JPH059502B2 - - Google Patents

Info

Publication number
JPH059502B2
JPH059502B2 JP58065265A JP6526583A JPH059502B2 JP H059502 B2 JPH059502 B2 JP H059502B2 JP 58065265 A JP58065265 A JP 58065265A JP 6526583 A JP6526583 A JP 6526583A JP H059502 B2 JPH059502 B2 JP H059502B2
Authority
JP
Japan
Prior art keywords
copper alloy
strength
amount
casting
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58065265A
Other languages
Japanese (ja)
Other versions
JPS59193233A (en
Inventor
Hirozo Sugai
Shigemi Yamane
Haruka Machitori
Koichi Tejima
Tetsuo Fujiwara
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Shibaura Electric Co Ltd filed Critical Tokyo Shibaura Electric Co Ltd
Priority to JP6526583A priority Critical patent/JPS59193233A/en
Publication of JPS59193233A publication Critical patent/JPS59193233A/en
Publication of JPH059502B2 publication Critical patent/JPH059502B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Conductive Materials (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

〔発明の技術分野〕 本発明は導電性と強度とを兼備した銅合金の製
造方法に関する。 〔発明の技術的背景とその問題点〕 析出硬化型銅合金は、導電率が高くかつ強度も
高い金属材料であつて、各種の製品に用いられて
いる。この種の合金の強度は溶体化温度を高くす
る程向上して行くものである。しかし溶体化温度
が980℃をこえると、合金の結晶粒子が粗大化し、
加工時に肌荒れ現象が生じ、外観不良を起す。こ
のような不良を起こさず、更に強度の高い材料が
要求された。そして種々の物質をこれらの銅合金
に添加したものが試みられたが、材料の強度と導
電率とは、相反する特性であるので、高導電率に
して、かつ一層強度の高い金属材料は仲々に得ら
れなかつた。又、添加元素が活性であると、なか
なか良好な製品が歩溜り良くできないという問題
もあつた。 〔発明の目的〕 本発明の目的は、上記の点を考慮して、高導電
率にしてかつ強度が一層高い特性を有し、かつ歩
溜の良好な銅合金の製造方法を提供するものであ
る。 〔発明の概要〕 本願発明者らは、析出硬化型銅合金を研究した
結果、クロム0.01〜2.0wt%、ジルコニウム0.005
〜1.0wt%のいずれか又は双方を選択し、酸素
60ppm以下、残部実質的に銅よりなる銅合金の製
造方法において、選択し、溶解、鋳造工程におけ
る鋳込み速度5℃/秒以上で鋳造を行い、得られ
たインゴツトを最終温度600〜850℃で熱間加工し
た後、さらに溶体化処理工程を行う際は溶体化温
度600〜850℃で溶体化処理した後、冷間加工を行
い、その後時効温度300〜500℃で時効処理を行う
ことにより、析出物(0.5〜50μm)が100〜
100000個/mm2存在する銅合金を得る製造方法を提
供することにより、上記目的が容易に達成できる
ことが分つた。 さらに、上記合金に各種添加元素を適量添加す
ることにより上記銅合金の製造方法の目的がより
容易に達成できることが分つた。 以下それぞれについて述べる。 まず本発明の銅合金の製造法を述べる。第1図
はその製造法の工程図である。 本工程は鋳造工程と溶体化工程と冷間加工工程
に特長を有し、他の工程に関しても、本発明の為
に種々工夫がなされている。 先ず、溶解工程では酸素が低い方が好ましく具
体的には60ppm以下である。これは、本発明の銅
合金が酸素と親和力の強いCrやZrを含んでいる
ので、酸化物等の非金属介在物を生成しやすいか
らである。この非金属介在物は、表面欠陥(ハガ
レ、キズ、フクレ、ワレ等)、メツキ性(例えば
Ag、Ni、Sn、ハンダ等のメツキ)、繰返し曲げ
性、導電率及び強度に悪影響を与える。したがつ
て、酸素を低下させることにより、これらの問題
を解決できる。 酸素の低下方法としては、下記の6つの方法が
ある。 (1) カーボンルツボ又はマグネシア等のスタンプ
ルツボを用いて溶解する場合、溶解素材又は溶
湯中にカーボンを入れることが好ましい。 (2) (1)において用いるカーボンは高純度(90%以
上の純度)が好ましく、超高純度カーボン(95
%以上の純度)であれば更に好ましい。 (3) リターン材に含まれる酸素親和力の強い成分
元素を積極的に脱酸に利用する為に容易にリタ
ーン材を投入するのが好ましい。 (4) 母合金に含まれるガス、不純物の混入を避け
る為に、溶解素材(銅地金)の溶け落ち後母合
金を投入し、その後Zrを添加するのが好まし
い。 (5) 脱酸のための添加と成分元素としての添加の
為にZrを複数に分けて投入するのが好ましい。 (6) 溶解素材(銅地金)の溶け落ち後、溶湯表面
を不活性ガスでおおうのが好ましい。 以上のような手段で酸素を低下させることによ
り、添加元素の歩溜りも向上できる。 一方酸素が低下することにより、水素が増加す
るが、この水素も低く抑えた方が好ましく、具体
的には10ppm以下、更には5ppm以下、更には
3ppm以下が好ましい。これは熱処理の際フクレ
を発生させる原因となる為である。 水素量を低下させる方法としては銅地金に電線
銅を添加する方法が好ましい。 以上のように、酸素量、水素量を低下させる溶
解法を用いることにより、表面欠陥が少なくメツ
キ性、繰返し曲げ性、導電率及び強度が良好な銅
合金が得られ、本発明のクロム、ジルコニウム銅
合金には、非常に有効である。 次に鋳造工程について述べる。本発明の銅合金
はZr、Crを含んでいる為、インゴツト表面への
介在物巻込みやインゴツト表面の湯ジワ、割れを
起しやすい。したがつて、鋳造経路(例えばト
ユ、タンデイツシユ、ロート等)や鋳型を不活性
ガスでシールすることが好ましい。又、合金中の
析出物を小さくすることにより、繰返し折り曲げ
性が向上する。この為に鋳込み速度は5℃/秒以
上、更には10℃/秒以上、更には15℃/秒以上が
好ましい。そして、この方法としては連続鋳造の
適用が好ましく、経済的にも効果がある。又、
Cr、Zr、その他添加元素の粗大晶出を防ぐ為に
溶湯を急冷することが好ましい。この方法は、鋳
造と溶体化熱処理を同時に行なえ、加工性の向上
のほかに工程の短縮も計ることができる。 したがつて、この鋳造法は、インゴツトの湯ジ
ワ、割れ、介在物巻込みが防止できやすく、又特
定組織を得やすいので、本発明の目的の銅合金が
えられやすい。 次に面削工程について述べる。鋳造工程後、イ
ンゴツトに表面割れ、湯ジワが生じた場合、それ
を除去する方が最終製品の歩溜りを向上でき好ま
しい。但し、湯ジワ等の表面欠陥がなければこの
工程は省略してもよい。 次に熱間加工について述べる。この工程は加工
品を所望の寸法までもつていく工程であるが、熱
間加工の最終温度を600℃〜850℃、好ましくは
700℃〜820℃、更に好ましくは750℃〜800℃に
し、その後急冷することにより、熱間加工と溶体
化処理を兼ねることができ、工程の簡略化が可能
である。この際最終温度が高すぎると、銅合金の
導電性を低下させ、一方低すぎると、強度を低下
させる。したがつて、この工程が溶体化工程を兼
ねる場合、この工程の最終温度を上記の範囲にす
ることにより、高強度で高導伝性の銅合金が得ら
れる。 次に溶体化処理工程について述べる。本願発明
者らは、実験研究した結果、溶体化温度が600℃
〜850℃、好ましくは700℃〜820℃、更に好まし
くは750℃〜800℃である溶体化処理をもちいるこ
とにより、強度、延性、繰返し曲げ性、導電率が
良好な銅合金が得られることがわかつた。又、溶
体化の際、冷却速度は速いほど強度に効果があ
り、具体的には空冷、更には水冷が好ましいこと
もわかつた。又、この方法は温度をあまり上げな
いで済む為、エネルギー的にも有利である。この
溶体化工程は、鋳造工程又は熱間加工工程にも含
ませることが可能であり、その場合工程の短縮に
なる。 以上のように溶体化温度と冷却速度を制御する
ことにより、高強度で高導電性となる組織の銅合
金を得得ることができる。 次に冷間加工工程について述べる。本発明では
この工程を取り入れることにより、一層強度が高
く、繰返し曲げ特性が良好な銅合金が得られる。
加工率は大きい方が好ましく、具体的には70%〜
99%、更には80%〜95%、更には85%〜90%が好
ましい。この冷間加工は、銅合金に加工硬化及び
析出物微細化を行こさせ、強度、繰返し曲げを向
上させることができるが、加工率が高すぎると、
延性が低下し、一方低くすぎると強度がでない。 次に時効処理工程について述べると、この工程
は前の冷間加工工程と組み合せて300℃〜500℃、
好ましくは350℃〜500℃、更に好ましくは400℃
〜450℃の 温度で時効することにより、銅合金
に強度、導電性及び靭性を与えることができる。
この際、温度が高すぎると軟化し、一方、低すぎ
ると歪がとれず繰返し曲げ性が低下する。 したがつて、この冷間加工工程及び時効処理工
程では、加工率、時効温度を制御することによ
り、強度、繰返し曲げ、延性及びエツチング性に
好ましい組織を得ることができる。したがつて、
本発明の銅合金を以上の方法を用いることによ
り、一層高強度にして、かつ高導電性の特性を有
し、かつ歩溜りが良好な銅合金を提供できる。 次に析出物の大きさおよび分布について説明す
る。本発明でいう析出物の大きさとは、析出物を
顕微鏡で見た際、その析出物を含む最小円の直径
をいう。本発明では大きさが0.5〜50μmの析出物
の分布を100〜100000個/mm2とすることが望まし
い。これは析出物が大きすぎると折り曲げ性及び
エツチング特性を低下させると共に、機械的特性
に実質的に影響を与える析出物の大きさは0.5〜
50μmであり、その大きさの析出物が多すぎると、
折り曲げ性が低下し、一方少なすぎると、強度及
びメツキ性が低下する為である。なお、析出物は
上記の大きさ及び分布の範囲どちらかを満足すれ
ば良好な折り曲げ性、エツチング及び強度が得ら
れるが、両方満足する方が更に好ましい。 したがつて、銅合金の組織を上記の如くするこ
とにより、メツキ性、エツチング性、導電率、繰
返し曲げ性、強度が良好な銅合金を提供できる。 析出物の大きさ、および分布を上述のようにす
るためには次に述べる方法により製造する。 まずCr、Zr等を含有するCu合金を次のように
例えば連続鋳造法により鋳造する。すなわち溶湯
温度1000〜1400℃、好ましくは1100〜1300℃、更
に好ましくは1150〜1250℃より溶解鋳造を開始
し、冷却速度が5%/秒以上、好ましくは10℃/
秒以上、更に好ましくは15℃/秒以上で凝固させ
る。冷却速度が遅すぎると、析出物が大きくなる
ので好ましくない。 次に熱間圧延及び冷間圧延を施したのち、溶体
化熱処理を行ない、加工率が70%〜99%、好まし
くは80%〜95%、更に好ましくは85%〜90%の冷
間圧延等の冷間加工により所定の大きさに仕上げ
て、300〜550℃、好ましくは350℃〜500℃、更に
好ましくは400〜450℃で数時間加熱することによ
り時効硬化処理を行なう。 このようにして製造された銅合金は、Cu合金
中に析出物が細かく、かつ均一に分散されている
ので、折り曲げ性および硬度等の極めて良好な銅
合金となる。 次に成分について述べる。Zr、Crを添加し、
分散させることにより、導電性を低下させず、強
度を向上させることができるが、量が多すぎる
と、導電性及び加工性が低下し、一方少なすぎる
と強度及び耐熱性が不足する。したがつて、これ
らの合金に関してはCrが2%以下例えば0.01〜
2.1wt%、Zrが1.0%以下例えば0.005〜1.0wt%の
範囲が好ましい。又Cr、Zrは非常に活性な金属
であり、酸素との親和力が大きく、選択し、酸素
60ppm以下、残部実質的に銅よりなる銅合金の製
造方法において、溶解の際酸化物を形成させやす
く、又メツキ性も低下させやすい。したがつて、
特に製造法の歩留りやメツキ性を求める場合は、
Cr量は0.01〜0.4wt%、Zr量は0.005〜0.1wt%の
範囲が好ましい。又Zr、Cr量を減し、不活性な
他の元素を添加することにより、強度と導電性を
保ちつつ、かつ製造しやすい銅合金を提供でき
る。Cu−Cr合金、Cu−Zr合金、Cu−Cr−Zr合
金のうちでは、この順に高温強度が高く、リード
ピン、リードフレームのような高温強度を求めら
れる材料には適当である。 次に添加成分を加えた銅合金について述べる。
Cu−Cr合金、Cu−Zr合金又Cu−Cr−Zr合金は
要求特性に応じ下記の元素を選択添加することに
よりさらに本発明の目的を達成しやすい銅合金を
提供できる。 記 Ni、Sn、Fe、Co、Zn、Ti、Be、B、Mg、
P、Ag、Si、Mn、Cd、Al、希土類元素、Ge、
Nb、V、Hf、Mo、W、Y、Ta、Ga、Sb また、上記元素のほかにCaを添加することに
より同様に本発明の目的を達成しやすい銅合金を
提供できる。 まず、本発明者らは上記成分のCu−Zn合金、
Cu−Cr合金、Cu−Cr−Zr合金に下記成分の元素
を1種または2種以上を選択することにより、そ
の複合効果として強度が向上した銅合金を提供で
きることがわかつた。 記 Ni、Sn、Fe、Co、Zn、Ti、Be、B、Mg、
P、Ag、Si、Mn、Cd、Al、希土類元素、Ge、
Nb、V、Hf、Mo、W、Y、Ta、Ga、Sb 上記元素について細かく説明すると下記のよう
になる。 この成分範囲としては、Niは0.005〜10wt%、
更には0.05〜5.0wt%、更には0.1〜2.0wt%が好ま
しい。これはNiを添加することにより、強度を
向上させることができるが、多すぎると導電性を
低下させ、一方少なすぎると効果がでない為であ
る。 Sn含有量は、0.005〜10wt%、更には0.05〜
5.0wt%、更には0.1〜2.0wt%が好ましい。これ
はSnを添加することにより、強度を向上させる
ことができるが、多すぎると導電性を低下させ、
一方少なすぎると効果がでない為である。 Fe含有量は0.005〜5.0wt%、更には0.01〜
1.0wt%、更には0.05〜0.5wt%が好ましい。これ
はFeを添加することにより、強度を向上させる
ことができるが、多すぎると導電性及びハンダ耐
候性を低下させ、一方少なすぎると効果がない為
である。 Co含有量は、0.005〜5.0wt%、更には0.01〜
1.0wt%、更には0.05〜0.5wt%が好ましい。これ
は、Coを添加することにより、強度を向上させ
ることができるが、多すぎると導電性を低下さ
せ、一方少なすぎると効果がでない為である。 Zn含有量は0.005〜1.0wt%、更には0.01〜
2.0wt%、更には0.05〜0.5wt%が好ましい。これ
はZnを添加することにより、強度が向上するが、
量が多すぎるとハンダ耐候性が低下し、一方少な
すぎると効果がでない為である。 Ti含有量は0.005〜5.0wt%、更には0.05〜
1.0wt%、更には0.05〜0.5wt%が好ましい。これ
は、Tiを添加することにより、強度向上や結晶
粒粗大化防止が可能となるが、量が多すぎると、
導電性が低下し、一方少なすぎると効果がない為
である。 Be量は0.001〜2.0wt%、更には0.01〜1.0wt%、
更には0.05〜0.5が好ましい。これはBeを添加す
ることにより、強度が向上するが、量が多すぎる
と、価格が増加し、一方少なすぎると効果がでな
い為である。 B量は0.001〜1.0wt%、更には0.01〜0.5wt%、
更には0.05〜0.5wt%が好ましい。これはBを添
加することにより、強度向上や結晶粒粗大化防止
が可能となるが、量が多すぎると加工性が低下
し、一方少なすぎると効果がでない為である。 Mg量は0.001〜2.0wt%、更には0.01〜0.5wt%、
更には0.01〜0.1wt%が好ましい。これはMgを添
加することにより、強度及び脱酸が向上するが、
量が多すぎると、導電性及び加工性が低下し、一
方少なすぎると効果がでない為である。 P量は0.001〜1.0wt%、更には0.005〜0.2wt%、
更には0.01〜0.05wt%が好ましい。Pを添加する
ことにより、強度及び脱酸力が向上するが、量が
多すぎると導電性及びハンダ耐候性が低下し、一
方少なすぎると効果がでない為である。 Ag量は0.001〜3.0wt%、更には0.005〜0.5wt
%、更には0.01〜0.05wt%が好ましい。これは、
Agを添加することにより、強度が向上するが、
量が多すぎると、価格が増加し、一方少なすぎる
と効果がでない為である。 Si量は0.001〜5.0wt%、更には0.01〜0.5wt%、
更には0.02〜0.1wt%が好ましい。これはSiを添
加することにより、強度向上、脱酸力向上及び結
晶粒粗大化防止が可能となるが、量が多すぎると
導電性が低下し、一方少なすぎると効果がでない
為である。 Mn量は0.001〜10wt%、更には0.01〜1.0wt%、
更には0.02〜0.1wt%が好ましい。これはMnを添
加することにより、強度及び脱酸力が向上する
が、量が多すぎると、導電性が低下し、一方少な
すぎると効果がでない為である。 Cd量は0.001〜5.0wt%、更には0.01〜0.2wt%、
更には0.02〜0.1wt%が好ましい。これはCdを添
加することにより、強度が向上するが、量が多す
ぎると価格の増加や加工性の低下をきたし、一方
少なすぎると効果がでない為である。 Al量は0.001〜10wt%、更には0.005〜1.0wt%、
更には0.05〜0.5wt%が好ましい。これは、Alを
添加することにより、強度及び脱酸力が向上する
が、量が多すぎると導電性及び加工性が低下し、
一方少なすぎると効果がでない為である。 希土類元素量は、0.001〜2.0wt%、更には0.05
〜0.5wt%が好ましい。これは希土類元素を添加
することにより、強度及び脱酸力が向上するが、
量が多すぎると価格の増加や加工性の低下をきた
し、一方量が少なすぎると効果がでない為であ
る。 Ge量は0.001〜5.0wt%、更には0.01〜0.1wt%
が好ましい。これはGeを添加することにより、
強度が向上し、又結晶粒の粗大化が防止できやす
くなるが、量が多すぎると、導電性が低下し、一
方少なすぎると効果がでない。 次に第2群元素について説明する。これらの元
素も高強度高導電性銅合金の添加元素として好ま
しいものである。これらの元素は単独に使用され
ても、あるいは第1群の元素と併用されても、効
果がある。 これは、Nbを添加することにより、強度が向
上し、結晶粒の粗大化が防止できやすくなるが、
量が多すぎると導電性及び加工性が低下し、一方
少なすぎると効果がない。したがつてNb量は
0.005〜5.0wt%、更には0.01〜0.5wt%、更には
0.1〜0.5wt%が好ましい。 Vを添加することにより、強度向上及び結晶粒
粗大化防止が可能であるが、量が多すぎると導電
性及び加工性が低下し、一方少なすぎると効果が
ない。したがつてV量は0.005〜5.0wt%、更には
0.01〜0.5wt%、更には0.1〜0.5wt%が好ましい。 Hfを添加することにより、強度向上及び結晶
粒粗大化防止を可能とするが、量が多すぎると、
導電性及び加工性が低下し、一方少なすぎると効
果がない。したがつてHf量は0.005〜5.0wt%、更
には0.1〜0.5wt%、更には0.05〜0.5wt%が好まし
い。 Moを添加することにより、強度向上及び結晶
粒粗大化防止が可能となるが、量が多すぎると、
価格増加及び加工性低下をきたし、一方少なすぎ
ると効果がない。したがつてMo量は0.001〜
2.0wt%、更には0.05〜0.5wt%が好ましい。 Wを添加することにより、強度向上及び結晶粒
粗大化防止が可能となるが、量が多すぎると価格
増加及び加工性低下きたし、一方少なすぎると効
果がない。したがつてW量0.001〜2.0wt%、更に
は0.05〜0.5wt%が好ましい。 Yを添加することにより、強度及び脱酸力が向
上するが、量が多すぎると価格増加及び加工性低
下をきたし、一方少なすぎると効果がない。した
がつて、Y量は0.001〜2.0wt%、更には0.05〜
0.5wt%が好ましい。 Taを添加することにより、強度向上及び結晶
粒粗大化防止が可能となるが、量が多すぎると導
電性低下及び価格増加をきたし、一方少なすぎる
と効果がない。したがつてTa量は0.001〜2.0wt
%、更には0.05〜0.5wt%が好ましい。 Gaを添加することにより、強度向上及び結晶
粒粗大化防止が可能となるが、量が多すぎると導
電性が低下し、一方少なすぎると効果がない。し
たがつてGa量は0.001〜5.0wt%、更には0.01〜
0.1wt%が好ましい。 Sbを添加することにより、強度向上及び結晶
粒粗大化防止が可能となるが、量が多すぎると導
電性及び加工性が低下し、一方少なすぎると効果
がない。したがつてSb量は0.001〜5.0wt%、更に
は0.01〜0.1wt%が好ましい。 また、Caを添加することにより、脱酸力及び
切削性が向上する。しかし、その量があまり多す
ぎると加工性が低下し、一方少なすぎると効果が
出ないため、Ca量は0.001〜1.0wt%とした。更に
は0.01〜0.1wt%が好ましい。 以上各添加元素について述べたが、これらの
は、銅合金の求められる特性により、適宜選択さ
れると良い。求められる特性としては、例えばメ
ツキ性、導電性、折り曲げ性、耐熱性及び機械的
強度等があるが、例えばメツキ性及び強度が重要
視される場合、添加元素としてMg、Mn、Y、
La等を選べば良く、又折り曲げ性及び強度が重
要視される場合、添加元素としてはNb、V、
Hf、Al、Ge、Ga、Sb等を選べば良い。 そして、これらの特性が求められる製品として
は、例えばリードフレーム、リードピン、高強度
導電線、鋳造用鋳型、連鋳用鋳型、非晶質合金製
造用ロール、抵抗溶接用電極、熱交換器用部品
(フイン、パイプ、隔壁等)、電池缶、装飾部材、
バイメタル、ガラス成形用部材、真空容器、溶接
トーチ、リード線等がある。 以上述べてきた好ましい成分、製法、組織、用
途の代表例を第1表に示す。 第1表において特性および組織の欄における◎
〇△の定義は以下の通りである。 記 導電性;◎導電率85%以上 〇導電率75%以上85%未満 △導電率65%以上75%未満 強 度;◎硬度 150Hv以上 〇硬度 140Hv以上 150Hv未満 △硬度 120Hv以上 140Hv未満 耐熱性;◎500℃以上 〇400℃以上 500℃未満 △300℃以上 400℃未満 繰返し;◎5回以上 曲げ性 〇4回 △3回 メツキ性ハンダ性;Ag、Auメツキ及びPb−Sn
ハンダ付けが簡単な前処理(酸洗い)だ
けで ◎容易 〇可能 △困難 組 織;析出物の平均粒径 ◎0.5μm以上5μm未満 〇5μm以上10μm未満 △10μm以上50μm未満 ここで繰返し曲げを測定する方法として第2図
に示すようにチヤツク等の固定治具2により支持
された試料1(厚さ0.25mm、幅0.5mm、長さ20mm)
を荷重3(1/2ポンド)加えた状態で点線で示
すように固定治具により90゜曲げる。この曲げを
繰返し行い破断までの回数を繰返し曲げ回数(特
性)とする。 なお、Crが0.3〜0.7wt%で、Zrが0.1未満のCu
−Cr−Zr合金、及びCrが0.3未満でZrが0.1〜
0.5wt%のCu−Cr−Zr合金に関しても同様に好ま
しい特性、組織が得られた。
[Technical Field of the Invention] The present invention relates to a method for producing a copper alloy having both electrical conductivity and strength. [Technical background of the invention and its problems] Precipitation hardening copper alloys are metal materials with high electrical conductivity and high strength, and are used in various products. The strength of this type of alloy increases as the solution temperature increases. However, when the solution temperature exceeds 980℃, the crystal grains of the alloy become coarser.
Roughness occurs during processing, resulting in poor appearance. There was a need for a material with even higher strength that would not cause such defects. Attempts have been made to add various substances to these copper alloys, but since the strength and electrical conductivity of the material are contradictory properties, it has been difficult to find metallic materials with high electrical conductivity and even higher strength. I couldn't get it. In addition, if the additive element is active, there is a problem that it is difficult to produce a good product with a high yield. [Object of the Invention] In consideration of the above points, the object of the present invention is to provide a method for producing a copper alloy that has high electrical conductivity and even higher strength, and has a good yield. be. [Summary of the Invention] As a result of research on precipitation hardening copper alloys, the present inventors found that chromium 0.01 to 2.0wt% and zirconium 0.005%
Select either or both of ~1.0wt% oxygen
60 ppm or less, the balance being substantially copper. In the method for producing a copper alloy, the ingot is selected, melted, and cast at a casting rate of 5°C/sec or more in the casting process, and the obtained ingot is heated at a final temperature of 600 to 850°C. When performing a solution treatment process after hard working, solution treatment is performed at a solution temperature of 600 to 850℃, followed by cold working, and then aging treatment is performed at an aging temperature of 300 to 500℃ to prevent precipitation. (0.5-50μm) is 100-
It has been found that the above object can be easily achieved by providing a manufacturing method for obtaining a copper alloy with a density of 100,000 pieces/mm 2 . Furthermore, it has been found that the purpose of the method for producing a copper alloy can be more easily achieved by adding appropriate amounts of various additive elements to the alloy. Each will be explained below. First, the method for producing the copper alloy of the present invention will be described. FIG. 1 is a process diagram of the manufacturing method. This process has features in the casting process, solution treatment process, and cold working process, and various improvements have been made to the other processes for the purpose of the present invention. First, in the dissolution step, it is preferable that the oxygen content be low, specifically 60 ppm or less. This is because the copper alloy of the present invention contains Cr and Zr, which have a strong affinity for oxygen, and therefore tends to generate nonmetallic inclusions such as oxides. These nonmetallic inclusions are caused by surface defects (peeling, scratches, blisters, cracks, etc.), plating properties (e.g.
Plating of Ag, Ni, Sn, solder, etc.) has a negative effect on repeated bendability, electrical conductivity, and strength. Therefore, reducing oxygen can solve these problems. There are the following six methods for reducing oxygen. (1) When melting is performed using a carbon crucible or a stamp crucible such as magnesia, it is preferable to include carbon in the melting material or molten metal. (2) The carbon used in (1) is preferably of high purity (90% or higher purity), and ultra-high purity carbon (95% or higher) is preferable.
