JP2013237887A - Method for producing copper-iron alloy - Google Patents

Method for producing copper-iron alloy Download PDF

Info

Publication number
JP2013237887A
JP2013237887A JP2012110857A JP2012110857A JP2013237887A JP 2013237887 A JP2013237887 A JP 2013237887A JP 2012110857 A JP2012110857 A JP 2012110857A JP 2012110857 A JP2012110857 A JP 2012110857A JP 2013237887 A JP2013237887 A JP 2013237887A
Authority
JP
Japan
Prior art keywords
copper
molten
iron
melting furnace
molten metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012110857A
Other languages
Japanese (ja)
Other versions
JP5608704B2 (en
Inventor
Iwao Nakajima
巌 中島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2012110857A priority Critical patent/JP5608704B2/en
Publication of JP2013237887A publication Critical patent/JP2013237887A/en
Application granted granted Critical
Publication of JP5608704B2 publication Critical patent/JP5608704B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Manufacture And Refinement Of Metals (AREA)
  • Treatment Of Steel In Its Molten State (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for producing a copper-iron alloy, by which intrusion of air bubbles is reduced, and an ingot of high quality can be obtained.SOLUTION: A method for producing a copper-iron alloy includes: a charging step S11 of charging electrolytic copper and the particle pieces of pure iron into a melting furnace; a degassing step S12 of melting the electrolytic copper and degassing a gas in the copper molten metal; a reaction step S13 of melting the pure iron and subjecting the copper and iron to crystallization reaction; and a pouring step S14 of pouring the reacted molten metal subjected to the crystallization reaction into a mold. Thus, the gas in the molten metal can be sufficiently degassed before the crystallization reaction between the Cu and Fe in which the viscosity of the molten metal is made high, to obtain an ingot of high quality in which the intrusion of air bubbles is greatly reduced.

Description

本発明は、Cuを主成分とするCu基質中にCuとFeの金属間化合物(以下、「Cu/Fe間化合物」と記す。)が分散した銅鉄合金の製造方法に関する。   The present invention relates to a method for producing a copper-iron alloy in which an intermetallic compound of Cu and Fe (hereinafter referred to as “Cu / Fe intermetallic compound”) is dispersed in a Cu substrate containing Cu as a main component.

従来の銅鉄合金の製造方法は、炉内へFeを投入し、Feが完全に溶けたところでCuを装入し、晶化反応させ、反応溶湯をインゴットケースに注湯する(例えば、特許文献1参照。)。   In a conventional method for producing a copper-iron alloy, Fe is introduced into a furnace, Cu is charged when the Fe is completely melted, a crystallization reaction is performed, and the reaction molten metal is poured into an ingot case (for example, Patent Documents). 1).

得られたインゴットは、Cuを主成分とする基質中にCu/Fe間化合物の晶体片(以下、「Cu/Fe晶体片」と記す。)が均一に分布しており、押出し、圧延、引き抜きなどの塑性加工により、様々な工業材料となる。このような複合材料は、Cu基質中に高透磁性体であるCu/Fe晶体片が分散されているため、例えば、電磁波に対するシールド材として非常に優れた特性を有する。   In the obtained ingot, Cu / Fe compound crystal pieces (hereinafter referred to as “Cu / Fe crystal pieces”) are uniformly distributed in a substrate containing Cu as a main component, and are extruded, rolled, and drawn. It becomes various industrial materials by plastic working such as. Such a composite material has very excellent characteristics as a shielding material against electromagnetic waves, for example, because a Cu / Fe crystal piece, which is a highly permeable material, is dispersed in a Cu substrate.

特開平6−17163号公報JP-A-6-17163

しかしながら、特許文献1の製法では、Fe溶湯中に固体のCuを装入するため、溶湯面の乱れが大きく、気泡が紛れ込み易い。また、直ぐにCuとFeの晶化反応が開始し、液相中に固相が析出し、液相に対して固相の占める割合が増大し、溶湯の粘度が高くなるため、真空炉で脱気してもすべての気泡を除去することはできない。   However, in the manufacturing method of Patent Document 1, since solid Cu is charged into the molten Fe, the molten metal surface is greatly disturbed, and bubbles are easily mixed. In addition, the crystallization reaction of Cu and Fe starts immediately, the solid phase precipitates in the liquid phase, the proportion of the solid phase in the liquid phase increases, and the viscosity of the molten metal increases. You can't remove all the bubbles even if you care.

また、溶湯には、空気だけでなく、原料に付着した油脂汚れの微細な分解ガスも紛れ込む。溶湯中に紛れ込んだ微細な気泡は、鍛造や押し出しによる加工でも潰すことができない。   Moreover, not only air but also fine cracked gas of oil and fat dirt adhering to the raw material is mixed in the molten metal. The fine bubbles mixed in the molten metal cannot be crushed by forging or extrusion.

溶湯中に気泡が紛れ込み、インゴット、ビレットなどの鋳塊に気孔として混入した場合、塑性加工に大きな障害となる。特に直径0.1mmオーダの細線の引き抜きでは、鋳塊中の微細な気孔でも断線の原因となる。このため、銅鉄合金の製造では、溶湯中の気泡を完全に脱気する方法が望まれている。   When bubbles are mixed into the molten metal and mixed as pores in an ingot such as an ingot or billet, it becomes a major obstacle to plastic working. In particular, when a thin wire having a diameter of 0.1 mm is drawn, even fine pores in the ingot cause disconnection. For this reason, in the manufacture of a copper-iron alloy, a method of completely degassing bubbles in the molten metal is desired.

本発明は、このような従来の実情に鑑みて提案されたものであり、気孔の混入を低減し、高品質な鋳塊を得ることができる銅鉄合金の製造方法を提供する。   The present invention has been proposed in view of such a conventional situation, and provides a method for producing a copper-iron alloy capable of reducing the mixing of pores and obtaining a high-quality ingot.

本発明に係る銅鉄合金の製造方法は、電解銅と、純鉄の粒片を溶解炉に投入する投入工程と、前記電解銅を溶解させ、銅溶湯中のガスを脱気させる脱気工程と、前記純鉄を溶解させ、銅と鉄とを晶化反応させる反応工程と、前記晶化反応させた反応溶湯を鋳型に注湯する注湯工程とを有することを特徴とする。   The method for producing a copper-iron alloy according to the present invention includes electrolytic copper and a step of introducing pure iron particles into a melting furnace, and a degassing step of dissolving the electrolytic copper and degassing the gas in the molten copper. And a reaction step in which the pure iron is dissolved to cause crystallization reaction between copper and iron, and a pouring step in which the reaction molten metal obtained by the crystallization reaction is poured into a mold.

また、本発明に係る銅鉄合金の製造方法は、電解銅を第1の溶解炉で溶解させ、銅溶湯中のガスを脱気させる銅溶湯脱気工程と、純鉄を第2の溶解炉で溶解させ、鉄溶湯中のガスを脱気させる鉄溶湯脱気工程と、前記第1の溶解炉の銅溶湯と前記第2の溶解炉の鉄溶湯とを混合し、銅と鉄とを晶化反応させる反応工程と、前記晶化反応させた反応溶湯を鋳型に注湯する注湯工程とを有することを特徴とする。   Moreover, the manufacturing method of the copper iron alloy which concerns on this invention melts | dissolves electrolytic copper with a 1st melting furnace, and degasses the gas in a molten copper, and the 2nd melting furnace with pure iron The molten iron degassing step for degassing the gas in the molten iron, mixing the molten copper in the first melting furnace with the molten iron in the second melting furnace, and crystallizing copper and iron. A crystallization reaction step and a pouring step of pouring the crystallization reaction reaction molten metal into a mold.

本発明によれば、溶湯の粘度が高くなるCu/Fe間の晶化反応の前に、溶湯中のガスを十分に脱気することができるため、気孔の混入が極めて少ない、高品質な鋳塊を得ることができる。   According to the present invention, the gas in the molten metal can be sufficiently degassed before the crystallization reaction between Cu / Fe in which the viscosity of the molten metal becomes high. A lump can be obtained.

第1の実施の形態における銅鉄合金の製造方法を示すフローチャートである。It is a flowchart which shows the manufacturing method of the copper iron alloy in 1st Embodiment. 第2の実施の形態における銅鉄合金の製造方法を示すフローチャートである。It is a flowchart which shows the manufacturing method of the copper iron alloy in 2nd Embodiment.

以下、本発明の実施の形態について、図面を参照しながら下記順序にて詳細に説明する。
1.第1の実施の形態
2.第2の実施の形態
3.実施例
Hereinafter, embodiments of the present invention will be described in detail in the following order with reference to the drawings.
1. First Embodiment 2. FIG. Second Embodiment 3. FIG. Example

<1.第1の実施の形態>
図1は、第1の実施の形態における銅鉄合金の製造方法を示すフローチャートである。図1に示すように、第1の実施の形態における銅鉄合金の製造方法は、電解銅と、純鉄の粒片を溶解炉に投入する投入工程S11と、電解銅を溶解させ、銅溶湯中のガスを脱気させる脱気工程S12と、純鉄を溶解させ、Cu/Fe間に晶化反応させる反応工程S13と、晶化反応させた反応溶湯を鋳型に注湯する注湯工程S14と、加工工程S15とを有する。
<1. First Embodiment>
FIG. 1 is a flowchart showing a method for producing a copper-iron alloy in the first embodiment. As shown in FIG. 1, the method for producing a copper-iron alloy in the first embodiment includes electrolytic copper, a charging step S <b> 11 in which pure iron particles are charged into a melting furnace, and electrolytic copper is melted to obtain a molten copper. Degassing step S12 for degassing the gas therein, reaction step S13 for dissolving pure iron and crystallization reaction between Cu / Fe, and pouring step S14 for pouring the crystallization reaction reaction molten metal into the mold And processing step S15.

投入工程S11では、電解銅と、純鉄の粒片を溶解炉に投入する。電解銅は、粗銅を電解精錬することによって得られる、いわゆる電気銅であり、純度が99.99%以上の純銅である。純鉄は、炭素含有量が0.02%以下であり、その他の不純物元素が非常に少ない鉄である。また、純鉄の粒片は、焼鈍などにより球状化処理された球状であることが好ましい。また、純鉄の粒片の粒径は、網ふるいの目開き(JIS Z 8801)で0.5mm以上2.0mm以下であることが好ましい。純鉄の粒片が網ふるいの目開きで0.5mm未満である場合、酸化反応により粉塵爆発が起こる虞がある。一方、純鉄の粒片が目開きで2.0mmより大きい場合、次の脱気工程S12において、Feの溶融時間とCu/Feの晶化時間が長くなり、結果として結晶の成長に差異がでる虞がある。また、原料投入工程S11において、例えば、優れた電磁波遮蔽効果を得るために、電解銅と、純鉄の粒片と共に、コバルト、ニッケル、マンガンクロムなどを少量添加してもよい。   In the charging step S11, electrolytic copper and pure iron particles are charged into a melting furnace. The electrolytic copper is so-called electrolytic copper obtained by electrolytic refining of crude copper, and is pure copper having a purity of 99.99% or more. Pure iron is iron with a carbon content of 0.02% or less and very little other impurity elements. Moreover, it is preferable that the particle pieces of pure iron have a spherical shape that has been spheroidized by annealing or the like. The particle diameter of the pure iron particles is preferably 0.5 mm or more and 2.0 mm or less in terms of mesh sieve openings (JIS Z 8801). If the pure iron particles are less than 0.5 mm with a mesh sieve opening, dust explosion may occur due to the oxidation reaction. On the other hand, when the pure iron particles are larger than 2.0 mm with an opening, in the next degassing step S12, the melting time of Fe and the crystallization time of Cu / Fe become long, resulting in a difference in crystal growth. There is a risk of going out. Further, in the raw material charging step S11, for example, in order to obtain an excellent electromagnetic wave shielding effect, a small amount of cobalt, nickel, manganese chromium, etc. may be added together with electrolytic copper and pure iron particles.

