JP5074762B2 - Metal purification method and apparatus, refined metal, casting, metal product and electrolytic capacitor - Google Patents

Metal purification method and apparatus, refined metal, casting, metal product and electrolytic capacitor Download PDF

Info

Publication number
JP5074762B2
JP5074762B2 JP2006356244A JP2006356244A JP5074762B2 JP 5074762 B2 JP5074762 B2 JP 5074762B2 JP 2006356244 A JP2006356244 A JP 2006356244A JP 2006356244 A JP2006356244 A JP 2006356244A JP 5074762 B2 JP5074762 B2 JP 5074762B2
Authority
JP
Japan
Prior art keywords
cooling body
peripheral surface
crucible
metal
outer peripheral
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006356244A
Other languages
Japanese (ja)
Other versions
JP2008163420A (en
Inventor
宇礼武 細野
幸裕 宮手
靖久 萩原
勝起 吉田
亮史 村岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Holdings Corp
Original Assignee
Showa Denko KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Denko KK filed Critical Showa Denko KK
Priority to JP2006356244A priority Critical patent/JP5074762B2/en
Publication of JP2008163420A publication Critical patent/JP2008163420A/en
Application granted granted Critical
Publication of JP5074762B2 publication Critical patent/JP5074762B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Manufacture And Refinement Of Metals (AREA)

Description

本発明は金属精製方法及び装置に関し,更に詳しく言えば、偏析凝固法の原理を利用して共晶不純物を含むアルミニウム、ケイ素、マグネシウム、鉛、亜鉛等の金属から、共晶不純物の含有量を元の金属よりも少なくし,高純度の金属を製造する方法及び装置に関し、さらには前記方法により精製された金属、この金属を用いた鋳造品、金属製品及び電解コンデンサに関する。   The present invention relates to a metal refining method and apparatus, and more specifically, by using the principle of segregation solidification method, the content of eutectic impurities is determined from metals such as aluminum, silicon, magnesium, lead, and zinc containing eutectic impurities. The present invention relates to a method and an apparatus for producing a high-purity metal that is smaller than the original metal, and further relates to a metal purified by the above-described method, a cast product using the metal, a metal product, and an electrolytic capacitor.

従来、高純度金属の精製方法として、精製用溶湯保持容器に入れられた共晶不純物を含む溶融金属中に冷却体を浸漬し、冷却体内に冷却流体を供給しながら冷却体を回転させることで、その周囲に、溶融金属よりも高純度の精製金属を晶出させる、という方法が知られている(例えば特許文献1)。   Conventionally, as a purification method for high-purity metals, a cooling body is immersed in a molten metal containing eutectic impurities placed in a refined molten metal holding container, and the cooling body is rotated while supplying a cooling fluid to the cooling body. A method of crystallizing a purified metal having a purity higher than that of a molten metal around the periphery is known (for example, Patent Document 1).

前記特許文献1で述べられている方法は、精製すべき金属を溶解して金属溶湯とした後、この溶湯を常にその凝固温度を超えた温度に加熱保持しておいた上で、その溶湯に冷却体を浸漬させ、その際、冷却体の表面温度が溶湯の凝固温度以下になるように保持し、さらに、冷却体外周面と溶湯との相対速度を大きくすることによって冷却体外周面に溶湯より高純度の金属塊を晶出させ付着させる、というものである。   In the method described in Patent Document 1, after the metal to be purified is dissolved into a molten metal, the molten metal is always heated and maintained at a temperature exceeding its solidification temperature. The cooling body is immersed, and at that time, the surface temperature of the cooling body is maintained to be equal to or lower than the solidification temperature of the molten metal, and the relative speed between the outer circumferential surface of the cooling body and the molten metal is increased to increase the molten metal on the outer circumferential surface of the cooling body. This means that a higher-purity metal lump is crystallized and adhered.

この方法は、液相線と固相線の間の領域の温度に金属溶湯を保持すると、より高純度の固相と不純物の多い液相とに分離する、という偏析の原理を利用している。   This method uses the principle of segregation in which, when the molten metal is held at a temperature in the region between the liquidus and solidus, it is separated into a higher purity solid phase and a liquid phase with more impurities. .

冷却体の表面には最初に不純物が少ない固相が生成され、その固相と溶湯との間の凝固界面に不純物の多い液相が排出され、いわゆる不純物濃化層が形成される。冷却体外周面に付着、成長する金属塊は、凝固界面の進行速度を不純物濃化層の外側への拡散速度よりも遅くすることで不純物を外側に拡散させることによって、及び/または、不純物濃化層を液相の流速によって分散させて層の厚さを薄くすることによって、より不純物の少ないものとして得られている。   First, a solid phase with few impurities is generated on the surface of the cooling body, and a liquid phase with many impurities is discharged to a solidification interface between the solid phase and the molten metal to form a so-called impurity concentrated layer. The metal lump that adheres and grows on the outer peripheral surface of the cooling body diffuses impurities outward by making the progress speed of the solidification interface slower than the diffusion speed to the outside of the impurity concentrated layer, and / or the impurity concentration. By forming the layer into a thin layer by dispersing the formation layer according to the flow rate of the liquid phase, the layer is obtained with less impurities.

近年、用途によってはさらに高純度の金属が必要とされている。   In recent years, higher purity metals are required for some applications.

例えば、アルミニウムの場合、電解アルミニウムコンデンサの電極箔に使われている原料のアルミニウムは、純度99.9%という高い純度が求められている。さらに近年、高圧用の電解アルミニウムコンデンサの需要が高まっており、それに必要なアルミニウム箔として、純度99.99%というさらに高純度のものが必要とされる。   For example, in the case of aluminum, the raw material aluminum used for the electrode foil of the electrolytic aluminum capacitor is required to have a high purity of 99.9%. Further, in recent years, the demand for high-voltage electrolytic aluminum capacitors has increased, and as the aluminum foil necessary for such high-capacity aluminum capacitors, a higher purity of 99.99% is required.

従来の精製方法によってさらに高純度な金属塊を得るためには、精製を複数回行えばよい。具体的には、1度精製したものを集めて再溶解し、その再溶解された溶湯に対して精製を行い、それを繰り返せばその繰り返した回数分だけ高純度金属塊を得ることができる。ただし、この方法は、工程が非常に多くなり、その間に製造ラインから不純物が混入する可能性が多くなってしまう。また、何度も再溶解することで必要なコスト、必要なエネルギーが増大し、生産効率が低くなってしまう。   In order to obtain a higher-purity metal mass by a conventional purification method, the purification may be performed a plurality of times. Specifically, once purified products are collected and re-dissolved, the re-dissolved molten metal is purified, and if this is repeated, a high-purity metal lump can be obtained by the number of repetitions. However, this method has a great number of steps, and there is a high possibility that impurities are mixed from the production line during that time. In addition, by re-dissolving many times, the necessary cost and necessary energy increase, and the production efficiency is lowered.

したがって、精製回数を増やすよりも、精製工程自体の中で、さらに精製効率を向上させる方が望ましい。   Therefore, it is desirable to further improve the purification efficiency in the purification process itself, rather than increasing the number of purifications.

従来の方法では、冷却体が溶湯中に浸漬して回転している際、周囲の溶湯は止まっておらず、冷却体の回転する方向と同じ方向に回転している。冷却体の回転速度よりも遅い周速度で回っているものの、溶湯自体が冷却体と同じ方向に回っているということは、溶湯と冷却体との速度差が小さくなるので、相対速度としてはむしろ遅くなってしまっている。   In the conventional method, when the cooling body is immersed and rotating in the molten metal, the surrounding molten metal is not stopped, and is rotating in the same direction as the direction of rotation of the cooling body. Although it is rotating at a peripheral speed that is slower than the rotational speed of the cooling body, the fact that the molten metal is rotating in the same direction as the cooling body means that the difference in speed between the molten metal and the cooling body is small, so the relative speed is rather It's getting late.

精製効率を向上させるには、実際にはあまり大きくなっていない相対速度を如何に大きくするかが重要となってくる。   In order to improve the purification efficiency, it is important how to increase the relative speed which is not actually increased.

冷却体と溶湯との相対速度をさらに大きくする手段として、以下のような方法が挙げられる。
(A)冷却体の周速度を大きくすることによって、溶湯との相対速度を大きくする。
(B)溶湯の流速を遅くするために、特許文献2、特許文献3に記載されているように坩堝内周面に邪魔板を設置する。
特公昭61−3385号公報 特開昭61−170527号公報 特開昭63−89633号公報
As a means for further increasing the relative speed between the cooling body and the molten metal, the following method may be mentioned.
(A) The relative speed with the molten metal is increased by increasing the peripheral speed of the cooling body.
(B) In order to slow down the flow rate of the molten metal, a baffle plate is installed on the inner peripheral surface of the crucible as described in Patent Document 2 and Patent Document 3.
Japanese Patent Publication No.61-3385 Japanese Patent Laid-Open No. 61-170527 JP-A-63-89633

しかしながら、前記(A)の冷却体の周速度を大きくすることによって、溶湯との相対速度を大きくする方法では、やはり溶湯が冷却体につられて同じ方向に回転してしまう点が解消されず、相対速度を上げることが難しいという問題がある。設備の面でも、冷却体を回転させる装置は、回転速度をさらに大きくせねばならないことから従来の装置よりも大掛かりなものとなってしまい、現実的でない。また、冷却体の周速度が速くなると、溶湯の周速度も速くなり、それによって液面の高低差が大きくなると共に、液面変動も激しくなることで、溶湯飛散が頻発するので、安全面でも問題がある。さらに、冷却体外周面に生じる遠心力が大きくなり、冷却体外周面に付着した金属塊が外れやすくなるため、得られる金属塊が少なくなってしまい、生産効率の面でも好ましくない。   However, in the method of increasing the relative speed with the molten metal by increasing the peripheral speed of the cooling body in (A) above, the point that the molten metal is rotated by the cooling body in the same direction is not solved, There is a problem that it is difficult to increase the relative speed. Also in terms of equipment, the device for rotating the cooling body is larger than the conventional device because the rotation speed has to be further increased, which is not practical. In addition, when the peripheral speed of the cooling body increases, the peripheral speed of the molten metal also increases, thereby increasing the level difference of the liquid level and increasing the fluctuation of the liquid level. There's a problem. Furthermore, since the centrifugal force generated on the outer peripheral surface of the cooling body increases and the metal lump attached to the outer peripheral surface of the cooling body is easily detached, the resulting metal lump is reduced, which is not preferable in terms of production efficiency.

また、前記(B)の坩堝内周面に邪魔板を設置する方法では、邪魔板により溶湯全体の流速を抑制、または、乱流を生じさせる効果があるものの、その効果の範囲は、坩堝内周面から邪魔板の長さ分だけ内側の範囲の外周部分に限られてしまう。その効果を冷却体外周面付近にまで及ぼすには、邪魔板を冷却体外周面付近にまで延ばす必要があるが、その状態では冷却体外周面に付着、成長した金属塊が、邪魔板と接触し、邪魔板が破損してしまう危険がある。また、坩堝内周面に邪魔板がある坩堝を得るためには、坩堝内周面に邪魔板を別部品として接着する、あるいは、最初から邪魔板が存在するような坩堝を製作する方法などがあるが、いずれも製作、メンテナンスの面で手間がかかってしまう。   Further, in the method of installing the baffle plate on the inner peripheral surface of the crucible (B), although the baffle plate has an effect of suppressing the flow rate of the entire molten metal or causing turbulence, the range of the effect is within the crucible It will be restricted to the outer peripheral part of the inner side range by the length of a baffle plate from a surrounding surface. In order to exert the effect to the vicinity of the outer peripheral surface of the cooling body, it is necessary to extend the baffle plate to the vicinity of the outer peripheral surface of the cooling body, but in this state, the metal block adhered and grown on the outer peripheral surface of the cooling body is in contact with the baffle plate. In addition, there is a risk that the baffle will be damaged. In addition, in order to obtain a crucible having a baffle plate on the inner peripheral surface of the crucible, there is a method of adhering the baffle plate as a separate part to the inner peripheral surface of the crucible, or a method of manufacturing a crucible having a baffle plate from the beginning. However, it takes time and effort for both production and maintenance.

この発明は、このような事情に鑑みてなされたものであって、冷却体の周速度を大きくしたり、坩堝内周面に邪魔板を設けたりすることなく、高純度の金属を安全に効率よく精製することができる金属精製方法及び装置、精製金属、鋳造品、金属製品及び電解コンデンサを提供することを課題とする。   The present invention has been made in view of such circumstances, and it is possible to safely and efficiently use high-purity metal without increasing the peripheral speed of the cooling body or providing a baffle plate on the inner peripheral surface of the crucible. It is an object of the present invention to provide a metal purification method and apparatus, a refined metal, a cast product, a metal product, and an electrolytic capacitor that can be refined well.

上記課題は以下の手段によって解決される。
(1)坩堝に収容した精製すべき溶融金属中に冷却体を浸漬し、この冷却体を回転させながら冷却体表面に高純度金属を晶出させる金属精製方法において、坩堝内の溶融金属の存在部分における坩堝の内周面と冷却体外周面との最短距離を、坩堝内周面と冷却体外周面との最長距離の2分の1以下に設定して精製を行うことを特徴とする金属精製方法。
(2)坩堝の内周面と冷却体外周面との最短距離が10mm以上である前項1に記載の金属精製方法。
(3)坩堝内の溶融金属の存在部分において、坩堝の開口部の最大内寸Dに対し、前記Dを含む水平面内における冷却体の外寸dの比率d/Dが、0.2以上である前項1または2に記載の金属精製方法。
(4)冷却体に付着する精製塊の形成に伴って、坩堝の内周面と冷却体外周面との最短距離を変化させる前項1〜3のいずれかに記載の金属精製方法。
(5)溶融金属がアルミニウムである前項1〜4のいずれかに記載の金属精製方法。
(6)精製すべき溶融金属を収容する坩堝と、前記坩堝に収容された溶融金属中に浸漬される回転可能な冷却体と、を備え、坩堝内の溶融金属の存在部分において、坩堝の内周面と冷却体外周面との最短距離が、坩堝の内周面と冷却体外周面との最長距離の2分の1以下に設定されてなることを特徴とする金属精製装置。
(7)坩堝の内周面と冷却体外周面との最短距離が10mm以上に設定されている前項6に記載の金属精製装置。
(8)坩堝内の溶融金属の存在部分において、坩堝の開口部の最大内寸Dに対し、前記Dを含む水平面内における冷却体の外寸dの比率d/Dが、0.2以上である前項6または7に記載の金属精製装置。
(9)冷却体に付着する精製塊の形成に伴って、坩堝の内周面と冷却体外周面との最短距離が変化するものとなされている前項6〜8のいずれかに記載の金属精製装置。
(10)前項1ないし5のいずれかに記載の方法で精製された精製金属。
(11)前項10に記載の精製金属から製造された鋳造品。
(12)前項11に記載の鋳造品が圧延されてなる金属製品。
(13)前項12に記載の金属製品が電極材として用いられている電解コンデンサ。
The above problem is solved by the following means.
(1) In a metal refining method in which a cooling body is immersed in a molten metal to be purified contained in a crucible and high purity metal is crystallized on the surface of the cooling body while rotating the cooling body, presence of molten metal in the crucible The metal is characterized in that the refining is performed by setting the shortest distance between the inner peripheral surface of the crucible and the outer peripheral surface of the cooling body to a half or less of the longest distance between the inner peripheral surface of the crucible and the outer peripheral surface of the cooling body. Purification method.
(2) The metal refining method according to item 1, wherein the shortest distance between the inner peripheral surface of the crucible and the outer peripheral surface of the cooling body is 10 mm or more.
(3) The ratio d / D of the outer dimension d of the cooling body in the horizontal plane including the D to the maximum inner dimension D of the opening of the crucible is 0.2 or more in the portion where the molten metal exists in the crucible. 3. The metal refining method according to 1 or 2 above.
(4) The metal refining method according to any one of the preceding items 1 to 3, wherein the shortest distance between the inner peripheral surface of the crucible and the outer peripheral surface of the cooling body is changed with the formation of the refined lump attached to the cooling body.
(5) The metal refining method according to any one of items 1 to 4, wherein the molten metal is aluminum.
(6) A crucible containing the molten metal to be purified, and a rotatable cooling body immersed in the molten metal accommodated in the crucible, wherein the inside of the crucible A metal refining device, wherein the shortest distance between the peripheral surface and the outer peripheral surface of the cooling body is set to be less than or equal to one half of the longest distance between the inner peripheral surface of the crucible and the outer peripheral surface of the cooling body.
(7) The metal refining device according to item 6 above, wherein the shortest distance between the inner peripheral surface of the crucible and the outer peripheral surface of the cooling body is set to 10 mm or more.
(8) The ratio d / D of the outer dimension d of the cooling body in the horizontal plane including the D to the maximum inner dimension D of the opening of the crucible is 0.2 or more in the molten metal existing portion in the crucible. 8. The metal refining device according to 6 or 7 above.
(9) The metal refining according to any one of the preceding items 6 to 8, wherein the shortest distance between the inner peripheral surface of the crucible and the outer peripheral surface of the cooling body is changed with the formation of the refining lump attached to the cooling body. apparatus.
(10) A purified metal purified by the method according to any one of 1 to 5 above.
(11) A casting manufactured from the refined metal according to item 10 above.
(12) A metal product obtained by rolling the casting according to item 11 above.
(13) An electrolytic capacitor in which the metal product according to item 12 is used as an electrode material.

前項(1)に記載の発明によれば、坩堝内の溶融金属の存在部分における坩堝の内周面と冷却体外周面との最短距離を、坩堝内周面と冷却体外周面との最長距離の2分の1以下に設定して精製を行うから、冷却体と坩堝の内周面の間隔が狭い箇所から広い箇所に溶湯が流れていくと、幅が広がっていくことで、冷却体の周方向に加えて、半径方向への自由度が増える。そこに冷却体による遠心力が半径方向に及ぶことで、溶湯流れの向きが変わり、流れの大きさとしては同じであっても、溶湯流速の半径方向成分が発生することで、溶湯流速の周方向成分が小さくなる。その結果、溶湯に対する冷却体外周面の相対速度を大きくすることができ、精製効率を向上することができる。また、溶湯流が半径方向成分にも発生することによって、冷却体の表面に付着、成長する金属塊の凝固界面に形成される不純物濃化層の外側への拡散が促進され、より高純度の金属塊が得られる効果も発生する。   According to the invention described in (1) above, the shortest distance between the inner peripheral surface of the crucible and the outer peripheral surface of the cooling body in the portion where the molten metal exists in the crucible is the longest distance between the inner peripheral surface of the crucible and the outer peripheral surface of the cooling body. Therefore, when the molten metal flows from a location where the distance between the inner peripheral surface of the cooling body and the crucible is narrow to a wide location, the width increases, In addition to the circumferential direction, the degree of freedom in the radial direction increases. When the centrifugal force by the cooling body extends in the radial direction, the direction of the molten metal flow changes, and even when the flow size is the same, the radial component of the molten metal flow velocity is generated. The direction component becomes smaller. As a result, the relative speed of the outer peripheral surface of the cooling body with respect to the molten metal can be increased, and the purification efficiency can be improved. In addition, since the molten metal flow is also generated in the radial direction component, the diffusion to the outside of the impurity concentrated layer formed at the solidification interface of the metal lump that adheres to and grows on the surface of the cooling body is promoted, and the higher purity is achieved. The effect that a metal lump is obtained also occurs.

