JPH07197144A - Production of cu or cu alloy casting product - Google Patents

Production of cu or cu alloy casting product

Info

Publication number
JPH07197144A
JPH07197144A JP35031193A JP35031193A JPH07197144A JP H07197144 A JPH07197144 A JP H07197144A JP 35031193 A JP35031193 A JP 35031193A JP 35031193 A JP35031193 A JP 35031193A JP H07197144 A JPH07197144 A JP H07197144A
Authority
JP
Japan
Prior art keywords
metal
alloy
casting
deoxidation
ingot
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP35031193A
Other languages
Japanese (ja)
Inventor
Kenji Osumi
研治 大隅
Hirofumi Okada
裕文 岡田
Eiji Yoshida
栄次 吉田
Joji Masuda
穣司 益田
Kiyomasa Oga
清正 大賀
Motohiro Arai
基浩 新井
Kazutaka Kunii
一孝 國井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP35031193A priority Critical patent/JPH07197144A/en
Publication of JPH07197144A publication Critical patent/JPH07197144A/en
Pending legal-status Critical Current

Links

Landscapes

  • Manufacture And Refinement Of Metals (AREA)

Abstract

PURPOSE:To produce casting products free from crack defects by subjecting the melt of a Cu material to deoxidation by metallic deoxidizing agents contg. metals which are easier to be oxidized than the Cu material, then decreasing the concn. of the metals, etc., derived from these deoxidizing agents at a specific value of below, and then casting. CONSTITUTION:A Cu or Cu alloy is deoxidized by using >=1 kinds of the metallic deoxidizing agents contg. the metals (Ca, Al, Mg, Ti, Cr, Zr, etc.) which are easier to be oxidized than the Cu or Cu alloy in an arbitrary stage before casting at the time of casting the Cu or Cu alloy. The excessive metallic deoxidizing agents and other products of deoxidization floating on the molten metal surface in a stage for holding or transferring the molten metal are removed and the concn. of the metals and metal oxides derived from the deoxidizing agents is decreased to <=200ppm in terms of the metals if the oxygen concn. in the melt of the Cu or Cu alloy is decreased down to the equilibrium value of deoxidization. As a result, the Cu or Cu alloy casting products free from the crack defects are obtd.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、CuおよびCu合金鋳
造製品の製法に関し、殊に鋳造時の鋳塊割れやその後の
熱間加工割れを防止し、割れ欠陥のない鋳造製品を得る
ことのできる製法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing Cu and Cu alloy cast products, and particularly to prevent ingot cracks during casting and hot work cracks thereafter, and to obtain cast products without crack defects. It is about the manufacturing method that can be done.

【0002】[0002]

【従来の技術】CuおよびCu合金は電気や熱の良導伝
体であると共に耐食性や加工性、強度等においても優れ
たものであるところから、従来より特に電子・電気分野
を主体にして広く用いられている。このうち、例えばC
u−Fe系合金はリードフレーム等の電子部品材料とし
て汎用されている。
2. Description of the Related Art Since Cu and Cu alloys are good conductors of electricity and heat and are excellent in corrosion resistance, workability, strength, etc., they are widely used mainly in the fields of electronics and electricity. It is used. Of these, for example, C
u-Fe alloys are widely used as materials for electronic parts such as lead frames.

【0003】ところで純CuやCu系合金(以下、単に
Cu合金ということがある)製品は通常次の様な工程を
経て製造されるが、該Cu合金の鋳造工程でしばしば鋳
塊割れや熱間割れを起こすことが経験されており、こう
した現象は結晶粒が粗大なものほど顕著に表われること
が確認されている。中でもCu−Fe系合金の場合は、
鋳造時の鋳塊割れとその後の熱間加工時に熱間加工割れ
を起こし易いことが大きな問題として指摘されている。 原料→溶解→成分調整→鋳造→ソーキング→熱間圧延→
冷間圧延→熱処理→表面処理→製品→検査→出荷
By the way, a pure Cu or Cu-based alloy (hereinafter sometimes simply referred to as a Cu alloy) product is usually manufactured through the following steps. However, in the Cu alloy casting step, ingot cracking or hot working is often performed. It has been experienced that cracking occurs, and it has been confirmed that such a phenomenon is more prominent in coarser grains. Among them, in the case of Cu-Fe alloy,
It is pointed out that hot cracking tends to occur during ingot cracking during casting and subsequent hot working. Raw material → Melting → Component adjustment → Casting → Soaking → Hot rolling →
Cold rolling → heat treatment → surface treatment → product → inspection → shipping

【0004】こうした鋳塊割れ等の欠陥を防止するに
は、一つの手段として結晶粒の微細化が有効である。結
晶粒を微細化させる原理としては、結晶粒が核生成とそ
の成長により支配されるという事実のもとで、凝固時に
おける結晶粒の数の増大と凝固完了後の加熱等による粒
成長の阻止が有効と思われるところから、下記の様な手
段が講じられている。 (1) 結晶粒の核作用を有する物質の添加、もしくは、添
加された物質と溶湯との反応による新たな核作用物質の
生成、(2) 急冷凝固法、(3) 溶湯振動法。
In order to prevent such defects such as ingot cracking, miniaturization of crystal grains is effective as one means. The principle of refining crystal grains is to increase the number of crystal grains during solidification and prevent grain growth due to heating after completion of solidification, based on the fact that crystal grains are dominated by nucleation and growth. The following measures have been taken from the point where is considered effective. (1) Addition of a substance having a nuclear action of crystal grains, or generation of a new nuclear action substance by the reaction between the added substance and the molten metal, (2) rapid solidification method, (3) molten metal vibration method.

【0005】しかしながら、上記(2) および(3) の方法
は、大型鋳塊の場合に適用することが困難であるので、
実用規模での実施が難しく、実用上好ましいと考えられ
ているのは上記(1) の方法であり、具体的には、Cu系
形状記憶合金の溶製に当たり、溶湯中にCaを50〜5
00ppm程度添加することによって結晶粒を微細化す
る方法(特開昭62−167828号)、あるいはベリ
リウム−Cu合金を製造するに際し、Tiを0.05〜
0.5重量%程度添加することによって結晶粒を微細化
する方法(特開平4−305353号)等が提案されて
いる。
However, the above methods (2) and (3) are difficult to apply to large ingots, and
It is difficult to carry out on a practical scale and it is considered to be preferable in practice is the method of (1) above. Specifically, when Cu-based shape memory alloy is melted, 50 to 5 Ca is added to the molten metal.
In the method of refining the crystal grains by adding about 00 ppm (Japanese Patent Laid-Open No. 62-167828), or when producing a beryllium-Cu alloy, Ti is 0.05 to
A method for refining crystal grains by adding about 0.5% by weight (Japanese Patent Laid-Open No. 4-305353) has been proposed.

【0006】これらの方法は、基本的にはCu合金溶湯
中にCu合金よりも酸化され易い元素、例えばCaやT
i等を添加し、溶湯中に存在する酸素との反応によって
CaOやTiO2 等の微細な酸化物を多数生成させ、こ
れらを核剤として作用させることによって結晶粒の微細
化を図るものである。ところが、Cu合金鋳塊の中にこ
れらの元素が多量(100〜5000ppm程度)残存
すると、結晶粒の微細化は達成されるものの、該金属或
はそれらの酸化物に起因して鋳塊割れや線状欠陥等の表
面欠陥が表われ、更にはめっき処理に当たり該酸化物が
めっき不良の原因になるといった新たな問題が生じてく
る。
[0006] These methods basically use elements such as Ca and T which are more easily oxidized in the molten Cu alloy than the Cu alloy.
i and the like are added, a large number of fine oxides such as CaO and TiO 2 are produced by the reaction with oxygen existing in the molten metal, and these are used as a nucleating agent to make the crystal grains finer. . However, when a large amount (about 100 to 5000 ppm) of these elements remains in the Cu alloy ingot, the crystal grains can be made finer, but the ingot cracks or the like due to the metal or their oxides. Surface defects such as linear defects appear, and a new problem arises in that the oxide causes plating failure during plating.

【0007】[0007]

【発明が解決しようとする課題】本発明は上記の様な問
題点に着目してなされたものであって、CuおよびCu
合金に見られる鋳塊割れその他の欠陥を解消し、割れ欠
陥等のない優れた品質のCuおよびCu合金鋳造製品を
得ることのできる技術を確立しようとするものである
SUMMARY OF THE INVENTION The present invention has been made by paying attention to the problems as described above.
The present invention aims to establish a technology capable of eliminating ingot cracks and other defects found in alloys and obtaining Cu and Cu alloy cast products of excellent quality without crack defects.

【0008】[0008]

【課題を解決するための手段】上記課題を解決すること
のできた本発明に係る製法の構成は、CuまたはCu合
金を鋳造するに際し、鋳造前の任意の段階で、該Cuま
たはCu合金よりも酸化され易い金属を含む金属系脱酸
剤の1種以上を用いた脱酸を行なって、前記Cuまたは
Cu合金溶湯中の酸素濃度を脱酸平衡値まで低減した
後、前記金属系脱酸剤に由来する金属および金属酸化物
の濃度を、金属換算で該金属元素毎に20ppm以下に
低減してから鋳造し、鋳塊割れ及び鋳塊の熱間加工割れ
を防止するところに要旨を有するものである。
The structure of the manufacturing method according to the present invention, which has been able to solve the above-mentioned problems, is such that, when casting Cu or a Cu alloy, it is better than the Cu or Cu alloy at any stage before casting. After deoxidizing using one or more metal-based deoxidizing agents containing metals that are easily oxidized, the oxygen concentration in the molten Cu or Cu alloy is reduced to a deoxidizing equilibrium value, and then the metal-based deoxidizing agent is used. Which has the gist of preventing ingot cracking and hot work cracking of the ingot by casting after reducing the concentration of the metal and metal oxide derived from to 20 ppm or less for each metal element in terms of metal Is.

【0009】上記方法を実施するに当たり、Cu−Fe
系合金を使用したときは、脱酸による酸素濃度の低減に
より鋳造時でのCu−Fe−O系共晶化合物の晶出を防
止すると共に、金属系脱酸剤に由来する微細な金属酸化
物等の核剤としての作用により鋳造時の結晶粒の微細化
が増進されて鋳塊割れ及び鋳塊の熱間加工割れを防止す
ることができ、またCuまたはCu合金(但しCu−F
e系合金を除く)を使用したときは、脱酸による酸素濃
度の低減と金属系脱酸剤に由来する微細な金属酸化物等
の核剤としての作用により、鋳造時の結晶粒の微細化が
増進されて、鋳塊割れ及び鋳塊の熱間加工割れを防止す
ることができる。
In carrying out the above method, Cu--Fe
When a system-based alloy is used, the oxygen concentration is reduced by deoxidation to prevent the crystallization of the Cu-Fe-O-based eutectic compound during casting, and at the same time, a fine metal oxide derived from the metal-based deoxidizer. By acting as a nucleating agent, the refinement of crystal grains during casting can be promoted to prevent ingot cracking and hot work cracking of the ingot, and Cu or Cu alloy (provided that Cu-F
(except for e-based alloys), the reduction of oxygen concentration by deoxidation and the action as a nucleating agent for fine metal oxides derived from metal-based deoxidizers make the crystal grains fine during casting. Can be improved, and ingot cracking and hot work cracking of the ingot can be prevented.

【0010】このとき使用される金属系脱酸剤として
は、金属単体もしくはCuを母合金とする合金を使用す
ることができ、また脱酸には、炭素もしくはCOガスを
用いた脱酸と金属系脱酸剤を用いた脱酸を併用すること
ができる。
As the metal-based deoxidizing agent used at this time, an elemental metal or an alloy having Cu as a mother alloy can be used. For deoxidizing, carbon or CO gas is used for deoxidizing and metal. Deoxidation using a system deoxidizer can be used in combination.

【0011】[0011]

【作用】本発明者らは上記の様な解決課題の下で、まず
Cu−Fe系合金に見られる鋳塊割れおよび熱間加工割
れの発生原因を明確にするため、割れ発生部の状況を光
学顕微鏡写真によって観察した。その結果はたとえば図
1(A)(鋳塊割れ)および図1(B)(熱間加工割
れ)に示す通りであって、鋳塊割れおよび熱間加工割れ
を生じた部分にはCu−Fe−O系共晶化合物が存在し
ており、この図からも明らかである様に鋳塊割れおよび
熱間加工割れは、鋳造時の凝固過程で生じるCu−Fe
−O系共晶化合物が一つの原因になっているものと考え
られた。
In order to clarify the cause of the ingot crack and the hot work crack found in the Cu-Fe alloy under the above-mentioned problems to be solved, the present inventors have made the situation of the crack occurrence part into consideration. It was observed by an optical micrograph. The results are shown in, for example, FIG. 1 (A) (ingot cracking) and FIG. 1 (B) (hot working cracking), and Cu--Fe is present in the portions where the ingot cracking and hot working cracking occur. There is an -O-based eutectic compound, and as is clear from this figure, ingot cracking and hot work cracking are caused by Cu-Fe generated in the solidification process during casting.
It was considered that the -O eutectic compound was one of the causes.

【0012】一方本発明者らが別途確認したところによ
ると、純Cu系あるいは、Cu−Fe系合金以外のCu
合金においては、上記の様な共晶化合物に起因する鋳塊
割れや熱間加工割れが問題となることはないが、鋳塊の
結晶粒の粗大化による鋳塊割れや熱間加工割れを生じる
傾向があり、この傾向はCu−Fe系合金においても共
通する問題となる。
On the other hand, the present inventors have confirmed separately that Cu other than pure Cu-based or Cu-Fe-based alloys
In alloys, ingot cracks and hot work cracks due to the above eutectic compounds do not pose a problem, but ingot cracks and hot work cracks occur due to coarsening of the ingot crystal grains. There is a tendency, and this tendency is a common problem in Cu-Fe alloys.

【0013】即ちCu−Fe系合金においては、Cu−
Fe−O系共晶化合物の生成と結晶粒の粗大化が総加的
もしくは相乗的に悪影響を及ぼして鋳塊割れや熱間加工
割れの原因になり、一方純Cu、或は上記Cu−Fe系
合金を除くCu合金の場合は、結晶粒の粗大化が主たる
原因になって鋳塊割れや熱間加工割れを生じる。
That is, in the Cu--Fe alloy, Cu--
The formation of the Fe-O eutectic compound and the coarsening of the crystal grains adversely affect additively or synergistically to cause ingot cracks and hot work cracks, while pure Cu or the above Cu-Fe In the case of Cu alloys other than the system alloys, the coarsening of crystal grains is the main cause to cause ingot cracks and hot work cracks.

【0014】そこで、上記の様な問題を解消して鋳塊割
れや熱間加工割れを生じることなく、高品質のCuまた
はCu合金鋳塊を安定的に製造することのできる方法を
確立すべく種々検討を重ねたところ、前述の如く、Cu
またはCu合金を鋳造する際に、鋳造前の任意の段階
で、該CuまたはCu合金よりも酸化され易い金属を含
む金属系脱酸剤の1種以上を用いた脱酸を行なって、前
記CuまたはCu合金溶湯中の酸素濃度を脱酸平衡値ま
で低減した後、前記金属系脱酸剤に由来する金属および
金属酸化物の濃度を、金属換算で該金属元素毎に20p
pm以下に低減してから鋳造すれば、鋳塊割れ及び鋳塊
の熱間加工割れを効果的に防止し得ることが確認され
た。
Therefore, in order to solve the above problems and to establish a method capable of stably producing a high quality Cu or Cu alloy ingot without causing ingot cracks or hot work cracks. After various investigations, as described above, Cu
Alternatively, when casting a Cu alloy, at any stage before casting, deoxidation is performed using one or more metal-based deoxidizers containing a metal that is more easily oxidized than the Cu or Cu alloy, Alternatively, after the oxygen concentration in the molten Cu alloy is reduced to the deoxidation equilibrium value, the concentration of the metal and the metal oxide derived from the metal-based deoxidizer is 20 p for each metal element in terms of metal.
It has been confirmed that ingot cracking and hot work cracking of the ingot can be effectively prevented by casting after reducing to pm or less.

【0015】このとき、Cu−Fe系合金を用いた場合
は、脱酸による酸素濃度の低減により鋳造時におけるC
u−Fe−O系共晶化合物の晶出が防止されると共に、
金属系脱酸剤に由来する微細な金属酸化物等の核剤とし
ての作用により鋳造時の結晶粒の微細化を図ることがで
き、またCuまたはCu−Fe系合金を除くCu合金を
用いた場合は、脱酸による酸素濃度の低減と金属系脱酸
剤に由来する微細な金属酸化物等の核剤としての作用に
よって、鋳造時における結晶粒の微細化を図ることがで
き、それにより鋳塊割れ及び熱間加工割れの非常に少な
い鋳造製品を得ることができる。
At this time, when a Cu--Fe alloy is used, the oxygen concentration is reduced by deoxidation to reduce the C concentration during casting.
While preventing crystallization of the u-Fe-O-based eutectic compound,
The crystal grains during casting can be refined by acting as a nucleating agent for fine metal oxides derived from metal-based deoxidizers, and Cu or Cu alloys other than Cu-Fe-based alloys were used. In this case, by reducing the oxygen concentration by deoxidation and acting as a nucleating agent for fine metal oxides derived from a metal-based deoxidizer, it is possible to make the crystal grains fine during casting, which results in casting. It is possible to obtain a cast product with very few lump cracks and hot work cracks.

【0016】まず本発明では、Cu合金製品の割れ発生
原因となるCu−Fe−O系共晶化合物の生成源である
酸素を、鋳造までの任意の段階、例えば原料の溶解、保
持もしくは移湯工程で、該Cu合金よりも酸化され易い
金属(例えばCa,Al,Mg,Ti,Cr,Zr等)
を含む金属系脱酸剤の1種以上を用いた脱酸によって除
去し、該Cu合金溶湯中の酸素濃度を脱酸平衡値(通常
60ppm程度以下、好ましくは15ppm以下)まで
低減する。この脱酸処理により、特にCu−Fe系合金
における鋳塊割れや熱間加工割れの一つの原因となる前
記Cu−Fe−O系共晶化合物の生成量が著しく低減さ
れる。
First, in the present invention, oxygen, which is a generation source of a Cu—Fe—O eutectic compound that causes cracking of a Cu alloy product, is added at any stage until casting, for example, melting, holding or transferring of raw materials. Metals that are more easily oxidized than the Cu alloy in the process (for example, Ca, Al, Mg, Ti, Cr, Zr)
The oxygen concentration in the molten Cu alloy is reduced to a deoxidation equilibrium value (usually about 60 ppm or less, preferably 15 ppm or less) by deoxidation using one or more metal-based deoxidizing agents containing. By this deoxidizing treatment, the production amount of the Cu—Fe—O eutectic compound, which is one of the causes of ingot cracking and hot work cracking in a Cu—Fe alloy, is remarkably reduced.

【0017】ちなみに図2は、Cu−2%Fe系合金溶
湯を鋳造する際における溶湯中の酸素濃度と鋳塊断面に
占めるCu−Fe−O系共晶化合物の面積率の関係を調
べた結果(但し、鋳造は半連続鋳造法を採用、鋳造速度
40mm/分)を示したものであり、鋳造速度によって
若干の差異は見られるものの、いずれも溶湯中の酸素濃
度が60ppmを超えると鋳塊中のCu−Fe−O系共
晶化合物の面積率は急増するが、酸素濃度を60ppm
以下に抑えてやれば、鋳造時におけるCu−Fe−O系
共晶化合物の生成量を零にすることができる。
By the way, FIG. 2 shows the results of the investigation of the relationship between the oxygen concentration in the molten Cu-2% Fe-based alloy and the area ratio of the Cu-Fe-O-based eutectic compound in the ingot cross section when casting the molten Cu-2% Fe-based alloy. (However, the casting adopts a semi-continuous casting method, the casting speed is 40 mm / min), and although there are some differences depending on the casting speed, in both cases, when the oxygen concentration in the molten metal exceeds 60 ppm, the ingot is ingot. The area ratio of the Cu-Fe-O-based eutectic compound in the inside rapidly increases, but the oxygen concentration is 60 ppm.
If the amount is suppressed below, the amount of Cu—Fe—O eutectic compound produced during casting can be reduced to zero.

【0018】また図3は、鋳造直前のCu−2%Fe系
合金溶湯中の酸素量と鋳塊中の酸素量の関係を調べた結
果を示したグラフであり、この図からも明らかである様
に溶湯中の酸素量と鋳塊中の酸素量はほぼ対応してお
り、溶湯中の酸素は殆んどそのまま鋳塊中に取込まれる
ことが分かる。そしてこの図と前記図3からも明らかで
ある様に、溶湯内に含まれる60ppm以下の酸素は鋳
塊凝固時におけるCu−Fe−O系共晶化合物の生成に
は殆んど関与せず、従って割れ発生の原因にはならない
ものと思われる。但し、溶湯中に含まれる該微量の酸素
は酸化物系介在物の生成源となることは否めないので、
特に極細線材や極薄板等のCu−Fe系合金製品とする
場合は、溶湯中の酸素濃度を15ppm以下に抑えるこ
とが望まれる。
FIG. 3 is a graph showing the results of examining the relationship between the oxygen content in the molten Cu-2% Fe alloy immediately before casting and the oxygen content in the ingot, which is also clear from this figure. Thus, the amount of oxygen in the molten metal and the amount of oxygen in the ingot almost correspond to each other, and it can be seen that the oxygen in the molten metal is taken into the ingot almost as it is. And as is clear from this figure and FIG. 3, oxygen of 60 ppm or less contained in the molten metal hardly participates in the formation of the Cu—Fe—O eutectic compound during solidification of the ingot, Therefore, it does not seem to cause cracking. However, since it is undeniable that the trace amount of oxygen contained in the molten metal becomes a generation source of oxide-based inclusions,
Particularly, in the case of Cu-Fe alloy products such as ultrafine wire rods and ultrathin plates, it is desired that the oxygen concentration in the molten metal be suppressed to 15 ppm or less.

【0019】上記脱酸の時期は特に限定されず、鋳造前
の任意の段階、たとえば溶解炉内、保持炉内あるいは脱
ガス装置内もしくはそれらの間の移湯時等の任意の場所
で行なうことができ、1箇所で一気に目標酸素濃度まで
脱酸し得るほか、必要によっては2箇所以上で脱酸を段
階的に進めることも勿論可能である。
The timing of the above deoxidation is not particularly limited, and it may be performed at any stage before casting, for example, in a melting furnace, a holding furnace, a degassing apparatus, or at any place such as when transferring molten metal between them. Therefore, it is possible to deoxidize at a single point to the target oxygen concentration at once, and it is of course possible to carry out deoxidation stepwise at two or more points if necessary.

【0020】また脱酸剤としては、上記の様な金属系脱
酸剤(還元剤)や炭素あるいは炭酸ガス等の気体還元剤
が使用されるが、この脱酸工程は、後述する如く鋳塊の
結晶粒微細化のための核剤生成工程としても重要な意味
合いを有しており、該核剤を溶湯中に生成させるには、
脱酸剤として少なくとも金属系脱酸剤の1種以上を用い
る必要がある。金属系固体還元剤としては、酸化反応の
生成自由エネルギーが低く且つ生成物の密度が小さくて
浮上分離の容易なCa,Al,Mg,Ti,Cr,Zr
等が好ましいものとして例示され、これらは単独で使用
してもよく或は2種以上を併用しても勿論構わない。
Further, as the deoxidizing agent, a metal deoxidizing agent (reducing agent) as described above or a gas reducing agent such as carbon or carbon dioxide gas is used. It also has an important meaning as a nucleating agent production step for refining the crystal grains of, and in order to produce the nucleating agent in the molten metal,
It is necessary to use at least one metal-based deoxidizing agent as the deoxidizing agent. As the metal-based solid reducing agent, Ca, Al, Mg, Ti, Cr, Zr, which has a low free energy of formation of the oxidation reaction and a small density of the product, and which is easy to float and separate
Etc. are exemplified as preferable ones, and these may be used alone or in combination of two or more kinds.

【0021】またこのとき、他の脱酸剤(還元剤)とし
て木炭粉やCOガス等を併用して脱酸を促進することも
勿論可能である。尚、一般的な気体還元剤としてはH2
ガスも知られているが、H2 ガスを使用すると溶湯中の
2 濃度が上昇して鋳造製品に膨れ欠陥等を生じる原因
になるので、H2 ガスの使用は避けるべきである。上記
の脱酸処理によって、特にCu−Fe系合金にみられる
鋳塊割れや熱間加工割れの一つの原因となるCu−Fe
−O系共晶化合物の生成は効果的に阻止されるが、結晶
粒に関連する鋳塊割れ等については未解決である。
At this time, it is of course possible to use charcoal powder or CO gas as another deoxidizing agent (reducing agent) to accelerate deoxidizing. As a general gas reducing agent, H 2 is used.
Are also known gas, so when using H 2 gas concentration of H 2 in the melt cause the resulting blister defects in the cast product to rise, the use of H 2 gas should be avoided. Cu-Fe, which is one of the causes of ingot cracking and hot work cracking particularly observed in Cu-Fe alloys, is caused by the above deoxidation treatment.
The formation of the —O-based eutectic compound is effectively prevented, but ingot cracks and the like related to crystal grains are unsolved.

【0022】そこで本発明では、上記脱酸工程で用いた
金属系脱酸剤またはその脱酸生成物を核剤として有効に
活用し、結晶粒の微細化を達成する。前述の如く、金属
系脱酸剤やその脱酸生成物(特に脱酸によって生成する
金属酸化物)は、結晶粒微細化のための核剤として有効
に作用するが、一方では不純介在物となって鋳塊割れ等
を却って起こし易くする。
Therefore, in the present invention, the metal-based deoxidizing agent or its deoxidizing product used in the above deoxidizing step is effectively utilized as a nucleating agent to achieve finer crystal grains. As described above, the metal-based deoxidizing agent and its deoxidation product (particularly the metal oxide produced by deoxidation) effectively act as a nucleating agent for grain refinement. It makes it easier to cause ingot cracks.

【0023】本発明では、こうした不純介在物としての
マイナス効果を生じさせることなく、核剤としての作用
を有効に発揮させるための手段として、上記脱酸処理の
後、該溶湯の保持もしくは移湯工程で湯面上に浮上する
過剰の金属系脱酸剤もしくはその脱酸生成物を除去し、
前記金属系脱酸剤に由来する金属および金属酸化物の濃
度を、金属換算で該金属元素毎に20ppm以下に低減
する。この処理により、溶湯中に存在する殆んどの金属
酸化物等は分離除去され、不純介在物としての悪影響は
殆んど生じなくなるが、1μm程度以下の極めて微細な
金属酸化物等はそのまま溶湯中に均一に分散された状態
で残存し、鋳造時にこれが核剤として作用して結晶粒を
微細化する。
In the present invention, as a means for effectively exhibiting the action as a nucleating agent without causing such a negative effect as impure inclusions, the molten metal is held or transferred after the above deoxidation treatment. Removes excess metal-based deoxidizer or its deoxidation product that floats on the surface of the molten metal during the process,
The concentration of metal and metal oxide derived from the metal-based deoxidizer is reduced to 20 ppm or less for each metal element in terms of metal. By this treatment, most of the metal oxides present in the molten metal are separated and removed, and the adverse effects as impure inclusions hardly occur, but extremely fine metal oxides of about 1 μm or less are kept in the molten metal as they are. Remain in a uniformly dispersed state, and this acts as a nucleating agent during casting to refine the crystal grains.

【0024】ちなみに図4は、金属系脱酸剤としてCa
を使用した時の溶湯中のCa濃度と結晶粒度並び溶湯中
の酸素濃度を調べた結果を示したものであり、Cu合金
溶湯にCaを添加していくと、その添加量を増やすにつ
れて脱酸反応により溶湯中の酸素量は低減し、その溶湯
を用いて鋳造した鋳塊の結晶粒度は微細になっていく。
図4では、Ca濃度が300ppmまではCaの添加量
を増やすにつれて脱酸および結晶粒の微細化は進むが、
それ以上にCa量を多くしても脱酸および結晶粒微細化
はそれ以上進まない。こうした傾向が得られた理由は次
の様に考えられる。
Incidentally, FIG. 4 shows Ca as a metal-based deoxidizer.
The results of examining the Ca concentration in the molten metal and the crystal grain size and the oxygen concentration in the molten metal when using Cu are shown. When Ca is added to the Cu alloy molten metal, deoxidation is performed as the amount of addition increases. The reaction reduces the amount of oxygen in the molten metal, and the grain size of the ingot cast using the molten metal becomes finer.
In FIG. 4, deoxidation and refinement of crystal grains proceed as the Ca content increases up to a Ca concentration of 300 ppm.
If the amount of Ca is further increased, deoxidation and grain refinement will not proceed any further. The reason why such a tendency is obtained is considered as follows.

【0025】即ち、溶湯中に添加されたCaは、溶湯中
に存在する酸素との反応(脱酸反応)によって酸化物
(CaO)となるが、このうち粗大なCaO等は比較的
急速に湯面上に浮上する。ところが、1μm程度以下の
極めて微細なCaO等は、浮上しにくく溶湯中に分散状
態で残存するので、残存する該微細なCaO等の脱酸生
成物が核となって結晶粒の微細化に寄与する。この反応
は、当然のことながら脱酸反応の脱酸平衡点(脱酸量と
大気からの酸素吸収量のバランス点)で平衡することに
なるからである。
That is, Ca added to the molten metal becomes an oxide (CaO) by a reaction (deoxidation reaction) with oxygen existing in the molten metal. Of these, coarse CaO and the like are melted relatively quickly. Ascend to the surface. However, extremely fine CaO or the like having a size of about 1 μm or less hardly floats and remains in a dispersed state in the molten metal, and thus the remaining deoxidized products such as the fine CaO and the like contribute to the refinement of crystal grains. To do. This is because this reaction naturally comes to equilibrium at the deoxidation equilibrium point of the deoxidation reaction (the balance point between the amount of deoxidation and the amount of oxygen absorbed from the atmosphere).

【0026】そして、Ca量が400ppm程度となっ
て脱酸平衡点に達した溶湯を、好ましくはそのまま静止
状態で保持すると、脱酸生成物は更に浮上分離されると
共に、脱酸反応に関与しないで残存した未反応のCaも
湯面上に浮上し、溶湯内には微細な脱酸生成物と微細な
残存脱酸元素のみが残されることになる。このとき、脱
酸生成物および残存脱酸元素の絶対量は、静置時間を長
くするにつれて低減していくが、後記実施例でも明らか
にする様に、脱酸剤としてCaを使用した場合はもとよ
り、Al,Mg,Ti,Cr,Zr等の他の金属脱酸剤
を使用した場合でも、溶湯中の脱酸生成物と残存脱酸元
素の総和が該金属換算で20ppm以下となるまでそれ
らの浮上分離を行なってやれば、粗大な脱酸生成物等に
起因する鋳塊欠陥等は全くみられなくなり、しかも、浮
上することなく溶湯内に分散した無数の微細な脱酸生成
物粒子等の核剤としての作用によって、鋳塊の結晶粒が
著しく微細化され、前記粗大結晶粒に起因する鋳塊割れ
等も確実に防止されることが明らかとなった。
When the molten metal having a Ca content of about 400 ppm and reaching the deoxidation equilibrium point is preferably maintained in a stationary state, the deoxidized product is further floated and separated and does not participate in the deoxidation reaction. The unreacted Ca remaining in step 2 floats above the surface of the molten metal, leaving only a fine deoxidation product and a fine residual deoxidizing element in the molten metal. At this time, the absolute amounts of the deoxidation product and the residual deoxidation element decrease as the standing time is lengthened. However, as will be made clear in Examples below, when Ca is used as the deoxidizing agent, Of course, even when other metal deoxidizing agents such as Al, Mg, Ti, Cr, and Zr are used, the deoxidizing products in the melt and the residual deoxidizing elements are added until the total amount thereof becomes 20 ppm or less in terms of the metal. If floating separation is performed, ingot defects etc. due to coarse deoxidation products etc. will not be seen at all, and moreover, countless fine deoxidation product particles etc. dispersed in the molten metal without floating It became clear that the crystal grain of the ingot is remarkably miniaturized by the action as a nucleating agent and the ingot crack and the like caused by the coarse crystal grain are surely prevented.

【0027】尚、結晶粒粒微細化による鋳塊割れ防止と
いう観点からすると、20ppm以下にまで浮上分離を
行なうことによって目的を達成することができるが、該
浮上分離を10ppm以下にまで進めてやれば、次の様
な利点も得ることができるので好ましい。即ち、特にC
u−Fe系合金等の場合、最終製品状態で細径の線材と
するときに、外観や耐食性等を高めるためNi,Ag,
Sn等によるめっき処理を施すことが多いが、鋳塊中の
金属酸化物量が多いとめっき不良によって製品に表面欠
陥を起こすことがある。ところが、脱酸生成物である金
属酸化物等の含有量を10ppm程度以下にまで低減し
ておけば、この様なめっき不良の問題も全く生じなくな
るからである。
From the viewpoint of preventing ingot cracking due to grain refinement, the object can be achieved by performing levitation separation to 20 ppm or less, but the levitation separation can be promoted to 10 ppm or less. This is preferable because the following advantages can be obtained. That is, especially C
In the case of u-Fe-based alloy, etc., when the final product is made into a wire having a small diameter, Ni, Ag,
Although plating treatment with Sn or the like is often performed, if the amount of metal oxide in the ingot is large, surface defects may occur in the product due to defective plating. However, if the content of the metal oxide, which is a deoxidation product, is reduced to about 10 ppm or less, such a problem of defective plating does not occur at all.

【0028】[0028]

【実施例】次に実施例を挙げて本発明の構成および作用
効果をより具体的に説明するが、本発明はもとより下記
実施例によって制限を受けるものではなく、前後記の趣
旨に適合し得る範囲で変更して実施することも勿論可能
であり、それらはいずれも本発明の技術的範囲に含まれ
る。
EXAMPLES Next, the constitution and effects of the present invention will be described more specifically with reference to examples, but the present invention is not limited by the following examples, and may be adapted to the gist of the preceding and following. It is needless to say that the range is changed and carried out, and all of them are included in the technical scope of the present invention.

【0029】実施例1 10トンの高周波誘導炉(1KHZ)に電気銅地金と2
重量%のFe粉を装入し、表面を木炭粉でカバーして1
300℃(標準)で加熱溶解した後、これに脱酸平衡量
のMg(200ppm)を添加して20分間攪拌した。
この溶湯表面を木炭粉でカバーした状態で移湯樋から保
持炉に移し替え、同温度で30分間保持することにより
脱酸生成物等を浮上分離した後、200×500×50
00mm×2本取り、鋳造速度40mm/分で半連続鋳
造を行なった。該鋳片中の酸素含有量は8ppm、残存
する脱酸生成物(MgO)等のMg換算含有量は8pp
m、結晶粒径は100μmであり、鋳片には割れ等の内
部および表面欠陥は全く生じなかった。
Example 1 A 10 ton high frequency induction furnace (1 KHZ) was charged with electrolytic copper metal and 2
1 wt% Fe powder is charged and the surface is covered with charcoal powder 1
After heating and dissolving at 300 ° C. (standard), a deoxidizing equilibrium amount of Mg (200 ppm) was added thereto, and the mixture was stirred for 20 minutes.
The molten metal surface covered with charcoal powder was transferred from the transfer trough to a holding furnace, and the deoxidized products were floated and separated by holding at the same temperature for 30 minutes, and then 200 × 500 × 50
Two pieces of 00 mm × 2 were taken and semi-continuous casting was performed at a casting speed of 40 mm / min. The oxygen content in the cast slab is 8 ppm, and the content of the remaining deoxidized product (MgO) in terms of Mg is 8 pp.
m, the crystal grain size was 100 μm, and internal and surface defects such as cracks did not occur at all in the cast slab.

【0030】またこの鋳片を800℃で4時間ソーキン
グ処理した後、800℃で厚さ200mmから10mm
までの熱間圧延、引き続いて厚さ10mmから0.5m
mまでの冷間圧延を行なったところ、熱間加工割れ等の
欠陥は全く認められなかった。
The slab was soaked at 800 ° C. for 4 hours, and then at 800 ° C., the thickness was 200 mm to 10 mm.
Hot rolling up to, then 10mm to 0.5m thick
When cold rolling was performed up to m, no defects such as hot work cracks were observed.

【0031】実施例2 10トン容量のLNG焚きシャフト炉に電気銅地金10
0%+鉄板2重量%を装入し、表面を木炭粉でカバーし
て1300℃で加熱溶解した。この溶湯表面を木炭粉で
カバーした状態で移湯樋から保持炉へ移し替え、木炭粉
20Kgと溶湯重量に対して夫々0.1重量%のMgと
Alを添加し、Arガス吹込みを併用して脱酸を行なっ
た後、同温度で30分間保持して脱酸生成物(Al2
3 ,MgO)等を浮上分離し、次いで前記実施例1と同
様にして半連続鋳造を行なった。得られた半連続鋳造に
よって得た鋳片中の酸素含有量は8ppm、残存する脱
酸生成物(CaO)等のMg換算含有量は5ppm、A
l換算含有量は8ppm、結晶粒径は150μmであ
り、鋳片には割れ等の内部および表面欠陥は全く認めら
れなかった。また、この鋳片を実施例1と同じ条件でソ
ーキング、熱間圧延および冷間圧延したところ、熱間加
工割れ等の欠陥は全く生じなかった。
Example 2 A 10 ton capacity LNG-fired shaft furnace was fitted with electrolytic copper metal 10
0% + 2% by weight of an iron plate was charged, the surface was covered with charcoal powder, and the mixture was heated and melted at 1300 ° C. With the surface of this molten metal covered with charcoal powder, it was transferred from the transfer gutter to a holding furnace, 20 kg of charcoal powder and 0.1% by weight of Mg and Al were added to the weight of the molten metal, and Ar gas injection was also used. Then, deoxidation is performed, and then the product is kept at the same temperature for 30 minutes to deoxidize the product (Al 2 O
(3 , MgO) and the like were floated and separated, and then semi-continuous casting was performed in the same manner as in Example 1. The oxygen content in the obtained slab obtained by semi-continuous casting was 8 ppm, and the content of residual deoxidized products (CaO) and the like in terms of Mg was 5 ppm, A
The 1-equivalent content was 8 ppm, the crystal grain size was 150 μm, and no internal defects such as cracks and surface defects were observed in the cast slab. Further, when this slab was subjected to soaking, hot rolling and cold rolling under the same conditions as in Example 1, defects such as hot work cracks did not occur at all.

【0032】実施例3 9トン容量の誘導溶解炉(1KHZ)に電気Cu地金を
装入し、表面全体を木炭粉でカバーして1200℃で溶
解した後、この溶湯に脱酸平衡量のCa(200pp
m)添加してから1200℃で30分間保持し、表面に
浮上するCaO等を除去した後、1000mm×300
mmの鋳片を鋳造速度40mm/分で半連続鋳造した。
該鋳片中の酸素含有量は8ppm、CaOおよびCaの
Ca換算含有量は8ppm、結晶粒径は200μmであ
り、鋳片には割れ等の内部および表面欠陥は全く認めら
れなかった。また、この鋳片を前記実施例1と同じ条件
でソーキング、熱間圧延および冷間圧延したところ、熱
間加工割れ等の製品は全く認められなかった。
Example 3 An electric Cu ingot was charged into an induction melting furnace (1 KHZ) having a capacity of 9 tons, the entire surface was covered with charcoal powder and melted at 1200 ° C. Ca (200 pp
m) After adding, hold at 1200 ° C. for 30 minutes to remove CaO and the like floating on the surface, and then 1000 mm × 300
mm slab was semi-continuously cast at a casting speed of 40 mm / min.
The oxygen content in the slab was 8 ppm, the Ca equivalent content of CaO and Ca was 8 ppm, the crystal grain size was 200 μm, and no internal defects such as cracks and surface defects were observed in the slab. When this slab was subjected to soaking, hot rolling and cold rolling under the same conditions as in Example 1, no products such as hot work cracks were observed.

【0033】また、Caに代わる金属系脱酸剤としてA
l、Mg、Ti、CrまたはZr等を夫々脱酸平衡量添
加し、あるいはCu−Ca合金をCa換算で同量使用し
た以外は上記と全く同様にして半連続鋳造、熱間圧延、
及び冷間圧延を行なったところ、いずれも鋳塊割れ、熱
間加工割れ等は全く認められず、内部および表面欠陥の
ない製品を得ることができた。
As a metal-based deoxidizing agent replacing Ca, A
Semi-continuous casting, hot rolling, in exactly the same manner as above except that deoxidizing equilibrium amounts of l, Mg, Ti, Cr, Zr and the like were added, respectively, or the same amount of Cu-Ca alloy was used in terms of Ca.
As a result of the cold rolling and the cold rolling, no ingot cracks, hot work cracks, etc. were observed, and a product having neither internal nor surface defects could be obtained.

【0034】実施例4 9トン容量の誘導溶解炉(1KHZ)にCu−2%Fe
合金屑を装入し、表面全体を木炭粉でカバーして130
0℃で溶解した後、この溶湯に脱酸平衡量のCa(40
0ppm)添加してから1300℃で10分間保持し、
表面に浮上するCaO等を除去した後、1000mm×
300mmの鋳片を鋳造速度50mm/分で半連続鋳造
した。該鋳片中の酸素含有量は6ppm、CaOおよび
CaのCa換算含有量は2ppm、結晶粒径は150μ
mであり、鋳片には割れ等の内部および表面欠陥は全く
認められなかった。またこの鋳片を実施例1と同様にし
てソーキング、熱間圧延および冷間圧延を行なったとこ
ろ、熱間加工割れ等の欠陥は全く認められず、内部およ
び表面欠陥等のない高品質の製品を得ることができた。
Example 4 Cu-2% Fe was placed in an induction melting furnace (1 KHZ) having a capacity of 9 tons.
Charge the alloy scraps and cover the entire surface with charcoal powder.
After melting at 0 ° C, deoxidized equilibrium amount of Ca (40
0 ppm) and then hold at 1300 ° C for 10 minutes,
After removing CaO etc. floating on the surface, 1000 mm x
A 300 mm slab was semi-continuously cast at a casting speed of 50 mm / min. The oxygen content in the slab is 6 ppm, the Ca equivalent content of CaO and Ca is 2 ppm, and the crystal grain size is 150 μm.
m, and internal and surface defects such as cracks were not recognized at all in the cast slab. When this slab was subjected to soaking, hot rolling and cold rolling in the same manner as in Example 1, no defects such as hot work cracks were observed, and high quality products without internal or surface defects. I was able to get

【0035】また、上記実施例を含めて、純Cuおよび
各種Cu合金の鋳造前の溶解、脱酸に本発明の方法を適
用し、鋳造前の溶湯中に残存する脱酸性金属換算量と製
品欠陥(鋳塊割れ、鋳塊表面欠陥、熱間加工割れ、製品
表面欠陥、製品めっき不良等)の相関性を調べたとこ
ろ、下記表1に示す如く、鋳造前の溶湯中の脱酸性金属
換算量を20ppm以下に抑えることによって、前述の
様な欠陥を解消し得ることが確認された。
In addition, the method of the present invention is applied to the melting and deoxidizing of pure Cu and various Cu alloys before casting, including the above-mentioned examples, and the equivalent amount of deoxidized metal remaining in the molten metal before casting and the product When the correlation of defects (ingot cracks, ingot surface defects, hot work cracks, product surface defects, product plating defects, etc.) was examined, as shown in Table 1 below, conversion of deoxidized metal in the molten metal before casting was performed. It was confirmed that the above-mentioned defects can be eliminated by suppressing the amount to 20 ppm or less.

【0036】[0036]

【表1】 [Table 1]

【0037】[0037]

【発明の効果】本発明は以上の様に構成されており、C
uまたはCu合金を鋳造する際の溶湯を金属系脱酸剤を
用いて脱酸し、溶湯中の酸素濃度を低減すると共に、該
溶湯中に極く微細な脱酸生成物を微量残存させることに
よって、鋳塊割れおよび熱間加工割れを無くすことがで
き、割れ欠陥のないCuまたはCu合金鋳造製品を提供
し得ることになった。
The present invention is constructed as described above, and C
To deoxidize a molten metal when casting a u or Cu alloy by using a metal-based deoxidizer to reduce the oxygen concentration in the molten metal and to leave a very fine deoxidized product in the molten metal in a trace amount. As a result, ingot cracking and hot work cracking can be eliminated, and a Cu or Cu alloy casting product free from cracking defects can be provided.

【図面の簡単な説明】[Brief description of drawings]

【図1】鋳塊割れを起こしたCu−Fe系合金の断面状
況を例示する拡大図である。
FIG. 1 is an enlarged view exemplifying a cross-sectional state of a Cu—Fe based alloy in which ingot cracking has occurred.

【図2】Cu−Fe系合金溶湯中のO2 濃度と鋳塊中の
Cu2 O系共晶化合物の面積率の関係を示すグラフであ
る。
FIG. 2 is a graph showing the relationship between the O 2 concentration in the molten Cu—Fe alloy and the area ratio of the Cu 2 O eutectic compound in the ingot.

【図3】鋳造直前のCu−Fe系合金溶湯中の酸素量と
鋳塊中の酸素量の関係を示すグラフである。
FIG. 3 is a graph showing the relationship between the amount of oxygen in the molten Cu—Fe alloy immediately before casting and the amount of oxygen in the ingot.

【図4】脱酸処理時におけるCa添加量と溶湯中のCa
量および酸素濃度並びに鋳塊の結晶粒径の関係を示すグ
ラフである。
FIG. 4 Ca addition amount and Ca in molten metal during deoxidation treatment
It is a graph which shows the relationship of the amount and oxygen concentration, and the crystal grain size of an ingot.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 益田 穣司 山口県下関市長府港町14番1号 株式会社 神戸製鋼所長府製造所内 (72)発明者 大賀 清正 兵庫県神戸市西区高塚台1丁目5番5号 株式会社神戸製鋼所神戸総合技術研究所内 (72)発明者 新井 基浩 兵庫県神戸市西区高塚台1丁目5番5号 株式会社神戸製鋼所神戸総合技術研究所内 (72)発明者 國井 一孝 兵庫県神戸市西区高塚台1丁目5番5号 株式会社神戸製鋼所神戸総合技術研究所内 ─────────────────────────────────────────────────── ─── Continuation of front page (72) Inventor Joji Masuda 14-1 Nagafu Minatomachi, Shimonoseki City, Yamaguchi Prefecture Kobe Steel Works, Ltd. Chofu Works (72) Inventor Kiyomasa Oga 1-5-5 Takatsukadai, Nishi-ku, Kobe-shi, Hyogo No. 5 Inside Kobe Research Institute of Kobe Steel, Ltd. (72) Inventor Motohiro Arai 1-5-5 Takatsukadai, Nishi-ku, Kobe-shi, Hyogo Inside Kobe Research Institute of Kobe Works (72) Inventor Kazutaka Kunii Hyogo 1-5-5 Takatsukadai, Nishi-ku, Kobe City, Kobe Prefecture Kobe Steel Works, Ltd. Kobe Research Institute

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 CuまたはCu合金を鋳造するに際し、
鋳造前の任意の段階で、該CuまたはCu合金よりも酸
化され易い金属を含む金属系脱酸剤の1種以上を用いた
脱酸を行なって、前記CuまたはCu合金溶湯中の酸素
濃度を脱酸平衡値まで低減した後、前記金属系脱酸剤に
由来する金属および金属酸化物の濃度を、金属換算で該
金属元素毎に20ppm以下に低減してから鋳造し、鋳
塊割れ及び鋳塊の熱間加工割れを防止することを特徴と
するCuまたはCu系合金鋳造製品の製法。
1. When casting Cu or Cu alloy,
At any stage before casting, deoxidation is performed using at least one metal-based deoxidizing agent containing a metal that is more easily oxidized than the Cu or Cu alloy to adjust the oxygen concentration in the molten Cu or Cu alloy. After reducing to the deoxidation equilibrium value, the concentration of the metal and metal oxide derived from the metal-based deoxidizing agent is reduced to 20 ppm or less for each metal element in terms of metal, and then casting is performed, ingot cracking and casting A method for producing a Cu or Cu-based alloy casting product, which is characterized by preventing hot work cracking of a lump.
【請求項2】 Cu−Fe系合金を使用し、脱酸による
酸素濃度の低減により鋳造時のCu−Fe−O系共晶化
合物の晶出を防止すると共に、金属系脱酸剤に由来する
金属濃度の低減により鋳造時の結晶粒の微細化を図る請
求項1に記載の製法。
2. A Cu—Fe based alloy is used, which prevents decrystallization of a Cu—Fe—O based eutectic compound at the time of casting by reducing the oxygen concentration by deoxidation, and is derived from a metal based deoxidizer. The manufacturing method according to claim 1, wherein the grain size during casting is miniaturized by reducing the metal concentration.
【請求項3】 CuまたはCu合金(但し、Cu−Fe
系合金を除く)を使用し、脱酸による酸素濃度の低減と
金属系脱酸剤に由来する金属濃度の低減により、鋳造時
の結晶粒の微細化を図る請求項1に記載の製法。
3. Cu or Cu alloy (provided that Cu--Fe
The production method according to claim 1, wherein the crystal grains at the time of casting are miniaturized by reducing the oxygen concentration by deoxidation and the metal concentration derived from the metal-based deoxidizing agent by using (except for system alloys).
【請求項4】 金属系脱酸剤として、金属単体もしくは
銅を母合金とする合金を使用する請求項1〜3のいずれ
かに記載の製法。
4. The method according to claim 1, wherein a simple metal or an alloy having copper as a master alloy is used as the metal-based deoxidizer.
【請求項5】 合金溶湯の脱酸に、炭素もしくはCOガ
スを用いた脱酸と金属系脱酸剤を用いた脱酸を併用する
請求項1〜4のいずれかに記載の製法。
5. The method according to claim 1, wherein deoxidation of the molten alloy is carried out in combination with deoxidation using carbon or CO gas and deoxidation using a metal-based deoxidizer.
JP35031193A 1993-12-29 1993-12-29 Production of cu or cu alloy casting product Pending JPH07197144A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP35031193A JPH07197144A (en) 1993-12-29 1993-12-29 Production of cu or cu alloy casting product

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP35031193A JPH07197144A (en) 1993-12-29 1993-12-29 Production of cu or cu alloy casting product

Publications (1)

Publication Number Publication Date
JPH07197144A true JPH07197144A (en) 1995-08-01

Family

ID=18409635

Family Applications (1)

Application Number Title Priority Date Filing Date
JP35031193A Pending JPH07197144A (en) 1993-12-29 1993-12-29 Production of cu or cu alloy casting product

Country Status (1)

Country Link
JP (1) JPH07197144A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010179356A (en) * 2009-02-09 2010-08-19 Dowa Metaltech Kk Copper alloy casting method
JP2013237887A (en) * 2012-05-14 2013-11-28 Iwao Nakajima Method for producing copper-iron alloy
JP2017020085A (en) * 2015-07-13 2017-01-26 日立金属株式会社 Copper alloy material and method for producing the same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010179356A (en) * 2009-02-09 2010-08-19 Dowa Metaltech Kk Copper alloy casting method
JP2013237887A (en) * 2012-05-14 2013-11-28 Iwao Nakajima Method for producing copper-iron alloy
JP2017020085A (en) * 2015-07-13 2017-01-26 日立金属株式会社 Copper alloy material and method for producing the same

Similar Documents

Publication Publication Date Title
KR100921311B1 (en) Casting method of modified copper alloy using the master alloy for use in modifying copper alloy
CN109732239B (en) High-magnesium-manganese-chromium-cobalt-aluminum alloy for manufacturing welding wire and preparation method thereof
JP2501275B2 (en) Copper alloy with both conductivity and strength
JPH059502B2 (en)
WO2007139213A1 (en) Process for manufacturing copper alloy wire rod and copper alloy wire rod
JP2012097327A (en) Copper alloy improved in hot and cold workability, method for production thereof, and copper alloy strip or alloy foil obtained from copper alloy
CN110055428B (en) Boron alloying method in electroslag remelting process
JP7471520B2 (en) Manufacturing method for low carbon nitrogen containing austenitic stainless steel rod
CN112662922A (en) Regenerated deformation aluminum alloy melt
JP5785836B2 (en) Copper alloys and castings
JPH07197144A (en) Production of cu or cu alloy casting product
EP0964069B1 (en) Strontium master alloy composition having a reduced solidus temperature and method of manufacturing the same
JP2989060B2 (en) Low oxygen Ti-Al alloy and method for producing the same
JP2011012300A (en) Copper alloy and method for producing copper alloy
JPH11189834A (en) High strength trolley wire and its manufacture
JP5607459B2 (en) Copper alloy ingot, method for producing the same, and copper alloy sheet obtained therefrom
US2036576A (en) Process for making alloys
CN112391572A (en) Preparation process of Cu-Cr corrosion-resistant reinforcing steel bar
CN113862511B (en) Cu-Ni-Mn-P alloy and preparation method thereof
CN106350696B (en) Copper alloy material and method for producing same
RU2781701C2 (en) Low alloy based on copper and its melting method
US3997332A (en) Steelmaking by the electroslag process using prereduced iron or pellets
RU2782193C1 (en) Method for smelting khn33kv alloy
US3169855A (en) Zinc purification
JP2511224B2 (en) Method for removing impurities from copper or copper alloy scrap

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20011009