溶解炉としては、燃焼炉又は電気炉を使用することができるが、高品質な鋳塊を製造する観点から、電気炉の一つである高周波誘導炉を使用することが好ましい。高周波溶解炉は、誘導電力によって溶湯を活発に攪拌するため、次の銅溶湯脱気工程S12において、銅溶湯中の純鉄の粒片を均一に分散させ、銅溶湯の粘度を低下させ、ガスの脱気を十分に行うことができる。また、溶解炉の炉材は、グラファイト系を避け、シリカ系又はマグネシア系を採用することが望ましい。グラファイト系の炉材を使用し、溶湯中に炭素が溶け込んでしまうと、Feの融点が低下してCu/Fe間の晶化反応が乱され、また、Fe/C合金が生じて偏析の原因となる。   As the melting furnace, a combustion furnace or an electric furnace can be used, but from the viewpoint of producing a high quality ingot, it is preferable to use a high frequency induction furnace which is one of electric furnaces. The high frequency melting furnace vigorously agitates the molten metal by induction power, so in the next molten copper degassing step S12, the particles of pure iron in the molten copper are uniformly dispersed, the viscosity of the molten copper is reduced, Can be sufficiently deaerated. Further, it is desirable that the melting furnace material be a silica-based or magnesia-based material, avoiding a graphite-based material. When graphite furnace material is used and carbon dissolves in the molten metal, the melting point of Fe is lowered and the crystallization reaction between Cu / Fe is disturbed, and the Fe / C alloy is produced, causing segregation. It becomes.

脱気工程S12では、溶解炉の温度をCuの融点(1083℃)以上、Feの融点(1535℃)以下にし、電解銅を溶解させる。溶解炉の温度は、脱気促進の観点から、なるべく高温域である方が好ましい。   In the deaeration step S12, the melting furnace temperature is set to a melting point of Cu (1083 ° C.) or higher and a melting point of Fe (1535 ° C.) or lower to dissolve electrolytic copper. The temperature of the melting furnace is preferably as high as possible from the viewpoint of promoting degassing.

電解銅を溶解させた後、溶解炉の温度を保ち、銅溶湯中のガスを十分に脱気させる。脱気時間は、原料の投入量によるが、例えば合計100kgを投入した場合、20〜50分程度である。   After the electrolytic copper is dissolved, the temperature of the melting furnace is maintained, and the gas in the molten copper is sufficiently degassed. Although the deaeration time depends on the amount of raw material charged, for example, when a total of 100 kg is charged, it is about 20 to 50 minutes.

脱気工程S12における銅溶湯は、Cu液相に未融解のFe固体が分散した混相であり、Cu液体の密度とFe固体の密度は、それぞれ7940kg/mと7874kg/mとほぼ同じ値である。このため、粗粒のFe固体は、Cu液相中に浮遊し、相互干渉が少ないため、溶湯は低粘度となる。したがって、溶解炉の温度を一定時間保つことにより、溶湯中のガスを容易に脱気させることができる。また、原料投入工程S11において、網ふるいの目開き(JIS Z 8801)で0.5mm以上2.0mm以下の純鉄の粒片を投入することにより、溶湯の粘度を低下させることができるため、溶湯中のガスをより容易に脱気させることができる。 Molten copper in degassing step S12, a mixed phase of Fe solid is dispersed unmelted in Cu liquid phase, the density of the density and Fe solid Cu liquid, respectively almost the same value as 7940kg / m 3 and 7874kg / m 3 It is. For this reason, since the coarse Fe solid floats in the Cu liquid phase and there is little mutual interference, the molten metal has a low viscosity. Therefore, the gas in the molten metal can be easily degassed by maintaining the temperature of the melting furnace for a certain time. Moreover, in the raw material charging step S11, the viscosity of the molten metal can be reduced by introducing particles of pure iron of 0.5 mm or more and 2.0 mm or less with a mesh sieve opening (JIS Z 8801). The gas in the molten metal can be degassed more easily.

また、銅溶湯中にケイ素(Si)、リン(P)、リチウム(Li)などを含むCu脱酸剤を添加することが好ましい。これにより、銅溶湯中のガスの脱気を促進させ、銅溶湯中の気泡の紛れ込みを確実に低減することができる。   Moreover, it is preferable to add Cu deoxidizer containing silicon (Si), phosphorus (P), lithium (Li) etc. in a molten copper. Thereby, the deaeration of the gas in the molten copper can be promoted, and the intrusion of bubbles in the molten copper can be reliably reduced.

晶化反応工程S13では、溶解炉の温度をFeの融点(1535℃)以上にし、純鉄を溶解させ、銅と鉄とを晶化反応させる。溶解炉の温度は、晶化反応の促進と完結の観点から、なるべく高温域の方が好ましい。なお、晶化反応時間は、原料の投入量によるが、例えば合計100kgを投入した場合、5〜40分程度である。   In the crystallization reaction step S13, the temperature of the melting furnace is set to the melting point of Fe (1535 ° C.) or more, pure iron is dissolved, and copper and iron are crystallized. The temperature of the melting furnace is preferably as high as possible from the viewpoint of promoting and completing the crystallization reaction. The crystallization reaction time depends on the amount of raw material charged, but is about 5 to 40 minutes when a total of 100 kg is charged, for example.

Feは、Cuに対する溶解度が2%と低いため、大半が過飽和成分となり、直ぐにCuと結合し、さらに、これらの結合単位は、晶化反応を繰り返してCu/Fe間化合物に成長する。このCu/Fe間化合物は、極めて安定な物質であり、その融点は、Feの融点(1535℃)よりも高くなる。また、金属間化合物の密度は、Cu液相と同程度であるから、これらの晶体粒片もCuの分散媒に懸濁する。晶体粒片の粒径は、10−9〜10−7mと微細である。また、晶体粒片の一部は球状化しているが、大半は扁平な紐状を呈している。晶化反応を繰り返して晶体粒片の濃度が高くなると、混相は容易に分散コロイドになり、流動抵抗が増大し、高粘度を発現する。この結果、晶化反応は、阻害され、停留する。 Since Fe has a low solubility in Cu of 2%, most of it becomes a supersaturated component and immediately bonds to Cu, and these bond units grow into a Cu / Fe compound by repeating the crystallization reaction. This Cu / Fe compound is a very stable substance, and its melting point is higher than the melting point of Fe (1535 ° C.). Further, since the density of the intermetallic compound is approximately the same as that of the Cu liquid phase, these crystal grain pieces are also suspended in the Cu dispersion medium. The grain size of the crystal grains is as small as 10 −9 to 10 −7 m. In addition, some of the crystal grain pieces are spheroidized, but most of them have a flat string shape. When the crystallization reaction is repeated to increase the concentration of the crystal grain fragments, the mixed phase easily becomes a dispersed colloid, the flow resistance increases, and a high viscosity is developed. As a result, the crystallization reaction is inhibited and stops.