前項(2)に記載の発明によれば、坩堝の内周面と冷却体外周面との最短距離が10mm以上であるから、冷却体の外周面と坩堝の内周面との距離が小さくなりすぎて金属塊が坩堝の内周面に接触してしまう恐れを回避できる。   According to the invention described in (2) above, since the shortest distance between the inner peripheral surface of the crucible and the outer peripheral surface of the cooling body is 10 mm or more, the distance between the outer peripheral surface of the cooling body and the inner peripheral surface of the crucible is reduced. It is possible to avoid the risk that the metal lump contacts the inner peripheral surface of the crucible.

前項(3)に記載の発明によれば、坩堝内の溶融金属の存在部分において、坩堝の開口部の最大内寸Dに対し、前記Dを含む水平面内における冷却体の外寸dの比率d/Dが、0.2以上であるから、冷却体の外周面と坩堝の内周面との距離が狭い場所と広い場所との流速の差による前項(1)の発明の効果を有効に発揮させることができる。   According to the invention described in item (3) above, the ratio d of the outer dimension d of the cooling body in the horizontal plane including D to the maximum inner dimension D of the opening of the crucible in the molten metal existing portion in the crucible. Since / D is 0.2 or more, the effect of the invention of the preceding item (1) due to the difference in the flow velocity between the place where the distance between the outer peripheral surface of the cooling body and the inner peripheral surface of the crucible is narrow and wide is effectively exhibited. Can be made.

前項(4)に記載の発明によれば、冷却体に付着する精製塊の形成に伴って、坩堝の内周面と冷却体外周面との最短距離を変化させるから、冷却体の外周面と坩堝の内周面との最短距離が、冷却体の外周面に付着して成長していく金属塊によって狭まっていき、ついには坩堝の内周面と接触してしまうという懸念を解消できる。   According to the invention described in the preceding item (4), the shortest distance between the inner peripheral surface of the crucible and the outer peripheral surface of the cooling body is changed with the formation of the purified lump attached to the cooling body. The shortest distance from the inner peripheral surface of the crucible is narrowed by the metal lump that grows by adhering to the outer peripheral surface of the cooling body, and the concern that it finally comes into contact with the inner peripheral surface of the crucible can be solved.

前項(5)に記載の発明によれば、純度の高いアルミニウムを精製することができる。   According to the invention described in item (5) above, high-purity aluminum can be purified.

前項(6)に記載の発明によれば、溶湯に対する冷却体外周面の相対速度を大きくすることができ、精製効率を向上することができる生成装置となしうる。   According to the invention described in the preceding item (6), the relative speed of the outer peripheral surface of the cooling body with respect to the molten metal can be increased, and a production apparatus capable of improving the purification efficiency can be obtained.

前項(7)に記載の発明によれば、冷却体の外周面と坩堝の内周面との距離が小さくなりすぎて金属塊が坩堝の内周面に接触してしまう恐れを回避できる。   According to the invention described in item (7) above, it is possible to avoid the risk that the distance between the outer peripheral surface of the cooling body and the inner peripheral surface of the crucible becomes too small and the metal lump comes into contact with the inner peripheral surface of the crucible.

前項(8)に記載の発明によれば、冷却体の外周面と坩堝の内周面との距離が狭い場所と広い場所との流速の差による前項(6)の発明の効果を有効に発揮する精製装置となしうる。   According to the invention described in the preceding item (8), the effect of the invention of the preceding item (6) due to a difference in flow velocity between a narrow place and a wide place between the outer peripheral surface of the cooling body and the inner peripheral surface of the crucible is effectively exhibited. Purification equipment.

前項(9)に記載の発明によれば、冷却体の外周面と坩堝の内周面との最短距離が、冷却体の外周面に付着して成長していく金属塊によって狭まっていき、ついには坩堝の内周面と接触してしまうという懸念を解消できる。   According to the invention described in the preceding item (9), the shortest distance between the outer peripheral surface of the cooling body and the inner peripheral surface of the crucible is narrowed by the metal lump that grows attached to the outer peripheral surface of the cooling body, and finally Can eliminate the concern of contact with the inner surface of the crucible.

前項(10)に記載の発明によれば、純度の高い精製金属となしうる。   According to the invention described in the above item (10), it can be a purified metal with high purity.

前項(11)に記載の発明によれば、純度の高い鋳造品となしうる。   According to the invention described in item (11) above, a cast product with high purity can be obtained.

前項(12)に記載の発明によれば、純度の高い圧延金属製品となしうる。   According to the invention described in item (12), a rolled metal product with high purity can be obtained.

前項(13)に記載の発明によれば、純度の高い圧延金属からなる電極材が用いられた電解コンデンサとなしうる。   According to the invention described in the preceding item (13), an electrolytic capacitor using an electrode material made of high-purity rolled metal can be obtained.

以下、この発明の一実施形態を説明する。   An embodiment of the present invention will be described below.

図1はこの発明の一実施形態に係る金属精製装置の概略構成と、これを用いた金属精製方法を説明するための図である。   FIG. 1 is a diagram for explaining a schematic configuration of a metal refining apparatus according to an embodiment of the present invention and a metal refining method using the same.

図1において、1は有低円筒状の坩堝であり、この坩堝1の内部に溶融金属(溶湯ともいう)10が収容保持されている。坩堝1は加熱炉で構成され、溶湯10が一定の温度となるように加熱されている。   In FIG. 1, reference numeral 1 denotes a low and low cylindrical crucible, and a molten metal (also referred to as molten metal) 10 is accommodated and held inside the crucible 1. The crucible 1 is composed of a heating furnace and is heated so that the molten metal 10 has a constant temperature.

坩堝1の形状は円筒に限定されないが、できるだけ内周面が曲線で構成されている方が望ましい。また、坩堝1を構成する炉の加熱方法は、電熱でもガスバーナーでも構わない。   The shape of the crucible 1 is not limited to a cylinder, but it is desirable that the inner peripheral surface be configured with a curve as much as possible. Moreover, the heating method of the furnace which comprises the crucible 1 may be an electric heating or a gas burner.

溶湯10の温度は、凝固温度を超えていればよいが、冷却体2が溶湯10に浸漬している間は、溶湯中に固相が存在しなくなる温度よりも低い方がより望ましい。   The temperature of the molten metal 10 only needs to exceed the solidification temperature, but is preferably lower than the temperature at which no solid phase exists in the molten metal while the cooling body 2 is immersed in the molten metal 10.

冷却体2は、上端側が径大の円錐台形状に形成され、上下動可能な回転軸3の下端に設置されている。なお、冷却体2の形状は限定されることはなく、円柱状その他の形状であっても良い。回転軸3は管状になっており、また、冷却体2の内部にも空間が形成されている。前記回転軸3の内部には冷媒供給管4及び冷媒排出管5が挿通され、冷媒供給管4から冷媒が供給されるものとなされている。供給された冷媒は、冷媒供給管4を通って冷却体2の内部空間に噴出し、その後、回転軸3の内部の冷媒排出管5を通って排出されるようになっており、冷却体2をその内側から冷やすことができるものとなされている。冷媒は気体あるいは液体を用いる。冷却体2の表面の材質は金属あるいはグラファイトなど、熱伝導率の高い材質を用いるのが望ましい。   The cooling body 2 is formed in a truncated cone shape having a large diameter at the upper end side, and is installed at the lower end of the rotary shaft 3 that can move up and down. The shape of the cooling body 2 is not limited and may be a columnar shape or other shapes. The rotating shaft 3 has a tubular shape, and a space is also formed inside the cooling body 2. A refrigerant supply pipe 4 and a refrigerant discharge pipe 5 are inserted into the rotary shaft 3 so that the refrigerant is supplied from the refrigerant supply pipe 4. The supplied refrigerant is jetted into the internal space of the cooling body 2 through the refrigerant supply pipe 4, and then discharged through the refrigerant discharge pipe 5 inside the rotary shaft 3. Can be cooled from the inside. As the refrigerant, gas or liquid is used. The surface of the cooling body 2 is preferably made of a material having high thermal conductivity such as metal or graphite.

冷却体2は、回転軸3が下方に移動して溶湯に浸漬、回転できるようになっている。その際、溶湯10の存在部分において、坩堝1の内周面と冷却体2の外周面との最短距離をL1とし、坩堝1の内周面と冷却体2の外周面との最長距離をL2とすると、L1はL2の2分の1以下になるように、予め坩堝1と冷却体2の浸漬時の位置関係を決めておく。   The cooling body 2 is configured such that the rotating shaft 3 moves downward to be immersed and rotated in the molten metal. At this time, the shortest distance between the inner peripheral surface of the crucible 1 and the outer peripheral surface of the cooling body 2 in the portion where the molten metal 10 exists is L1, and the longest distance between the inner peripheral surface of the crucible 1 and the outer peripheral surface of the cooling body 2 is L2. Then, the positional relationship when the crucible 1 and the cooling body 2 are immersed is determined in advance so that L1 is less than or equal to half of L2.

このような位置関係とする理由は次の通りである。即ち、冷却体2と坩堝1の内周面の間隔が狭い箇所から広い箇所に溶湯10が流れていくと、幅が広がっていくことで、冷却体2の周方向に加えて、半径方向への自由度が増える。そこに冷却体2による遠心力が半径方向に及ぶことで、溶湯流れの向きが変わり、流れの大きさとしては同じであっても、溶湯流速の半径方向成分が発生することで、溶湯流速の周方向成分が小さくなる。その結果、溶湯に対する冷却体外周面の相対速度を大きくすることができる。   The reason for this positional relationship is as follows. That is, when the molten metal 10 flows from a location where the distance between the inner peripheral surface of the cooling body 2 and the crucible 1 is narrow to a wide location, the width increases, so that in addition to the circumferential direction of the cooling body 2, in the radial direction. The degree of freedom increases. When the centrifugal force by the cooling body 2 extends in the radial direction, the direction of the molten metal flow is changed, and even when the flow size is the same, the radial component of the molten metal flow velocity is generated. The circumferential component is reduced. As a result, the relative speed of the outer peripheral surface of the cooling body with respect to the molten metal can be increased.

また、溶湯流が半径方向成分にも発生することによって、冷却体2の表面に付着、成長する金属塊の凝固界面に形成される不純物濃化層の外側への拡散が促進され、より高純度の金属塊が得られる効果も発生する。   In addition, since the molten metal flow is also generated in the radial direction component, the diffusion to the outside of the impurity concentrated layer formed at the solidification interface of the metal lump that adheres and grows on the surface of the cooling body 2 is promoted, and the purity is increased. The effect that the metal lump of this is obtained also occurs.

坩堝1の内周面と冷却体2の外周面との最短距離L1と最長距離L2において、L1がL2の2分の1を超えると、溶湯流速の半径方向成分が小さく、溶湯に対する冷却体外周面の相対速度を大きくできないし、不純物濃化層の外側への拡散促進効果も十分でない。望ましくは、LI/L2≦0.4に設定するのがよい。   In the shortest distance L1 and the longest distance L2 between the inner peripheral surface of the crucible 1 and the outer peripheral surface of the cooling body 2, when L1 exceeds half of L2, the radial component of the melt flow velocity is small, and the outer periphery of the cooling body with respect to the melt The relative speed of the surface cannot be increased, and the effect of promoting diffusion outside the impurity concentrated layer is not sufficient. Desirably, LI / L2 ≦ 0.4 is set.

また、溶湯10の存在部分において、坩堝1の開口部の最大内径Dに対し、前記Dを含む水平面内における冷却体2の外径dの比率d/Dは、0.2以上であるのが望ましい。d/Dが0.2未満では、上述したLI/L2≦1/2に設定した効果を発揮するための溶湯10の流速そのものが大きくならない恐れがあり、冷却体2の外周面と坩堝1の内周面との距離が狭い場所と広い場所との流速の差による効果を期待できない恐れがある。特に好ましくは、d/D≧0.3に設定するのがよい。ただし、d/Dが大きすぎると、冷却体2の外周面と坩堝1の内周面の距離が短い場所と長い場所との流速の変化が緩慢になってしまい、半径方向成分の流速が大きくならず、従って、不純物濃化層の外側への拡散効果を十分発揮できない恐れがあるため、d/D≦0.7に設定するのがよい。なお、坩堝1の内部空間が断面円形でない場合や、冷却体2が断面円形でない場合は、坩堝1内の溶湯10の存在部分において、坩堝1の開口部の最大内寸Dと、前記Dを含む水平面内における冷却体2の外寸dの比率d/Dを、0.2以上に設定すればよい。   Further, in the portion where the molten metal 10 is present, the ratio d / D of the outer diameter d of the cooling body 2 in the horizontal plane including the D to the maximum inner diameter D of the opening of the crucible 1 is 0.2 or more. desirable. If d / D is less than 0.2, the flow rate of the molten metal 10 for achieving the above-described effect of setting LI / L2 ≦ 1/2 may not increase, and the outer peripheral surface of the cooling body 2 and the crucible 1 There is a possibility that an effect due to a difference in flow velocity between a place where the distance to the inner peripheral surface is narrow and a place where the distance is wide cannot be expected. Particularly preferably, d / D ≧ 0.3 is set. However, if d / D is too large, the change in the flow velocity between the place where the distance between the outer peripheral surface of the cooling body 2 and the inner peripheral surface of the crucible 1 is short and the place where it is long becomes slow, and the flow velocity of the radial component is large. Therefore, it is preferable to set d / D ≦ 0.7 because there is a possibility that the diffusion effect to the outside of the impurity concentrated layer cannot be sufficiently exhibited. In addition, when the internal space of the crucible 1 is not circular in cross section, or when the cooling body 2 is not circular in cross section, the maximum internal dimension D of the opening of the crucible 1 and the above D in the portion where the molten metal 10 in the crucible 1 exists The ratio d / D of the outer dimension d of the cooling body 2 in the horizontal plane to be included may be set to 0.2 or more.

また、冷却体2の外周面に金属塊が付着して成長していくと、冷却体2の外周面と坩堝1の内周面との距離が小さくなりすぎて金属塊が坩堝の内周面に接触してしまう危険もあるので、坩堝1の内周面と冷却体2の外周面との最短距離L1を10mm以上確保するのが望ましい。   Moreover, when a metal lump adheres to the outer peripheral surface of the cooling body 2 and grows, the distance between the outer peripheral surface of the cooling body 2 and the inner peripheral surface of the crucible 1 becomes too small, and the metal lump becomes an inner peripheral surface of the crucible. Therefore, it is desirable to secure a minimum distance L1 between the inner peripheral surface of the crucible 1 and the outer peripheral surface of the cooling body 2 of 10 mm or more.

また、回転軸3そのものが水平面内で平行移動できるような機構を持たせて、冷却体2が浸漬している間に冷却体2の外周面と坩堝1の内周面との距離L1、L2を少しずつ変化させるような動作をさせることで、冷却体2の外周面と坩堝1の内周面との最短距離L1が、冷却体2の外周面に付着して成長していく金属塊によって狭まっていき、ついには坩堝1の内周面と接触してしまうという懸念も解消できる。なお、回転軸3そのものを平行移動させるのではなく、坩堝1を平行移動させることにより、冷却体2の外周面と坩堝1の内周面との距離L1、L2を少しずつ変化させてもよい。   Further, the rotation shaft 3 itself has a mechanism that can move in parallel in the horizontal plane, and the distances L1 and L2 between the outer peripheral surface of the cooling body 2 and the inner peripheral surface of the crucible 1 while the cooling body 2 is immersed. By making the operation to change the temperature little by little, the shortest distance L1 between the outer peripheral surface of the cooling body 2 and the inner peripheral surface of the crucible 1 is caused by the metal lump growing on the outer peripheral surface of the cooling body 2 It is possible to eliminate the concern that it will narrow and eventually come into contact with the inner peripheral surface of the crucible 1. The distances L1 and L2 between the outer peripheral surface of the cooling body 2 and the inner peripheral surface of the crucible 1 may be changed little by little by translating the crucible 1 instead of translating the rotating shaft 3 itself. .

上記のようにして金属塊の精製を開始したのち、ある一定時間経過後に、冷却体2を引き上げることで、冷却体2の外周面に付着した金属塊も同時に引き上げられる。付着した金属塊は機械的に力を加えたり、あるいは、再加熱することによって除去、回収される。精製金属としては、共晶不純物を含むアルミニウム、ケイ素、マグネシウム、鉛、亜鉛等の金属を挙げうる。   After starting the refining of the metal mass as described above, the metal mass adhering to the outer peripheral surface of the cooling body 2 is also pulled up at the same time by pulling up the cooling body 2 after a certain period of time has passed. The adhered metal mass is removed and recovered by applying mechanical force or reheating. Examples of the refined metal include metals such as aluminum, silicon, magnesium, lead, and zinc containing eutectic impurities.

上記により精製された金属は、高純度であるから、各種の加工や用途に用いることで優れた特性や機能を発揮させることができる。一例を挙げると、精製金属を鋳造に用いて鋳造品を製作しても良いし、この鋳造品を圧延して各種の金属板や金属箔として用いても良い。また、この金属箔を例えばアルミニウム電解コンデンサの電極材として用いてもよい。   Since the metal refine | purified by the above is high purity, the outstanding characteristic and function can be exhibited by using it for various processes and uses. For example, a refined metal may be used for casting to produce a cast product, or the cast product may be rolled and used as various metal plates or metal foils. Moreover, you may use this metal foil as an electrode material of an aluminum electrolytic capacitor, for example.

(実施例1)
まず、使用した精製装置について説明する。
Example 1
First, the used refiner will be described.

坩堝1は内径Dが400mmの有低円筒状に形成されている。一方、冷却体2は外径dが150mmの円柱状のグラファイト製であり、上下運動が可能な回転軸3の下端に設置されている。回転軸3は管状になっており、また、冷却体2も内部に中空部を有している。冷媒としては、空気を用いた。空気は、回転軸3の内部に挿通された冷媒供給管4を通って冷却体2の内部中空部に噴出し、その後、回転軸3の冷媒排出管5を通って排出されるような構造となっている。   The crucible 1 is formed in a low-cylindrical shape with an inner diameter D of 400 mm. On the other hand, the cooling body 2 is made of cylindrical graphite having an outer diameter d of 150 mm, and is installed at the lower end of the rotating shaft 3 capable of moving up and down. The rotating shaft 3 is tubular, and the cooling body 2 also has a hollow portion inside. Air was used as the refrigerant. The structure is such that air is ejected through the refrigerant supply pipe 4 inserted into the rotary shaft 3 into the hollow interior of the cooling body 2 and then discharged through the refrigerant discharge pipe 5 of the rotary shaft 3. It has become.

冷却体2は、回転軸3が下方に動いてアルミニウム溶湯10に浸漬、回転できるようになっており、冷却体2を内部に空気を流して冷却しながら一定時間浸漬させることで、冷却体2の外周面にアルミニウム塊が付着して成長する。その後、回転軸3を上昇させて、アルミニウム塊が付着した冷却体2を溶湯から引き上げ、アルミニウム塊を掻き取る装置のある場所に回転軸3ごと移動させ、その装置でアルミニウム塊を冷却体2から掻き取り、回収する。   The cooling body 2 is configured such that the rotating shaft 3 moves downward and can be immersed and rotated in the molten aluminum 10, and the cooling body 2 is immersed for a certain period of time while being cooled by flowing air inside. An aluminum lump adheres to the outer peripheral surface of the film and grows. Then, the rotating shaft 3 is raised, the cooling body 2 with the aluminum lump attached is pulled up from the molten metal, and moved together with the rotating shaft 3 to a place where a device for scraping the aluminum lump is removed. Scrap and collect.

このような精製装置を用い、精製すべきアルミニウム金属を坩堝1に入れ、電気加熱によって溶解してアルミニウム溶湯10とし、665℃に保持した。そのときのアルミニウム溶湯10には不純物として主にFeが510ppm、Siが180ppm含まれていた。   Using such a purification apparatus, the aluminum metal to be purified was put in the crucible 1 and melted by electric heating to obtain a molten aluminum 10, which was kept at 665 ° C. The molten aluminum 10 at that time contained mainly 510 ppm of Fe and 180 ppm of Si as impurities.

冷却体2は予め表面温度が550℃になるように加熱保持した上で、冷却体3を坩堝1の中のアルミニウム溶湯10に浸漬させた。その際、坩堝1の内周面と冷却体2の外周面との最短距離L1を55mmとし、坩堝1の内周面と冷却体2の外周面との最長距離L2を195mmとした。   The cooling body 2 was heated and held in advance so that the surface temperature was 550 ° C., and then the cooling body 3 was immersed in the molten aluminum 10 in the crucible 1. At that time, the shortest distance L1 between the inner peripheral surface of the crucible 1 and the outer peripheral surface of the cooling body 2 was 55 mm, and the longest distance L2 between the inner peripheral surface of the crucible 1 and the outer peripheral surface of the cooling body 2 was 195 mm.

冷却体2を溶湯10中に浸漬させた後、冷却体2の内部に冷却用の圧縮空気を2000リットル/分の流速で流しつつ、冷却体2を周速度=4.7m/秒で回転させながら5分間保持した。それによって、冷却体2の外周面に付着、成長したアルミニウム塊が得られた。得られたアルミニウム塊の重量は6.1kg、不純物としてFeが48ppm、Siが34ppm含まれていた。精製効率は冷却体2に付着したアルミニウム塊に含まれる不純物濃度の、元のアルミニウム溶湯に含まれる不純物濃度に対する比率で計算されるが、精製効率に換算すると、Feの精製効率は0.10、Siの精製効率は0.21であった。   After the cooling body 2 is immersed in the molten metal 10, the cooling body 2 is rotated at a peripheral speed = 4.7 m / sec while flowing cooling air inside the cooling body 2 at a flow rate of 2000 liters / minute. For 5 minutes. As a result, an aluminum block adhered and grown on the outer peripheral surface of the cooling body 2 was obtained. The weight of the obtained aluminum lump was 6.1 kg and contained 48 ppm Fe and 34 ppm Si as impurities. The purification efficiency is calculated by the ratio of the impurity concentration contained in the aluminum lump attached to the cooling body 2 to the impurity concentration contained in the original molten aluminum. When converted to the purification efficiency, the purification efficiency of Fe is 0.10, The purification efficiency of Si was 0.21.

(実施例2)
精製すべきアルミニウム金属を坩堝1に入れ、電気加熱によって溶解してアルミニウム溶湯10とし、665℃に保持した。そのときのアルミニウム溶湯10には不純物として主にFeが500ppm、Siが250ppm含まれていた。
(Example 2)
The aluminum metal to be purified was put in the crucible 1 and melted by electric heating to obtain a molten aluminum 10 and kept at 665 ° C. The molten aluminum 10 at that time contained mainly 500 ppm of Fe and 250 ppm of Si as impurities.

精製装置は実施例1と同じ装置を用いた。その冷却体2は予め表面温度が550℃になるように加熱保持した上で、冷却体2を坩堝1の中のアルミニウム溶湯10に浸漬させた。その際、坩堝1の内周面と冷却体2の外周面との最短距離L1を12mmとし、坩堝1の内周面と冷却体2の外周面との最長距離L2を238mmとした。   The same apparatus as Example 1 was used for the purification apparatus. The cooling body 2 was heated and held in advance so that the surface temperature was 550 ° C., and then the cooling body 2 was immersed in the molten aluminum 10 in the crucible 1. At that time, the shortest distance L1 between the inner peripheral surface of the crucible 1 and the outer peripheral surface of the cooling body 2 was 12 mm, and the longest distance L2 between the inner peripheral surface of the crucible 1 and the outer peripheral surface of the cooling body 2 was 238 mm.

冷却体を溶湯中に浸漬させた後、冷却体の内部に冷却用の圧縮空気を2000リットル/分の流速で流しつつ、周速度=4.7m/秒で回転させながら1分間保持した。それによって、冷却体外周面に付着、成長したアルミニウム塊が得られた。得られたアルミニウム塊の重量は1.1kg、不純物としてFeが40ppm、Siが45ppm含まれていた。精製効率に換算すると、Feの精製効率は0.08、Siの精製効率は0.18であった。   After the cooling body was immersed in the molten metal, the compressed air for cooling was allowed to flow inside the cooling body at a flow rate of 2000 liters / minute and held at a peripheral speed of 4.7 m / second for 1 minute. As a result, an aluminum block adhered and grown on the outer peripheral surface of the cooling body was obtained. The weight of the obtained aluminum lump was 1.1 kg and contained 40 ppm Fe and 45 ppm Si as impurities. In terms of purification efficiency, the purification efficiency of Fe was 0.08, and the purification efficiency of Si was 0.18.

(実施例3)
精製すべきアルミニウム金属を坩堝1に入れ、電気加熱によって溶解してアルミニウム溶湯10として、665℃に保持した。そのときのアルミニウム溶湯10には不純物として主にFeが500ppm、Siが250ppm含まれていた。
(Example 3)
The aluminum metal to be purified was placed in the crucible 1 and melted by electric heating to maintain a molten aluminum 10 at 665 ° C. The molten aluminum 10 at that time contained mainly 500 ppm of Fe and 250 ppm of Si as impurities.

精製装置は実施例1と同じ装置を用いた。その冷却体2は予め表面温度が550℃になるように加熱保持した上で、冷却体2を坩堝1の中のアルミニウム溶湯10に浸漬させた。その際、坩堝1の内周面と冷却体2の外周面との最短距離L1を33mmとし、坩堝1の内周面と冷却体2の外周面との最長距離L2を217mmとした。   The same apparatus as Example 1 was used for the purification apparatus. The cooling body 2 was heated and held in advance so that the surface temperature was 550 ° C., and then the cooling body 2 was immersed in the molten aluminum 10 in the crucible 1. At that time, the shortest distance L1 between the inner peripheral surface of the crucible 1 and the outer peripheral surface of the cooling body 2 was 33 mm, and the longest distance L2 between the inner peripheral surface of the crucible 1 and the outer peripheral surface of the cooling body 2 was 217 mm.

冷却体2を溶湯10中に浸漬させた後、冷却体2の内部に冷却用の圧縮空気を2000リットル/分の流速で流しつつ、周速度=4.7m/秒で回転させながら3分間保持した。それによって、冷却体2の外周面に付着、成長したアルミニウム塊が得られた。得られたアルミニウム塊の重量は3.4kg、不純物としてFeが47ppm、Siが49ppm含まれていた。精製効率に換算すると、Feの精製効率は0.09、Siの精製効率は0.20であった。   After the cooling body 2 is immersed in the molten metal 10, the compressed air for cooling is flowed into the cooling body 2 at a flow rate of 2000 liters / minute, and is held for 3 minutes while rotating at a peripheral speed = 4.7 m / second. did. As a result, an aluminum block adhered and grown on the outer peripheral surface of the cooling body 2 was obtained. The weight of the resulting aluminum lump was 3.4 kg and contained 47 ppm Fe and 49 ppm Si as impurities. In terms of purification efficiency, the purification efficiency of Fe was 0.09, and the purification efficiency of Si was 0.20.

(実施例4)
精製すべきアルミニウム金属を坩堝1に入れ、電気加熱によって溶解してアルミニウム溶湯10として、665℃に保持した。そのときのアルミニウム溶湯10には不純物として主にFeが500ppm、Siが250ppm含まれていた。
Example 4
The aluminum metal to be purified was placed in the crucible 1 and melted by electric heating to maintain a molten aluminum 10 at 665 ° C. The molten aluminum 10 at that time contained mainly 500 ppm of Fe and 250 ppm of Si as impurities.

精製装置は実施例1と同じ装置を用いた。その冷却体2は予め表面温度が550℃になるように加熱保持した上で、冷却体2を坩堝1の中のアルミニウム溶湯10に浸漬させた。その際、坩堝1の内周面と冷却体2の外周面との最短距離L1を55mmとし、坩堝1の内周面と冷却体2の外周面との最長距離L2を195mmとした。   The same apparatus as Example 1 was used for the purification apparatus. The cooling body 2 was heated and held in advance so that the surface temperature was 550 ° C., and then the cooling body 2 was immersed in the molten aluminum 10 in the crucible 1. At that time, the shortest distance L1 between the inner peripheral surface of the crucible 1 and the outer peripheral surface of the cooling body 2 was 55 mm, and the longest distance L2 between the inner peripheral surface of the crucible 1 and the outer peripheral surface of the cooling body 2 was 195 mm.

冷却体2を溶湯10中に浸漬させた後、冷却体2の内部に冷却用の圧縮空気を2000リットル/分の流速で流しつつ、周速度=2.7m/秒で回転させながら5分間保持した。それによって、冷却体2の外周面に付着、成長したアルミニウム塊が得られた。得られたアルミニウム塊の重量は6.2kg、不純物としてFeが80ppm、Siが60ppm含まれていた。精製効率に換算すると、Feの精製効率は0.16、Siの精製効率は0.24であった。   After the cooling body 2 is immersed in the molten metal 10, the compressed air for cooling flows through the inside of the cooling body 2 at a flow rate of 2000 liters / minute and is held for 5 minutes while rotating at a peripheral speed of 2.7 m / second. did. As a result, an aluminum block adhered and grown on the outer peripheral surface of the cooling body 2 was obtained. The weight of the obtained aluminum lump was 6.2 kg and contained 80 ppm Fe and 60 ppm Si as impurities. In terms of purification efficiency, the purification efficiency of Fe was 0.16, and the purification efficiency of Si was 0.24.

(実施例5)
精製すべきアルミニウム金属を坩堝1に入れ、電気加熱によって溶解してアルミニウム溶湯10として、665℃に保持した。そのときのアルミニウム溶湯10には不純物として主にFeが500ppm、Siが250ppm含まれていた。
(Example 5)
The aluminum metal to be purified was placed in the crucible 1 and melted by electric heating to maintain a molten aluminum 10 at 665 ° C. The molten aluminum 10 at that time contained mainly 500 ppm of Fe and 250 ppm of Si as impurities.

精製装置は実施例1とほぼ同じものであるが、冷却体2を内部に空気を導入して冷却しながら一定時間浸漬させる間、坩堝1の内週面と冷却体2の外周面との最短距離L1を可変制御できるように、回転軸3が水平面内で平行移動する機構を追加した装置を用いた。その冷却体2は予め表面温度が550℃になるように加熱保持した上で、冷却体2を坩堝1の中のアルミニウム溶湯10に浸漬させた。その際、坩堝1の内周面と冷却体2の外周面との最短距離L1を12mmとし、坩堝1の内周面と冷却体2の外周面との最長距離L2を238mmとし、回転軸3の平行移動速度を0.143mm/秒として、5分後には坩堝1の内周面と冷却体2の外周面との最短距離L1が55mm、坩堝1の内周面と冷却体2の外周面との最長距離L2が195mmとなるように設定した。   The refining apparatus is almost the same as in Example 1, but the shortest distance between the inner week surface of the crucible 1 and the outer peripheral surface of the cooling body 2 while the cooling body 2 is immersed in the interior for a certain period of time while cooling. In order to variably control the distance L1, an apparatus to which a mechanism for moving the rotary shaft 3 in a horizontal plane was added was used. The cooling body 2 was heated and held in advance so that the surface temperature was 550 ° C., and then the cooling body 2 was immersed in the molten aluminum 10 in the crucible 1. At that time, the shortest distance L1 between the inner peripheral surface of the crucible 1 and the outer peripheral surface of the cooling body 2 is 12 mm, the longest distance L2 between the inner peripheral surface of the crucible 1 and the outer peripheral surface of the cooling body 2 is 238 mm, and the rotating shaft 3 And the shortest distance L1 between the inner peripheral surface of the crucible 1 and the outer peripheral surface of the cooling body 2 is 55 mm after 5 minutes, the inner peripheral surface of the crucible 1 and the outer peripheral surface of the cooling body 2 The longest distance L2 was set to be 195 mm.

冷却体2を溶湯10中に浸漬させた後、冷却体2の内部に冷却用の圧縮空気を2000リットル/分の流速で流しつつ、周速度=4.7m/秒で回転させながら5分間保持した。それによって、冷却体2の外周面に付着、成長したアルミニウム塊が得られた。得られたアルミニウム塊の重量は6.0kg、不純物としてFeが40ppm、Siが44ppm含まれていた。精製効率に換算すると、Feの精製効率は0.08、Siの精製効率は0.18であった。   After the cooling body 2 is immersed in the molten metal 10, the compressed air for cooling flows through the inside of the cooling body 2 at a flow rate of 2000 liters / minute and is held for 5 minutes while rotating at a peripheral speed = 4.7 m / second. did. As a result, an aluminum block adhered and grown on the outer peripheral surface of the cooling body 2 was obtained. The weight of the obtained aluminum lump was 6.0 kg and contained 40 ppm Fe and 44 ppm Si as impurities. In terms of purification efficiency, the purification efficiency of Fe was 0.08, and the purification efficiency of Si was 0.18.

(実施例6)
精製すべきアルミニウム金属を坩堝1に入れ、電気加熱によって溶解してアルミニウム溶湯10として、665℃に保持した。そのときのアルミニウム溶湯10には不純物として主にFeが500ppm、Siが250ppm含まれていた。
(Example 6)
The aluminum metal to be purified was placed in the crucible 1 and melted by electric heating to maintain a molten aluminum 10 at 665 ° C. The molten aluminum 10 at that time contained mainly 500 ppm of Fe and 250 ppm of Si as impurities.

精製装置は、冷却体2の外径を250mmとした以外は、実施例1と同じ装置を用いた。その冷却体2は予め表面温度が550℃になるように加熱保持した上で、冷却体2を坩堝1の中のアルミニウム溶湯10に浸漬させた。その際、坩堝1の内周面と冷却体2の外周面との最短距離L1を50mmとし、坩堝1の内周面と冷却体2の外周面との最長距離L2を100mmとした。   The same apparatus as Example 1 was used for the refinement | purification apparatus except the outer diameter of the cooling body 2 having been 250 mm. The cooling body 2 was heated and held in advance so that the surface temperature was 550 ° C., and then the cooling body 2 was immersed in the molten aluminum 10 in the crucible 1. At that time, the shortest distance L1 between the inner peripheral surface of the crucible 1 and the outer peripheral surface of the cooling body 2 was 50 mm, and the longest distance L2 between the inner peripheral surface of the crucible 1 and the outer peripheral surface of the cooling body 2 was 100 mm.

冷却体2を溶湯10中に浸漬させた後、冷却体2の内部に冷却用の圧縮空気を2000リットル/分の流速で流しつつ、周速度=4.7m/秒で回転させながら5分間保持した。それによって、冷却体2の外周面に付着、成長したアルミニウム塊が得られた。得られたアルミニウム塊の重量は9.8kg、不純物としてFeが52ppm、Siが55ppm含まれていた。精製効率に換算すると、Feの精製効率は0.10、Siの精製効率は0.22であった。   After the cooling body 2 is immersed in the molten metal 10, the compressed air for cooling flows through the inside of the cooling body 2 at a flow rate of 2000 liters / minute and is held for 5 minutes while rotating at a peripheral speed = 4.7 m / second. did. As a result, an aluminum block adhered and grown on the outer peripheral surface of the cooling body 2 was obtained. The weight of the obtained aluminum lump was 9.8 kg and contained 52 ppm Fe and 55 ppm Si as impurities. In terms of purification efficiency, the purification efficiency of Fe was 0.10, and the purification efficiency of Si was 0.22.

(実施例7)
精製すべきアルミニウム金属を坩堝1に入れ、電気加熱によって溶解してアルミニウム溶湯10として、665℃に保持した。そのときのアルミニウム溶湯10には不純物として主にFeが500ppm、Siが250ppm含まれていた。
(Example 7)
The aluminum metal to be purified was placed in the crucible 1 and melted by electric heating to maintain a molten aluminum 10 at 665 ° C. The molten aluminum 10 at that time contained mainly 500 ppm of Fe and 250 ppm of Si as impurities.

精製装置は、冷却体2の外径を40mmとした以外は、実施例1と同じ装置を用いた。その冷却体2は予め表面温度が550℃になるように加熱保持した上で、冷却体2を坩堝1の中のアルミニウム溶湯10に浸漬させた。その際、坩堝1の内周面と冷却体2の外周面との最短距離L1を80mmとし、坩堝1の内周面と冷却体2の外周面との最長距離L2を280mmとした。   The same apparatus as Example 1 was used for the refinement | purification apparatus except the outer diameter of the cooling body 2 having been 40 mm. The cooling body 2 was heated and held in advance so that the surface temperature was 550 ° C., and then the cooling body 2 was immersed in the molten aluminum 10 in the crucible 1. At that time, the shortest distance L1 between the inner peripheral surface of the crucible 1 and the outer peripheral surface of the cooling body 2 was 80 mm, and the longest distance L2 between the inner peripheral surface of the crucible 1 and the outer peripheral surface of the cooling body 2 was 280 mm.

冷却体2を溶湯10中に浸漬させた後、冷却体2の内部に冷却用の圧縮空気を2000リットル/分の流速で流しつつ、周速度=2.5m/秒(装置の都合上、得られる最大の周速度)で回転させながら5分間保持した。それによって、冷却体2の外周面に付着、成長したアルミニウム塊が得られた。得られたアルミニウム塊の重量は1.6kg、不純物としてFeが80ppm、Siが63ppm含まれていた。精製効率に換算すると、Feの精製効率は0.16、Siの精製効率は0.25であった。   After the cooling body 2 is immersed in the molten metal 10, the peripheral speed is 2.5 m / sec while flowing compressed air for cooling through the cooling body 2 at a flow rate of 2000 liters / minute (for convenience of the device, it is obtained. Held for 5 minutes while rotating at the maximum peripheral speed). As a result, an aluminum block adhered and grown on the outer peripheral surface of the cooling body 2 was obtained. The weight of the obtained aluminum lump was 1.6 kg and contained 80 ppm Fe and 63 ppm Si as impurities. In terms of purification efficiency, the purification efficiency of Fe was 0.16, and the purification efficiency of Si was 0.25.

(実施例8)
精製すべきアルミニウム金属を坩堝1に入れ、電気加熱によって溶解してアルミニウム溶湯10として、665℃に保持した。そのときのアルミニウム溶湯10には不純物として主にFeが500ppm、Siが250ppm含まれていた。
(Example 8)
The aluminum metal to be purified was placed in the crucible 1 and melted by electric heating to maintain a molten aluminum 10 at 665 ° C. The molten aluminum 10 at that time contained mainly 500 ppm of Fe and 250 ppm of Si as impurities.

精製装置は、冷却体2の外径を300mmとした以外は、実施例1と同じ装置を用いた。その冷却体2は予め表面温度が550℃になるように加熱保持した上で、冷却体2を坩堝1の中のアルミニウム溶湯10に浸漬させた。その際、坩堝1の内周面と冷却体2の外周面との最短距離L1を22mmとし、坩堝1の内周面と冷却体2の外周面との最長距離L2を78mmとした。   The same apparatus as Example 1 was used for the refinement | purification apparatus except the outer diameter of the cooling body 2 having been 300 mm. The cooling body 2 was heated and held in advance so that the surface temperature was 550 ° C., and then the cooling body 2 was immersed in the molten aluminum 10 in the crucible 1. At that time, the shortest distance L1 between the inner peripheral surface of the crucible 1 and the outer peripheral surface of the cooling body 2 was 22 mm, and the longest distance L2 between the inner peripheral surface of the crucible 1 and the outer peripheral surface of the cooling body 2 was 78 mm.

冷却体2を溶湯10中に浸漬させた後、冷却体2の内部に冷却用の圧縮空気を2000リットル/分の流速で流しつつ、周速度=4.7m/秒で回転させながら1分間保持した。それによって、冷却体2の外周面に付着、成長したアルミニウム塊が得られた。得られたアルミニウム塊の重量は1.2kg、不純物としてFeが52ppm、Siが54ppm含まれていた。精製効率に換算すると、Feの精製効率は0.10、Siの精製効率は0.22であった。   After immersing the cooling body 2 in the molten metal 10, hold the compressed air for cooling inside the cooling body 2 at a flow rate of 2000 liters / minute while rotating at a peripheral speed of 4.7 m / second for 1 minute. did. As a result, an aluminum block adhered and grown on the outer peripheral surface of the cooling body 2 was obtained. The weight of the obtained aluminum lump was 1.2 kg and contained 52 ppm Fe and 54 ppm Si as impurities. In terms of purification efficiency, the purification efficiency of Fe was 0.10, and the purification efficiency of Si was 0.22.

(比較例1)
精製すべきアルミニウム金属を坩堝1に入れ、電気加熱によって溶解してアルミニウム溶湯10として、665℃に保持した。そのときのアルミニウム溶湯10には不純物として主にFeが500ppm、Siが250ppm含まれていた。
(Comparative Example 1)
The aluminum metal to be purified was placed in the crucible 1 and melted by electric heating to maintain a molten aluminum 10 at 665 ° C. The molten aluminum 10 at that time contained mainly 500 ppm of Fe and 250 ppm of Si as impurities.

精製装置は実施例1と同じ装置を用いた。その冷却体2は予め表面温度が550℃になるように加熱保持した上で、冷却体2を坩堝1の中のアルミニウム溶湯10に浸漬させた。その際、坩堝1の内周面と冷却体2の外周面との距離が125mmになるように、冷却体2の中心を坩堝1の中央に位置するように合わせた。   The same apparatus as Example 1 was used for the purification apparatus. The cooling body 2 was heated and held in advance so that the surface temperature was 550 ° C., and then the cooling body 2 was immersed in the molten aluminum 10 in the crucible 1. At that time, the center of the cooling body 2 was aligned with the center of the crucible 1 so that the distance between the inner peripheral surface of the crucible 1 and the outer peripheral surface of the cooling body 2 was 125 mm.

冷却体2を溶湯10中に浸漬させた後、冷却体2の内部に冷却用の圧縮空気を2000リットル/分の流速で流しつつ、周速度=4.7m/秒で回転させながら5分間保持した。それによって、冷却体2の外周面に付着、成長したアルミニウム塊が得られた。得られたアルミニウム塊の重量は6.3kg、不純物としてFeが70ppm、Siが58ppm含まれていた。精製効率に換算すると、Feの精製効率は0.14、Siの精製効率は0.23であった。   After the cooling body 2 is immersed in the molten metal 10, the compressed air for cooling flows through the inside of the cooling body 2 at a flow rate of 2000 liters / minute and is held for 5 minutes while rotating at a peripheral speed = 4.7 m / second. did. As a result, an aluminum block adhered and grown on the outer peripheral surface of the cooling body 2 was obtained. The weight of the obtained aluminum lump was 6.3 kg and contained 70 ppm Fe and 58 ppm Si as impurities. In terms of purification efficiency, the purification efficiency of Fe was 0.14, and the purification efficiency of Si was 0.23.

(比較例2)
精製すべきアルミニウム金属を坩堝1に入れ、電気加熱によって溶解してアルミニウム溶湯10として、665℃に保持した。そのときのアルミニウム溶湯10には不純物として主にFeが500ppm、Siが250ppm含まれていた。
(Comparative Example 2)
The aluminum metal to be purified was placed in the crucible 1 and melted by electric heating to maintain a molten aluminum 10 at 665 ° C. The molten aluminum 10 at that time contained mainly 500 ppm of Fe and 250 ppm of Si as impurities.

精製装置は実施例1と同じ装置を用いた。その冷却体2は予め表面温度が550℃になるように加熱保持した上で、冷却体2を坩堝1の中のアルミニウム溶湯10に浸漬させた。その際、坩堝1の内周面と冷却体2の外周面との距離が125mmになるように、冷却体中心を坩堝1の中央に位置するように合わせた。   The same apparatus as Example 1 was used for the purification apparatus. The cooling body 2 was heated and held in advance so that the surface temperature was 550 ° C., and then the cooling body 2 was immersed in the molten aluminum 10 in the crucible 1. At that time, the center of the cooling body was positioned at the center of the crucible 1 so that the distance between the inner peripheral surface of the crucible 1 and the outer peripheral surface of the cooling body 2 was 125 mm.

冷却体2を溶湯10中に浸漬させた後、冷却体2の内部に冷却用の圧縮空気を2000リットル/分の流速で流しつつ、周速度=2.7m/秒で回転させながら5分間保持した。それによって、冷却体2の外周面に付着、成長したアルミニウム塊が得られた。得られたアルミニウム塊の重量は6.3kg、不純物としてFeが90ppm、Siが70ppm含まれていた。精製効率に換算すると、Feの精製効率は0.18、Siの精製効率は0.28であった。   After the cooling body 2 is immersed in the molten metal 10, the compressed air for cooling flows through the inside of the cooling body 2 at a flow rate of 2000 liters / minute and is held for 5 minutes while rotating at a peripheral speed of 2.7 m / second. did. As a result, an aluminum block adhered and grown on the outer peripheral surface of the cooling body 2 was obtained. The weight of the obtained aluminum lump was 6.3 kg, and 90 ppm of Fe and 70 ppm of Si were contained as impurities. In terms of purification efficiency, the purification efficiency of Fe was 0.18, and the purification efficiency of Si was 0.28.

以上の実施例、比較例の条件及び結果を表1にまとめて示す。   The conditions and results of the above Examples and Comparative Examples are summarized in Table 1.

Figure 0005074762
Figure 0005074762

表1の結果から、本実施形態によれば、精製効率を向上できることを確認し得た。   From the results in Table 1, it was confirmed that the purification efficiency could be improved according to this embodiment.

本発明の一実施形態に係る生成装置の概略構成図である。It is a schematic block diagram of the production | generation apparatus which concerns on one Embodiment of this invention. 図1のII線断面図である。It is the II sectional view taken on the line of FIG.

符号の説明Explanation of symbols

1 坩堝
2 冷却体
3 回転軸
10 溶湯
1 crucible 2 cooling body 3 rotating shaft 10 molten metal

Claims (13)

坩堝に収容した精製すべき溶融金属中に冷却体を浸漬し、この冷却体を回転させながら冷却体表面に高純度金属を晶出させる金属精製方法において、
坩堝内の溶融金属の存在部分における坩堝の内周面と冷却体外周面との最短距離を、坩堝内周面と冷却体外周面との最長距離の2分の1以下に設定して精製を行うことを特徴とする金属精製方法。
In a metal purification method in which a cooling body is immersed in a molten metal to be purified contained in a crucible, and a high purity metal is crystallized on the surface of the cooling body while rotating the cooling body.
Refining is performed by setting the shortest distance between the inner peripheral surface of the crucible and the outer peripheral surface of the cooling body in the portion where the molten metal is present in the crucible to one half or less of the longest distance between the inner peripheral surface of the crucible and the outer peripheral surface of the cooling body. A metal refining method characterized by performing.
坩堝の内周面と冷却体外周面との最短距離が10mm以上である請求項1に記載の金属精製方法。   The metal refining method according to claim 1, wherein the shortest distance between the inner peripheral surface of the crucible and the outer peripheral surface of the cooling body is 10 mm or more. 坩堝内の溶融金属の存在部分において、坩堝の開口部の最大内寸Dに対し、前記Dを含む水平面内における冷却体の外寸dの比率d/Dが、0.2以上である請求項1または2に記載の金属精製方法。   A ratio d / D of an outer dimension d of the cooling body in a horizontal plane including the D with respect to a maximum inner dimension D of the opening of the crucible in a portion where the molten metal exists in the crucible is 0.2 or more. The metal purification method according to 1 or 2. 冷却体に付着する精製塊の形成に伴って、坩堝の内周面と冷却体外周面との最短距離を変化させる請求項1〜3のいずれかに記載の金属精製方法。   The metal refining method according to any one of claims 1 to 3, wherein the shortest distance between the inner peripheral surface of the crucible and the outer peripheral surface of the cooling body is changed with the formation of the refined lump attached to the cooling body. 溶融金属がアルミニウムである請求項1〜4のいずれかに記載の金属精製方法。   The metal refining method according to claim 1, wherein the molten metal is aluminum. 精製すべき溶融金属を収容する坩堝と、
前記坩堝に収容された溶融金属中に浸漬される回転可能な冷却体と、
を備え、
坩堝内の溶融金属の存在部分において、坩堝の内周面と冷却体外周面との最短距離が、坩堝の内周面と冷却体外周面との最長距離の2分の1以下に設定されてなることを特徴とする金属精製装置。
A crucible containing the molten metal to be purified;
A rotatable cooling body immersed in the molten metal contained in the crucible;
With
In the part where the molten metal exists in the crucible, the shortest distance between the inner peripheral surface of the crucible and the outer peripheral surface of the cooling body is set to be less than or equal to one half of the longest distance between the inner peripheral surface of the crucible and the outer peripheral surface of the cooling body. The metal refinement | purification apparatus characterized by becoming.
坩堝の内周面と冷却体外周面との最短距離が10mm以上に設定されている請求項6に記載の金属精製装置。   The metal refining device according to claim 6, wherein the shortest distance between the inner peripheral surface of the crucible and the outer peripheral surface of the cooling body is set to 10 mm or more. 坩堝内の溶融金属の存在部分において、坩堝の開口部の最大内寸Dに対し、前記Dを含む水平面内における冷却体の外寸dの比率d/Dが、0.2以上である請求項6または7に記載の金属精製装置。   A ratio d / D of an outer dimension d of the cooling body in a horizontal plane including the D with respect to a maximum inner dimension D of the opening of the crucible in a portion where the molten metal exists in the crucible is 0.2 or more. 6. The metal purification apparatus according to 6 or 7. 冷却体に付着する精製塊の形成に伴って、坩堝の内周面と冷却体外周面との最短距離が変化するものとなされている請求項6〜8のいずれかに記載の金属精製装置。   The metal refining apparatus according to any one of claims 6 to 8, wherein the shortest distance between the inner peripheral surface of the crucible and the outer peripheral surface of the cooling body is changed with the formation of the refined lump attached to the cooling body. 請求項1ないし5のいずれかに記載の方法で精製された精製金属。   A purified metal purified by the method according to claim 1. 請求項10に記載の精製金属から製造された鋳造品。   A casting manufactured from the refined metal according to claim 10. 請求項11に記載の鋳造品が圧延されてなる金属製品。   A metal product obtained by rolling the cast product according to claim 11. 請求項12に記載の金属製品が電極材として用いられている電解コンデンサ。   An electrolytic capacitor in which the metal product according to claim 12 is used as an electrode material.
JP2006356244A 2006-12-28 2006-12-28 Metal purification method and apparatus, refined metal, casting, metal product and electrolytic capacitor Active JP5074762B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006356244A JP5074762B2 (en) 2006-12-28 2006-12-28 Metal purification method and apparatus, refined metal, casting, metal product and electrolytic capacitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006356244A JP5074762B2 (en) 2006-12-28 2006-12-28 Metal purification method and apparatus, refined metal, casting, metal product and electrolytic capacitor

Publications (2)

Publication Number Publication Date
JP2008163420A JP2008163420A (en) 2008-07-17
JP5074762B2 true JP5074762B2 (en) 2012-11-14

Family

ID=39693270

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006356244A Active JP5074762B2 (en) 2006-12-28 2006-12-28 Metal purification method and apparatus, refined metal, casting, metal product and electrolytic capacitor

Country Status (1)

Country Link
JP (1) JP5074762B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5410702B2 (en) * 2008-07-30 2014-02-05 昭和電工株式会社 Metal purification method and apparatus, refined metal, casting, metal product and electrolytic capacitor
JP6342660B2 (en) * 2013-01-22 2018-06-13 昭和電工株式会社 Metal purification apparatus and metal purification method
CN109219669B (en) * 2016-06-02 2020-07-24 昭和电工株式会社 Method and apparatus for refining substance, apparatus for holding molten metal by heating, and system for continuously refining high-purity substance
JP6762206B2 (en) * 2016-11-22 2020-09-30 昭和電工株式会社 Molten heating and holding device, substance purification device and substance purification method
JP6746383B2 (en) * 2016-06-02 2020-08-26 昭和電工株式会社 Material purification method and apparatus, continuous purification system for high-purity substances
JP6751604B2 (en) * 2016-06-28 2020-09-09 昭和電工株式会社 Material purification method and equipment, continuous purification system for high-purity substances
JP7223717B2 (en) * 2020-01-10 2023-02-16 堺アルミ株式会社 High-purity metal manufacturing method and manufacturing apparatus

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0754064A (en) * 1993-08-18 1995-02-28 Nippon Light Metal Co Ltd Stirring mechanism in aluminum refining apparatus
JPH0754062A (en) * 1993-08-18 1995-02-28 Nippon Light Metal Co Ltd Method for refining aluminum scrap
JPH0797640A (en) * 1993-09-30 1995-04-11 Nippon Light Metal Co Ltd Detection of solidification boundary in aluminum refining
JP4378820B2 (en) * 2000-02-10 2009-12-09 住友化学株式会社 Aluminum purification method and its use

Also Published As

Publication number Publication date
JP2008163420A (en) 2008-07-17

Similar Documents

Publication Publication Date Title
JP5074762B2 (en) Metal purification method and apparatus, refined metal, casting, metal product and electrolytic capacitor
WO2013111314A1 (en) Silicon purification method
WO2017209034A1 (en) Material purification method and device, molten metal heating and retaining device, and continuous purification system for material with high purity
JP2006027940A (en) Method for refining metal
JPH07206420A (en) Production of high-purity silicon
JP5134817B2 (en) Metal purification method and apparatus, refined metal, casting, metal product and electrolytic capacitor
JP5634704B2 (en) Metal purification method and apparatus, refined metal, casting, metal product and electrolytic capacitor
JP4397714B2 (en) Raw material for aluminum purification
JP2021014606A (en) Method and apparatus for manufacturing high purity metal
JP5069728B2 (en) Aluminum purification method, high-purity aluminum material, method for producing aluminum material for electrolytic capacitor electrode, and aluminum material for electrolytic capacitor electrode
JP6342660B2 (en) Metal purification apparatus and metal purification method
JP6118579B2 (en) Metal purification method and metal purification apparatus
JP5479729B2 (en) Metal purification method and apparatus, refined metal, casting, metal product and electrolytic capacitor
JP4378820B2 (en) Aluminum purification method and its use
JP5594958B2 (en) Substance purification method and substance purification equipment
JP6751604B2 (en) Material purification method and equipment, continuous purification system for high-purity substances
JP7223717B2 (en) High-purity metal manufacturing method and manufacturing apparatus
EP2890636B1 (en) Method of directional solidification with reactive cover glass over molten silicon
JP2016175806A (en) Manufacturing method of high-purity silicon
JP5415066B2 (en) Metal purification method and apparatus, refined metal, casting, metal product and electrolytic capacitor
JP5410702B2 (en) Metal purification method and apparatus, refined metal, casting, metal product and electrolytic capacitor
JP5128167B2 (en) Metal refining method, metal refining device, refined metal, casting, metal product and electrolytic capacitor
JP2009024234A (en) Continuous refining system for high purity aluminum
JP6746383B2 (en) Material purification method and apparatus, continuous purification system for high-purity substances
JP5594953B2 (en) Cooling body, metal refining apparatus and method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090901

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120725

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120731

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120824

R150 Certificate of patent or registration of utility model

Ref document number: 5074762

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150831

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150831

Year of fee payment: 3

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: R3D02

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250