% or more purity) is more preferable. (3) It is preferable to easily add the return material in order to actively utilize the component elements with strong oxygen affinity contained in the return material for deoxidation. (4) In order to avoid contamination with gases and impurities contained in the master alloy, it is preferable to add the master alloy after melting the melted material (copper metal) and then add Zr. (5) It is preferable to add Zr in multiple parts for addition for deoxidation and addition as a component element. (6) After melting the melted material (copper metal), it is preferable to cover the surface of the molten metal with an inert gas. By lowering the oxygen content using the above-described means, the yield of additional elements can also be improved. On the other hand, as oxygen decreases, hydrogen increases, but it is preferable to keep this hydrogen low as well, specifically 10ppm or less, further 5ppm or less, and even less.
It is preferably 3 ppm or less. This is because it causes blistering during heat treatment. As a method for reducing the amount of hydrogen, a method of adding wire copper to copper metal is preferable. As described above, by using a melting method that reduces the amount of oxygen and hydrogen, a copper alloy with few surface defects and good plating properties, repeated bending properties, electrical conductivity, and strength can be obtained. It is very effective for copper alloys. Next, we will discuss the casting process. Since the copper alloy of the present invention contains Zr and Cr, it is likely to cause inclusions on the ingot surface, hot water wrinkles, and cracks on the ingot surface. Therefore, it is preferable to seal the casting path (for example, the funnel, tundish, funnel, etc.) and the mold with an inert gas. Furthermore, by reducing the size of precipitates in the alloy, the repeatability of bending is improved. For this reason, the casting speed is preferably 5°C/second or more, more preferably 10°C/second or more, and even more preferably 15°C/second or more. Continuous casting is preferred as this method and is economically effective. or,
It is preferable to rapidly cool the molten metal in order to prevent coarse crystallization of Cr, Zr, and other additive elements. This method allows casting and solution heat treatment to be performed simultaneously, which not only improves workability but also shortens the process. Therefore, this casting method can easily prevent wrinkles, cracks, and entrainment of inclusions in the ingot, and can easily obtain a specific structure, making it easy to obtain the copper alloy that is the object of the present invention. Next, we will discuss the facing process. If surface cracks or wrinkles occur on the ingot after the casting process, it is preferable to remove them because this will improve the yield of the final product. However, this step may be omitted if there are no surface defects such as hot water wrinkles. Next, we will discuss hot working. This process brings the processed product to the desired dimensions, and the final temperature of hot working is 600°C to 850°C, preferably
By heating the temperature to 700° C. to 820° C., more preferably 750° C. to 800° C., and then rapidly cooling it, hot working and solution treatment can be performed simultaneously, and the process can be simplified. If the final temperature is too high, the conductivity of the copper alloy will be reduced, while if it is too low, the strength will be reduced. Therefore, when this step also serves as a solution treatment step, by setting the final temperature of this step within the above range, a high strength and highly conductive copper alloy can be obtained. Next, the solution treatment process will be described. As a result of experimental research, the inventors of this application found that the solution temperature was 600℃.
By using solution treatment at ~850°C, preferably 700°C ~ 820°C, more preferably 750°C ~ 800°C, a copper alloy with good strength, ductility, repeated bendability, and electrical conductivity can be obtained. I understood. It was also found that during solution treatment, the faster the cooling rate, the more effective the strength is, and specifically, air cooling and water cooling are preferable. This method is also advantageous in terms of energy since it does not require much increase in temperature. This solution treatment step can also be included in the casting step or hot working step, in which case the steps can be shortened. By controlling the solution temperature and cooling rate as described above, it is possible to obtain a copper alloy having a structure that is high in strength and highly conductive. Next, the cold working process will be described. By incorporating this step in the present invention, a copper alloy with even higher strength and good repeated bending properties can be obtained.
The higher the processing rate, the better, specifically 70%~
99%, more preferably 80% to 95%, and even more preferably 85% to 90%. This cold working can work harden the copper alloy and refine the precipitates, improving strength and repeated bending, but if the working rate is too high,
Ductility decreases; on the other hand, if it is too low, strength is lost. Next, talking about the aging treatment process, this process is combined with the previous cold working process at temperatures of 300℃ to 500℃.
Preferably 350°C to 500°C, more preferably 400°C
Aging at temperatures of ~450°C can impart strength, conductivity, and toughness to copper alloys.
At this time, if the temperature is too high, the material will soften, while if the temperature is too low, the strain will not be removed and the repeated bendability will decrease. Therefore, in this cold working step and aging treatment step, by controlling the working rate and aging temperature, it is possible to obtain a structure preferable for strength, repeated bending, ductility, and etching property. Therefore,
By applying the above method to the copper alloy of the present invention, it is possible to provide a copper alloy with even higher strength, high conductivity, and a good yield. Next, the size and distribution of the precipitates will be explained. The size of a precipitate in the present invention refers to the diameter of the smallest circle containing the precipitate when the precipitate is viewed under a microscope. In the present invention, the distribution of precipitates with a size of 0.5 to 50 μm is preferably 100 to 100,000 pieces/mm 2 . This means that if the precipitates are too large, the bendability and etching properties will deteriorate, and the size of the precipitates that will substantially affect the mechanical properties is 0.5~
50 μm, and if there are too many precipitates of that size,
This is because the bendability decreases, and on the other hand, if it is too small, the strength and plating properties decrease. It should be noted that good bendability, etching and strength can be obtained if the precipitate satisfies either of the size and distribution ranges described above, but it is more preferable that the precipitate satisfies both. Therefore, by forming the structure of the copper alloy as described above, a copper alloy having good plating properties, etching properties, electrical conductivity, repeated bending properties, and strength can be provided. In order to obtain the size and distribution of the precipitates as described above, the following method is used to produce the precipitates. First, a Cu alloy containing Cr, Zr, etc. is cast by, for example, a continuous casting method as follows. That is, melting and casting is started at a molten metal temperature of 1000 to 1400°C, preferably 1100 to 1300°C, more preferably 1150 to 1250°C, and the cooling rate is 5%/second or more, preferably 10°C/second.
Solidification is performed at a rate of at least 15 seconds, more preferably at least 15° C./second. If the cooling rate is too slow, the precipitates will become large, which is not preferable. Next, after performing hot rolling and cold rolling, solution heat treatment is performed, and cold rolling etc. with a processing rate of 70% to 99%, preferably 80% to 95%, more preferably 85% to 90% are performed. It is finished to a predetermined size by cold working, and then subjected to age hardening treatment by heating at 300 to 550°C, preferably 350 to 500°C, more preferably 400 to 450°C for several hours. The copper alloy produced in this manner has extremely good bendability and hardness because the precipitates are finely and uniformly dispersed in the Cu alloy. Next, let's talk about the ingredients. Add Zr and Cr,
By dispersing it, strength can be improved without reducing conductivity; however, if the amount is too large, the conductivity and workability will be reduced, while if it is too small, the strength and heat resistance will be insufficient. Therefore, for these alloys, the Cr content should be 2% or less, e.g. 0.01~
2.1wt%, Zr is preferably 1.0% or less, for example, in the range of 0.005 to 1.0wt%. In addition, Cr and Zr are very active metals and have a large affinity for oxygen, so they can be selected and
In a method for producing a copper alloy containing 60 ppm or less, the balance being substantially copper, oxides are likely to be formed during melting, and the plating properties are also likely to be reduced. Therefore,
Especially when looking for yield and plating performance of manufacturing method,
The amount of Cr is preferably in the range of 0.01 to 0.4 wt%, and the amount of Zr is preferably in the range of 0.005 to 0.1 wt%. Furthermore, by reducing the amounts of Zr and Cr and adding other inert elements, it is possible to provide a copper alloy that maintains strength and conductivity and is easy to manufacture. Among Cu-Cr alloys, Cu-Zr alloys, and Cu-Cr-Zr alloys, high-temperature strength is highest in this order, and they are suitable for materials that require high-temperature strength such as lead pins and lead frames. Next, we will discuss copper alloys with added components.
By selectively adding the following elements to the Cu-Cr alloy, Cu-Zr alloy, or Cu-Cr-Zr alloy according to the required properties, it is possible to provide a copper alloy that more easily achieves the objects of the present invention. Note Ni, Sn, Fe, Co, Zn, Ti, Be, B, Mg,
P, Ag, Si, Mn, Cd, Al, rare earth elements, Ge,
Nb, V, Hf, Mo, W, Y, Ta, Ga, Sb Furthermore, by adding Ca in addition to the above-mentioned elements, it is possible to provide a copper alloy that easily achieves the object of the present invention. First, the present inventors developed a Cu-Zn alloy with the above components,
It has been found that by selecting one or more of the following elements for a Cu-Cr alloy or a Cu-Cr-Zr alloy, a copper alloy with improved strength can be provided as a combined effect. Note Ni, Sn, Fe, Co, Zn, Ti, Be, B, Mg,
P, Ag, Si, Mn, Cd, Al, rare earth elements, Ge,
Nb, V, Hf, Mo, W, Y, Ta, Ga, Sb A detailed explanation of the above elements is as follows. As for this component range, Ni is 0.005 to 10wt%,
More preferably, it is 0.05 to 5.0 wt%, and even more preferably 0.1 to 2.0 wt%. This is because adding Ni can improve the strength, but too much Ni lowers the conductivity, while too little Ni has no effect. Sn content is 0.005~10wt%, and even 0.05~
5.0 wt%, more preferably 0.1 to 2.0 wt%. Strength can be improved by adding Sn, but too much can reduce conductivity.
On the other hand, if it is too small, it will not be effective. Fe content is 0.005~5.0wt%, even 0.01~
1.0 wt%, more preferably 0.05 to 0.5 wt%. This is because, although adding Fe can improve strength, too much Fe reduces conductivity and solder weather resistance, while too little Fe has no effect. Co content is 0.005~5.0wt%, and even 0.01~
1.0 wt%, more preferably 0.05 to 0.5 wt%. This is because although adding Co can improve the strength, too much Co reduces the conductivity, while too little makes it ineffective. Zn content is 0.005~1.0wt%, even 0.01~
2.0wt%, more preferably 0.05 to 0.5wt%. The strength is improved by adding Zn, but
This is because if the amount is too large, the weather resistance of the solder will decrease, while if the amount is too small, there will be no effect. Ti content is 0.005~5.0wt%, even 0.05~
1.0 wt%, more preferably 0.05 to 0.5 wt%. By adding Ti, it is possible to improve strength and prevent grain coarsening, but if the amount is too large,
This is because the conductivity decreases, and on the other hand, if it is too small, there is no effect. The amount of Be is 0.001 to 2.0wt%, furthermore 0.01 to 1.0wt%,
Furthermore, 0.05 to 0.5 is preferable. This is because the addition of Be improves the strength, but if the amount is too large, the price increases, while if the amount is too small, there is no effect. The amount of B is 0.001 to 1.0wt%, furthermore 0.01 to 0.5wt%,
Furthermore, 0.05 to 0.5 wt% is preferable. This is because adding B makes it possible to improve strength and prevent coarsening of crystal grains, but if the amount is too large, workability decreases, while if it is too small, there is no effect. The amount of Mg is 0.001 to 2.0wt%, furthermore 0.01 to 0.5wt%,
Furthermore, 0.01 to 0.1 wt% is preferable. This is because adding Mg improves strength and deoxidation, but
This is because if the amount is too large, the conductivity and processability will decrease, while if the amount is too small, there will be no effect. The amount of P is 0.001-1.0wt%, furthermore 0.005-0.2wt%,
Furthermore, 0.01 to 0.05 wt% is preferable. By adding P, the strength and deoxidizing ability are improved, but if the amount is too large, the conductivity and solder weather resistance are reduced, while if the amount is too small, there is no effect. Ag amount is 0.001~3.0wt%, and even 0.005~0.5wt
%, more preferably 0.01 to 0.05 wt%. this is,
Adding Ag improves strength, but
This is because if the amount is too large, the price will increase, while if the amount is too small, there will be no effect. The amount of Si is 0.001 to 5.0wt%, furthermore 0.01 to 0.5wt%,
Furthermore, 0.02 to 0.1 wt% is preferable. This is because by adding Si, it is possible to improve strength, improve deoxidizing ability, and prevent crystal grain coarsening, but if the amount is too large, the conductivity will decrease, while if the amount is too small, there will be no effect. The amount of Mn is 0.001 to 10wt%, furthermore 0.01 to 1.0wt%,
Furthermore, 0.02 to 0.1 wt% is preferable. This is because adding Mn improves the strength and deoxidizing ability, but if the amount is too large, the conductivity decreases, while if the amount is too small, there is no effect. The amount of Cd is 0.001 to 5.0wt%, furthermore 0.01 to 0.2wt%,
Furthermore, 0.02 to 0.1 wt% is preferable. This is because adding Cd improves strength, but too much Cd increases the price and reduces workability, while too little Cd has no effect. Al amount is 0.001~10wt%, furthermore 0.005~1.0wt%,
Furthermore, 0.05 to 0.5 wt% is preferable. This is because adding Al improves strength and deoxidizing ability, but if the amount is too large, conductivity and workability decrease.
On the other hand, if it is too small, it will not be effective. The amount of rare earth elements is 0.001 to 2.0wt%, and even 0.05
~0.5wt% is preferred. The addition of rare earth elements improves strength and deoxidizing ability, but
This is because if the amount is too large, the price will increase and the processability will be reduced, while if the amount is too small, there will be no effect. The amount of Ge is 0.001 to 5.0wt%, and even 0.01 to 0.1wt%
is preferred. This is achieved by adding Ge.
The strength is improved and coarsening of crystal grains can be easily prevented, but if the amount is too large, the conductivity will be reduced, while if the amount is too small, there will be no effect. Next, the second group elements will be explained. These elements are also preferable as additive elements for high-strength, high-conductivity copper alloys. These elements are effective when used alone or in combination with the elements of the first group. This is because adding Nb improves strength and makes it easier to prevent coarsening of crystal grains.
If the amount is too large, the conductivity and processability will decrease, while if the amount is too small, there will be no effect. Therefore, the amount of Nb is
0.005~5.0wt%, furthermore 0.01~0.5wt%, furthermore
0.1-0.5wt% is preferable. By adding V, it is possible to improve strength and prevent crystal grain coarsening, but if the amount is too large, the conductivity and workability will decrease, while if the amount is too small, there will be no effect. Therefore, the V amount is 0.005 to 5.0wt%, and even
0.01 to 0.5 wt%, more preferably 0.1 to 0.5 wt%. By adding Hf, it is possible to improve strength and prevent crystal grain coarsening, but if the amount is too large,
Conductivity and processability are reduced, while too little amount has no effect. Therefore, the amount of Hf is preferably 0.005 to 5.0 wt%, more preferably 0.1 to 0.5 wt%, and even more preferably 0.05 to 0.5 wt%. By adding Mo, it is possible to improve strength and prevent grain coarsening, but if the amount is too large,
It causes an increase in price and a decrease in processability, while too little amount is ineffective. Therefore, the amount of Mo is 0.001~
2.0wt%, more preferably 0.05 to 0.5wt%. By adding W, strength can be improved and grain coarsening can be prevented, but if the amount is too large, the price will increase and workability will be reduced, while if the amount is too small, there will be no effect. Therefore, the W content is preferably 0.001 to 2.0 wt%, more preferably 0.05 to 0.5 wt%. By adding Y, the strength and deoxidizing ability are improved, but if the amount is too large, the price will increase and the processability will be lowered, while if the amount is too small, there will be no effect. Therefore, the amount of Y is 0.001~2.0wt%, furthermore 0.05~
0.5wt% is preferred. By adding Ta, it is possible to improve strength and prevent coarsening of crystal grains, but if the amount is too large, the conductivity will decrease and the price will increase, while if the amount is too small, there will be no effect. Therefore, the amount of Ta is 0.001~2.0wt
%, more preferably 0.05 to 0.5 wt%. By adding Ga, it is possible to improve strength and prevent coarsening of crystal grains, but if the amount is too large, the conductivity will decrease, while if the amount is too small, there will be no effect. Therefore, the Ga amount is 0.001 to 5.0wt%, and even 0.01 to 5.0wt%.
0.1wt% is preferred. By adding Sb, it is possible to improve strength and prevent coarsening of crystal grains, but if the amount is too large, the conductivity and workability will decrease, while if the amount is too small, there will be no effect. Therefore, the amount of Sb is preferably 0.001 to 5.0 wt%, more preferably 0.01 to 0.1 wt%. Furthermore, by adding Ca, the deoxidizing ability and machinability are improved. However, if the amount is too large, the workability will deteriorate, while if it is too small, no effect will be produced, so the amount of Ca was set at 0.001 to 1.0 wt%. Furthermore, 0.01 to 0.1 wt% is preferable. Each additive element has been described above, but these may be appropriately selected depending on the desired characteristics of the copper alloy. Required properties include, for example, plating properties, electrical conductivity, bending properties, heat resistance, and mechanical strength. For example, when plating properties and strength are important, Mg, Mn, Y,
If bendability and strength are important, Nb, V, etc. can be selected as additive elements.
You can choose Hf, Al, Ge, Ga, Sb, etc. Examples of products that require these characteristics include lead frames, lead pins, high-strength conductive wires, casting molds, continuous casting molds, rolls for manufacturing amorphous alloys, electrodes for resistance welding, and parts for heat exchangers ( fins, pipes, bulkheads, etc.), battery cans, decorative materials,
There are bimetals, glass forming parts, vacuum containers, welding torches, lead wires, etc. Representative examples of the preferred components, manufacturing methods, structures, and uses described above are shown in Table 1. ◎ in the characteristics and organization column in Table 1
The definition of 〇△ is as follows. Conductivity: ◎Electrical conductivity 85% or more 〇Electrical conductivity 75% or more but less than 85% △Electrical conductivity 65% or more and less than 75% Strength: ◎Hardness 150Hv or more 〇Hardness 140Hv or more but less than 150Hv △Hardness 120Hv or more but less than 140Hv Heat resistance; ◎500℃ or more 〇400℃ or more but less than 500℃ △300℃ or more and less than 400℃Repetition; ◎Bending property 5 times or more 〇4 times △3 times plating solderability; Ag, Au plating and Pb-Sn
Soldering can be done with just a simple pre-treatment (pickling) ◎ Easy 〇 Possible △ Difficult structure: Average particle size of precipitates ◎ 0.5 μm or more and less than 5 μm 〇 5 μm or more and less than 10 μm △ 10 μm or more and less than 50 μm Repeated bending is measured here As shown in Fig. 2, a sample 1 (thickness 0.25 mm, width 0.5 mm, length 20 mm) is supported by a fixing jig 2 such as a chuck.
With a load of 3 (1/2 lb) applied, bend it 90 degrees using a fixing jig as shown by the dotted line. This bending is repeated and the number of times until breakage is defined as the number of repeated bending times (characteristic). In addition, Cu with Cr of 0.3 to 0.7wt% and Zr of less than 0.1
-Cr-Zr alloy, Cr less than 0.3 and Zr 0.1~
Similarly favorable properties and structure were obtained for the 0.5wt% Cu-Cr-Zr alloy.

【表】【table】

【表】 第2表に示す組成の合金のインゴツトを作成
し、これらのインゴツトを約750℃で溶体化処理
を行い、次に加工率約85%の冷間加工を施し、さ
らに約450℃で時効処理を行つて試料1〜22を得
た。各試料をそれぞれ5個づつ特性を調べその結
果第2表に示した。 又、比較の為本願とは組成範囲あるいは製造方
法が異なる試料23〜33を実施例と同様に調べ、そ
の結果を第2表に併記した。 ここで組織における析出物の分布とは0.5〜
50μmの析出物の平均個数でありその単位は個/
mm2である。また特性の欄における〇△×の定義は
下記の通りである。 強 度;〇硬度 140Hv以上 △硬度 120Hv以上 140Hv未満 ×硬度 120Hv未満 導電率;〇75%以上 △65%以上75%未満 ×65%未満 繰返し曲げ;〇4回以上 △3回以上 ×3回未満 メツキ性;10μmのAgメツキを施した試料を約
450℃で1分間加熱を行つた場合のメツ
キふくれが 〇 0個 △ 0.5未満のメツキふくれ有り × 0.5mm以上のメツキくれ有り 総合評価;〇使用可能なもの ×使用不可能なもの この表から明らかなように、本発明の成分、組
織、製造法を用いたCu合金は有効なことがわか
る。1〜21に示す組み合せ以外の組み合せによい
ても同程度の効果が得られる。
[Table] Ingots of alloys with the composition shown in Table 2 were prepared, and these ingots were solution-treated at about 750℃, then cold-worked at a working rate of about 85%, and then heated at about 450℃. Samples 1 to 22 were obtained by aging treatment. The characteristics of five samples of each sample were examined and the results are shown in Table 2. For comparison, Samples 23 to 33 having different composition ranges or manufacturing methods from those of the present application were investigated in the same manner as in the Examples, and the results are also listed in Table 2. Here, the distribution of precipitates in the structure is 0.5 to
It is the average number of precipitates of 50μm, and its unit is pieces/
mm2 . In addition, the definition of 〇△× in the characteristics column is as follows. Strength:〇Hardness 140Hv or more △Hardness 120Hv or more but less than 140Hv ×Hardness less than 120Hv Electrical conductivity: 〇75% or more △65% or more and less than 75% × Less than 65% Repeated bending: 〇4 times or more △3 times or more × Less than 3 times Plating property: A sample with 10 μm Ag plating was approx.
Blistering caused by heating at 450℃ for 1 minute: 〇 0 △ Bulging of plating less than 0.5 × Blistering of 0.5 mm or more Overall evaluation: 〇 Usable items × Unusable items It is clear from this table Thus, it can be seen that the Cu alloy using the components, structure, and manufacturing method of the present invention is effective. Similar effects can be obtained with combinations other than those shown in 1 to 21.

【表】【table】

〔発明の効果〕〔Effect of the invention〕

前記第2表より明らかなように、本発明の合金
組成および製造方法により得られた銅合金(No.1
〜22)は、全ての特性において△以上、総合評価
で〇とする優れた特性を有している。 これに対し、合金組成が異なる、あるいは製造
方法が異なる比較例の合金(No.23〜33)はいずれ
かの特性において×を有し、このため総合評価で
×であり、本発明で意図する銅合金としては不適
である。 本発明は、クロム0.01〜2.0wt%、ジルコニウ
ム0.005〜1.0wt%のいずれか又は双方を選択し、
酸素60ppm以下、残部実質的に銅よりなる銅合
金、又は前記銅合金に各種添加元素を適量添加し
た銅合金を得る際の製造方法において、溶解、鋳
造工程における鋳込み速度5℃/秒以上で鋳造を
行い、得られたインゴツトを最終温度600〜850℃
で熱間加工した後、さらに溶体化処理工程を行う
際は溶体化温度600〜850℃で溶体化処理した後、
冷間加工を行い、その後時効温度300〜500℃で時
効処理を行うことにより、析出物(0.5〜50μm)
が100〜100000個/mm2存在する銅合金を得ること
により、高導電率にてかつ強度が一層高い特性を
有し、かつ歩溜が良好な銅合金を提供できる。
As is clear from Table 2 above, the copper alloy (No. 1) obtained by the alloy composition and manufacturing method of the present invention
-22) have excellent properties, with all properties being rated △ or higher, and the overall evaluation being 0. On the other hand, comparative example alloys (Nos. 23 to 33) with different alloy compositions or different manufacturing methods have × in any of the characteristics, and therefore have × in the overall evaluation, and do not meet the objectives of the present invention. Not suitable as a copper alloy. The present invention selects either or both of 0.01 to 2.0 wt% chromium and 0.005 to 1.0 wt% zirconium,
In a manufacturing method for obtaining a copper alloy containing oxygen of 60 ppm or less and the balance substantially consisting of copper, or a copper alloy in which an appropriate amount of various additive elements is added to the copper alloy, casting is performed at a pouring rate of 5°C/sec or more in the melting and casting process. The resulting ingot is heated to a final temperature of 600 to 850℃.
After hot working, when performing further solution treatment process, after solution treatment at a solution temperature of 600 to 850℃,
By performing cold working and then aging treatment at an aging temperature of 300 to 500℃, precipitates (0.5 to 50 μm)
By obtaining a copper alloy containing 100 to 100,000 pieces/mm 2 , it is possible to provide a copper alloy that has high electrical conductivity and even higher strength, and has a good yield.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の銅合金の製造工程図、第2図
は繰返し曲げの測定方法を示す構成図である。 1……試料、2……固定治具、3……荷重。
FIG. 1 is a manufacturing process diagram of the copper alloy of the present invention, and FIG. 2 is a block diagram showing a method for measuring repeated bending. 1...sample, 2...fixing jig, 3...load.

Claims (1)

【特許請求の範囲】 1 クロム0.01〜2.0wt%、ジルコニウム0.005〜
1.0wt%のいずれか又は双方を選択し、酸素
60ppm以下、残部実質的に銅よりなる銅合金の製
造方法において、溶解、鋳造工程における鋳込み
速度5℃/秒以上で鋳造を行い、得られたインゴ
ツトを最終温度600〜850℃で熱間加工した後、さ
らに溶体化処理工程を行う際は溶体化温度600〜
850℃で溶体化処理した後、冷間加工を行い、そ
の後時効温度300〜500℃で時効処理を行うことに
より、析出物(0.5〜50μm)が100〜100000個/
mm2存在する銅合金を得ることを特徴とする導電性
及び強度を兼備した銅合金の製造方法。 2 クロム0.01〜2.0wt%、ジルコニウム0.005〜
1.0wt%のいずれか又は双方を選択し、さらに下
記元素のいずれか1種又は2種以上を選択含有
し、酸素60ppm以下、残部実質的に銅よりなる銅
合金の製造方法において、溶解、鋳造工程におけ
る鋳込み速度5℃/秒以上で鋳造を行い、得られ
たインゴツトを最終温度600〜850℃で熱間加工し
た後、さらに溶体化処理工程を行う際は溶体化温
度600〜850℃で溶体化処理した後、冷間加工を行
い、その後時効温度300〜500℃で時効処理を行う
ことにより、析出物(0.5〜50μm)が100〜
100000個/mm2存在する銅合金を得ることを特徴と
する導電性及び強度を兼備した銅合金の製造方
法。 記(wt%) Ni 0.005〜10%、Sn 0.005〜10% Fe 0.005〜5%、Co 0.005〜5% Zn 0.005〜10%、Ti 0.005〜5% Be 0.001〜2%、B 0.001〜1% Mg 0.001〜2%、P 0.001〜1% Ag 0.001〜3%、Si 0.001〜5% Mn 0.001〜10%、Cd 0.001〜5% Al 0.001〜10%、希土類元素 0.001〜2% Ge 0.001〜5%、Nb 0.005〜5% V 0.001〜5%、Hf 0.005〜5% Mo 0.001〜0.2%、W 0.001〜2% Y 0.001〜2%、Ta 0.001〜2% Ga 0.001〜5%、Sb 0.001〜5% 3 クロム0.01〜2.0wt%、ジルコニウム0.005〜
1.0wt%のいずれか又は双方を選択し、さらにCa
を0.001〜1.0wt%含有し、酸素60ppm以下、残部
実質的に銅よりなる銅合金の製造方法において、
溶解、鋳造工程における鋳込み速度5℃/秒以上
で鋳造を行い、得られたインゴツトを最終温度
600〜850℃で熱間加工した後、さらに溶体化処理
工程を行う際は溶体化温度600〜850℃で溶体化処
理した後、冷間加工を行い、その後時効温度300
〜500℃で時効処理を行うことにより、析出物
(0.5〜50μm)が100〜100000個/mm2存在する銅合
金を得ることを特徴とする導電性及び強度を兼備
した銅合金の製造方法。
[Claims] 1. Chromium 0.01-2.0wt%, zirconium 0.005-2.0wt%
Select either or both of 1.0wt% oxygen
60 ppm or less, the remainder being substantially copper, in a method for producing a copper alloy, in which casting is performed at a pouring rate of 5°C/sec or more in the melting and casting steps, and the resulting ingot is hot worked at a final temperature of 600 to 850°C. After that, when performing further solution treatment process, the solution temperature is 600~
After solution treatment at 850℃, cold working is performed, and then aging treatment is performed at an aging temperature of 300 to 500℃, resulting in 100 to 100,000 precipitates (0.5 to 50μm)/
A method for producing a copper alloy having both electrical conductivity and strength, which is characterized by obtaining a copper alloy having a copper alloy of 2 mm2. 2 Chromium 0.01~2.0wt%, zirconium 0.005~
1.0wt% of either or both of the following elements, further selectively containing one or more of the following elements, containing 60ppm or less of oxygen, and the remainder consisting essentially of copper, melting, casting, etc. After casting at a casting speed of 5°C/sec or more in the process and hot working the obtained ingot at a final temperature of 600 to 850°C, further solution treatment is performed at a solution temperature of 600 to 850°C. After the chemical treatment, cold working is performed, and then aging treatment is performed at an aging temperature of 300 to 500°C, so that the precipitates (0.5 to 50 μm) are reduced to 100 to 100 μm.
A method for producing a copper alloy having both electrical conductivity and strength, characterized by obtaining a copper alloy containing 100,000 pieces/ mm2 . (wt%) Ni 0.005-10%, Sn 0.005-10% Fe 0.005-5%, Co 0.005-5% Zn 0.005-10%, Ti 0.005-5% Be 0.001-2%, B 0.001-1% Mg 0.001-2%, P 0.001-1% Ag 0.001-3%, Si 0.001-5% Mn 0.001-10%, Cd 0.001-5% Al 0.001-10%, Rare earth elements 0.001-2% Ge 0.001-5%, Nb 0.005~5% V 0.001~5%, Hf 0.005~5% Mo 0.001~0.2%, W 0.001~2% Y 0.001~2%, Ta 0.001~2% Ga 0.001~5%, Sb 0.001~5% 3 Chromium 0.01~2.0wt%, zirconium 0.005~
Select either or both of 1.0wt%, and also Ca
In a method for producing a copper alloy containing 0.001 to 1.0 wt% of oxygen, 60 ppm or less of oxygen, and the remainder substantially consisting of copper,
Casting is performed at a pouring rate of 5°C/sec or higher during the melting and casting process, and the resulting ingot is heated to a final temperature of
After hot working at 600 to 850℃, when performing a further solution treatment process, perform solution treatment at a solution temperature of 600 to 850℃, cold working, and then apply an aging temperature of 300℃.
A method for producing a copper alloy having both electrical conductivity and strength, characterized by obtaining a copper alloy containing 100 to 100,000 precipitates (0.5 to 50 μm)/mm 2 by aging at ~500°C.
JP6526583A 1983-04-15 1983-04-15 Copper alloy Granted JPS59193233A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6526583A JPS59193233A (en) 1983-04-15 1983-04-15 Copper alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6526583A JPS59193233A (en) 1983-04-15 1983-04-15 Copper alloy

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP4262734A Division JP2501275B2 (en) 1992-09-07 1992-09-07 Copper alloy with both conductivity and strength

Publications (2)

Publication Number Publication Date
JPS59193233A JPS59193233A (en) 1984-11-01
JPH059502B2 true JPH059502B2 (en) 1993-02-05

Family

ID=13281911

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6526583A Granted JPS59193233A (en) 1983-04-15 1983-04-15 Copper alloy

Country Status (1)

Country Link
JP (1) JPS59193233A (en)

Families Citing this family (68)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0680181B2 (en) * 1985-04-15 1994-10-12 古河電気工業株式会社 Method for producing copper alloy material for lead frame
JPS61242052A (en) * 1985-04-19 1986-10-28 Mitsubishi Shindo Kk Copper alloy lead material for semiconductor device
DE3527341C1 (en) * 1985-07-31 1986-10-23 Wieland-Werke Ag, 7900 Ulm Copper-chromium-titanium-silicon alloy and use thereof
JPS6250428A (en) * 1985-08-29 1987-03-05 Furukawa Electric Co Ltd:The Copper alloy for electronic appliance
JPS6270540A (en) * 1985-09-20 1987-04-01 Mitsubishi Metal Corp Cu-alloy lead material for semiconductor device
US4749548A (en) * 1985-09-13 1988-06-07 Mitsubishi Kinzoku Kabushiki Kaisha Copper alloy lead material for use in semiconductor device
JPS6263632A (en) * 1985-09-13 1987-03-20 Mitsubishi Metal Corp Cu alloy lead stock for semiconductor device
JPS62130247A (en) * 1985-11-29 1987-06-12 Furukawa Electric Co Ltd:The Copper alloy for electronic appliance
JPH0717977B2 (en) * 1986-04-10 1995-03-01 古河電気工業株式会社 Copper alloy for electronic devices
JPS62158840A (en) * 1986-01-07 1987-07-14 Furukawa Electric Co Ltd:The Copper alloy for electronic equipment and its production
JP2514926B2 (en) * 1986-02-04 1996-07-10 古河電気工業株式会社 Copper alloy for electronic equipment with excellent solder joint strength and its manufacturing method
JP2614210B2 (en) * 1986-02-06 1997-05-28 三菱マテリアル株式会社 Cu alloy for continuous casting mold
JPS62218533A (en) * 1986-03-18 1987-09-25 Sumitomo Metal Mining Co Ltd High conductivity copper alloy
JPH0788549B2 (en) * 1986-06-26 1995-09-27 古河電気工業株式会社 Copper alloy for semiconductor equipment and its manufacturing method
JPH0784631B2 (en) * 1986-10-23 1995-09-13 古河電気工業株式会社 Copper alloy for electronic devices
JP2670670B2 (en) * 1986-12-12 1997-10-29 日鉱金属 株式会社 High strength and high conductivity copper alloy
JPS63235441A (en) * 1987-03-25 1988-09-30 Toshiba Corp Lead frame material
JPH0768594B2 (en) * 1987-04-03 1995-07-26 株式会社神戸製鋼所 Copper alloys for electrical and electronic parts that are resistant to migration and have excellent hot workability
JPS63312934A (en) * 1987-06-16 1988-12-21 Hitachi Cable Ltd Lead frame material for semiconductor
JP2683903B2 (en) * 1987-12-16 1997-12-03 日鉱金属 株式会社 High strength and high conductivity copper alloy with excellent solder heat resistance
JPS63171841A (en) * 1988-01-11 1988-07-15 Furukawa Electric Co Ltd:The Copper alloy for electronic equipment
JPH01180931A (en) * 1988-01-12 1989-07-18 Fujikura Ltd Copper alloy wire
JPS63317635A (en) * 1988-05-19 1988-12-26 Furukawa Electric Co Ltd:The Copper alloy for electronic equipment and its production
JPH01306534A (en) * 1988-05-31 1989-12-11 Yazaki Corp Copper alloy conductor for thin wire
JPH01312047A (en) * 1988-06-13 1989-12-15 Yazaki Corp High tensile and high-conductivity copper alloy having excellent continuous castability
JPH02145737A (en) * 1988-11-24 1990-06-05 Dowa Mining Co Ltd High strength and high conductivity copper-base alloy
JPH02243733A (en) * 1989-03-15 1990-09-27 Fujikura Ltd Copper alloy wire rod
JP3431139B2 (en) * 1990-05-31 2003-07-28 株式会社東芝 Lead frame, method of manufacturing the same, and semiconductor package
EP0492987B1 (en) * 1990-12-20 1995-06-14 Kabushiki Kaisha Toshiba Copper alloys and lead frames made therefrom
US5705125A (en) * 1992-05-08 1998-01-06 Mitsubishi Materials Corporation Wire for electric railways
DE69317323T2 (en) * 1992-05-08 1998-07-16 Mitsubishi Materials Corp Wire for electrical railway line and method for producing the same
JPH05255777A (en) * 1992-10-16 1993-10-05 Hitachi Cable Ltd Lead frame material for semiconductor
US5486244A (en) * 1992-11-04 1996-01-23 Olin Corporation Process for improving the bend formability of copper alloys
US5306465A (en) * 1992-11-04 1994-04-26 Olin Corporation Copper alloy having high strength and high electrical conductivity
US5370840A (en) * 1992-11-04 1994-12-06 Olin Corporation Copper alloy having high strength and high electrical conductivity
US6053994A (en) * 1997-09-12 2000-04-25 Fisk Alloy Wire, Inc. Copper alloy wire and cable and method for preparing same
JP3853100B2 (en) * 1998-02-26 2006-12-06 三井金属鉱業株式会社 Copper alloy with excellent wear resistance
DE10117447B4 (en) 2000-04-10 2016-10-27 The Furukawa Electric Co., Ltd. A stampable copper alloy sheet and a method for producing the same
JP4329967B2 (en) 2000-04-28 2009-09-09 古河電気工業株式会社 Copper alloy wire suitable for IC lead pins for pin grid array provided on plastic substrate
JP3520034B2 (en) 2000-07-25 2004-04-19 古河電気工業株式会社 Copper alloy materials for electronic and electrical equipment parts
US6749699B2 (en) * 2000-08-09 2004-06-15 Olin Corporation Silver containing copper alloy
JP3520046B2 (en) 2000-12-15 2004-04-19 古河電気工業株式会社 High strength copper alloy
US7090732B2 (en) 2000-12-15 2006-08-15 The Furukawa Electric, Co., Ltd. High-mechanical strength copper alloy
JP2005113259A (en) * 2003-02-05 2005-04-28 Sumitomo Metal Ind Ltd Cu ALLOY AND MANUFACTURING METHOD THEREFOR
JP3731600B2 (en) 2003-09-19 2006-01-05 住友金属工業株式会社 Copper alloy and manufacturing method thereof
JP4901199B2 (en) * 2005-11-29 2012-03-21 新光機器株式会社 Electrode tip for resistance welding
JP5397683B2 (en) * 2008-09-26 2014-01-22 三菱マテリアル株式会社 Copper alloy wire with high strength and excellent bending resistance
JP5834528B2 (en) * 2011-06-22 2015-12-24 三菱マテリアル株式会社 Copper alloy for electrical and electronic equipment
WO2013145244A1 (en) * 2012-03-29 2013-10-03 三菱電機株式会社 Curvature variable mirror, curvature variable unit and method for manufacturing curvature variable mirror
CN103572090B (en) * 2013-07-01 2015-06-17 浙江省东阳市诚基电机有限公司 Composite metal material for elastic sheet type micromotor conductive spring leaf
CN103920878B (en) * 2014-02-25 2015-10-28 山东科技大学 Reaction molten drop precipitation equipment and prepare the method for dispersion-strengthened Cu with it
JP6488951B2 (en) 2014-09-25 2019-03-27 三菱マテリアル株式会社 Mold material for casting and Cu-Cr-Zr alloy material
WO2016047484A1 (en) * 2014-09-25 2016-03-31 三菱マテリアル株式会社 CASTING MOLD MATERIAL AND Cu-Cr-Zr ALLOY MATERIAL
CN105132734A (en) * 2015-07-13 2015-12-09 南通长江电器实业有限公司 High-strength and high-electric-conductivity copper alloy material
JP6693092B2 (en) * 2015-11-09 2020-05-13 三菱マテリアル株式会社 Copper alloy material
CN105632620A (en) * 2016-02-03 2016-06-01 安徽华联电缆集团有限公司 High-temperature resistant and drag-resistant cable for computer
CN105609157A (en) * 2016-02-03 2016-05-25 安徽南洋电缆有限公司 Silicon alloy high-performance cable
CN105702316A (en) * 2016-02-03 2016-06-22 安徽南洋电缆有限公司 Titanium alloy high performance electric cable
CN105609158A (en) * 2016-02-17 2016-05-25 安徽华天电缆有限公司 High-performance cerium alloy cable
JP6063592B1 (en) * 2016-05-13 2017-01-18 三芳合金工業株式会社 Copper alloy tube excellent in high temperature brazing and manufacturing method thereof
CN107805732A (en) * 2017-10-23 2018-03-16 江苏都盛科技发展有限公司 A kind of new alloy material for electric heater
CN107805731A (en) * 2017-10-23 2018-03-16 江苏都盛科技发展有限公司 A kind of new alloy material for electric heater
CN107723502A (en) * 2017-11-28 2018-02-23 徐高杰 A kind of electromagnetism propels device with high-precision V-type copper section bar
FR3076751B1 (en) * 2018-01-18 2020-10-23 Lebronze Alloys WELDING ELECTRODE FOR ALUMINUM OR STEEL SHEETS AND PROCESS FOR OBTAINING THE ELECTRODE
CN108866367A (en) * 2018-07-24 2018-11-23 深圳市中科睿金贵材科技有限公司 A kind of copper-silver alloy conducting wire and preparation method thereof
CN110747365B (en) * 2019-11-14 2021-01-15 中南大学 High-plasticity high-strength high-conductivity CuCrZr copper alloy and preparation method thereof
CN111850341A (en) * 2020-07-31 2020-10-30 苏州天兼新材料科技有限公司 High-strength copper alloy material for petroleum engineering equipment and preparation method thereof
CN114752807A (en) * 2022-02-28 2022-07-15 昆明冶金研究院有限公司北京分公司 Cu-Cr-Nb-Zr alloy and preparation method thereof

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50145317A (en) * 1974-05-15 1975-11-21
JPS52150327A (en) * 1976-06-10 1977-12-14 Toshiba Corp Lead wire and its production method
JPS54100257A (en) * 1978-01-25 1979-08-07 Toshiba Corp Lead frame
JPS54119328A (en) * 1978-03-10 1979-09-17 Nippon Mining Co Ltd Copper alloy for lead frames
JPS5620136A (en) * 1979-07-30 1981-02-25 Toshiba Corp Copper alloy member
JPS56102537A (en) * 1980-01-16 1981-08-17 Toshiba Corp Copper alloy member

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50145317A (en) * 1974-05-15 1975-11-21
JPS52150327A (en) * 1976-06-10 1977-12-14 Toshiba Corp Lead wire and its production method
JPS54100257A (en) * 1978-01-25 1979-08-07 Toshiba Corp Lead frame
JPS54119328A (en) * 1978-03-10 1979-09-17 Nippon Mining Co Ltd Copper alloy for lead frames
JPS5620136A (en) * 1979-07-30 1981-02-25 Toshiba Corp Copper alloy member
JPS56102537A (en) * 1980-01-16 1981-08-17 Toshiba Corp Copper alloy member

Also Published As

Publication number Publication date
JPS59193233A (en) 1984-11-01

Similar Documents

Publication Publication Date Title
JPH059502B2 (en)
JP2501275B2 (en) Copper alloy with both conductivity and strength
JP6187630B1 (en) Copper alloy for electronic and electric equipment, copper alloy plastic working material for electronic and electric equipment, parts for electronic and electric equipment, terminals, and bus bars
JP4754930B2 (en) Cu-Ni-Si based copper alloy for electronic materials
JPH0718354A (en) Copper alloy for electronic appliance and its production
JPH059619A (en) Production of high-strength copper alloy
CN113621850A (en) High-strength conductive high-temperature softening resistant Cu-Fe alloy and preparation method thereof
JP3333247B2 (en) Copper-iron alloy
JPS6231059B2 (en)
US3403997A (en) Treatment of age-hardenable coppernickel-zinc alloys and product resulting therefrom
KR950014423B1 (en) A copper-based metal alloy of improved type particularly for the contruction of electronic components
JPS5893860A (en) Manufacture of high strength copper alloy with high electric conductivity
CN113969364B (en) High-strength high-conductivity copper-niobium alloy and preparation method thereof
JP2000144284A (en) High-strength and high-conductivity copper-iron alloy sheet excellent in heat resistance
JPS60194030A (en) Copper alloy for lead material for semiconductor device
JPS62182238A (en) Cu alloy for continuous casting mold
JP3519863B2 (en) Phosphor bronze with low surface cracking susceptibility and method for producing the same
JPH01165733A (en) High strength and high electric conductive copper alloy
JP3344687B2 (en) Copper alloy for lead frame
JPS6144930B2 (en)
JPH04210438A (en) Continuous casting mold material made of high strength cu alloy
JPH01162736A (en) High strength and high toughness cu alloy having less characteristic anisotropy
JPH05311281A (en) Cu-fe alloy for adding to copper alloy and its manufacture
CN115958328A (en) Rare earth element reinforced aluminum alloy welding wire and preparation method thereof
CN115781099A (en) Welding wire special for argon arc welding of ZM5 alloy casting and preparation method thereof