiting member in the molten metal. 前記旋回流抑止部材の旋回流に対する前面投影面積を縮小させる手段が、旋回流抑止部材の溶湯への浸漬部分の面積を変化させる手段である請求項10に記載の金属精製装置。   The metal refining apparatus according to claim 10, wherein the means for reducing the front projected area of the swirling flow restraining member with respect to the swirling flow is a means for changing the area of the portion of the swirling flow inhibiting member immersed in the molten metal. 前記容器を回転させることなく前記冷却体を回転させる場合において、前記旋回流抑止部材の旋回流に対する抑止力を低下させる手段が、溶湯中における回転冷却体から離れた旋回流の流速の遅い箇所へ旋回流抑止部材を移動させる手段である請求項9に記載の金属精製装置。 In the case where the cooling body is rotated without rotating the container, the means for reducing the deterring force against the swirling flow of the swirling flow deterring member is a point in the molten metal where the flow velocity of the swirling flow away from the rotating cooling body is slow. The metal refining device according to claim 9, which is a means for moving the swirl flow suppressing member. 請求項1ないし8のいずれかに記載の方法で精製された精製金属。   A purified metal purified by the method according to claim 1. 請求項14に記載の精製金属から製造された鋳造品。   A casting manufactured from the refined metal according to claim 14. 請求項15に記載の鋳造品が圧延されてなる金属製品。   A metal product obtained by rolling the cast product according to claim 15. 請求項16に記載の金属製品が電極材として用いられている電解コンデンサ。   An electrolytic capacitor in which the metal product according to claim 16 is used as an electrode material.
JP2009281582A 2008-12-11 2009-12-11 Metal purification method and apparatus, refined metal, casting, metal product and electrolytic capacitor Active JP5634704B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009281582A JP5634704B2 (en) 2008-12-11 2009-12-11 Metal purification method and apparatus, refined metal, casting, metal product and electrolytic capacitor

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2008316139 2008-12-11
JP2008316139 2008-12-11
JP2009281582A JP5634704B2 (en) 2008-12-11 2009-12-11 Metal purification method and apparatus, refined metal, casting, metal product and electrolytic capacitor

Publications (2)

Publication Number Publication Date
JP2010159490A JP2010159490A (en) 2010-07-22
JP5634704B2 true JP5634704B2 (en) 2014-12-03

Family

ID=42576866

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009281582A Active JP5634704B2 (en) 2008-12-11 2009-12-11 Metal purification method and apparatus, refined metal, casting, metal product and electrolytic capacitor

Country Status (1)

Country Link
JP (1) JP5634704B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6118579B2 (en) * 2013-02-14 2017-04-19 昭和電工株式会社 Metal purification method and metal purification apparatus
CN109219669B (en) * 2016-06-02 2020-07-24 昭和电工株式会社 Method and apparatus for refining substance, apparatus for holding molten metal by heating, and system for continuously refining high-purity substance
CN112553473B (en) * 2020-11-20 2022-02-18 浙江最成半导体科技有限公司 High purity aluminum purification method and apparatus

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62258986A (en) * 1986-04-30 1987-11-11 昭和アルミニウム株式会社 Contacting member with molten metal
JPS63176439A (en) * 1987-01-14 1988-07-20 Showa Alum Corp Rotary cooling body for metal refining device
JP3721793B2 (en) * 1997-08-08 2005-11-30 住友化学株式会社 Aluminum purification method and use thereof

Also Published As

Publication number Publication date
JP2010159490A (en) 2010-07-22

Similar Documents

Publication Publication Date Title
CA1153895A (en) Process for purifying aluminum
JPH0816254B2 (en) Method for producing alloy containing titanium carbide
WO2007122736A1 (en) Casting method and apparatus
Moussa et al. Effect of high-intensity ultrasonic treatment on modification of primary Mg2Si in the hypereutectic Mg–Si alloys
JP3329013B2 (en) Continuous refining method and apparatus for Al-Si aluminum scrap
JP5074762B2 (en) Metal purification method and apparatus, refined metal, casting, metal product and electrolytic capacitor
JP5634704B2 (en) Metal purification method and apparatus, refined metal, casting, metal product and electrolytic capacitor
Ma et al. Grain refinement effect of a pulsed magnetic field on as-cast superalloy K417
JP5134817B2 (en) Metal purification method and apparatus, refined metal, casting, metal product and electrolytic capacitor
Scamans et al. Advanced casting technologies using high shear melt conditioning
JP3237330B2 (en) Purification method of aluminum alloy scrap
JP5479729B2 (en) Metal purification method and apparatus, refined metal, casting, metal product and electrolytic capacitor
JP6342660B2 (en) Metal purification apparatus and metal purification method
JP5415066B2 (en) Metal purification method and apparatus, refined metal, casting, metal product and electrolytic capacitor
Huang et al. Applying time-frequency image of convolutional neural network to extract feature on long-term EEG signals to predict depth of anesthesia
JP5128167B2 (en) Metal refining method, metal refining device, refined metal, casting, metal product and electrolytic capacitor
JP2001226721A (en) Refining method for aluminum and its application
JP5410702B2 (en) Metal purification method and apparatus, refined metal, casting, metal product and electrolytic capacitor
JP6751604B2 (en) Material purification method and equipment, continuous purification system for high-purity substances
JPH11172345A (en) Method for refining aluminum
JP6118579B2 (en) Metal purification method and metal purification apparatus
JP7406073B2 (en) Manufacturing method for titanium ingots
JP7389467B2 (en) Metal refining method and refining equipment
JP7223717B2 (en) High-purity metal manufacturing method and manufacturing apparatus
JP5109068B2 (en) Unidirectional solidification method and apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120904

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131125

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140107

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140307

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140924

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20141015

R150 Certificate of patent or registration of utility model

Ref document number: 5634704

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: R3D02

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250