Cu/Fe間の晶化反応を完結するためには、Feの過飽和度、反応温度、及び反応時間を最適化し、さらには反応溶湯の粘度の変化によって進行度を判定し、反応の停留を防ぐことが肝要である。CuとFeの晶化反応が停留すると、Feの過飽和成分が局所的に析出し、偏析が発生し易くなる。   In order to complete the Cu / Fe crystallization reaction, the degree of supersaturation of Fe, the reaction temperature, and the reaction time are optimized, and the degree of progress is judged by the change in viscosity of the molten metal to prevent the reaction from stopping. It is important. When the crystallization reaction between Cu and Fe stops, the supersaturated component of Fe is locally precipitated and segregation is likely to occur.

注湯工程S14では、反応溶湯を鋳型に注湯し、急冷する。このとき、超音波発振器などによって鋳型に振動を与えることが好ましい。これにより、微結晶体粒片が均一に分散した銅鉄合金インゴットを得ることができる。   In the pouring step S14, the reaction molten metal is poured into a mold and rapidly cooled. At this time, it is preferable to apply vibration to the mold by an ultrasonic oscillator or the like. Thereby, it is possible to obtain a copper iron alloy ingot in which fine crystal particles are uniformly dispersed.

加工工程S15では、鋳塊(インゴット)に対して、塑性加工(熱間加工・冷間加工)、焼鈍などを行い、製品化する。例えば、線材に加工する場合、インゴットを鍛造して丸棒材にし、熱間ロール圧延して線材とし、この線材を複数回冷間線引きすることにより、直径0.1mmオーダの細線まで伸線することができる。   In the processing step S15, the ingot (ingot) is subjected to plastic processing (hot processing / cold processing), annealing, and the like to produce a product. For example, when processing into a wire rod, the ingot is forged into a round bar, hot rolled to obtain a wire rod, and the wire rod is drawn to a thin wire having a diameter of 0.1 mm by cold drawing a plurality of times. be able to.

また、鋳塊(インゴット)は、純銅を追加、調合した上で、1300℃以上1500℃以下の温度で再溶融させてもよい。再溶融させた調合溶湯は、連続鋳造方式で鋳片(ビレット)にし、鋳片を熱間加工(押出し、圧延、引き抜きなど)、熱処理することにより、安定した材料に製品化することができる。   Further, the ingot may be remelted at a temperature of 1300 ° C. or higher and 1500 ° C. or lower after pure copper is added and mixed. The remelted mixed molten metal is made into a slab (billet) by a continuous casting method, and the slab can be commercialized into a stable material by hot working (extrusion, rolling, drawing, etc.) and heat treatment.

このような二段階溶解法によれば、溶湯の粘度が高くなるCu/Fe間の晶化反応の前の脱気工程S12において、銅溶湯中のガスを十分に脱気することができる。また、投入工程S11において、球状の純鉄の粒片を投入することにより、脱気工程S12の銅溶湯の粘度を低くすることができ、銅溶湯中のガスをさらに脱気することができる。また、脱気工程12において、銅溶湯中にケイ素、リン、又はリチウムのうち少なくとも1種を含む脱酸剤を添加することにより、銅溶湯中のガスの脱気を促進させ、銅溶湯中への気泡の紛れ込みを確実に低減させることができる。   According to such a two-stage melting method, the gas in the molten copper can be sufficiently degassed in the degassing step S12 before the crystallization reaction between Cu / Fe in which the viscosity of the molten metal increases. In addition, in the charging step S11, by introducing spherical pure iron particles, the viscosity of the molten copper in the degassing step S12 can be lowered, and the gas in the molten copper can be further degassed. Further, in the degassing step 12, by adding a deoxidizer containing at least one of silicon, phosphorus, or lithium to the molten copper, the degassing of the gas in the molten copper is promoted, and into the molten copper. It is possible to reliably reduce the bubble intrusion.

<2.第2の実施の形態>
図2は、第2の実施の形態における銅鉄合金の製造方法を示すフローチャートである。図2に示すように、第2の実施の形態における銅鉄合金の製造方法は、電解銅を第1の溶解炉で溶解させ、銅溶湯中のガスを脱気させる銅溶湯脱気工程S21と、純鉄を第2の溶解炉で溶解させ、鉄溶湯中のガスを脱気させる鉄溶湯脱気工程S22と、第1の溶解炉の銅溶湯と第2の溶解炉の鉄溶湯とを混合し、銅と鉄とを晶化反応させる反応工程S23と、晶化反応させた反応溶湯を鋳型に注湯する注湯工程S24と、加工工程25とを有する。
<2. Second Embodiment>
FIG. 2 is a flowchart showing a method for producing a copper-iron alloy according to the second embodiment. As shown in FIG. 2, the method for producing a copper-iron alloy in the second embodiment includes a molten copper degassing step S21 in which electrolytic copper is melted in a first melting furnace and gas in the molten copper is degassed. The molten iron degassing step S22 for melting pure iron in the second melting furnace and degassing the gas in the molten iron, and the molten copper in the first melting furnace and the molten iron in the second melting furnace are mixed. And a reaction step S23 for crystallization reaction of copper and iron, a pouring step S24 for pouring the reaction melt obtained by the crystallization reaction into a mold, and a processing step 25.

銅溶湯脱気工程S21では、電解銅を第1の溶解炉で溶解させ、銅溶湯中のガスを脱気させる。電解銅は、粗銅を電解精錬することによって得られる、いわゆる電気銅であり、純度が99.99%以上の純銅である。第1の溶解炉としては、燃焼炉又は電気炉を使用することができるが、高品質な鋳塊を製造する観点から、電気炉の一つである高周波誘導炉を使用することが好ましい。また、第1の溶解炉の炉材は、グラファイト系を避け、シリカ系又はマグネシア系を採用することが望ましい。グラファイト系の炉材を使用し、溶湯中に炭素が溶け込んでしまうと、Feの融点が低下してCu/Fe間の晶化反応が乱され、また、Fe/C合金が生じて偏析の原因となる。   In the molten copper degassing step S21, electrolytic copper is melted in the first melting furnace, and the gas in the molten copper is degassed. The electrolytic copper is so-called electrolytic copper obtained by electrolytic refining of crude copper, and is pure copper having a purity of 99.99% or more. Although a combustion furnace or an electric furnace can be used as the first melting furnace, it is preferable to use a high-frequency induction furnace, which is one of electric furnaces, from the viewpoint of manufacturing a high-quality ingot. Moreover, it is desirable that the furnace material of the first melting furnace avoids the graphite system and adopts the silica system or the magnesia system. When graphite furnace material is used and carbon dissolves in the molten metal, the melting point of Fe is lowered and the crystallization reaction between Cu / Fe is disturbed, and the Fe / C alloy is produced, causing segregation. It becomes.

電解銅の溶解は、第1の溶解炉の温度をCuの融点(1083℃)以上、Feの融点(1535℃)以下にして行われる。溶解炉の温度は、脱気促進の観点から、なるべく高温域の方が好ましい。   The electrolytic copper is melted at a temperature of the first melting furnace not lower than the melting point of Cu (1083 ° C.) and not higher than the melting point of Fe (1535 ° C.). The temperature of the melting furnace is preferably as high as possible from the viewpoint of promoting degassing.

電解銅を溶解させた後、第1の溶解炉の温度を保ち、銅溶湯中のガスを十分に脱気させる。脱気時間は、電解銅の投入量によるが、例えば100kgを投入した場合、20〜50分程度である。   After the electrolytic copper is dissolved, the temperature of the first melting furnace is maintained, and the gas in the molten copper is sufficiently degassed. Although the deaeration time depends on the amount of electrolytic copper added, for example, when 100 kg is added, it is about 20 to 50 minutes.

また、銅溶湯中にケイ素(Si)、リン(P)、リチウム(Li)などを含むCu脱酸剤を添加することが好ましい。これにより、銅溶湯中のガスの脱気を促進させ、銅溶湯中への気泡の紛れ込みを確実に低減させることができる。   Moreover, it is preferable to add Cu deoxidizer containing silicon (Si), phosphorus (P), lithium (Li) etc. in a molten copper. Thereby, the deaeration of the gas in the molten copper can be promoted, and bubbles can be reliably reduced in the molten copper.

鉄溶湯脱気工程S22では、純鉄を第2の溶解炉で溶解させ、鉄溶湯中のガスを脱気させる。純鉄は、炭素含有量が0.02%以下であり、その他の不純物元素が非常に少ない鉄である。第2の溶解炉は、第1の溶解炉と同様のものを用いることができる。   In the molten iron degassing step S22, pure iron is melted in the second melting furnace, and the gas in the molten iron is degassed. Pure iron is iron with a carbon content of 0.02% or less and very little other impurity elements. As the second melting furnace, the same one as the first melting furnace can be used.

純鉄の溶解は、第2の溶解炉の温度をFeの融点(1535℃)以上にして行われる。溶解炉の温度は、脱気促進の観点から、なるべく高温域の方が好ましい。   The melting of pure iron is performed by setting the temperature of the second melting furnace to the melting point of Fe (1535 ° C.) or higher. The temperature of the melting furnace is preferably as high as possible from the viewpoint of promoting degassing.

純鉄を溶解させた後、第2の溶解炉の温度を保ち、鉄溶湯中のガスを十分に脱気させる。脱気時間は、純鉄の投入量によるが、例えば100kgを投入した場合、20〜50分程度である。   After melting pure iron, the temperature of the second melting furnace is maintained and the gas in the molten iron is sufficiently degassed. Although the deaeration time depends on the amount of pure iron introduced, for example, when 100 kg is introduced, it is about 20 to 50 minutes.

また、鉄溶湯中にアルミニウム(Al)、マンガン(Mn)、チタン(Ti)、ケイ素(Si)などを含むFe脱酸剤を添加することが好ましい。これにより、鉄溶湯中のガスの脱気を促進させ、鉄溶湯中への気泡の紛れ込みの混入を確実に低減させることができる。   Moreover, it is preferable to add Fe deoxidizer containing aluminum (Al), manganese (Mn), titanium (Ti), silicon (Si), etc. in molten iron. Thereby, the deaeration of the gas in the molten iron can be promoted, and the mixing of bubbles into the molten iron can be reliably reduced.

反応工程S23では、第1の溶解炉の銅溶湯と第2の溶解炉の鉄溶湯とを混合し、銅と鉄とを晶化反応させる。銅溶湯と鉄溶湯との混合は、略同一の溶湯温度で行い、湯面が乱れないように一方の溶湯を流し込む。混合時の溶解炉の温度は、晶化反応の促進と完結の観点から、なるべく高温域の方が好ましい。なお、晶化反応時間は、原料の投入量によるが、例えば合計200kgを投入した場合、5〜40分程度である。   In the reaction step S23, the molten copper of the first melting furnace and the molten iron of the second melting furnace are mixed to cause crystallization reaction between copper and iron. Mixing of the molten copper and the molten iron is performed at substantially the same molten metal temperature, and one molten metal is poured so that the molten metal surface is not disturbed. The temperature of the melting furnace at the time of mixing is preferably as high as possible from the viewpoint of promoting and completing the crystallization reaction. The crystallization reaction time depends on the amount of raw material charged, but is about 5 to 40 minutes when a total of 200 kg is charged, for example.

また、反応工程S23において、例えば、優れた電磁波遮蔽効果を得るために、電解銅と、純鉄の粒片と共に、コバルト、ニッケル、マンガンクロムなどを少量添加してもよい。   In the reaction step S23, for example, in order to obtain an excellent electromagnetic wave shielding effect, a small amount of cobalt, nickel, manganese chromium or the like may be added together with electrolytic copper and pure iron particles.

Feは、Cuに対する溶解度が2%と低いため、大半が過飽和成分となり、直ぐにCuと結合し、さらに、これらの結合単位は、晶化反応を繰り返して金属間化合物に成長する。金属間化合物の密度は、Cu液相と同程度であるから、これらの晶体粒片もCuの分散媒に懸濁する。晶体粒片の粒径は10−9〜10−7mと微細であり、晶体粒片の一部は球状化し、大半が扁平な紐状を呈している。晶化反応を繰り返して分散粒片の濃度が高くなると、Cu液相との混相は分散コロイドになり、流動抵抗が増大し、高粘度を発現する。 Since Fe has a low solubility in Cu of 2%, most of it becomes a supersaturated component and immediately bonds to Cu, and these bond units grow into an intermetallic compound by repeating the crystallization reaction. Since the density of the intermetallic compound is about the same as that of the Cu liquid phase, these crystal grain pieces are also suspended in the Cu dispersion medium. The grain size of the crystal grain pieces is as small as 10 −9 to 10 −7 m, a part of the crystal grain pieces are spheroidized, and most of them have a flat string shape. When the concentration of the dispersed particle pieces increases by repeating the crystallization reaction, the mixed phase with the Cu liquid phase becomes a dispersed colloid, the flow resistance increases, and high viscosity is developed.

Cu/Fe間の晶化反応は、不完全な場合、品質低下となるFe偏析が発生してしまい、結晶の生長により巨晶化した場合、材料の物性が劣化する。このため、反応温度、及び反応時間を最適化し、さらには反応溶湯の粘度の変化によって、反応の進行度を判定することが好ましい。   When the crystallization reaction between Cu / Fe is incomplete, Fe segregation that lowers the quality occurs, and when crystallized due to crystal growth, the physical properties of the material deteriorate. For this reason, it is preferable to determine the progress of the reaction by optimizing the reaction temperature and the reaction time, and further by changing the viscosity of the reaction molten metal.

次の注湯工程S24及び加工工程S25は、それぞれ第1の実施の形態の注湯工程S14及び加工工程S15と同様のため、ここでは説明を省略する。   Since the next pouring step S24 and the processing step S25 are the same as the pouring step S14 and the processing step S15 of the first embodiment, respectively, description thereof is omitted here.

このような別々溶解法によれば、溶湯の粘度が高くなるCu/Fe間の晶化反応の前の銅溶湯脱気工程S21及び鉄溶湯脱気工程S22において、銅溶湯中及び鉄溶湯中のガスをそれぞれ十分に脱気することができる。また、銅溶湯脱気工程21において、銅溶湯中にケイ素、リン、又はリチウムの少なくとも1種を含む脱酸剤を添加することにより、銅溶湯中のガスの脱気を促進させ、銅溶湯中への気泡の紛れ込みを確実に低減させることができる。また、鉄溶湯脱気工程22において、鉄溶湯中にアルミニウム、マンガン、チタン、又はケイ素のうち少なくとも1種を含む脱酸剤を添加することにより、鉄溶湯中のガスの脱気を促進させ、鉄溶湯中への気泡の紛れ込みを確実に低減させることができる。   According to such a separate melting method, in the molten copper degassing step S21 and the molten iron degassing step S22 before the crystallization reaction between Cu / Fe where the molten metal has a high viscosity, in the molten copper and in the molten iron Each gas can be sufficiently degassed. In addition, in the molten copper degassing step 21, by adding a deoxidizer containing at least one of silicon, phosphorus, or lithium to the molten copper, gas degassing in the molten copper is promoted, It is possible to surely reduce the bubble intrusion. Further, in the molten iron degassing step 22, by adding a deoxidizer containing at least one of aluminum, manganese, titanium, or silicon in the molten iron, the degassing of the gas in the molten iron is promoted, It is possible to surely reduce the bubble intrusion into the molten iron.

<3.実施例>
以下、本発明の実施例について説明する。本実施例では、銅鉄合金(50Cu−50Fe)のインゴット(100Kg)を、実施例1(二段階溶解法)、及び実施例2(別々溶解法)によって製造した。なお、本発明はこれらの実施例に限定されるものではない。
<3. Example>
Examples of the present invention will be described below. In this example, copper iron alloy (50Cu-50Fe) ingots (100 Kg) were produced according to Example 1 (two-stage dissolution method) and Example 2 (separate dissolution method). The present invention is not limited to these examples.

[実施例1]
先ず、高周波溶解炉に電解銅(純度99.99%以上)を50kgと、球状化した純鉄(炭素含有量0.02%以下)の粒片(目開き(JIS Z 8801)1.7mm)を50kg投入した。
[Example 1]
First, 50 kg of electrolytic copper (purity 99.99% or more) in a high-frequency melting furnace, and spherical particles of pure iron (carbon content 0.02% or less) (mesh (JIS Z 8801) 1.7 mm) Of 50 kg.

高周波溶解炉の溶湯温度を1300℃に上げ、Cuのみを溶融させ、30分間保持した。また、脱酸剤としてSiを添加し、Cu液相の気泡を完全に脱気させた。また、投入した脱酸剤は、実質的に燃えてなくなった。   The molten metal temperature of the high frequency melting furnace was raised to 1300 ° C., only Cu was melted, and held for 30 minutes. Further, Si was added as a deoxidizing agent, and bubbles in the Cu liquid phase were completely deaerated. In addition, the deoxidizer that was introduced did not substantially burn.

次に、高周波溶解炉の溶湯温度をFeの融点以上に上げ、Feを溶融させるとともに、Cu/Fe間に晶化反応を開始させた。晶化反応の終了を溶湯の粘性から判定し、反応溶湯を鋳型に注湯して急冷し、鋳塊を得た。   Next, the molten metal temperature of the high-frequency melting furnace was raised to the melting point of Fe or more to melt Fe, and a crystallization reaction was started between Cu / Fe. The completion of the crystallization reaction was judged from the viscosity of the molten metal, and the molten metal was poured into a mold and rapidly cooled to obtain an ingot.

このインゴット(直径120mm)を鍛造して、直径80mmの丸棒材にし、熱間ロール圧延して直径20mmの線材とし、この線材を複数回冷間線引きすることにより、直径0.1mmオーダの線材を得た。この塑性加工において、断線は発生しなかった。   This ingot (diameter: 120 mm) is forged into a round bar with a diameter of 80 mm, hot-rolled into a wire with a diameter of 20 mm, and this wire is cold-drawn several times to obtain a wire with an order of 0.1 mm in diameter. Got. In this plastic working, no disconnection occurred.

[実施例2]
先ず、第1の高周波溶解炉に電解銅(純度99.99%以上)を100kg投入し、第1の高周波溶解炉の溶湯温度を1300℃に上げてCuを溶融させ、30分間保持した。また、脱酸剤としてSiを添加し、Cu液相の気泡を完全に脱気させた。また、投入した脱酸剤は、実質的に燃えてなくなった。
[Example 2]
First, 100 kg of electrolytic copper (purity 99.99% or more) was charged into the first high-frequency melting furnace, the molten metal temperature of the first high-frequency melting furnace was raised to 1300 ° C., and Cu was melted and held for 30 minutes. Further, Si was added as a deoxidizing agent, and bubbles in the Cu liquid phase were completely deaerated. In addition, the deoxidizer that was introduced did not substantially burn.

また、第2の高周波溶解炉に純鉄(炭素含有量0.02%以下)を100kg投入し、第2の高周波溶解炉の溶湯温度をFeの融点以上に上げてFeを溶融させ、30分間保持した。また、脱酸剤としてAlを添加し、Fe液相の気泡を完全に脱気させた。また、投入した脱酸剤は、実質的に燃えてなくなった。   Also, 100 kg of pure iron (carbon content of 0.02% or less) is charged into the second high-frequency melting furnace, and the molten metal temperature of the second high-frequency melting furnace is raised to the melting point of Fe or more to melt Fe for 30 minutes. Retained. In addition, Al was added as a deoxidizer to completely degas the bubbles in the Fe liquid phase. In addition, the deoxidizer that was introduced did not substantially burn.

次に、第1の高周波溶解炉の溶湯温度を上げ、第2の高周波溶解炉の溶湯温度と略等しくした。そして、第1の高周波溶解炉の銅溶湯に第2の高周波溶解炉の鉄溶湯を湯面が乱れないように流し込み、CuとFeの間に晶化反応を開始させた。晶化反応の終了を溶湯の粘性から判定し、反応溶湯を鋳型に注湯して急冷し、鋳塊を得た。   Next, the molten metal temperature of the 1st high frequency melting furnace was raised, and it was made substantially equal to the molten metal temperature of the 2nd high frequency melting furnace. Then, the molten iron of the second high frequency melting furnace was poured into the molten copper of the first high frequency melting furnace so that the molten metal surface was not disturbed, and a crystallization reaction was started between Cu and Fe. The completion of the crystallization reaction was judged from the viscosity of the molten metal, and the molten metal was poured into a mold and rapidly cooled to obtain an ingot.

このインゴット(直径120mm)を鍛造して、直径80mmの丸棒材にし、熱間ロール圧延して直径20mmの線材とし、この線材を複数回冷間線引きすることにより、直径0.1mmオーダの線材を得た。この塑性加工において、断線は発生しなかった。   This ingot (diameter: 120 mm) is forged into a round bar with a diameter of 80 mm, hot-rolled into a wire with a diameter of 20 mm, and this wire is cold-drawn several times to obtain a wire with an order of 0.1 mm in diameter. Got. In this plastic working, no disconnection occurred.

Claims (6)

電解銅と、純鉄の粒片を溶解炉に投入する投入工程と、
前記電解銅を溶解させ、銅溶湯中のガスを脱気させる脱気工程と、
前記純鉄を溶解させ、銅と鉄とを晶化反応させる反応工程と、
前記晶化反応させた反応溶湯を鋳型に注湯する注湯工程と
を有する銅鉄合金の製造方法。
A charging step of charging electrolytic copper and pure iron particles into a melting furnace;
A degassing step of dissolving the electrolytic copper and degassing the molten metal;
A reaction step of dissolving the pure iron and crystallizing copper and iron;
And a pouring step of pouring the crystallization reaction molten metal into a mold.
前記純鉄の粒片が球状である請求項1記載の銅鉄合金の製造方法。   The method for producing a copper-iron alloy according to claim 1, wherein the pure iron particles are spherical. 前記脱気工程では、銅溶湯中にケイ素、リン、又はリチウムの少なくとも1種を含む脱酸剤を添加する請求項1又は2記載の銅鉄合金の製造方法。   3. The method for producing a copper iron alloy according to claim 1, wherein in the degassing step, a deoxidizer containing at least one of silicon, phosphorus, or lithium is added to the molten copper. 電解銅を第1の溶解炉で溶解させ、銅溶湯中のガスを脱気させる銅溶湯脱気工程と
純鉄を第2の溶解炉で溶解させ、鉄溶湯中のガスを脱気させる鉄溶湯脱気工程と
前記第1の溶解炉の銅溶湯と前記第2の溶解炉の鉄溶湯とを混合し、銅と鉄とを晶化反応させる反応工程と、
前記晶化反応させた反応溶湯を鋳型に注湯する注湯工程と
を有する銅鉄合金の製造方法。
A molten copper deaeration process in which electrolytic copper is melted in the first melting furnace and the gas in the molten copper is degassed and a molten iron in which pure iron is melted in the second melting furnace and the gas in the molten iron is degassed A deaeration step, a reaction step of mixing the molten copper of the first melting furnace and the molten iron of the second melting furnace, and causing a crystallization reaction between copper and iron;
And a pouring step of pouring the crystallization reaction molten metal into a mold.
前記銅溶湯脱気工程では、銅溶湯中にケイ素、リン、又はリチウムのうち少なくとも1種を含む脱酸剤を添加する請求項4に記載の銅鉄合金の製造方法。   5. The method for producing a copper-iron alloy according to claim 4, wherein in the molten copper degassing step, a deoxidizer containing at least one of silicon, phosphorus, or lithium is added to the molten copper. 前記鉄溶湯脱気工程では、鉄溶湯中にアルミニウム、マンガン、チタン、又はケイ素のうち少なくとも1種を含む脱酸剤を添加する請求項4又は5記載の銅鉄合金の製造方法。   The method for producing a copper-iron alloy according to claim 4 or 5, wherein in the molten iron deaeration step, a deoxidizer containing at least one of aluminum, manganese, titanium, or silicon is added to the molten iron.
JP2012110857A 2012-05-14 2012-05-14 Method for producing copper-iron alloy Expired - Fee Related JP5608704B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012110857A JP5608704B2 (en) 2012-05-14 2012-05-14 Method for producing copper-iron alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012110857A JP5608704B2 (en) 2012-05-14 2012-05-14 Method for producing copper-iron alloy

Publications (2)

Publication Number Publication Date
JP2013237887A true JP2013237887A (en) 2013-11-28
JP5608704B2 JP5608704B2 (en) 2014-10-15

Family

ID=49763160

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012110857A Expired - Fee Related JP5608704B2 (en) 2012-05-14 2012-05-14 Method for producing copper-iron alloy

Country Status (1)

Country Link
JP (1) JP5608704B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113263161A (en) * 2021-04-25 2021-08-17 西安斯瑞先进铜合金科技有限公司 Preparation method of soldering bit
CN115029610A (en) * 2022-06-30 2022-09-09 宁波金田铜业(集团)股份有限公司 Preparation method of iron-copper alloy

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0617163A (en) * 1992-07-02 1994-01-25 Masamitsu Nakanishi Production of eutectic copper-iron alloy
JPH06212302A (en) * 1993-01-14 1994-08-02 Kobe Steel Ltd Method for reducing molten copper or copper alloy
JPH07197144A (en) * 1993-12-29 1995-08-01 Kobe Steel Ltd Production of cu or cu alloy casting product
JP2004225093A (en) * 2003-01-22 2004-08-12 Dowa Mining Co Ltd Copper-base alloy and manufacturing method therefor
JP2009148825A (en) * 2007-11-30 2009-07-09 Furukawa Electric Co Ltd:The Process for manufacturing copper alloy product and equipment therefor

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0617163A (en) * 1992-07-02 1994-01-25 Masamitsu Nakanishi Production of eutectic copper-iron alloy
JPH06212302A (en) * 1993-01-14 1994-08-02 Kobe Steel Ltd Method for reducing molten copper or copper alloy
JPH07197144A (en) * 1993-12-29 1995-08-01 Kobe Steel Ltd Production of cu or cu alloy casting product
JP2004225093A (en) * 2003-01-22 2004-08-12 Dowa Mining Co Ltd Copper-base alloy and manufacturing method therefor
JP2009148825A (en) * 2007-11-30 2009-07-09 Furukawa Electric Co Ltd:The Process for manufacturing copper alloy product and equipment therefor

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113263161A (en) * 2021-04-25 2021-08-17 西安斯瑞先进铜合金科技有限公司 Preparation method of soldering bit
CN113263161B (en) * 2021-04-25 2022-08-26 西安斯瑞先进铜合金科技有限公司 Preparation method of soldering bit
CN115029610A (en) * 2022-06-30 2022-09-09 宁波金田铜业(集团)股份有限公司 Preparation method of iron-copper alloy

Also Published As

Publication number Publication date
JP5608704B2 (en) 2014-10-15

Similar Documents

Publication Publication Date Title
JP5582982B2 (en) Aluminum alloy and method for producing the same
CN109439976A (en) A kind of composite inoculating method of composite modifier and cast Al-Si alloy
TWI500775B (en) Aluminum alloy and manufacturing method thereof
JP6223787B2 (en) Method for producing eutectic copper-iron alloy
CN104745897A (en) High-silicon wrought aluminum alloy material and production method thereof
CN105568019A (en) Refining method for CuAlMn shape memory alloy grains
JP4035323B2 (en) Purification of metallurgical grade silicon
US8920761B2 (en) Method for producing high purity silicon
WO2014026446A1 (en) Alloy for magnesium and magnesium alloy grain refinement, and preparation method thereof
JP5608704B2 (en) Method for producing copper-iron alloy
CN113528880A (en) Grain refiner for rare earth magnesium alloy, preparation method and method for preparing rare earth magnesium alloy by using grain refiner
CN110241342B (en) High-manganese-content aluminum-manganese intermediate alloy and preparation method thereof
CN115798778B (en) High-conductivity heat-resistant aluminum alloy wire and preparation method thereof
CN105002409B (en) A kind of Mg Mn intermediate alloys and preparation method thereof
CN102000808B (en) Magnesium alloy grain refiner and grain refined magnesium alloy and preparation method of thereof
JPH0617163A (en) Production of eutectic copper-iron alloy
JP4650725B2 (en) Method for producing maraging steel
CN115976371A (en) Super heat-resistant high-conductivity aluminum alloy conductor and preparation method thereof
JP2011012300A (en) Copper alloy and method for producing copper alloy
JP2013067824A (en) Copper alloy and cast
WO2007094265A1 (en) Raw material phosphor bronze alloy for casting of semi-molten alloy
CN114000020A (en) Ingot for large-size die forging and preparation method thereof
WO2012027992A1 (en) Preparation method of al-zr-c master alloy
CN112708807A (en) 4XXX series aluminum alloy and preparation method thereof
JP5252722B2 (en) High strength and high conductivity copper alloy and method for producing the same

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131010

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131210

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140206

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140819

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140901

R150 Certificate of patent or registration of utility model

Ref document number: 5608704

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees