JP5069728B2 - Aluminum purification method, high-purity aluminum material, method for producing aluminum material for electrolytic capacitor electrode, and aluminum material for electrolytic capacitor electrode - Google Patents

Aluminum purification method, high-purity aluminum material, method for producing aluminum material for electrolytic capacitor electrode, and aluminum material for electrolytic capacitor electrode Download PDF

Info

Publication number
JP5069728B2
JP5069728B2 JP2009198574A JP2009198574A JP5069728B2 JP 5069728 B2 JP5069728 B2 JP 5069728B2 JP 2009198574 A JP2009198574 A JP 2009198574A JP 2009198574 A JP2009198574 A JP 2009198574A JP 5069728 B2 JP5069728 B2 JP 5069728B2
Authority
JP
Japan
Prior art keywords
aluminum
molten metal
peritectic
boron
reaction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2009198574A
Other languages
Japanese (ja)
Other versions
JP2009280918A (en
Inventor
勝起 吉田
雅生 前田
雅司 坂口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Holdings Corp
Original Assignee
Showa Denko KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Denko KK filed Critical Showa Denko KK
Priority to JP2009198574A priority Critical patent/JP5069728B2/en
Publication of JP2009280918A publication Critical patent/JP2009280918A/en
Application granted granted Critical
Publication of JP5069728B2 publication Critical patent/JP5069728B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Manufacture And Refinement Of Metals (AREA)

Description

この発明は、包晶元素を除去して高純度アルミニウムを得るアルミニウムの精製方法、この精製方法によって製造された高純度アルミニウム材、さらに電解コンデンサ電極用アルミニウム材の製造方法および電解コンデンサ電極用アルミニウム材に関する。   The present invention relates to an aluminum refining method for obtaining high-purity aluminum by removing peritectic elements, a high-purity aluminum material produced by this refining method, a method for producing an aluminum material for electrolytic capacitor electrodes, and an aluminum material for electrolytic capacitor electrodes About.

なお、この明細書において、「アルミニウム」の語はアルミニウムおよびその合金の両者を含む意味で用いられる。   In this specification, the term “aluminum” is used to include both aluminum and its alloys.

偏析凝固の原理を利用したアルミニウムの精製方法として、共晶不純物を含むアルミニウム溶湯中に回転冷却体を浸漬し、この冷却体の内部に冷却流体を供給しながら冷却体を回転させてその外周面に高純度アルミニウムを晶出させる方法が知られている。このような方法で高純度アルミニウムを得ることができるのは共晶元素の平衡偏析係数が1よりも小さいためである(例えば、特許文献1)。   As a method of refining aluminum using the principle of segregation solidification, a rotating cooling body is immersed in a molten aluminum containing eutectic impurities, and the cooling body is rotated while supplying a cooling fluid to the inside of the cooling body to obtain an outer peripheral surface thereof. There is known a method for crystallizing high-purity aluminum. High purity aluminum can be obtained by such a method because the equilibrium segregation coefficient of the eutectic element is smaller than 1 (for example, Patent Document 1).

しかしながら、精製すべきアルミニウム溶湯中には、共晶不純物の他にアルミニウムと包晶を生成するTi,Zr,V等の包晶不純物が含まれている。このような包晶不純物は平衡偏析係数が1よりも大きいため、特許文献1に記載された方法では、精製塊の包晶不純物濃度が元の溶融アルミニウムよりも高くなってしまう。   However, the molten aluminum to be purified contains peritectic impurities such as Ti, Zr, and V that form peritectic crystals with aluminum in addition to the eutectic impurities. Since such peritectic impurities have an equilibrium segregation coefficient larger than 1, in the method described in Patent Document 1, the peritectic impurity concentration of the purified mass becomes higher than that of the original molten aluminum.

そこで、本出願人は先に、Bを用いて包晶不純物の除去を行い、その後に偏析凝固を行ってアルミニウムを精製する方法を提案した(特許文献2、3)。   Therefore, the present applicant has previously proposed a method of purifying aluminum by removing peritectic impurities using B and then performing segregation solidification (Patent Documents 2 and 3).

特許文献2に記載された精製方法は、まず、アルミニウム溶湯を処理ガス吹き込み室に送り、処理ガスを吹き込む前にアルミニウム溶湯中にBを添加する。続いて、処理ガス吹き込み室での攪拌により、Bと包晶不純物を反応させ、反応により生成した不溶性ホウ化物を処理ガス吹き込みによって溶湯表面に浮上させ、浮上したホウ化物を除去することによって包晶不純物を低減させる。そして、包晶不純物を除去した溶湯に対して偏析凝固による精製を行うというものである。   In the refining method described in Patent Document 2, first, molten aluminum is sent to a treatment gas blowing chamber, and B is added to the molten aluminum before blowing the treatment gas. Subsequently, B and peritectic impurities are reacted by stirring in the treatment gas blowing chamber, insoluble borides generated by the reaction are floated on the surface of the molten metal by blowing treatment gas, and peritectic crystals are removed by removing the floated borides. Impurities are reduced. And the refinement | purification by segregation solidification is performed with respect to the molten metal from which the peritectic impurities were removed.

また、特許文献3に記載された精製方法は、Bの添加により包晶不純物とのホウ化物が生成された溶湯中で偏析凝固を行って包晶不純物を除去し、この工程で得たアルミニウム塊を溶融させて偏析凝固による精製を繰り返すことによってアルミニウム純度を高めるというものである。   In addition, the purification method described in Patent Document 3 removes peritectic impurities by performing segregation solidification in a molten metal in which a boride with peritectic impurities is formed by addition of B, and the aluminum block obtained in this step The purity of aluminum is increased by repeating the purification by segregation and solidification.

特公昭61−3385号公報Japanese Patent Publication No.61-3385 特開平9−194964号公報JP 9-194964 A 特開平10−102158号公報JP-A-10-102158

しかしながら、Ti,Zr,Vのような包晶不純物を数ppmオーダーで除去させる場合には、添加するBはTiB,ZrB,VBとして計算される合計化学当量より多くのBを添加するか、又は、Bを添加した後に長時間保持(又は攪拌)しなければ有効に除去することはできないという問題があった。特に、特許文献2に報告されているような連続的に溶湯を処理する方法では、バッチ処理による方法と比較して、Bと包晶不純物の反応時間に限界があり、有効に包晶不純物を除去するには大量の過剰のBを添加するしかなかった。このように過剰に添加されたBは共晶不純物であり精製室にて偏析凝固の原理により除去されるが、添加量が多いと完全には除去されず、少量のBは中空回転冷却体の外周面に晶出したアルミニウム塊中に残ることとなる。 However, when peritectic impurities such as Ti, Zr, and V are removed on the order of several ppm, more B is added than the total chemical equivalent calculated as TiB 2 , ZrB 2 , and VB 2. In addition, there is a problem in that it cannot be effectively removed unless it is kept (or stirred) for a long time after adding B. In particular, in the method of continuously treating molten metal as reported in Patent Document 2, the reaction time of B and peritectic impurities is limited as compared with the method by batch processing, and peritectic impurities are effectively removed. The only way to remove it was to add a large excess of B. The excessively added B is a eutectic impurity and is removed by the principle of segregation solidification in the refining chamber. However, when the added amount is large, it is not completely removed. It will remain in the aluminum lump crystallized on the outer peripheral surface.

また、特許文献3に記載された精製工程を2回以上繰り返して行う方法では、生産性が悪く、コスト高となるという問題点がある。   In addition, the method in which the purification step described in Patent Document 3 is repeated twice or more has a problem that productivity is poor and cost is high.

この発明は、上述した技術背景に鑑み、アルミニウムに不純物として含有される包晶元素を効率良く除去し、さらに包晶元素の除去に用いたホウ素の除去を行うことにより、高純度アルミニウムを製造しうるアルミニウムの精製方法、この精製方法によって製造される高純度アルミニウム材、さらに電解コンデンサ電極用アルミニウム材の製造方法および電解コンデンサ電極用アルミニウム材の提供を目的とする。   In view of the technical background described above, the present invention produces high-purity aluminum by efficiently removing peritectic elements contained as impurities in aluminum and further removing boron used to remove peritectic elements. An object of the present invention is to provide a method for purifying aluminum, a high-purity aluminum material produced by this purification method, a method for producing an aluminum material for electrolytic capacitor electrodes, and an aluminum material for electrolytic capacitor electrodes.

前記目的を達成するために、本発明のアルミニウムの精製方法は下記(1)〜(6)の各構成を有する。
(1) アルミニウムと包晶を生成する包晶元素およびホウ素を含み、ホウ素が包晶元素との金属ホウ化物として計算される合計化学当量よりも5〜80質量ppm過剰に含有されてなるアルミニウム精製用原料を溶解して溶湯とする溶解工程と、
溶解工程において得た溶湯を反応室に移動させ、
前記反応室中で、溶湯において包晶元素とホウ素とを反応させて金属ホウ化物を生成させ、生成した金属ホウ化物および前記溶解工程で生成した金属ホウ化物を除去することにより包晶元素を除去する反応工程と、
反応工程において得た溶湯を精製室に移動させ、
前記精製室中で、反応工程において得た溶湯から偏析凝固により未反応のホウ素を含む共晶元素が除去された高純度アルミニウムを晶出させる偏析凝固工程と、
を含むことを特徴とするアルミニウムの精製方法。
(2) 前記アルミニウム精製用原料中の包晶元素がTi,ZrおよびVからなる群から選ばれた少なくとも1種以上である前項1に記載のアルミニウムの精製方法。
(3) 前記アルミニウム精製用原料中のホウ素の過剰量が15〜50質量ppmである前項1または2に記載のアルミニウムの精製方法。
(4) 前記アルミニウム精製用原料は電解コンデンサ電極用アルミニウム材の製造材料である前項1〜3のいずれか1項に記載のアルミニウムの精製方法。
(5) 反応工程において、溶湯中に処理ガスを吹き込んで生成された金属ホウ化物を溶湯表面に浮上させる前項1〜4のいずれかに記載のアルミニウムの精製方法。
(6) 偏析凝固工程において、溶湯中で溶湯の凝固温度以下に保持した冷却体を回転させ、この冷却体の外周面に高純度アルミニウムを晶出させる前項1〜5のいずれかに記載のアルミニウムの精製方法。
In order to achieve the above object, the method for purifying aluminum of the present invention has the following constitutions (1) to (6).
(1) Aluminum purification containing peritectic elements that form peritectic crystals with aluminum and boron, and boron is contained in excess of 5 to 80 ppm by mass over the total chemical equivalent calculated as a metal boride with peritectic elements. A melting step of melting raw materials to make a molten metal,
Move the molten metal obtained in the melting process to the reaction chamber,
In the reaction chamber, a peritectic element and boron are reacted in a molten metal to form a metal boride, and the peritectic element is removed by removing the generated metal boride and the metal boride generated in the melting step. Reaction steps to
Move the molten metal obtained in the reaction process to the purification chamber,
In the purification chamber, a segregation solidification step for crystallizing high-purity aluminum from which eutectic elements including unreacted boron have been removed by segregation solidification from the molten metal obtained in the reaction step;
A method for purifying aluminum, comprising:
(2) The method for purifying aluminum as described in (1) above, wherein the peritectic element in the aluminum refining raw material is at least one selected from the group consisting of Ti, Zr and V.
(3) The method for purifying aluminum according to item 1 or 2, wherein the excess amount of boron in the raw material for aluminum purification is 15 to 50 ppm by mass.
(4) The aluminum refining method according to any one of items 1 to 3, wherein the aluminum refining material is a material for producing an aluminum material for electrolytic capacitor electrodes.
(5) The method for purifying aluminum according to any one of items 1 to 4, wherein in the reaction step, the metal boride generated by blowing a treatment gas into the molten metal is floated on the molten metal surface.
(6) The aluminum according to any one of the preceding items 1 to 5, wherein in the segregation solidification step, a cooling body maintained at a temperature equal to or lower than a solidification temperature of the molten metal is rotated in the molten metal, and high purity aluminum is crystallized on the outer peripheral surface of the cooling body. Purification method.

本発明の高純度アルミニウム材は下記(7)の構成を有する。
(7) 前項1〜6のいずれか1項に記載されたアルミニウムの精製方法により製造されたことを特徴とする高純度アルミニウム材。
The high-purity aluminum material of the present invention has the following configuration (7).
(7) A high-purity aluminum material produced by the aluminum refining method described in any one of 1 to 6 above.

本発明の電解コンデンサ電極用アルミニウム材の製造方法は下記(8)(9)の構成を有する。
(8) アルミニウムと包晶を生成する包晶元素およびホウ素を含み、ホウ素が包晶元素との金属ホウ化物として計算される合計化学当量よりも5〜80質量ppm過剰に含有されてなるアルミニウム精製用原料を溶解して溶湯とする溶解工程と、
溶解工程において得た溶湯を反応室に移動させ、
前記反応室中で、溶湯において包晶元素とホウ素とを反応させて金属ホウ化物を生成させ、生成した金属ホウ化物および前記溶解工程で生成した金属ホウ化物を除去することにより包晶元素を除去する反応工程と、
反応工程において得た溶湯を精製室に移動させ、
前記精製室中で、反応工程において得た溶湯から偏析凝固により未反応のホウ素を含む共晶元素が除去された高純度アルミニウムを晶出させる偏析凝固工程と、
前記高純度アルミニウムを成形する成形工程と、
を含むことを特徴とする電解コンデンサ電極用アルミニウム材の製造方法。
(9) 成形工程は、最終厚さを10〜200μmに圧延する工程を含む前項8に記載の電解コンデンサ電極用アルミニウム材の製造方法。
The manufacturing method of the aluminum material for electrolytic capacitor electrodes of the present invention has the following configurations (8) and (9).
(8) Aluminum purification containing a peritectic element that forms peritectic crystals with aluminum and boron, and boron is contained in an amount of 5 to 80 ppm by mass in excess of the total chemical equivalent calculated as a metal boride with the peritectic element. A melting step of melting raw materials to make a molten metal,
Move the molten metal obtained in the melting process to the reaction chamber,
In the reaction chamber, a peritectic element and boron are reacted in a molten metal to form a metal boride, and the peritectic element is removed by removing the generated metal boride and the metal boride generated in the melting step. Reaction steps to
Move the molten metal obtained in the reaction process to the purification chamber,
In the purification chamber, a segregation solidification step for crystallizing high-purity aluminum from which eutectic elements including unreacted boron have been removed by segregation solidification from the molten metal obtained in the reaction step;
A molding step of molding the high-purity aluminum;
The manufacturing method of the aluminum material for electrolytic capacitor electrodes characterized by including this.
(9) The method for producing an aluminum material for electrolytic capacitor electrodes as recited in the aforementioned Item 8, wherein the forming step includes a step of rolling the final thickness to 10 to 200 μm.

本発明の電解コンデンサ電極用アルミニウム材は下記(10)の構成を有する。
(10) 前項8または9に記載された方法により製造されたことを特徴とする電解コンデンサ電極用アルミニウム材。
The aluminum material for electrolytic capacitor electrodes of the present invention has the following configuration (10).
(10) An aluminum material for electrolytic capacitor electrodes manufactured by the method described in the above item 8 or 9.

(1)の発明にかかるアルミニウムの精製方法によれば、アルミニウム精製用原料中のホウ素濃度が包晶元素との金属ホウ化物として計算される合計化学当量よりも5〜80質量ppm過剰となされているため、溶解工程の段階から包晶元素とホウ素とが反応し、反応工程と合わせてより長い反応時間を確保してより多くの金属ホウ化物を生成させ、包晶元素を除去して高純度アルミニウムを得ることができる。また、溶解の熱エネルギーが反応に利用されるためにエネルギーコストを低減させることができる。   According to the method for purifying aluminum according to the invention of (1), the boron concentration in the aluminum refining raw material is 5 to 80 ppm by mass in excess of the total chemical equivalent calculated as the metal boride with the peritectic element. As a result, the peritectic element and boron react from the stage of the dissolution process, and together with the reaction process, a longer reaction time is secured to generate more metal boride, and the peritectic element is removed to achieve high purity. Aluminum can be obtained. Moreover, since the thermal energy of dissolution is used for the reaction, the energy cost can be reduced.

そして、金属ホウ化物を除去する反応工程後に偏析凝固を行うことにより、溶湯から未反応のホウ素を含む共晶元素を除去することができ、さらに純度の高いアルミニウムを得ることができる。   Then, by performing segregation solidification after the reaction step of removing the metal boride, the eutectic element containing unreacted boron can be removed from the molten metal, and aluminum with higher purity can be obtained.

さらに、溶解工程で得た溶湯を反応室に移動させて反応工程を行う連続処理を実施するので、高純度アルミニウムの生産性が良い。   Furthermore, since the continuous process which performs the reaction process by moving the molten metal obtained by the melting process to the reaction chamber is performed, the productivity of high-purity aluminum is good.

さらに、反応工程で得た溶湯を精製室に移動させて偏析凝固工程を行う連続処理を実施するので、高純度アルミニウムの生産性が良い。   Furthermore, since the molten metal obtained in the reaction process is moved to the refining chamber and the segregation solidification process is performed, the productivity of high-purity aluminum is good.

(2)の発明において、アルミニウム精製用原料中の包晶元素はTi,ZrおよびVからなる群から選ばれた少なくとも1種以上であり、これらの元素が精製によって除去される。   In the invention of (2), the peritectic element in the aluminum refining raw material is at least one selected from the group consisting of Ti, Zr and V, and these elements are removed by refining.

(3)の発明において、アルミニウム精製用原料中のホウ素の過剰量が15〜50質量ppmとなされているため、包晶元素の除去が効率良く行われる。   In the invention of (3), since the excessive amount of boron in the aluminum refining raw material is 15 to 50 ppm by mass, the peritectic element is efficiently removed.

(4)の発明によれば、高純度アルミニウムに精製できるため、電解コンデンサ電極用アルミニウム材の製造材料の精製方法として好適に用いることができる。   According to invention of (4), since it can refine | purify to high purity aluminum, it can use suitably as a refinement | purification method of the manufacturing material of the aluminum material for electrolytic capacitor electrodes.

(5)にかかる発明により、反応工程において溶湯中に処理ガスを吹き込んだ場合は、生成された金属ホウ化物が浮上するため、容易に金属ホウ化物を除去できる。   According to the invention according to (5), when the processing gas is blown into the molten metal in the reaction step, the generated metal boride is floated, so that the metal boride can be easily removed.

(6)にかかる発明により、偏析凝固工程において溶湯中で冷却体を回転させることにより、確実に高純度アルミニウムを得ることができる。   With the invention according to (6), high purity aluminum can be obtained reliably by rotating the cooling body in the molten metal in the segregation solidification step.

(7)の発明にかかる高純度アルミニウム材は上述した精製方法で製造されたものであり、包晶元素、あるいはさらに共晶元素が除去された純度の高いものである。このようなアルミニウム材は、高純度が要求される各種電子部材の材料として好適に用いられる。   The high-purity aluminum material according to the invention of (7) is manufactured by the above-described purification method, and has a high purity from which peritectic elements or further eutectic elements are removed. Such an aluminum material is suitably used as a material for various electronic members that require high purity.

(8)の発明にかかる電解コンデンサ電極用アルミニウム材の製造方法は、溶解工程、反応工程、偏析凝固工程によって得た高純度アルミニウムに対し、所要形状に成形する成形工程を施すものであるから、アルミニウム純度の高い電極材料を製造できる。   Since the manufacturing method of the aluminum material for electrolytic capacitor electrodes according to the invention of (8) is to perform a forming step of forming into a required shape for high-purity aluminum obtained by a melting step, a reaction step, and a segregation solidification step. An electrode material with high aluminum purity can be produced.

(9)にかかる発明によれば、最終厚さが10〜200μmの電極材料を製造できる。   According to the invention of (9), an electrode material having a final thickness of 10 to 200 μm can be manufactured.

(10)本発明の電解コンデンサ電極用アルミニウム材は、高純度であってエッチング特性に優れているため、エッチングおよび化成処理を施して高い静電容量を達成できる。   (10) Since the aluminum material for electrolytic capacitor electrodes of the present invention has high purity and excellent etching characteristics, high capacitance can be achieved by performing etching and chemical conversion treatment.

この発明のアルミニウムの精製方法の実施に用いられる精製装置を示す一部垂直断面図である。It is a partial vertical sectional view which shows the refinement | purification apparatus used for implementation of the purification method of the aluminum of this invention. 図1のII−II線拡大断面図である。It is the II-II line expanded sectional view of FIG.

通常アルミニウム精製用原料に含有される不純物として、アルミニウムと包晶を生成するTi、Zr、V等包晶元素や、アルミニウムと共晶を生成するFe、Si、Cu、Mg等の共晶元素がある。本発明のアルミニウムの精製方法は、アルミニウム精製用原料中に含まれる包晶元素をホウ素との金属ホウ化物として除去し、要すればさらにホウ素含む共晶元素を偏析凝固によって除去するものである。そして、ホウ素を溶解後に添加するのではなく、精製に供されるアルミニウム精製用原料として、含有される包晶元素との化合物生成に適したホウ素濃度に調整されたアルミニウム精製用原料を用いる。   Usually, impurities contained in the raw material for aluminum purification include peritectic elements such as Ti, Zr, and V that form peritectic crystals with aluminum, and eutectic elements such as Fe, Si, Cu, and Mg that produce eutectic with aluminum. is there. In the method for purifying aluminum according to the present invention, a peritectic element contained in a raw material for aluminum purification is removed as a metal boride with boron, and if necessary, a eutectic element containing boron is further removed by segregation solidification. Instead of adding boron after dissolution, an aluminum refining material adjusted to a boron concentration suitable for compound formation with the peritectic element is used as an aluminum refining material to be used for refining.

アルミニウム精製用原料において、包晶元素としてTi,ZrおよびVからなる群から選ばれた少なくとも1種以上を例示でき、それぞれホウ素とTiB、ZrB、VBなる金属ホウ化物を生成する。 In the raw material for aluminum purification, at least one selected from the group consisting of Ti, Zr and V can be exemplified as peritectic elements, and boron and TiB 2 , ZrB 2 and VB 2 metal borides are generated.

アルミニウム精製用原料中のホウ素濃度は、これらの金属ホウ化物として計算される合計化学当量よりも5〜80質量ppmの過剰となる濃度に制御されている。過剰量が5質量ppm未満では包晶元素との反応が十分に進行せずに、精製塊中に多くの未反応包晶元素が残留して高純度アルミニウムが得られない。一方過剰量が80質量ppmを越えると、未反応の包晶元素量は減少するものの、多くの未反応ホウ素が残留してやはり高純度アルミニウムを得ることができない。好ましいホウ素の過剰量は15〜50質量ppmである。   The boron concentration in the raw material for aluminum purification is controlled to a concentration of 5 to 80 mass ppm in excess of the total chemical equivalent calculated as these metal borides. When the excess amount is less than 5 ppm by mass, the reaction with the peritectic element does not proceed sufficiently, and many unreacted peritectic elements remain in the refined lump and high-purity aluminum cannot be obtained. On the other hand, if the excess amount exceeds 80 ppm by mass, the amount of unreacted peritectic elements decreases, but a large amount of unreacted boron remains and high purity aluminum cannot be obtained. A preferable excess amount of boron is 15 to 50 ppm by mass.

またアルミニウム精製用原料は、電解コンデンサ電極用アルミニウム材の製造材料として用いられる。   The aluminum refining raw material is used as a material for producing an aluminum material for electrolytic capacitor electrodes.

上記アルミニウム精製用原料の製造方法は何ら限定されない。例えば精錬後で鋳造前のアルミニウムに所定濃度となるようにAl−B母合金を添加したり、BFガスを吹き込むことにより得られる。 The manufacturing method of the said raw material for aluminum refinement | purification is not limited at all. For example, it can be obtained by adding an Al-B master alloy so as to have a predetermined concentration in aluminum after refining and before casting, or by blowing BF 3 gas.

図1および図2に本発明のアルミニウムの精製方法を実施する精製装置(S)の一例を示すとともに、精製方法について詳述する。   FIG. 1 and FIG. 2 show an example of a purification apparatus (S) for carrying out the aluminum purification method of the present invention, and the purification method will be described in detail.

前記精製装置(S)は、アルミニウムを精製して高純度アルミニウムを連続的に得る装置であって、共晶不純物および包晶不純物とホウ素とを含有するアルミニウム精製用原料を溶解する溶解炉(1)と、溶解炉(1)に続いて直列に配置された複数のるつぼ(2A)(2B)(2C)(2D)(2E)とを備えている。本発明の精製方法においては溶解段階でも金属ホウ化物の生成反応が起こっているため、前記溶解炉(1)は原料を溶解して溶湯とするだけでなく、反応室としての役割も担っている。溶解炉(1)に隣接する第1るつぼ(2A)は包晶元素とホウ素との反応をさらに進行させる反応室であり、他の第2るつぼ(2B)、第3るつぼ(2C)、第4るつぼ(2D)および第5るつぼ(2E)は偏析凝固を行って高純度アルミニウムを形成する精製室である。隣り合うるつぼ(2A)(2B)、(2B)(2C)、(2C)(2D)、(2D)(2E)どうしは上端部において連結樋(3)により連通状に接続されている。また、第1るつぼ(2A)の上端部に溶解炉(1)から供給される溶湯を受ける受け樋(4)が設けられ、溶解炉(1)から最も離れた第5るつぼ(2E)の上端部に溶湯排出樋(5)が設けられている。   The purification apparatus (S) is an apparatus for continuously purifying aluminum to obtain high-purity aluminum, and a melting furnace (1) for melting a raw material for aluminum purification containing eutectic impurities, peritectic impurities and boron. ) And a plurality of crucibles (2A) (2B) (2C) (2D) (2E) arranged in series following the melting furnace (1). In the purification method of the present invention, the metal boride formation reaction occurs even in the melting stage, so the melting furnace (1) not only melts the raw material into a molten metal but also plays a role as a reaction chamber. . The first crucible (2A) adjacent to the melting furnace (1) is a reaction chamber for further progressing the reaction between peritectic elements and boron, and the other second crucible (2B), third crucible (2C), fourth The crucible (2D) and the fifth crucible (2E) are refining chambers that perform segregation and solidification to form high-purity aluminum. Adjacent crucibles (2A) (2B), (2B) (2C), (2C) (2D), (2D) (2E) are connected to each other at the upper end by a connecting rod (3). In addition, the upper end of the first crucible (2A) is provided with a receiving bowl (4) for receiving the molten metal supplied from the melting furnace (1), and the upper end of the fifth crucible (2E) farthest from the melting furnace (1). A molten metal discharge rod (5) is provided in the part.

第1るつぼ(2A)内には、図示しない駆動手段によって上下駆動するとともに回転するものとなされた回転軸(7)と、この回転軸(7)の下端に固定状に設けられた分散用回転体(8)とを備える分散装置(6)が配置されている。前記回転軸(7)には内部に長さ方向に伸びる処理ガス通路(15)が形成され、前記分散用回転体(8)の下端面には処理ガス通路(15)に連通する処理ガス吹出口(16)が設けられているとともに、複数の攪拌促進用の突起(9)が周方向に間隔をおいて形成されている。そして、回転軸(7)を回転させながら処理ガス通路(15)に処理ガスを供給すると、貯留された溶湯が攪拌されるとともに、処理ガスが処理ガス吹出口(16)から溶湯中に微細な気泡として放出され、溶湯全体に分散される。なお、前記処理ガスは生成された金属ホウ化物を溶湯から除去することに効果があり、必ずしも必要とするものではない。   In the first crucible (2A), a rotary shaft (7) that is driven to rotate up and down by a driving means (not shown) and a rotation for dispersion provided in a fixed manner at the lower end of the rotary shaft (7) A dispersing device (6) comprising a body (8) is arranged. A processing gas passage (15) extending in the lengthwise direction is formed inside the rotating shaft (7), and a processing gas blower communicating with the processing gas passage (15) is formed on the lower end surface of the dispersing rotor (8). An outlet (16) is provided, and a plurality of stirring promoting projections (9) are formed at intervals in the circumferential direction. Then, when the processing gas is supplied to the processing gas passage (15) while rotating the rotating shaft (7), the stored molten metal is stirred and the processing gas is finely introduced into the molten metal from the processing gas outlet (16). Released as bubbles and dispersed throughout the melt. The processing gas is effective in removing the generated metal boride from the molten metal, and is not necessarily required.

また、第1るつぼ(2A)の出湯口(10)と対応する位置において、出湯口(10)の第1るつぼ(2A)内側端部および第1るつぼ(2A)内面における出湯口(10)の下方に連なる部分を覆うような水平断面略U字形の垂直隔壁(11)が設けられている。この垂直隔壁(11)により、ホウ素と包晶元素の反応で生成した不溶性金属ホウ化物が精製用の第2るつぼ(2B)に流出するのを防止することができる。   In addition, at the position corresponding to the outlet (10) of the first crucible (2A), the inner end of the first crucible (2A) of the outlet (10) and the outlet (10) on the inner surface of the first crucible (2A). A vertical partition wall (11) having a substantially U-shaped horizontal cross section is provided so as to cover a portion continuing downward. This vertical partition wall (11) can prevent the insoluble metal boride produced by the reaction of boron and peritectic elements from flowing out into the second crucible (2B) for purification.

前記処理ガスとしては、Ar等の希ガスやN等のアルミニウムに対して不活性なガス、あるいはこれらの不活性ガスにClを混入したものが用いられる。 As the processing gas, a rare gas such as Ar, a gas inert to aluminum such as N 2 , or a gas obtained by mixing Cl 2 in these inert gases is used.

第2〜第5るつぼ(2B)〜(2E)内には、図示しない駆動手段によって上下駆動するとともに回転するものとなされた回転軸(13)と、回転軸(13)の下端に設けられた冷却体(14)とを備える回転冷却装置(12)が配置されている。前記回転軸(13)には内部に長さ方向に伸びる冷却流体通路(17)が形成されている。また、前記冷却体(14)は下方に向かって断面積が減少する有底の逆円錐台形状であり、前記冷却流体通路(17)に連通する内部空間(18)が形成され、冷却流体を冷却流体通路(17)を介して内部空間(18)に供給することによって溶湯に接触する外周面を凝固点以下の温度に保持し得るものとなされている。従って、前記冷却体(14)は、アルミニウム溶湯と反応により溶湯を汚染しないことはもとより、熱伝導性のよい材料、たとえば黒鉛等により形成されていることが好ましい。また、前記冷却体(14)は、上端部を除いた部分がアルミニウム溶湯中に浸漬する高さに設定される。   In the second to fifth crucibles (2B) to (2E), a rotary shaft (13) that is vertically driven and rotated by a driving means (not shown) and provided at the lower end of the rotary shaft (13) A rotary cooling device (12) including a cooling body (14) is disposed. The rotating shaft (13) has a cooling fluid passage (17) extending in the lengthwise direction therein. Further, the cooling body (14) has a bottomed inverted truncated cone shape whose cross-sectional area decreases downward, and an internal space (18) communicating with the cooling fluid passage (17) is formed, and the cooling fluid is supplied to the cooling body (14). By supplying to the internal space (18) via the cooling fluid passage (17), the outer peripheral surface in contact with the molten metal can be maintained at a temperature below the freezing point. Therefore, the cooling body (14) is preferably formed of a material having good thermal conductivity, such as graphite, as well as not contaminating the molten metal by reaction with the molten aluminum. The cooling body (14) is set to a height at which the portion excluding the upper end is immersed in the molten aluminum.

上述したアルミニウムの精製装置(S)において、アルミニウムの精製は下記の工程(i)〜(vi)を経て行われる。
(i) 第1るつぼ(2A)における分散装置(6)、および第2〜第5るつぼ(2B)〜(2E)における回転冷却装置(12)を上昇させて各るつぼ(2A)〜(2E)の上方に待機させる。
(ii) 本発明の精製方法における溶解工程を実施する。
In the aluminum refining apparatus (S) described above, the aluminum is purified through the following steps (i) to (vi).
(I) The dispersion device (6) in the first crucible (2A) and the rotary cooling device (12) in the second to fifth crucibles (2B) to (2E) are raised to raise the respective crucibles (2A) to (2E). Wait above.
(Ii) The dissolution step in the purification method of the present invention is performed.

アルミニウム精製用原料を溶解炉(1)で溶解する。この溶解工程において、溶湯中の包晶元素とホウ素との反応が始まり、これらの化合物である金属ホウ化物(TiB、ZrB、VB等)の生成が始まる。
(iii) 本発明の精製方法における反応工程を実施する。
The raw material for aluminum purification is melted in the melting furnace (1). In this melting step, the reaction between peritectic elements in the molten metal and boron begins, and the formation of metal borides (TiB 2 , ZrB 2 , VB 2, etc.) that are these compounds begins.
(Iii) The reaction step in the purification method of the present invention is carried out.

溶解炉(1)から溶湯を第1るつぼ(2A)に供給する。次いで、分散装置(6)の回転軸(7)を下降させて分散用回転体(8)を溶湯中に浸漬し、回転軸(7)を回転させるとともに処理ガス通路(15)に処理ガスを供給する。これにより、溶湯が攪拌されるとともに、処理ガスが分散用回転体(8)の処理ガス吹出口(16)からの微細な気泡として放出される。この工程において、引き続き包晶元素とホウ素とが反応し、金属ホウ化物を生成する反応がさらに進行する。生成される金属ホウ化物は不溶性であり、溶湯の攪拌と処理ガス気泡によって溶湯表面に浮上して浮滓となる。浮滓は公知の手段により適宜除去すれば良く、これにより溶湯から包晶元素が除去される。また、溶湯に含まれる他の不純物のうち不溶性のものは処理ガス気泡によって浮上し、金属ホウ化物とともに浮滓として除去される。   The molten metal is supplied from the melting furnace (1) to the first crucible (2A). Next, the rotating shaft (7) of the dispersing device (6) is lowered to immerse the dispersing rotator (8) in the molten metal, rotate the rotating shaft (7), and process gas into the processing gas passage (15). Supply. As a result, the molten metal is stirred, and the processing gas is released as fine bubbles from the processing gas outlet (16) of the dispersing rotor (8). In this step, the peritectic element and boron continue to react, and the reaction for generating a metal boride further proceeds. The produced metal boride is insoluble and floats on the surface of the molten metal by stirring the molten metal and processing gas bubbles. The buoyancy may be appropriately removed by a known means, whereby the peritectic element is removed from the molten metal. Further, among the other impurities contained in the molten metal, insoluble ones are floated by the processing gas bubbles, and are removed together with the metal boride as floats.

本発明においては所要量のホウ素を含有するアルミニウム精製用原料を用いるため、この工程でホウ素を添加する必要はないが、添加を禁止するものではない。本工程でホウ素を添加する場合は、アルミニウム精製用原料中のホウ素濃度との合計で、過剰量が80質量ppmを越えない範囲とする。過剰量が80質量ppmを越えると精製塊中の未反応のB濃度が高くなるためである。ホウ素は、例えばAl−B母合金として添加することができる。なお、Al−B母合金中に含有されるKFやAlFに起因して溶湯中のアルミニウム酸化物量が増加したとしても、アルミニウム酸化物は処理ガス気泡とともに浮上し、金属ホウ化物とともに浮滓として除去される。 In the present invention, since a raw material for refining aluminum containing a required amount of boron is used, it is not necessary to add boron in this step, but the addition is not prohibited. In the case where boron is added in this step, the total amount is set so that the excess amount does not exceed 80 ppm by mass with the boron concentration in the raw material for aluminum purification. This is because if the excess amount exceeds 80 mass ppm, the unreacted B concentration in the purified mass increases. Boron can be added, for example, as an Al—B master alloy. Even if the amount of aluminum oxide in the molten metal increases due to KF and AlF 3 contained in the Al—B master alloy, the aluminum oxide floats with the processing gas bubbles and floats with the metal boride. Removed.

また、浮滓は前記隔壁(11)に阻まれて出湯口(10)への流出が防止される。
(iv) 第1るつぼ(2A)において浮滓を除去された溶湯は出湯口(10)を介して第2るつぼ(2B)内に供給され、さらに連結樋(3)を介して順次第3るつぼ(2C)、第4るつぼ(2D)および第5るつぼ(2E)内に供給される。
(v) 本発明の精製方法の偏析凝固工程を実施する。
In addition, the float is blocked by the partition wall (11) and is prevented from flowing out to the hot water outlet (10).
(Iv) The molten metal from which the floating float has been removed in the first crucible (2A) is supplied into the second crucible (2B) via the outlet (10), and then the third crucible sequentially through the connecting crucible (3). (2C), 4th crucible (2D) and 5th crucible (2E).
(V) The segregation solidification step of the purification method of the present invention is performed.

第2〜第5るつぼ(2B)〜(2E)内の溶湯量が所定量に達すれば、回転冷却装置(12)の回転軸(13)を下降させて冷却体(14)を溶湯中に浸漬する。次いで、回転軸(13)の冷却流体通路(17)を介して回転冷却体(14)の内部空間(18)に冷却流体を供給してその外周面の温度をアルミニウムの凝固点以下に保持しつつ回転軸(13)および冷却体(14)を回転させる。またこのとき、図示しないヒータにより各るつぼ(2B)〜(2E)内の溶湯をその凝固点を越える温度に加熱保持しておく。すると、偏析凝固の原理により、冷却体(14)の外周面に溶湯よりも純度の高いアルミニウムが晶出し、高純度アルミニウム塊が形成される。また、前記冷却体(14)の回転によって、前工程で除去されなかった金属ホウ化物を遠心力によって凝固界面から遠ざけて冷却体(14)表面に晶出するアルミニウム塊に混入することを防止できる。一方、凝固せず共晶不純物濃度の高くなった溶湯は溶湯排出樋(5)から排出される。
(vi) 各冷却体(14)に所定量の高純度アルミニウム塊が形成されれば、精製作業を終了する。
When the amount of molten metal in the second to fifth crucibles (2B) to (2E) reaches a predetermined amount, the rotating shaft (13) of the rotary cooling device (12) is lowered and the cooling body (14) is immersed in the molten metal. To do. Next, the cooling fluid is supplied to the internal space (18) of the rotating cooling body (14) via the cooling fluid passage (17) of the rotating shaft (13), and the temperature of the outer peripheral surface is kept below the freezing point of aluminum. The rotating shaft (13) and the cooling body (14) are rotated. At this time, the molten metal in each of the crucibles (2B) to (2E) is heated and held at a temperature exceeding the freezing point by a heater (not shown). Then, due to the principle of segregation solidification, aluminum having a higher purity than the molten metal crystallizes on the outer peripheral surface of the cooling body (14), and a high-purity aluminum lump is formed. Further, by rotating the cooling body (14), it is possible to prevent the metal boride that has not been removed in the previous process from being separated from the solidification interface by centrifugal force and mixed into the aluminum lump crystallized on the surface of the cooling body (14). . On the other hand, the molten metal that is not solidified and has a high eutectic impurity concentration is discharged from the molten metal discharge tank (5).
(Vi) When a predetermined amount of high-purity aluminum lump is formed on each cooling body (14), the refining operation is terminated.

なお、第1るつぼ(2A)において浮滓が除去されているので、溶湯通過時に連結樋(3)および溶湯排出樋(5)に詰まるのが防止される。   In addition, since the float is removed in the first crucible (2A), it is prevented that the connection rod (3) and the molten metal discharge rod (5) are clogged when the molten metal passes.

本発明のアルミニウムの精製方法においては、アルミニウム精製用原料に包晶元素のホウ化物として計算される化学当量よりも過剰のホウ素が含有されているため、溶解の段階から金属ホウ化物生成反応が始まっている。このため、溶解炉での滞留時間も金属ホウ化物生成に寄与してより長い反応時間を確保し、より多くの包晶元素を金属ホウ化物に変換させて未反応の包晶元素を可及的に減少させることができる。また、十分な反応時間の確保によってホウ素の過剰量も抑えることができ、ひいては未反応で残留するホウ素濃度も低減できる。さらに、溶解に要する熱エネルギーは金属ホウ化物生成反応に有効利用され、エネルギーコストを低減させることができる。   In the method for purifying aluminum according to the present invention, since the raw material for aluminum purification contains an excess of boron than the chemical equivalent calculated as the peritectic element boride, the metal boride formation reaction starts from the dissolution stage. ing. For this reason, the residence time in the melting furnace also contributes to the formation of metal borides, ensuring a longer reaction time, and converting more peritectic elements to metal borides to allow unreacted peritectic elements as much as possible. Can be reduced. Further, by securing a sufficient reaction time, it is possible to suppress an excessive amount of boron, and it is also possible to reduce the concentration of boron that remains unreacted. Furthermore, the thermal energy required for dissolution is effectively used for the metal boride formation reaction, and the energy cost can be reduced.

なお、本発明のアルミニウムの精製方法において、各工程の詳細は上記例に限定されない。   In the aluminum purification method of the present invention, the details of each step are not limited to the above examples.

例えば、溶解工程および反応工程を実施すれば包晶元素の除去が可能であり、共晶元素を除去する偏析凝固工程を実施しない精製方法も本発明に含まれる。偏析凝固工程は包晶元素の除去には寄与しないためである。溶解工程および反応工程によって精製されたアルミニウムは、アルミニウム精製用原料中の共晶元素濃度が許容される用途において使用される。   For example, a purifying method in which a peritectic element can be removed by carrying out a dissolution step and a reaction step and a segregation solidification step for removing a eutectic element is not carried out is also included in the present invention. This is because the segregation solidification process does not contribute to the removal of peritectic elements. Aluminum purified by the dissolution step and the reaction step is used in applications where the eutectic element concentration in the aluminum purification raw material is acceptable.

反応工程において、溶湯の攪拌および処理ガスの導入は反応を促進して処理時間を短縮するとともに、生成した金属ホウ化物を浮滓として分離して浮滓の除去を容易にする。攪拌方法および処理ガスの導入方法は限定されない。例えば、攪拌と処理ガスの導入とを別の装置によって行うこともできる。また、第1るつぼ(2A)の底壁にセラミックス等の耐熱性多孔質体を嵌め止め、多孔質体を介して処理ガスを導入することもできる。さらに、生成した金属ホウ化物の分離除去方法も処理ガスによる浮上分離法に限定されず、沈降分離、フィルター分離等の手段を用いても良い。   In the reaction process, the stirring of the molten metal and the introduction of the processing gas accelerate the reaction to shorten the processing time, and the generated metal boride is separated as a float to facilitate the removal of the float. The stirring method and the method for introducing the processing gas are not limited. For example, the stirring and the introduction of the processing gas can be performed by separate apparatuses. Alternatively, a heat-resistant porous material such as ceramics can be fixed to the bottom wall of the first crucible (2A), and the processing gas can be introduced through the porous material. Furthermore, the method for separating and removing the produced metal boride is not limited to the flotation separation method using the processing gas, and means such as sedimentation separation and filter separation may be used.

偏析凝固工程において、高純度アルミニウムの取り出し方法は母液から晶出したアルミニウムを回収できれば良く、上記実施形態の冷却体表面への凝固に限定されない。また、冷却体の形状、冷却方法も問わない。   In the segregation solidification step, the method for taking out high-purity aluminum is not limited to solidification on the surface of the cooling body in the above embodiment, as long as the aluminum crystallized from the mother liquor can be recovered. Moreover, the shape of a cooling body and the cooling method are not ask | required.

また、上記実施形態では溶解炉および複数のるつぼ(反応室、精製室)を用いて溶解工程、反応工程、偏析凝固工程を溶湯を移動させながら連続処理を行っている。このような連続処理は生産性が良好である。   Moreover, in the said embodiment, a continuous process is performed, moving a molten metal through a melting process, a reaction process, and a segregation solidification process using a melting furnace and a plurality of crucibles (reaction room, refining room). Such continuous processing has good productivity.

本発明の高純度アルミニウム材は、上述した方法で精製されたものであるから高純度が達成される。本発明の高純度アルミニウム材は、不純物として含有される包晶元素濃度および共晶元素濃度にもよるが、化学組成例としてアルミニウム純度が99.5質量%以上、Ti濃度が20質量ppm以下、Zr濃度が15質量ppm以下、V濃度が20質量ppm以下となされたものを挙示できる。また、偏析凝固による共晶元素の除去まで行った場合は、B濃度が20質量ppm以下である。このような高純度アルミニウム材は例えば各種電子部材の製造材料や電解コンデンサ電極用アルミニウム材の製造材料として好適に用いられる。   Since the high-purity aluminum material of the present invention is refined by the above-described method, high purity is achieved. The high-purity aluminum material of the present invention depends on the peritectic element concentration and the eutectic element concentration contained as impurities, but as an example of chemical composition, the aluminum purity is 99.5 mass% or more, the Ti concentration is 20 mass ppm or less, A case where the Zr concentration is 15 mass ppm or less and the V concentration is 20 mass ppm or less can be listed. When the eutectic element is removed by segregation solidification, the B concentration is 20 mass ppm or less. Such a high-purity aluminum material is suitably used, for example, as a manufacturing material for various electronic members or an aluminum material for electrolytic capacitor electrodes.

電解コンデンサ電極用アルミニウム材は、上述した溶解工程、反応工程、偏析凝固工程を行って得た高純度アルミニウムに対し、要すれば成分調整を行い、さらに所要形状に成形する成形工程を行うことによって製造される。現状では電解コンデンサの電極材料として15〜120μm程度のアルミニウム箔が用いられているが、近年では静電容量の増大を図るために前記範囲のうちでも厚箔を用いる傾向がある。そして、今後はさらに厚箔化の方向に進むことが予想される。かかる現状と今後の傾向に鑑み、本発明においてはアルミニウム材の厚さとして10〜200μmを推奨する。従って、前記成形工程としては、最終厚さを10〜200μmとする圧延を含む工程を例示できる。また、前記最終圧延前の工程、例えば、成分調整を含む鋳塊製作、熱間圧延、冷間圧延、熱処理、あるいは前記最終圧延後の熱処理等は周知の方法により任意に行う。なお、前記アルミニウム材は、JISにおいて「箔」と称される200μm以下のものと、200μmを超える厚いものの両者を含むものである。   The aluminum material for electrolytic capacitor electrodes can be prepared by adjusting the components if necessary for the high-purity aluminum obtained by performing the above-described melting process, reaction process, and segregation solidification process. Manufactured. At present, aluminum foil having a thickness of about 15 to 120 μm is used as an electrode material for an electrolytic capacitor, but in recent years, a thick foil tends to be used in the above range in order to increase the capacitance. In the future, it is expected that the film will further increase in thickness. In view of the present situation and future trends, the thickness of the aluminum material is recommended to be 10 to 200 μm in the present invention. Accordingly, examples of the forming step include a step including rolling with a final thickness of 10 to 200 μm. In addition, the steps before the final rolling, for example, ingot production including component adjustment, hot rolling, cold rolling, heat treatment, heat treatment after the final rolling, and the like are arbitrarily performed by a known method. In addition, the said aluminum material contains both the thing of 200 micrometers or less called a "foil" in JIS, and the thick thing over 200 micrometers.

また、本発明における電解コンデンサ電極用アルミニウム材は、上述した厚さに圧延されて最終的に電極材料に供される厚さに加工されたアルミニウム材のみならず、圧延に供する鋳塊、圧延途中の厚板等も含むものであり、その形状や該形状への成形方法は上述したものに限定されない。また、成形工程において熱処理を施すことも任意である。   Moreover, the aluminum material for electrolytic capacitor electrodes in the present invention is not only an aluminum material that has been rolled to the above-described thickness and finally processed to a thickness that is used for the electrode material, but also an ingot that is used for rolling, The shape and the molding method to the shape are not limited to those described above. Further, it is optional to perform heat treatment in the molding process.

そして、上述した方法で製造された電解コンデンサ電極用アルミニウム材は高純度であってエッチング特性に優れているため、エッチングおよび化成処理を施して高い静電容量を達成できる。   And since the aluminum material for electrolytic capacitor electrodes manufactured by the method described above has high purity and excellent etching characteristics, it can achieve high capacitance by performing etching and chemical conversion treatment.

図1および図2に示したアルミニウム精製装置(S)を用い、上述した工程に基づいてアルミニウム精製用原料の精製を行った。   The aluminum refining device (S) shown in FIGS. 1 and 2 was used to purify the aluminum refining raw material based on the above-described steps.

表1および表2に、実施例1〜7および比較例8〜10で用いたアルミニウム精製用原料塊におけるTi濃度、Zr濃度、V濃度、B濃度を示す。全ての実施例および比較例において、アルミニウム精製用原料中のTi、Zr、V濃度は共通であり、Ti:51質量ppm、Zr:30質量ppm、V:48質量ppmである。またB濃度は、実施例1〜7および比較例8、9において、TiB、ZrV、VBとして計算される合計化学当量(50.4質量ppm)よりも3〜90質量ppmの範囲で過剰量を含有するものとし、比較例10は原料塊中のB濃度を10質量ppmとし、反応工程中に過剰のBを添加するものとした。なお、表1において、実施例1〜7および比較例8、9はアルミニウム精製用原料塊中の過剰のB濃度を示し、比較例10は原料塊中の実際のB濃度および溶湯における過剰添加量を併記した。 Tables 1 and 2 show the Ti concentration, Zr concentration, V concentration, and B concentration in the aluminum refining raw material lump used in Examples 1 to 7 and Comparative Examples 8 to 10, respectively. In all Examples and Comparative Examples, the Ti, Zr, and V concentrations in the aluminum refining raw material are common, and are Ti: 51 mass ppm, Zr: 30 mass ppm, and V: 48 mass ppm. Further, the B concentration is in the range of 3 to 90 mass ppm from the total chemical equivalent (50.4 mass ppm) calculated as TiB 2 , ZrV 2 , and VB 2 in Examples 1 to 7 and Comparative Examples 8 and 9. It was assumed that an excess amount was contained, and in Comparative Example 10, the B concentration in the raw material lump was set to 10 mass ppm, and excess B was added during the reaction process. In Table 1, Examples 1 to 7 and Comparative Examples 8 and 9 show the excessive B concentration in the raw material lump for aluminum purification, and Comparative Example 10 shows the actual B concentration in the raw material lump and the excess addition amount in the molten metal. Was also written.

これらのアルミニウム精製用原料塊を下記の工程によって精製した。   These aluminum refining raw material blocks were purified by the following steps.

なお、前記アルミニウム精製装置(S)において、第1るつぼ(2A)に供給する処理ガスとしてArガスを用いた。また、第2〜第5るつぼ(2B)〜(2E)の回転冷却装置(12)の冷却体(14)として、上端の外径が150mm、下端の外径が100mmの逆円錐台形のものを用いた。
〔実施例1〜7、比較例8、9〕
溶解炉(1)においてアルミニウム精製用原料塊を約750℃で溶解し、溶湯を第1るつぼ(2A)に供給した。次いで、溶湯中に分散装置(6)の分散用回転体(8)を浸漬し、回転軸(7)の回転により溶湯を攪拌するとともに、処理ガスを3l/分の割合で供給した。溶湯の攪拌および処理ガス供給によって浮上した浮滓(TiB、ZrB、VB)は適宜除去した。そして、浮滓を除去した溶湯を順次第2〜第5るつぼ(2B)〜(2E)に供給した。
In the aluminum refining apparatus (S), Ar gas was used as a processing gas supplied to the first crucible (2A). In addition, as the cooling body (14) of the rotary cooling device (12) of the second to fifth crucibles (2B) to (2E), an inverted frustoconical shape having an outer diameter of the upper end of 150 mm and an outer diameter of the lower end of 100 mm. Using.
[Examples 1 to 7, Comparative Examples 8 and 9]
In the melting furnace (1), the aluminum refining raw material lump was melted at about 750 ° C., and the molten metal was supplied to the first crucible (2A). Next, the dispersing rotator (8) of the dispersing device (6) was immersed in the molten metal, the molten metal was stirred by the rotation of the rotating shaft (7), and the processing gas was supplied at a rate of 3 l / min. Floats (TiB 2 , ZrB 2 , VB 2 ) that floated by stirring the molten metal and supplying the processing gas were appropriately removed. And the molten metal from which the float was removed was sequentially supplied to the second to fifth crucibles (2B) to (2E).

第2〜第5るつぼ(2B)〜(2E)内に供給した溶湯を670℃に加熱保持し、溶湯中に回転冷却装置(12)の冷却体(14)を浸漬し、内部空間(18)に冷却流体を供給して外周面を溶湯の凝固温度以下に保持しつつを回転数:400rpmで回転させた。このような操作を30分行ったところ、各冷却体(14)の外周面に5〜6kgの精製アルミニウム塊が形成されていた。   The molten metal supplied in the second to fifth crucibles (2B) to (2E) is heated and maintained at 670 ° C., and the cooling body (14) of the rotary cooling device (12) is immersed in the molten metal, and the internal space (18) The cooling fluid was supplied to the outer peripheral surface, and the outer peripheral surface was kept at a temperature equal to or lower than the solidification temperature of the molten metal and rotated at a rotational speed of 400 rpm. When such an operation was performed for 30 minutes, 5 to 6 kg of purified aluminum lump was formed on the outer peripheral surface of each cooling body (14).

上述したアルミニウム精製用原料塊の溶解から精製アルミニウム塊の形成に至る工程は連続的に行うものとし、溶解炉(1)にてアルミニウム精製用原料塊の溶解に要した時間は約3時間であり、アルミニウムの溶解炉(1)中の平均滞留時間は約15分であった。   The process from the melting of the aluminum refining raw material lump described above to the formation of the purified aluminum lump is performed continuously, and the time required for melting the aluminum refining raw material lump in the melting furnace (1) is about 3 hours. The average residence time in the aluminum melting furnace (1) was about 15 minutes.

その後、精製アルミニウム塊を採取し、Ti、Zr、V、B濃度の元素分析を行った。また、アルミニウム純度の分析も行った。その結果を併せて表1に示す。
〔比較例10〕
第1るつぼ(2A)において、分散装置(6)を稼働させる前に、溶湯中のB濃度がTiB、ZrV、VBとして計算される合計化学当量よりも50質量ppm過剰となるようにAl−B合金を添加した。その他の工程は上述の実施例等と同様の処理を行った。その結果、中空冷却体(14)の外周面には5〜6kgの精製アルミニウム塊が形成されていた。その後、精製アルミニウム塊を採取し、Ti、Zr、V、B濃度の元素分析およびアルミニウム純度の分析を行った。その結果を併せて表1に示す。
Thereafter, purified aluminum lumps were collected and subjected to elemental analysis of Ti, Zr, V, and B concentrations. Aluminum purity was also analyzed. The results are also shown in Table 1.
[Comparative Example 10]
In the first crucible (2A), before operating the dispersion device (6), the B concentration in the molten metal is 50 mass ppm excess from the total chemical equivalent calculated as TiB 2 , ZrV 2 , VB 2. Al-B alloy was added. In other steps, the same processing as in the above-described embodiment was performed. As a result, 5-6 kg of purified aluminum lump was formed on the outer peripheral surface of the hollow cooling body (14). Thereafter, a purified aluminum lump was collected, and elemental analysis of Ti, Zr, V, and B concentrations and analysis of aluminum purity were performed. The results are also shown in Table 1.

Figure 0005069728
Figure 0005069728

表1の結果より、過剰のホウ素を含有する原料を用いて精製を行うことにより、高純度のアルミニウムを得られることを確認した。   From the results of Table 1, it was confirmed that high-purity aluminum can be obtained by performing purification using a raw material containing excess boron.

また、溶湯中のB濃度がほぼ等しい実施例5と比較例10とを比較すると、原料の段階で過剰量のBを含有させることでより多くのTi、Zr、Vを除去できることがわかる。これは、原料の溶解の段階からTi、Zr、VとBの反応が進行するために、未反応で残留する元素量が少ないためであると推測される。   Further, when Example 5 and Comparative Example 10 having substantially the same B concentration in the molten metal are compared, it can be seen that more Ti, Zr, and V can be removed by containing an excessive amount of B at the raw material stage. This is presumably because the reaction of Ti, Zr, V, and B proceeds from the stage of melting the raw material, so that the amount of remaining unreacted elements is small.

さらに、実施例1〜7と比較例8、9とを比較すると、原料中の過剰B量を5〜80質量%とすることによって、Ti、Zr、Vを有効に除去しかつB濃度も抑制できることがわかる。即ち、原料中の過剰B量が少なすぎる比較例8ではTi、Zr、Vを有効に除去できず、過剰B量が多すぎる比較例9ではTi、Zr、Vを除去できてもB濃度が高くなっている。   Furthermore, when Examples 1-7 are compared with Comparative Examples 8 and 9, Ti, Zr, and V are effectively removed and the B concentration is also suppressed by setting the excess B amount in the raw material to 5 to 80% by mass. I understand that I can do it. That is, in Comparative Example 8 in which the amount of excess B in the raw material is too small, Ti, Zr, and V cannot be effectively removed, and in Comparative Example 9 in which the amount of excess B is too large, even if Ti, Zr, and V can be removed, the B concentration is high. It is high.

さらに、各精製アルミニウム塊を溶解した後、Fe:20質量ppm、Si:20ppm、Cu:50質量ppm、Pb:1質量ppmに調製し、アルミニウム鋳塊を得た。この鋳塊に対して、面削を行い、610℃×10hの均質化処理を施した。次いで、熱間圧延、冷間圧延、箔圧延、中間焼鈍(270℃×5h)、最終箔圧延(圧下率17%)、最終焼鈍(550℃×5h)を実施し、厚さ110μmのアルミニウム材(箔)を作製した。   Furthermore, after each refined aluminum lump was dissolved, Fe: 20 mass ppm, Si: 20 ppm, Cu: 50 mass ppm, and Pb: 1 mass ppm were prepared to obtain an aluminum ingot. The ingot was chamfered and homogenized at 610 ° C. × 10 h. Subsequently, hot rolling, cold rolling, foil rolling, intermediate annealing (270 ° C. × 5 h), final foil rolling (rolling rate 17%), final annealing (550 ° C. × 5 h) were performed, and an aluminum material having a thickness of 110 μm (Foil) was produced.

上記アルミニウム材について、塩酸:1mol/lと硫酸:3.5mol/lを含む液温75℃の混合水溶液に浸漬した後、電流密度0.2A/cmで電解処理を施した。電解処理後のアルミニウム材をさらに前記組成の塩酸−硫酸混合水溶液に90℃にて360秒間浸漬し、ピット径を太くし、エッチングされたアルミニウム材を得た。次いで、エッチング処理されたアルミニウム材を、化成電圧270VにてEIAJ規格に従い化成処理を施して静電容量を測定したところ、各実施例の精製アルミニウム鋳塊から製作したアルミニウム材は高い静電容量を達成しうることを確認した。 The aluminum material was immersed in a mixed aqueous solution containing hydrochloric acid: 1 mol / l and sulfuric acid: 3.5 mol / l at a liquid temperature of 75 ° C., and then subjected to electrolytic treatment at a current density of 0.2 A / cm 2 . The aluminum material after the electrolytic treatment was further immersed in a hydrochloric acid-sulfuric acid mixed aqueous solution having the above composition at 90 ° C. for 360 seconds to increase the pit diameter, thereby obtaining an etched aluminum material. Next, the etched aluminum material was subjected to chemical conversion treatment according to the EIAJ standard at a chemical conversion voltage of 270 V, and the capacitance was measured. The aluminum material manufactured from the purified aluminum ingot of each example had a high capacitance. It was confirmed that it could be achieved.

本発明のアルミニウム精製用原料を用いることにより、高純度のアルミニウムを精製することができる。精製された高純度アルミニウムは、各種電子部材の製造材料や電解コンデンサ電極用アルミニウム材の製造材料として好適に用いられる。   By using the raw material for aluminum purification of the present invention, high-purity aluminum can be purified. The purified high-purity aluminum is suitably used as a manufacturing material for various electronic members and a manufacturing material for an aluminum material for electrolytic capacitor electrodes.

1…溶解炉
2A…第1るつぼ(反応室)
2B〜2E…第2〜第5るつぼ(精製室)
6…分散装置
7…回転軸
8…分散用回転体
12…回転冷却装置
13…回転軸
14…冷却体
1 ... melting furnace 2A ... first crucible (reaction chamber)
2B-2E ... 2nd-5th crucible (refining room)
6 ... Dispersing device 7 ... Rotating shaft 8 ... Dispersing rotating body
12 ... Rotary cooling device
13 ... Rotation axis
14 ... cooling body

Claims (10)

アルミニウムと包晶を生成する包晶元素およびホウ素を含み、ホウ素が包晶元素との金属ホウ化物として計算される合計化学当量よりも5〜80質量ppm過剰に含有されてなるアルミニウム精製用原料を溶解して溶湯とする溶解工程と、
溶解工程において得た溶湯を反応室に移動させ、
前記反応室中で、溶湯において包晶元素とホウ素とを反応させて金属ホウ化物を生成させ、生成した金属ホウ化物および前記溶解工程で生成した金属ホウ化物を除去することにより包晶元素を除去する反応工程と、
反応工程において得た溶湯を精製室に移動させ、
前記精製室中で、反応工程において得た溶湯から偏析凝固により未反応のホウ素を含む共晶元素が除去された高純度アルミニウムを晶出させる偏析凝固工程と、
を含むことを特徴とするアルミニウムの精製方法。
A raw material for refining aluminum comprising peritectic elements that form peritectic crystals and boron, and boron is contained in excess of 5 to 80 ppm by mass over the total chemical equivalent calculated as a metal boride with peritectic elements. A melting step to melt into a molten metal;
Move the molten metal obtained in the melting process to the reaction chamber,
In the reaction chamber, a peritectic element and boron are reacted in a molten metal to form a metal boride, and the peritectic element is removed by removing the generated metal boride and the metal boride generated in the melting step. Reaction steps to
Move the molten metal obtained in the reaction process to the purification chamber,
In the purification chamber, a segregation solidification step for crystallizing high-purity aluminum from which eutectic elements including unreacted boron have been removed by segregation solidification from the molten metal obtained in the reaction step;
A method for purifying aluminum, comprising:
前記アルミニウム精製用原料中の包晶元素がTi,ZrおよびVからなる群から選ばれた少なくとも1種以上である請求項1に記載のアルミニウムの精製方法。   The method for purifying aluminum according to claim 1, wherein the peritectic element in the raw material for aluminum purification is at least one selected from the group consisting of Ti, Zr and V. 前記アルミニウム精製用原料中のホウ素の過剰量が15〜50質量ppmである請求項1または2に記載のアルミニウムの精製方法。   The method for purifying aluminum according to claim 1 or 2, wherein an excess amount of boron in the raw material for aluminum purification is 15 to 50 ppm by mass. 前記アルミニウム精製用原料は電解コンデンサ電極用アルミニウム材の製造材料である請求項1〜3のいずれか1項に記載のアルミニウムの精製方法。   The method for purifying aluminum according to any one of claims 1 to 3, wherein the aluminum refining material is a material for producing an aluminum material for electrolytic capacitor electrodes. 反応工程において、溶湯中に処理ガスを吹き込んで生成された金属ホウ化物を溶湯表面に浮上させる請求項1〜4のいずれかに記載のアルミニウムの精製方法。   The method for purifying aluminum according to any one of claims 1 to 4, wherein in the reaction step, a metal boride generated by blowing a processing gas into the molten metal is floated on the surface of the molten metal. 偏析凝固工程において、溶湯中で溶湯の凝固温度以下に保持した冷却体を回転させ、この冷却体の外周面に高純度アルミニウムを晶出させる請求項1〜5のいずれかに記載のアルミニウムの精製方法。   The refinement | purification of the aluminum in any one of Claims 1-5 which rotates the cooling body hold | maintained in the molten metal below the solidification temperature of a molten metal in a segregation solidification process, and crystallizes high purity aluminum on the outer peripheral surface of this cooling body. Method. 請求項1〜6のいずれか1項に記載されたアルミニウムの精製方法により製造されたことを特徴とする高純度アルミニウム材。   A high-purity aluminum material produced by the aluminum refining method according to any one of claims 1 to 6. アルミニウムと包晶を生成する包晶元素およびホウ素を含み、ホウ素が包晶元素との金属ホウ化物として計算される合計化学当量よりも5〜80質量ppm過剰に含有されてなるアルミニウム精製用原料を溶解して溶湯とする溶解工程と、
溶解工程において得た溶湯を反応室に移動させ、
前記反応室中で、溶湯において包晶元素とホウ素とを反応させて金属ホウ化物を生成させ、生成した金属ホウ化物および前記溶解工程で生成した金属ホウ化物を除去することにより包晶元素を除去する反応工程と、
反応工程において得た溶湯を精製室に移動させ、
前記精製室中で、反応工程において得た溶湯から偏析凝固により未反応のホウ素を含む共晶元素が除去された高純度アルミニウムを晶出させる偏析凝固工程と、
前記高純度アルミニウムを成形する成形工程と、
を含むことを特徴とする電解コンデンサ電極用アルミニウム材の製造方法。
A raw material for refining aluminum comprising peritectic elements that form peritectic crystals and boron, and boron is contained in excess of 5 to 80 ppm by mass over the total chemical equivalent calculated as a metal boride with peritectic elements. A melting step to melt into a molten metal;
Move the molten metal obtained in the melting process to the reaction chamber,
In the reaction chamber, a peritectic element and boron are reacted in a molten metal to form a metal boride, and the peritectic element is removed by removing the generated metal boride and the metal boride generated in the melting step. Reaction steps to
Move the molten metal obtained in the reaction process to the purification chamber,
In the purification chamber, a segregation solidification step for crystallizing high-purity aluminum from which eutectic elements including unreacted boron have been removed by segregation solidification from the molten metal obtained in the reaction step;
A molding step of molding the high-purity aluminum;
The manufacturing method of the aluminum material for electrolytic capacitor electrodes characterized by including this.
成形工程は、最終厚さを10〜200μmに圧延する工程を含む請求項8に記載の電解コンデンサ電極用アルミニウム材の製造方法。   The method for producing an aluminum material for electrolytic capacitor electrodes according to claim 8, wherein the forming step includes a step of rolling the final thickness to 10 to 200 μm. 請求項8または9に記載された方法により製造されたことを特徴とする電解コンデンサ電極用アルミニウム材。   An aluminum material for electrolytic capacitor electrodes manufactured by the method according to claim 8 or 9.
JP2009198574A 2003-03-18 2009-08-28 Aluminum purification method, high-purity aluminum material, method for producing aluminum material for electrolytic capacitor electrode, and aluminum material for electrolytic capacitor electrode Expired - Fee Related JP5069728B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009198574A JP5069728B2 (en) 2003-03-18 2009-08-28 Aluminum purification method, high-purity aluminum material, method for producing aluminum material for electrolytic capacitor electrode, and aluminum material for electrolytic capacitor electrode

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2003073398 2003-03-18
JP2003073398 2003-03-18
JP2009198574A JP5069728B2 (en) 2003-03-18 2009-08-28 Aluminum purification method, high-purity aluminum material, method for producing aluminum material for electrolytic capacitor electrode, and aluminum material for electrolytic capacitor electrode

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2004070896A Division JP4397714B2 (en) 2003-03-18 2004-03-12 Raw material for aluminum purification

Publications (2)

Publication Number Publication Date
JP2009280918A JP2009280918A (en) 2009-12-03
JP5069728B2 true JP5069728B2 (en) 2012-11-07

Family

ID=36707339

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009198574A Expired - Fee Related JP5069728B2 (en) 2003-03-18 2009-08-28 Aluminum purification method, high-purity aluminum material, method for producing aluminum material for electrolytic capacitor electrode, and aluminum material for electrolytic capacitor electrode

Country Status (2)

Country Link
JP (1) JP5069728B2 (en)
CN (1) CN1320140C (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5733474B2 (en) * 2012-05-07 2015-06-10 日本軽金属株式会社 Aluminum refining apparatus and aluminum refining method
WO2013168214A1 (en) * 2012-05-07 2013-11-14 日本軽金属株式会社 Aluminum refining apparatus and aluminum refining method
CN111321303A (en) * 2016-06-02 2020-06-23 昭和电工株式会社 Substance refining method

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4253936B2 (en) * 1998-07-27 2009-04-15 住友化学株式会社 Aluminum purification method and use of the obtained aluminum
JP2002097528A (en) * 2000-09-22 2002-04-02 Sumitomo Chem Co Ltd Purification method of aluminum
JP3485086B2 (en) * 2000-11-15 2004-01-13 日本軽金属株式会社 Method and apparatus for purifying aluminum or aluminum alloy
JP3458840B2 (en) * 2000-12-06 2003-10-20 日本軽金属株式会社 Aluminum processing method

Also Published As

Publication number Publication date
CN1761766A (en) 2006-04-19
CN1320140C (en) 2007-06-06
JP2009280918A (en) 2009-12-03

Similar Documents

Publication Publication Date Title
JP5400782B2 (en) Method for treating silicon powder to obtain silicon crystals
CN104561619B (en) A kind of preparation method of aluminium titanium boron wire grain refiner
WO2017072655A1 (en) Method for the enrichment and separation of silicon crystals from a molten metal for the purification of silicon
JP4397714B2 (en) Raw material for aluminum purification
JP5074762B2 (en) Metal purification method and apparatus, refined metal, casting, metal product and electrolytic capacitor
JP5069728B2 (en) Aluminum purification method, high-purity aluminum material, method for producing aluminum material for electrolytic capacitor electrode, and aluminum material for electrolytic capacitor electrode
JP2006027940A (en) Method for refining metal
JPH07206420A (en) Production of high-purity silicon
JP5134817B2 (en) Metal purification method and apparatus, refined metal, casting, metal product and electrolytic capacitor
JP3237330B2 (en) Purification method of aluminum alloy scrap
JP5173296B2 (en) Continuous purification system for high-purity aluminum
JP2916645B2 (en) Metal purification method
JP5479729B2 (en) Metal purification method and apparatus, refined metal, casting, metal product and electrolytic capacitor
JP6751604B2 (en) Material purification method and equipment, continuous purification system for high-purity substances
JP2016175806A (en) Manufacturing method of high-purity silicon
JP2009013448A (en) Continuous refining system for high-purity aluminum
JP2785908B2 (en) Method of manufacturing copper tube for superconductivity
JP5415066B2 (en) Metal purification method and apparatus, refined metal, casting, metal product and electrolytic capacitor
KR101544088B1 (en) METHOD FOR SEPARATING PURE SILICONS IN Al-Si ALLOYS USING CENTRIFUGAL SEPARATION, AN ALLOY REFINING METHOD, AND A PURE FOAM PRODUCED USING THE SAME
JPH09194964A (en) Method for refining aluminum
JP3721804B2 (en) Aluminum purification method and use thereof
JP2023018761A (en) Continuous refining system and continuous refining method of high purity metal
JPH07247108A (en) Purification of silicon
JPH0227421B2 (en)
JPH07232909A (en) Apparatus for production of silicon particle and production therefor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090828

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120724

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120817

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150824

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5069728

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150824

Year of fee payment: 3

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: R3D02

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees