JP2023018761A - Continuous refining system and continuous refining method of high purity metal - Google Patents

Continuous refining system and continuous refining method of high purity metal Download PDF

Info

Publication number
JP2023018761A
JP2023018761A JP2021123008A JP2021123008A JP2023018761A JP 2023018761 A JP2023018761 A JP 2023018761A JP 2021123008 A JP2021123008 A JP 2021123008A JP 2021123008 A JP2021123008 A JP 2021123008A JP 2023018761 A JP2023018761 A JP 2023018761A
Authority
JP
Japan
Prior art keywords
molten metal
purity
metal
melting furnace
holding tanks
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2021123008A
Other languages
Japanese (ja)
Inventor
勝起 吉田
Katsuoki Yoshida
哲也 井形
Tetsuya Igata
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sakai Aluminium Corp
Original Assignee
Sakai Aluminium Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sakai Aluminium Corp filed Critical Sakai Aluminium Corp
Priority to JP2021123008A priority Critical patent/JP2023018761A/en
Publication of JP2023018761A publication Critical patent/JP2023018761A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Manufacture And Refinement Of Metals (AREA)

Abstract

To provide a continuous refining system capable of refining high purity metal without a large installation area.SOLUTION: A refining system is equipped with a melting furnace 1 for melting metal, a plurality of molten metal holding tanks 3 connected in series to which molten metal is sent in order from the melting furnace, and cooling units 4 each paired with each of molten metal holding tanks 3 for crystallizing high purity metal in the molten metal. A lump of the high purity metal deposited, coagulated, and recovered at the cooling units 4 of one or more of downstream molten metal holding tanks 3 among the plurality of molten metal holding tanks 3 is sent back to the melting furnace 1 for remelting.SELECTED DRAWING: Figure 1

Description

本発明は、偏析凝固を利用した高純度金属の連続精製システムに関する。 The present invention relates to a continuous refining system for high-purity metals using segregation solidification.

従来より、不純元素の少ない高純度金属の製造方法のうち、凝固時の偏析現象を利用する方法(偏析法)は、他の精製方法に対するコスト優位性から、広く工業的に利用されている。 Conventionally, among the methods for producing high-purity metals with few impurity elements, a method that utilizes the segregation phenomenon during solidification (segregation method) has been widely industrially used due to its cost advantage over other refining methods.

かかる偏析法において、効率よく高純度のアルミニウムを精製するシステムとして、アルミニウムの溶解炉からの溶湯が順に送り込まれる、直列的に連結された複数の溶湯保持槽と、各溶湯保持槽と対をなす回転冷却体を備えた一連の装置を1組のラインとし、このラインを複数組備え、(n-1)次ラインで回転冷却体に付着凝固し回収された高純度アルミニウム塊を、続くn次ラインの溶解炉で溶解させて精製を繰り返すシステムが提唱されている(下記特許文献1)。 In such a segregation method, as a system for efficiently refining high-purity aluminum, a plurality of serially connected molten metal holding tanks into which the molten metal from the aluminum melting furnace is sequentially fed, and each molten metal holding tank is paired. A series of equipment equipped with a rotating cooling body is set as one line, and a plurality of sets of this line are provided, and the high-purity aluminum mass adhered and solidified on the rotating cooling body and collected in the (n-1)th line is transferred to the following nth order. A system has been proposed that repeats refining by melting in a melting furnace on the line (Patent Document 1 below).

特開2009-24234号公報JP 2009-24234 A

このようにライン数を増やすことは純度を高める上で有効だが、その分設備面積が必要になり、設備設置コストの増大や敷地面積の都合で採用できない場合があった。 Increasing the number of lines in this way is effective in increasing the purity, but it requires a corresponding amount of facility space, and there are cases where it cannot be used due to increased facility installation costs and site space.

本発明は、このような実情に鑑みてなされたものであり、ライン数を増やすことなく(増やすことは否定しないが)、高純度金属を精製することができる高純度金属の連続精製システムを提供することを目的とする。 The present invention has been made in view of such circumstances, and provides a continuous high-purity metal refining system capable of refining high-purity metals without increasing the number of lines (although it is not denied that the number of lines will be increased). intended to

本発明は以下の手段を提供する。 The present invention provides the following means.

[1]金属を溶解するための溶解炉と、前記溶解炉からの溶湯が順に送り込まれる、直列的に連結された複数の溶湯保持槽と、各溶湯保持槽と対を成し、溶湯内で高純度金属を晶出させるための冷却体と、を備え、
前記複数の溶湯保持槽のうち、下流側の1ないし複数の溶湯保持槽の冷却体で付着凝固して回収された高純度金属塊を、前記溶解炉に戻して再溶解させることを特徴とする高純度金属の連続精製システム。
[1] A melting furnace for melting metal, a plurality of molten metal holding tanks connected in series to which the molten metal from the melting furnace is sequentially fed, and each molten metal holding tank paired with each other, in the molten metal a cooling body for crystallizing the high-purity metal,
A high-purity metal ingot that has been adhered and solidified by a cooling body of one or more molten metal holding tanks downstream of the plurality of molten metal holding tanks and collected is returned to the melting furnace and remelted. Continuous refining system for high-purity metals.

[2]前記金属はアルミニウムまたはアルミニウム合金であることを特徴とする前項1に記載の高純度金属の連続精製システム。 [2] The high-purity metal continuous refining system according to the above item 1, wherein the metal is aluminum or an aluminum alloy.

[3]回収された高純度金属塊を前記溶解炉に戻して再溶解させる溶湯保持槽が、全溶湯保持槽の数の1/2以下である前項1または2に記載の高純度金属の連続精製システム。 [3] Continuous production of high-purity metal according to the above item 1 or 2, wherein the number of molten metal holding tanks for returning the collected high-purity metal ingots to the melting furnace for remelting is 1/2 or less of the total number of molten metal holding tanks. purification system.

[4]金属を溶解するための溶解炉と、前記溶解炉からの溶湯が順に送り込まれる、直列的に連結された複数の溶湯保持槽と、各溶湯保持槽と対を成し、溶湯内で高純度金属を晶出させるための冷却体と、を備えた連続精製システムを用いる高純度金属の連続精製方法であって、
前記複数の溶湯保持槽のうち、下流側の1ないし複数の溶湯保持槽の冷却体で付着凝固して回収された高純度金属塊を、前記溶解炉に戻して再溶解させる工程を複数回繰り返すことを特徴とする高純度金属の連続精製方法。
[4] A melting furnace for melting metal, a plurality of molten metal holding tanks connected in series to which the molten metal from the melting furnace is sequentially fed, and each molten metal holding tank paired with A continuous refining method for high-purity metals using a continuous refining system comprising a cooling body for crystallizing high-purity metals,
A step of returning the high-purity metal ingots adhered and solidified by the cooling body of one or more molten metal holding tanks downstream of the plurality of molten metal holding tanks to the melting furnace for remelting is repeated multiple times. A method for continuously refining a high-purity metal characterized by:

[5]前記溶解炉に戻して再溶解させる際の高純度金属塊の温度が300℃以上であることを特徴とする前項4に記載の高純度金属の連続精製方法。 [5] The method for continuous refining of high-purity metals as described in [4] above, wherein the temperature of the high-purity metal ingot is 300° C. or higher when it is returned to the melting furnace and re-melted.

前項[1]の発明によれば、下流側の溶湯保持槽で精製される高純度金属塊は、上流側の溶湯保持槽と比べると純度は低いが、溶解炉に投入される原材料よりも純度が高いため、これを溶解炉に戻して再溶解させることで、溶解炉から溶湯保持槽に供給される溶湯の純度を高めることができるから、これにより設備面積の増大によることなく、高純度の精製塊を得ることができる。 According to the invention of the preceding item [1], the high-purity metal ingot refined in the downstream molten metal holding tank has a lower purity than the upstream molten metal holding tank, but the purity is higher than that of the raw material put into the melting furnace. Therefore, by returning it to the melting furnace and remelting it, the purity of the molten metal supplied from the melting furnace to the molten metal holding tank can be increased. A refined mass can be obtained.

前項[2]の発明によれば、高純度のアルミニウムを得ることができる。 According to the invention of the preceding item [2], highly pure aluminum can be obtained.

前項[3]の発明によれば、溶解炉に戻して再溶解させる高純度金属塊を、全溶湯保持槽のうち後半の1/2以下にすることで、製品の回収重量の低下を抑えて、不純物を低減することができる。 According to the invention of the preceding item [3], the amount of high-purity metal ingots to be returned to the melting furnace and re-melted is less than half of the latter half of the entire molten metal holding tank, thereby suppressing a decrease in the weight of the product recovered. , impurities can be reduced.

前項[4]の発明によれば、高純度金属塊を前記溶解炉に戻して再溶解させる工程を複数回繰り返すことにより、溶解炉から溶湯保持槽に供給される溶湯の純度をさらに高めることができ、より高純度の精製塊を得ることができる。 According to the invention of the preceding item [4], the step of returning the high-purity metal ingot to the melting furnace and remelting it is repeated a plurality of times, thereby further increasing the purity of the molten metal supplied from the melting furnace to the molten metal holding tank. It is possible to obtain a purified lump of higher purity.

前項[5]の発明によれば、高純度金属塊が300℃未満に冷却されてから溶解炉に戻す場合と比較して、塊溶解の時間を短縮し、優れたエネルギー効率が得られる。 According to the invention of the preceding item [5], compared to the case where the high-purity metal ingot is cooled to less than 300° C. and then returned to the melting furnace, the ingot melting time can be shortened and excellent energy efficiency can be obtained.

この発明の一実施形態に係る高純度金属の連続精製システムの構成を示す図である。1 is a diagram showing the configuration of a continuous refining system for high-purity metals according to one embodiment of the present invention; FIG. 図1のシステムの一部の構成を詳細に示す図である。2 is a diagram showing in detail the configuration of part of the system of FIG. 1; FIG. 溶湯保持槽の詳細を示す図である。FIG. 4 is a diagram showing details of a molten metal holding tank; この発明の他の実施形態に係る高純度金属の連続精製システムの構成を示す図である。FIG. 4 is a diagram showing the configuration of a high-purity metal continuous refining system according to another embodiment of the present invention;

図1は、この発明の一実施形態に係る高純度金属の連続精製システムの構成を示す図である。 FIG. 1 is a diagram showing the configuration of a high-purity metal continuous refining system according to one embodiment of the present invention.

このシステムは、金属を溶解するための溶解炉1と、溶解炉1からの溶湯が順に送り込まれる、直列的に連結された複数(この例では10基)の溶湯保持槽3‥と、各溶湯保持槽3‥と対を成し、溶湯内で高純度金属を晶出させるための回転冷却体4‥と、を備える。 This system comprises a melting furnace 1 for melting metal, a plurality of (10 in this example) molten metal holding tanks 3 connected in series to which the molten metal from the melting furnace 1 is fed in order, and each molten metal A rotating cooling body 4 for forming a pair with a holding tank 3 and crystallizing a high-purity metal in the molten metal is provided.

図2は、このシステムの一部の構成を詳細に示す図である。 FIG. 2 is a diagram showing in detail the configuration of part of this system.

溶解炉1は、不純物を含んだ原料金属を溶解する。溶解炉1で溶解された溶湯5は樋2を介し、各溶湯保持槽3に送り出される。各溶湯保持槽3には、回転冷却体4が設置されている。 The melting furnace 1 melts raw metal containing impurities. The molten metal 5 melted in the melting furnace 1 is delivered to each molten metal holding tank 3 through the gutter 2 . A rotating cooling body 4 is installed in each molten metal holding tank 3 .

図3は、溶湯保持槽の詳細を示す図である。 FIG. 3 is a diagram showing the details of the molten metal holding tank.

溶湯保持槽3は、たとえば内径D、高さHの有底円筒状で、底面が下向き円弧状に形成される。 The molten metal holding tank 3 has, for example, a bottomed cylindrical shape with an inner diameter D and a height H, and the bottom surface is formed in a downward arc shape.

回転冷却体4は、たとえば上端側が径大の円錐台形状に形成され、溶湯上面における外径d、溶湯上面から冷却体下端までの高さhとなる溶湯保持槽3内の所定位置に配置される。回転冷却体4は、エアー若しくは水蒸気のような冷却体で内部から冷却され、溶湯中で回転する。 The rotary cooling body 4 is formed, for example, in the shape of a truncated cone with a large diameter on the upper end side, and is arranged at a predetermined position in the molten metal holding tank 3 having an outer diameter d at the upper surface of the molten metal and a height h from the upper surface of the molten metal to the lower end of the cooling body. be. The rotating cooling body 4 is internally cooled by a cooling body such as air or steam and rotates in the molten metal.

溶湯保持槽3の溶湯温度を凝固点を超えた温度に加熱保持しておくと、偏析凝固の原理により、回転冷却体4の表面において精製すべき純度の高い金属が晶出し、高純度金属塊が形成される。 When the temperature of the molten metal in the molten metal holding tank 3 is kept above the freezing point, the high-purity metal to be refined is crystallized on the surface of the rotating cooling body 4 according to the principle of segregation solidification, and a high-purity metal lump is formed. It is formed.

溶湯保持槽3中の不純物濃度の高くなった溶湯は、順次下流側に位置する次の溶湯保持槽3に送り出される。 The molten metal having a high impurity concentration in the molten metal holding tank 3 is sent to the next molten metal holding tank 3 positioned downstream in sequence.

回転冷却体4の表面に晶出し、抽出された金属塊は、回転冷却体4を回転させながら引き上げ、溶湯保持槽3外で回転をが停止させた後、図示しない回収装置により、たとえば機械的に回収される。 The metal lumps crystallized and extracted on the surface of the rotating cooling body 4 are pulled up while rotating the rotating cooling body 4, and after the rotation is stopped outside the molten metal holding tank 3, they are recovered by a recovering device (not shown), for example mechanically. to be recovered.

各溶湯保持槽3に浸漬された回転冷却体4に晶出し純化された金属塊を回収する場合、一斉に回収してもよいが、連続した生産を考えると順次回収していくことが望ましい。 When recovering the metal ingots crystallized and purified in the rotary cooling bodies 4 immersed in the respective molten metal holding tanks 3, they may be recovered all at once, but in consideration of continuous production, it is desirable to recover sequentially.

各溶湯保持槽3‥の溶湯は、上流側から下流側に向かって、順次、不純物濃度が高くなる。 The molten metal in each of the molten metal holding tanks 3 . . . has an impurity concentration that sequentially increases from upstream to downstream.

直列に構成された複数の溶湯保持槽3‥で回収されなかった残渣溶湯は、ドレン装置6により、系外に排出される。 Residual molten metal not collected in the plurality of molten metal holding tanks 3 arranged in series is drained out of the system by a drain device 6 .

各溶湯保持槽3‥の回転冷却体4‥から回収される高純度金属塊の純度は、溶湯の純度が最も高い最上流の溶湯保持槽3から回収されるものが最も純度が高く、上流側から下流側に向かって、順次、純度が低下する。 Regarding the purity of the high-purity metal ingots recovered from the rotary cooling bodies 4 of the respective molten metal holding tanks 3, those recovered from the uppermost molten metal holding tank 3 having the highest purity of the molten metal are the highest in purity, and the purity is the highest in the upstream side. The purity decreases sequentially from the downstream side.

図1に示す高純度金属の連続精製システムでは、上流側の5基の溶湯保持槽3から回収される高純度金属塊を製品として取り出す一方、下流側の5基の溶湯保持槽3から回収される高純度金属塊を、溶解炉1に戻して再溶解させるようになっている。 In the high-purity metal continuous refining system shown in FIG. 1, while high-purity metal ingots recovered from the five upstream molten metal holding tanks 3 are taken out as products, they are recovered from the five downstream molten metal holding tanks 3. The high-purity metal ingot is returned to the melting furnace 1 and melted again.

下流側の溶湯保持槽3から回収される高純度金属塊は、上流側の溶湯保持槽3から回収される高純度金属塊と比較すると純度が低いが、溶解炉1に投入される原材料よりも純度が高い。 The high-purity metal ingots recovered from the molten metal holding tank 3 on the downstream side have a lower purity than the high-purity metal ingots recovered from the molten metal holding tank 3 on the upstream side, but are more pure than the raw materials put into the melting furnace 1. High purity.

このため、これを溶解炉1に戻して再溶解させることで、溶解炉1の溶湯の純度は原材料よりも高くなり、溶解炉1から溶湯保持槽3‥に供給される溶湯の純度を高めることができるから、高純度の精製塊を得ることができる。 Therefore, by returning it to the melting furnace 1 and remelting it, the purity of the molten metal in the melting furnace 1 becomes higher than that of the raw material, and the purity of the molten metal supplied from the melting furnace 1 to the molten metal holding tanks 3 is increased. can be obtained, a highly purified mass can be obtained.

特に、この下流側の溶湯保持槽から回収される高純度金属塊を溶解炉1に戻す工程を繰り返し行うことにより、さらに溶解炉1の溶湯の純度を高め、製品として得られる高純度金属塊の純度を高い物とすることができる。 In particular, by repeating the process of returning the high-purity metal ingot recovered from the molten metal holding tank on the downstream side to the melting furnace 1, the purity of the molten metal in the melting furnace 1 is further increased, and the high-purity metal ingot obtained as a product is increased. High purity can be obtained.

ライン数を増やすことは純度を高める上で有効だが、その分設備面積が必要になるところ、下流側の溶湯保持槽3から回収される高純度金属塊を溶解炉1に戻すことで、ライン数を増やすことに因るのではなく、より高純度な金属塊を得ることができる。 Increasing the number of lines is effective in increasing the purity, but the facility area is required for that amount. A metal ingot with a higher purity can be obtained instead of increasing the .

なお上記の説明では、高純度金属塊を製品として取り出す溶湯保持槽3を上流側5基、高純度金属塊を溶解炉1に戻す溶湯保持槽3を下流側5基としたが、高純度金属塊を製品として取り出す溶湯保持槽3は上流側の1ないし複数とし、高純度金属塊を溶解炉1に戻す溶湯保持槽3を残る下流側の1ないし複数としてもよい。 In the above explanation, five molten metal holding tanks 3 from which high-purity metal ingots are taken out as products are assumed upstream, and five molten metal holding tanks 3 for returning high-purity metal ingots to the melting furnace 1 are assumed downstream. One or a plurality of molten metal holding tanks 3 from which ingots are taken out as products may be provided on the upstream side, and one or a plurality of molten metal holding tanks 3 for returning high-purity metal ingots to the melting furnace 1 may be provided on the remaining downstream side.

製品として取り出す溶湯保持槽3を減らして溶解炉に戻す溶湯保持槽3を増やすと、溶解炉1の溶湯の純度をより高めることができるため、より高純度な金属塊を得ることができる一方、製品として得られる金属塊が少なくなるため、生産効率は低下する。 By reducing the number of molten metal holding tanks 3 taken out as a product and increasing the number of molten metal holding tanks 3 returned to the melting furnace, the purity of the molten metal in the melting furnace 1 can be further increased, so that metal ingots of higher purity can be obtained. Since the amount of metal ingots obtained as a product is reduced, the production efficiency is lowered.

これに対して、溶解炉1に戻す溶湯保持槽3を減らせば、製品として得られる金属塊は多くなり、生産効率は高まるが、製品として得られる金属塊の純度は低下する。 On the other hand, if the number of molten metal holding tanks 3 returned to the melting furnace 1 is reduced, the amount of metal ingots obtained as products increases and the production efficiency increases, but the purity of the metal ingots obtained as products decreases.

溶解炉1に戻す溶湯保持槽3の数は、求められる金属塊の純度と、生産効率(生産量)とを勘案して適宜設定すればよいが、溶解炉1に戻す溶湯保持槽の数は、全溶湯保持槽の数の1/2以下にすることが好ましい。1/2以下にすることで、製品の回収重量の低下を抑えて、不純物を低減することができる。 The number of molten metal holding tanks 3 returned to the melting furnace 1 may be appropriately set in consideration of the required purity of the metal ingot and the production efficiency (production volume). , preferably less than or equal to 1/2 of the total number of molten metal holding tanks. By making it 1/2 or less, it is possible to suppress a decrease in the recovered weight of the product and reduce impurities.

なお下流側の溶湯保持槽3から回収された高純度金属塊を溶解炉1に戻して再溶解させる際は、回収された高純度金属塊が冷えてしまう前に、温度が300℃以上を有しているうちに溶解炉1に戻すことが好ましい。 When the high-purity metal ingot recovered from the molten metal holding tank 3 on the downstream side is returned to the melting furnace 1 and melted again, the temperature must be 300° C. or higher before the recovered high-purity metal ingot cools down. It is preferable to return to the melting furnace 1 in the meantime.

高純度金属塊が冷却されてしまうと再溶解に要する時間およびエネルギーが大きくなるが、300℃以上の温度を保っている間に溶解炉1に戻すことができれば、塊溶解の時間を短縮し、優れたエネルギー効率が得られる。 If the high-purity metal ingot is cooled, the time and energy required for remelting will increase. Excellent energy efficiency is obtained.

次に、複数ラインを有する連続精製システムに適用した本発明の他の実施形態について説明する。 Next, another embodiment of the present invention applied to a continuous refining system having multiple lines will be described.

図4は、この発明の他の実施形態に係る高純度金属の連続精製システムの構成を示す図である。 FIG. 4 is a diagram showing the configuration of a high-purity metal continuous refining system according to another embodiment of the present invention.

この精製システムでは、10基の溶湯保持槽13‥を有する1次ラインと、5基の溶湯保持槽23‥を有する2次ラインを備えている。 This refining system comprises a primary line having ten molten metal holding tanks 13 and a secondary line having five molten metal holding tanks 23 .

1次ラインでは、溶解炉11で溶解された溶湯は、樋12を介して直列的に連結された溶湯保持槽13‥に順次送り込まれる。 In the primary line, the molten metal melted in the melting furnace 11 is sequentially sent to the molten metal holding tanks 13 connected in series via the gutter 12 .

各溶湯保持槽13‥には対をなす回転冷却体14‥が備えられ、各溶湯保持槽13‥から高純度金属塊が回収されるようになっており、複数の溶湯保持槽13‥で回収されなかった残渣溶湯は、ドレン装置16により、系外に排出される。 Each molten metal holding tank 13 . Residual molten metal that has not been drained is discharged out of the system by a drain device 16 .

そしてこの実施形態では、下流側2基の溶湯保持槽13,13から回収された高純度金属塊は溶解炉11に戻されて再溶解される一方、上流側8基の溶湯保持槽13‥から回収された高純度金属塊は2次ラインの溶解炉21に送り込まれるようになっている。 In this embodiment, the high-purity metal ingots recovered from the two downstream molten metal holding tanks 13, 13 are returned to the melting furnace 11 and remelted, while the eight upstream molten metal holding tanks 13, . . . The collected high-purity metal ingots are sent to the melting furnace 21 of the secondary line.

2次ラインの構成は1次ラインと同様に、溶解炉21で溶解された溶湯は、樋22を介して直列的に連結された溶湯保持槽23‥に順次送り込まれ、各溶湯保持槽23‥には対をなす回転冷却体24‥が備えられ、各溶湯保持槽23‥から高純度金属塊が回収され、これが製品として供される。 The structure of the secondary line is similar to that of the primary line, and the molten metal melted in the melting furnace 21 is sequentially sent to the molten metal holding tanks 23 connected in series through the gutter 22, and the molten metal holding tanks 23 . is provided with a pair of rotating cooling bodies 24, and high-purity metal ingots are recovered from each of the molten metal holding tanks 23 and provided as products.

2次ラインの複数の溶湯保持槽23‥で回収されなかった残渣溶湯は、ドレン装置により系外に排出してもよいが、溶湯回収装置27により1次ラインの溶解炉11に戻すことが好ましい。 The residual molten metal not collected in the plurality of molten metal holding tanks 23 on the secondary line may be discharged outside the system by a drain device, but preferably returned to the melting furnace 11 on the primary line by the molten metal recovery device 27. .

2次ラインの出発材料はすべて1次ラインの溶湯保持炉13‥において晶出した高純度金属塊であり、1次ラインの出発材料である金属原料より通常は純度が高いため、これを1次ラインに戻すことにより、1次ラインの溶湯の純度を高められるとともに、系外に排出される金属量を低減することができる。 All of the starting materials for the secondary line are high-purity metal lumps crystallized in the molten metal holding furnace 13 of the primary line, and are generally higher in purity than the metal raw material that is the starting material for the primary line. By returning it to the line, the purity of the molten metal in the primary line can be increased, and the amount of metal discharged out of the system can be reduced.

この実施形態では、1次ラインにおいて下流側の溶湯保持槽13‥から回収される高純度金属塊を溶解炉11に戻すので、戻さない場合と比較して、1次ラインで回収される高純度金属塊の純度を高めることができる。 In this embodiment, the high-purity metal ingot recovered from the molten metal holding tank 13 on the downstream side in the primary line is returned to the melting furnace 11, so compared to the case where it is not returned, the high-purity metal ingot recovered in the primary line The purity of metal lumps can be increased.

また1次ラインの上流側の溶湯保持槽13‥から回収される高純度金属塊は、下流側の溶湯保持槽13‥から回収される高純度金属塊より純度が高いが、これをさらに2次ラインの出発材料として2次ラインで偏析凝固を行い、その溶湯保持槽23‥から回収される高純度金属塊を製品とするので極めて高純度な金属塊を得ることができる。 The high-purity metal ingots recovered from the molten metal holding tanks 13 on the upstream side of the primary line have higher purity than the high-purity metal ingots recovered from the molten metal holding tanks 13 on the downstream side. As a starting material for the line, segregation solidification is performed in the secondary line, and the high-purity metal ingot recovered from the molten metal holding tank 23 is used as a product, so that an extremely high-purity metal ingot can be obtained.

上記2つの実施形態における連続精製システムで精製する金属の種類は問わないが、たとえばアルミニウムまたはアルミニウム合金を好適な金属として挙げることができる。 Although the type of metal to be refined by the continuous refining system in the above two embodiments does not matter, for example, aluminum or an aluminum alloy can be mentioned as a suitable metal.

アルミニウムを採用した場合、最終的に製造された精製塊はアルミニウム純度が高いので、各種の加工や用途に用いることで優れた性能や機能を発揮させることができる。 When aluminum is used, the finally produced refined ingot has high aluminum purity, so that it can be used for various processing and applications to exhibit excellent performance and functions.

一例を挙げると、精製金属を鋳造に用いて鋳造品を製作しても良いし、この鋳造品を圧延して各種の金属板や金属箔として用いても良い。 For example, refined metals may be used for casting to produce castings, or these castings may be rolled and used as various metal plates and metal foils.

また、この金属箔を例えばアルミニウム電解コンデンサの電極材として用いても良い。 Also, this metal foil may be used as an electrode material for an aluminum electrolytic capacitor, for example.

なお、上記2つの実施形態では、溶解炉1には原料金属のみを投入し、溶解炉1から樋2を介して直列に配置された溶湯保持槽3‥に溶湯を送る構成を説明したが、本発明を適用したシステムにおいても、金属の純度を高める公知の方法を併用してもよい。 In the above two embodiments, only the raw material metal is put into the melting furnace 1, and the molten metal is sent from the melting furnace 1 through the gutter 2 to the molten metal holding tanks 3 arranged in series. Also in the system to which the present invention is applied, a known method for increasing metal purity may be used in combination.

たとえば、金属としてアルミニウムに適用する場合、溶解炉1にホウ素を添加し、Ti、Zr、V等の包晶系の不純物とホウ素を反応させてもよい。 For example, when aluminum is used as the metal, boron may be added to the melting furnace 1 and peritectic impurities such as Ti, Zr, and V may be reacted with boron.

また、溶解炉1と回転冷却体4を伴う溶湯保持槽3の間に、ホウ素の添加が可能な撹拌槽が設置されてもよい。 In addition, a stirring tank to which boron can be added may be installed between the melting furnace 1 and the molten metal holding tank 3 with the rotating cooling body 4 .

さらに、溶湯各搬送3と溶湯各搬送の間に、溶湯表面に分離した浮滓を溶湯保持槽以外の系へ分離する分離槽を構成することも有効である。 Furthermore, it is also effective to configure a separation tank for separating the slag separated on the surface of the molten metal to a system other than the molten metal holding tank between each transfer 3 of the molten metal and each transfer of the molten metal.

次に、直列的に連結した20基の溶湯保持槽を備えた1ラインの連続精製システムにおいて、下流側の溶湯保持槽から回収される高純度金属塊を溶解炉に戻して再溶解した本発明の実施例と、溶解炉に戻す操作を行わない比較例について説明する。 Next, in a one-line continuous refining system equipped with 20 molten metal holding tanks connected in series, the high-purity metal ingots recovered from the downstream molten metal holding tanks were returned to the melting furnace and remelted. Example and a comparative example in which the operation of returning to the melting furnace is not performed will be described.

各溶湯保持槽は内径Dが500mm、高さHが800mmの有底円筒状で底面が下向き円弧状に形成されたものを用いた。 Each molten metal holding tank used was a bottomed cylinder having an inner diameter D of 500 mm and a height H of 800 mm, and the bottom surface was formed in a downward arc shape.

回転冷却体は上端側が径大の円錐台形状に形成され、溶湯上面における外径dが210mm、溶湯上面から冷却体下端の高さhが150mmのグラファイト製のものを使用した。 The rotating cooling body was made of graphite and had a truncated cone shape with a large upper end, an outer diameter d at the upper surface of the molten metal of 210 mm, and a height h of the lower end of the cooling body from the upper surface of the molten metal of 150 mm.

冷却媒体として、2000L/分の圧縮空気を冷却体4の内部に流通させ、回転数200rpmで15分間の精製処理を実施した。 Compressed air of 2000 L/min was circulated inside the cooling body 4 as a cooling medium, and the refining treatment was performed for 15 minutes at a rotational speed of 200 rpm.

その他、精製条件として、冷却エアー圧力0.15MPa、溶湯温度670℃、回収率81%とした。 Other refinement conditions were a cooling air pressure of 0.15 MPa, a melt temperature of 670° C., and a recovery rate of 81%.

実施例1では、上流側18基の溶湯保持槽から回収される高純度金属塊を製品とし、下流側2基の溶湯保持槽から回収された高純度金属塊を溶解炉に戻すものとし、この高純度金属塊を回収して溶解炉に再投入する工程を5回繰り返し行った。 In Example 1, the high-purity metal ingots recovered from the 18 upstream molten metal holding tanks are used as products, and the high-purity metal ingots recovered from the two downstream molten metal holding tanks are returned to the melting furnace. The process of recovering the high-purity metal ingots and re-inserting them into the melting furnace was repeated five times.

実施例2では、下流側10基の溶湯保持槽の金属塊を溶解炉に戻し、実施例3では下流側15基の溶湯保持槽の金属塊を溶解炉に戻した。 In Example 2, the metal ingots in the 10 downstream molten metal holding tanks were returned to the melting furnace, and in Example 3, the metal ingots in the 15 downstream molten metal holding tanks were returned to the melting furnace.

原材料組成はいずれもSi:150~155ppm、Fe:195~200ppmのアルミニウムとして、再投入を5回繰り返し行った際の、5回目に回収された上流側の溶湯保持槽から得られた製品としての高純度金属塊の平均組成を表1に示す。 The raw material composition is aluminum with Si: 150 to 155 ppm and Fe: 195 to 200 ppm, and the product is obtained from the upstream molten metal holding tank recovered for the fifth time when re-input is repeated five times. Table 1 shows the average composition of the high-purity metal ingots.

溶湯保持槽から回収される高純度金属塊を全て製品とし、溶解炉に戻す工程を行わない場合を比較例1として、製品としての高純度金属塊の平均組成を表1に併せて示す。 Table 1 also shows the average composition of the high-purity metal ingots as products, as Comparative Example 1, in which all the high-purity metal ingots recovered from the molten metal holding tank are used as products and the process of returning to the melting furnace is not performed.

Figure 2023018761000002
Figure 2023018761000002

表1に示すように、実施例の精製塊平均組成は比較例より高純度のものが得られた。 As shown in Table 1, the refined mass average composition of the example was higher than that of the comparative example.

また溶解炉に戻す個数が多いほど、さらに高純度なものが得られた。 In addition, the higher the purity, the higher the number of pieces returned to the melting furnace.

単位時間当たりの生産量は、溶解炉に戻す精製塊の数に反比例するので、実施例1,2,3の順に低下した。 Since the production amount per unit time is inversely proportional to the number of refined ingots returned to the melting furnace, it decreased in the order of Examples 1, 2 and 3.

本発明は、偏析凝固を利用した高純度金属の連続精製に利用可能である。 INDUSTRIAL APPLICABILITY The present invention can be used for continuous refining of high-purity metals using segregation solidification.

1 溶解炉
2 樋
3 溶湯保持槽
4 回転冷却体
5 溶湯
6 ドレン装置
REFERENCE SIGNS LIST 1 melting furnace 2 gutter 3 molten metal holding tank 4 rotary cooling body 5 molten metal 6 drain device

Claims (5)

金属を溶解するための溶解炉と、前記溶解炉からの溶湯が順に送り込まれる、直列的に連結された複数の溶湯保持槽と、各溶湯保持槽と対を成し、溶湯内で高純度金属を晶出させるための冷却体と、を備え、
前記複数の溶湯保持槽のうち、下流側の1ないし複数の溶湯保持槽の冷却体で付着凝固して回収された高純度金属塊を、前記溶解炉に戻して再溶解させることを特徴とする高純度金属の連続精製システム。
A melting furnace for melting metal, a plurality of molten metal holding tanks connected in series to which the molten metal from the melting furnace is sequentially fed, and each molten metal holding tank paired with a high-purity metal in the molten metal a cooling body for crystallizing the
A high-purity metal ingot that has been adhered and solidified by a cooling body of one or more molten metal holding tanks downstream of the plurality of molten metal holding tanks and collected is returned to the melting furnace and remelted. Continuous refining system for high-purity metals.
前記金属はアルミニウムまたはアルミニウム合金であることを特徴とする請求項1に記載の高純度金属の連続精製システム。 2. The system for continuously refining high-purity metals according to claim 1, wherein said metal is aluminum or an aluminum alloy. 回収された高純度金属塊を前記溶解炉に戻して再溶解させる溶湯保持槽が、全溶湯保持槽の数の1/2以下である請求項1または2に記載の高純度金属の連続精製システム。 3. The high-purity metal continuous refining system according to claim 1 or 2, wherein the number of molten metal holding tanks for returning the collected high-purity metal ingots to the melting furnace for remelting is 1/2 or less of the total number of the molten metal holding tanks. . 金属を溶解するための溶解炉と、前記溶解炉からの溶湯が順に送り込まれる、直列的に連結された複数の溶湯保持槽と、各溶湯保持槽と対を成し、溶湯内で高純度金属を晶出させるための冷却体と、を備えた連続精製システムを用いる高純度金属の連続精製方法であって、
前記複数の溶湯保持槽のうち、下流側の1ないし複数の溶湯保持槽の冷却体で付着凝固して回収された高純度金属塊を、前記溶解炉に戻して再溶解させる工程を複数回繰り返すことを特徴とする高純度金属の連続精製方法。
A melting furnace for melting metal, a plurality of molten metal holding tanks connected in series to which the molten metal from the melting furnace is sequentially fed, and each molten metal holding tank paired with a high-purity metal in the molten metal A continuous refining method for high-purity metals using a continuous refining system comprising a cooling body for crystallizing out
A step of returning the high-purity metal ingots adhered and solidified by the cooling body of one or more molten metal holding tanks downstream of the plurality of molten metal holding tanks to the melting furnace for remelting is repeated multiple times. A method for continuously refining a high-purity metal characterized by:
前記溶解炉に戻して再溶解させる際の高純度金属塊の温度が300℃以上であることを特徴とする請求項4に記載の高純度金属の連続精製方法。
5. The method for continuously refining a high-purity metal according to claim 4, wherein the temperature of the high-purity metal ingot is 300[deg.] C. or higher when it is returned to the melting furnace and re-melted.
JP2021123008A 2021-07-28 2021-07-28 Continuous refining system and continuous refining method of high purity metal Pending JP2023018761A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021123008A JP2023018761A (en) 2021-07-28 2021-07-28 Continuous refining system and continuous refining method of high purity metal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2021123008A JP2023018761A (en) 2021-07-28 2021-07-28 Continuous refining system and continuous refining method of high purity metal

Publications (1)

Publication Number Publication Date
JP2023018761A true JP2023018761A (en) 2023-02-09

Family

ID=85160385

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021123008A Pending JP2023018761A (en) 2021-07-28 2021-07-28 Continuous refining system and continuous refining method of high purity metal

Country Status (1)

Country Link
JP (1) JP2023018761A (en)

Similar Documents

Publication Publication Date Title
CN109022956B (en) 5A12 aluminum alloy cast ingot and production method and application thereof
JP5074762B2 (en) Metal purification method and apparatus, refined metal, casting, metal product and electrolytic capacitor
JP3329013B2 (en) Continuous refining method and apparatus for Al-Si aluminum scrap
JP2001240949A (en) Method of manufacturing for worked billet of high- purity copper having fine crystal grain
CN108220637A (en) 5A03 aluminium alloy cast ingots production method and 5A03 aluminium alloy cast ingots and application
CN101712474B (en) Method for preparing solar-grade high-purity silicon by dilution purifying technology
JP2023018761A (en) Continuous refining system and continuous refining method of high purity metal
JP5134817B2 (en) Metal purification method and apparatus, refined metal, casting, metal product and electrolytic capacitor
JP4397714B2 (en) Raw material for aluminum purification
JP5173296B2 (en) Continuous purification system for high-purity aluminum
JP5069728B2 (en) Aluminum purification method, high-purity aluminum material, method for producing aluminum material for electrolytic capacitor electrode, and aluminum material for electrolytic capacitor electrode
JP5479729B2 (en) Metal purification method and apparatus, refined metal, casting, metal product and electrolytic capacitor
JP6751604B2 (en) Material purification method and equipment, continuous purification system for high-purity substances
JP5537249B2 (en) Al scrap refining method
JP5634704B2 (en) Metal purification method and apparatus, refined metal, casting, metal product and electrolytic capacitor
JP6342660B2 (en) Metal purification apparatus and metal purification method
JP2009013448A (en) Continuous refining system for high-purity aluminum
JP5415066B2 (en) Metal purification method and apparatus, refined metal, casting, metal product and electrolytic capacitor
JP4309675B2 (en) Method for producing titanium alloy
JP6118579B2 (en) Metal purification method and metal purification apparatus
JP6746383B2 (en) Material purification method and apparatus, continuous purification system for high-purity substances
JP3721804B2 (en) Aluminum purification method and use thereof
CN115717199B (en) Refining method of metallic lithium
JP2013237887A (en) Method for producing copper-iron alloy
JP5302645B2 (en) Al scrap refining method

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20211028