WO2016047484A1 - CASTING MOLD MATERIAL AND Cu-Cr-Zr ALLOY MATERIAL - Google Patents

CASTING MOLD MATERIAL AND Cu-Cr-Zr ALLOY MATERIAL Download PDF

Info

Publication number
WO2016047484A1
WO2016047484A1 PCT/JP2015/075996 JP2015075996W WO2016047484A1 WO 2016047484 A1 WO2016047484 A1 WO 2016047484A1 JP 2015075996 W JP2015075996 W JP 2015075996W WO 2016047484 A1 WO2016047484 A1 WO 2016047484A1
Authority
WO
WIPO (PCT)
Prior art keywords
mass
precipitates
less
casting mold
treatment
Prior art date
Application number
PCT/JP2015/075996
Other languages
French (fr)
Japanese (ja)
Inventor
翔一郎 矢野
敏夫 坂本
Original Assignee
三菱マテリアル株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2015169825A external-priority patent/JP6488951B2/en
Application filed by 三菱マテリアル株式会社 filed Critical 三菱マテリアル株式会社
Priority to KR1020177000674A priority Critical patent/KR102385768B1/en
Priority to US15/500,806 priority patent/US10544495B2/en
Priority to CN201580037873.2A priority patent/CN106536769B/en
Priority to EP15843300.3A priority patent/EP3199651B1/en
Publication of WO2016047484A1 publication Critical patent/WO2016047484A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/08Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of copper or alloys based thereon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22CFOUNDRY MOULDING
    • B22C9/00Moulds or cores; Moulding processes
    • B22C9/06Permanent moulds for shaped castings
    • B22C9/061Materials which make up the mould
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/04Continuous casting of metals, i.e. casting in indefinite lengths into open-ended moulds
    • B22D11/059Mould materials or platings
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C9/00Alloys based on copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working

Definitions

  • the present invention relates to a casting mold material used when casting a metal such as a steel material, and a Cu—Cr—Zr alloy material suitable for the casting mold material described above.
  • Patent Document 1 discloses a casting mold material containing 0.3% to 1.2% Cr, 0.05% to 0.25% Zr, and the balance being Cu and impurities. .
  • Patent Document 2 discloses that 0.005% to 0% in addition to Cr and Zr. .7% Ti, 0.003% to 0.1% Si, 0.005% to 1.5% of Fe, Ni, Co or one or more of Fe, Ni and Co, with the balance being Cu And a casting mold material made of impurities.
  • JP 05-339688 A Japanese Patent Laid-Open No. 04-028837
  • the casting mold material is generally used by spraying a Ni—Cr alloy or the like excellent in heat resistance and wear resistance on the surface thereof to improve durability.
  • thermal spraying treatment for example, after performing heat treatment in a high temperature range of about 1000 ° C., it is gradually cooled without performing water cooling or the like. Hardness) and electrical conductivity are not sufficiently improved. More specifically, after performing heat treatment in a high temperature range of about 1000 ° C., for example, when cooling is performed at a cooling rate of up to 800 ° C. at 25 ° C./min or less, granular Cr is contained during the slow cooling.
  • Precipitates Cr-based precipitates
  • Zr-containing precipitates Zr-based precipitates
  • the present invention has been made in view of the above-described circumstances, and even when it is gradually cooled after thermal spraying, the strength (hardness) and electrical conductivity can be sufficiently improved by subsequent aging treatment. It is an object of the present invention to provide a casting mold material and a Cu—Cr—Zr alloy material suitable for the casting mold material.
  • the casting mold material according to the first aspect of the present invention is a casting mold material used when casting a metal material, and Cr is 0.3 mass% or more and 0.0. Featuring less than 5 mass%, Zr 0.01 mass% or more and 0.15 mass% or less, the balance being composed of Cu and inevitable impurities, and having needle-like precipitates or plate-like precipitates containing Cr It is said.
  • Cr is contained in a composition of 0.3 mass% or more and less than 0.5 mass%
  • Zr is contained in an amount of 0.01 mass% or more and 0.15 mass% or less
  • the balance is composed of Cu and inevitable impurities. Therefore, strength (hardness) and electrical conductivity can be improved by depositing fine precipitates by aging treatment. And since it has the acicular precipitate or plate-shaped precipitate containing Cr, it is suppressed that a granular precipitate is formed at the time of slow cooling after a thermal spraying process.
  • one or more elements selected from Fe, Si, Co, and P are further added in a total amount of 0.01 mass% or more and 0.0. It is preferable to contain 15 mass% or less.
  • elements such as Fe, Si, Co, and P are contained within the above-described range, the formation of granular precipitates during slow cooling after thermal spraying is suppressed, and a needle containing Cr The formation of a plate-like precipitate or a plate-like precipitate is promoted. Therefore, fine Cr-based and Zr-based precipitates can be sufficiently precipitated by the aging treatment after the thermal spraying treatment, and the strength (hardness) and electrical conductivity can be reliably improved.
  • the Cu—Cr—Zr alloy material according to the second aspect of the present invention includes Cr of 0.3 mass% to less than 0.5 mass%, Zr of 0.01 mass% to 0.15 mass%, with the balance being Cu and It has a composition composed of inevitable impurities and is characterized in that when it is held at 800 ° C. after being subjected to a complete solution treatment, the holding time until the conductivity becomes 55% IACS is 25 sec or more.
  • the holding time is 800 ° C. after the complete solution treatment
  • the holding time until the conductivity reaches 55% IACS is 25 sec or more.
  • unnecessary precipitation of Cr and Zr can be suppressed to ensure the solid solution amount of Cr and Zr. Therefore, even when an aging treatment is performed after slow cooling, fine Cr-based and Zr-based precipitates can be dispersed, and strength (hardness) and electrical conductivity can be improved.
  • one or more elements selected from Fe, Si, Co, and P are further added in a total amount of 0.01 mass%. It is preferable to contain 0.15 mass% or less.
  • elements such as Fe, Si, Co, and P are contained within the above-mentioned range, Cr and Zr are not required even when gradually cooled after being heated to a high temperature range of about 1000 ° C., for example. It is possible to prevent solid precipitation and to secure the solid solution amount of Cr and Zr. Therefore, fine precipitates can be sufficiently precipitated by the aging treatment after slow cooling, and the strength (hardness) and electrical conductivity can be reliably improved.
  • the conductivity after cooling at 1000 ° C. to 600 ° C. after cooling at 1000 ° C. for 1 hour and cooling at 10 ° C./min. % IACS) is A
  • the conductivity (% IACS) after holding at 500 ° C. for 3 hours is B
  • B / A> 1.1 even when the cooling rate from 1000 ° C. to 600 ° C. is gradually cooled to 10 ° C./min, the conductivity is improved by the subsequent heat treatment at 500 ° C. for 3 hours, and the strength due to precipitation hardening. It is possible to improve. For this reason, it is particularly suitable as a material for the above-mentioned casting mold material.
  • (A) is a structure observation photograph
  • (b) is an enlarged view of a portion surrounded by a white line in (a)
  • (c) is an element mapping result of Zr in (b)
  • (d) is a result of Cr in (b). It is an element mapping result. It is explanatory drawing which shows the Vickers hardness measurement position in an Example.
  • the casting mold material according to this embodiment is used as a casting mold for continuous casting of steel materials and the like.
  • the Cu—Cr—Zr alloy material is used as a material for the above-described casting mold material.
  • the mold material for casting and the Cu—Cr—Zr alloy material according to the present embodiment include 0.3 mass% or more and less than 0.5 mass% of Cr, 0.01 mass% or more and 0.15 mass% or less of Zr, and the balance is Cu. And one or more elements selected from Fe, Si, Co, and P are included in a total of 0.01 mass% to 0.15 mass%.
  • the component composition of the casting mold material and the Cu—Cr—Zr alloy material is defined as described above will be described below.
  • Cr 0.3 mass% or more and less than 0.5 mass%
  • Cr is an element having an effect of improving strength (hardness) and conductivity by finely depositing Cr-based precipitates in the crystal grains of the parent phase by aging treatment.
  • the Cr content is less than 0.3 mass%, the amount of precipitation becomes insufficient in the aging treatment, and the effect of improving the strength (hardness) may not be sufficiently obtained.
  • the Cr content is 0.5 mass% or more, for example, when slow cooling is performed at a cooling rate from a high temperature range of about 1000 ° C. to a temperature of 800 ° C.
  • the Cr content is set within a range of 0.3 mass% or more and less than 0.5 mass%.
  • the lower limit of the Cr content is preferably 0.35 mass% or more, and the upper limit of the Cr content is preferably 0.45 mass% or less.
  • Zr 0.01 mass% or more and 0.15 mass% or less
  • Zr is an element having an effect of improving strength (hardness) and electrical conductivity by finely depositing a Zr-based precipitate at a crystal grain boundary of the parent phase by aging treatment.
  • the content of Zr is less than 0.01 mass%, the precipitation amount becomes insufficient in the aging treatment, and there is a possibility that the effect of improving the strength (hardness) cannot be obtained sufficiently.
  • content of Zr exceeds 0.15 mass%, there exists a possibility that electrical conductivity and thermal conductivity may fall.
  • even if it contains Zr exceeding 0.15 mass% there exists a possibility that the effect of the further intensity
  • the content of Zr is set within a range of 0.01 mass% or more and 0.15 mass% or less.
  • the lower limit of the Zr content is preferably 0.05 mass% or more
  • the upper limit of the Zr content is preferably 0.13 mass% or less.
  • Elements such as Fe, Si, Co, and P when subjected to slow cooling at a cooling rate of 25 ° C./min or less from a high temperature range of about 1000 ° C. to a temperature of 800 ° C. or less, for example, It has the effect of suppressing the precipitation of system precipitates.
  • the total content of one or more elements selected from Fe, Si, Co, and P is less than 0.01 mass%, the above-described effects may not be achieved. .
  • the conductivity and thermal conductivity may be reduced.
  • the total content of one or more elements selected from Fe, Si, Co, and P is set within a range of 0.01 mass% to 0.15 mass%. ing.
  • the lower limit of the total content of one or more elements selected from Fe, Si, Co, and P is set to 0.02 mass% or more.
  • the upper limit of the total content of one or more elements selected from Fe, Si, Co, and P is preferably 0.1 mass% or less.
  • the molding material for casting which is this embodiment has the acicular precipitate or plate-shaped precipitate containing Cr in the parent phase of Cu.
  • the content of the needle-like precipitates or plate-like precipitates containing Cr is not particularly limited, but is preferably 200 to 10,000, more preferably 500 to 5,000, in an arbitrary cross section of 1 mm 2 .
  • this needle-like precipitate or plate-like precipitate does not contain Zr.
  • fine Cr-based and Zr-based precipitates having a particle size of, for example, 1 ⁇ m or less are dispersed in the casting mold material according to this embodiment.
  • the content of these fine Cr-based and Zr-based precipitates is not particularly limited, but is preferably 10 to 50000, more preferably 1000 to 30000, in an arbitrary cross section of 100 ⁇ m 2 .
  • These fine Cr-based and Zr-based precipitates are precipitated in the aging treatment after slow cooling.
  • the needle-like precipitates or plate-like precipitates described above are formed at the time of slow cooling after the thermal spraying process of spraying a Ni—Cr alloy having excellent heat resistance and wear resistance when manufacturing a casting mold material. More specifically, in the present embodiment, for a copper alloy containing 0.3 mass% or more and less than 0.5 mass% of Cr, 0.01 mass% or more and 0.15 mass% or less of Zr, and the balance being Cu and inevitable impurities.
  • Cr when heated to, for example, 1000 ° C. or higher at the time of thermal spraying, when cooling is performed so that the cooling rate from a high temperature range of about 1000 ° C. to 800 ° C. or lower is 25 ° C./min or less, Cr is contained. Needle-like precipitates or plate-like precipitates are deposited. This suppresses the precipitation of granular Cr-based and Zr-based precipitates (for example, precipitates having a particle size of 5 ⁇ m or more) during slow cooling.
  • the Cu—Cr—Zr alloy material according to the present embodiment has the same composition as the above-mentioned casting mold material, and when it is kept at 800 ° C. after being subjected to the complete solution treatment, the conductivity is increased. Is 55 seconds or more until 55% IACS is reached. That is, in the Cu—Cr—Zr alloy material according to the present embodiment, even if it is kept at 800 ° C. after the complete solution treatment, the precipitation of Cr-based and Zr-based precipitates is suppressed, and Cr and Zr The amount of solid solution is ensured.
  • the upper limit value of the holding time until the conductivity reaches 55% IACS is not particularly limited, but is preferably 360 seconds and more preferably 120 seconds.
  • the Cu—Cr—Zr alloy material according to the present embodiment has an electric conductivity (% IACS) after cooling at 1000 ° C. to 600 ° C. with a cooling rate of 10 ° C./min after holding at 1000 ° C. for 1 hour. Then, when the conductivity (% IACS) after holding at 500 ° C. for 3 hours is B, the relationship is B / A> 1.1. More preferably, B / A> 1.15, and more preferably B / A> 1.2.
  • the upper limit value of B / A is not particularly limited, but is preferably 2.0, and more preferably 1.5. That is, in the Cu—Cr—Zr alloy material according to the present embodiment, even when the cooling rate from 1000 ° C. to 600 ° C. is 10 ° C./min after holding at 1000 ° C. for 1 hour, Conductivity is improved by heat treatment at 500 ° C. for 3 hours.
  • a copper raw material made of oxygen-free copper having a copper purity of 99.99 mass% or more is charged into a carbon crucible and melted using a vacuum melting furnace to obtain a molten copper.
  • the aforementioned additive elements are added to the obtained molten metal so as to have a predetermined concentration, and the components are prepared to obtain a molten copper alloy.
  • the raw material for the additive elements Cr and Zr a material having a high purity is used.
  • a Cr material having a purity of 99.99 mass% or more is used, and a Zr material is having a purity of 99.95 mass% or more. Use one.
  • Fe, Si, Co, and P are added as necessary.
  • a mother alloy with Cu may be used as a raw material for Cr, Zr, Fe, Si, Co, and P.
  • the ingot is obtained by pouring the prepared copper alloy melt into the mold.
  • Hot processing step S03 hot rolling with a processing rate of 50% to 99% is performed on the ingot in a temperature range of 900 ° C. to 1000 ° C. to obtain a rolled material.
  • the hot working method may be hot forging. Immediately after this hot working, it is cooled by water cooling.
  • First temporary treatment process S05 Next, after the solution treatment step S04, a first temporary effect treatment is performed, and precipitates such as a Cr-based precipitate and a Zr-based precipitate are finely precipitated to obtain a first temporary effect treatment material.
  • the first temporary treatment is performed, for example, under conditions of 400 ° C. or more and 530 ° C. or less and 0.5 hours or more and 5 hours or less.
  • the heat treatment method during the aging treatment is not particularly limited, but it is preferably performed in an inert gas atmosphere.
  • the cooling method after the heat treatment is not particularly limited, but it is preferably performed by water cooling. Through this process, the Cu—Cr—Zr alloy material according to this embodiment is manufactured.
  • a second aging treatment is performed to precipitate fine deposits such as Cr-based precipitates and Zr-based precipitates.
  • the aging treatment is performed under conditions of, for example, 400 ° C. or more and 530 ° C. or less and 0.5 hour or more and 5 hours or less.
  • the heat treatment method during the aging treatment is not particularly limited, but it is preferably performed in an inert gas atmosphere.
  • the cooling method after the heat treatment is not particularly limited, but it is preferably performed by water cooling. Through such a process, the casting mold material according to the present embodiment is manufactured.
  • Cr is 0.3 mass% or more and less than 0.5 mass%
  • Zr is 0.01 mass% or more and 0.15 mass% or less
  • the remainder In the second aging treatment step S07, Cr (Zr) -based and Zr-based precipitates are finely precipitated to improve strength (hardness) and electrical conductivity. Can do.
  • Cr (Zr) -based and Zr-based precipitates are finely precipitated to improve strength (hardness) and electrical conductivity. Can do.
  • a granular precipitate is formed at the time of slow cooling after the thermal spraying process step S06.
  • the second aging treatment step S07 after the spraying treatment step S06 can sufficiently disperse fine precipitates, and the precipitation strengthening mechanism can sufficiently improve the strength (hardness). it can.
  • the casting mold material according to the present embodiment further includes one or more elements selected from Fe, Si, Co, and P in total of 0.01 mass% or more and 0.15 mass% or less. Therefore, the formation of granular precipitates during the slow cooling after the thermal spraying process S06 is suppressed. Therefore, by the second aging treatment step S07 after the thermal spraying treatment step S06, fine precipitates can be sufficiently precipitated, and the strength (hardness) and conductivity can be improved reliably.
  • the holding time until the conductivity becomes 55% IACS is 25 sec or more. Therefore, even if it is a case where it anneals after heating to the high temperature range of about 1000 degreeC in the thermal spraying process step S06, the solid solution amount of Cr and Zr is securable. Therefore, in the second aging treatment step S07 after slow cooling, Cr-based and Zr-based precipitates can be dispersed, and the strength (hardness) and conductivity can be improved.
  • the “complete solution treatment” is a heat treatment for completely dissolving the alloy elements contained in the alloy material in the Cu matrix. In the case of the Cu—Cr—Zr alloy material according to the present embodiment, a heat treatment in which it is rapidly cooled after being held at a temperature of 950 to 1050 ° C. for 0.5 to 3.0 hours is given as an example.
  • the conductivity (% IACS) after cooling at 1000 ° C. to 600 ° C. after cooling at 1000 ° C. for 1 hour is 10 ° C./min. A
  • the conductivity (% IACS) after being held at 500 ° C. for 3 hours is B
  • B / A> 1.1 there is a relationship of about 1000 ° C. in the thermal spraying process S06, for example.
  • the electrical conductivity is improved in the second aging treatment step S07 after slow cooling, and the strength (hardness) is improved by precipitation hardening. Can do.
  • this invention is not limited to this, It can change suitably in the range which does not deviate from the technical idea of the invention.
  • one or more elements selected from Fe, Si, Co, and P are included in total in a range of 0.01 mass% to 0.15 mass%, but the present invention is limited to this. There is no need to intentionally add these elements.
  • a copper raw material made of oxygen-free copper having a purity of 99.99 mass% or more was prepared, charged into a carbon crucible, and melted in a vacuum melting furnace (vacuum degree 10 ⁇ 2 Pa or less) to obtain a molten copper.
  • Various additive elements were added to the obtained molten copper to prepare the component compositions shown in Table 1, and after maintaining for 5 minutes, the molten copper alloy was poured into a cast iron mold to obtain an ingot.
  • the size of the ingot was about 80 mm in width, about 50 mm in thickness, and about 130 mm in length.
  • the raw material of Cr which is an additive element, was used with a purity of 99.99 mass% or more, and the raw material of Zr was a purity of 99.95 mass% or more.
  • hot rolling was performed.
  • the rolling reduction during hot rolling was 80%, and a hot rolled material having a width of about 100 mm, a thickness of about 10 mm, and a length of about 520 mm was obtained.
  • a solution treatment was performed at 1000 ° C. for 1.5 hours, followed by water cooling.
  • a first temporary treatment was performed at 480 ( ⁇ 15) ° C. for 3 hours.
  • a Cu—Cr—Zr alloy material was obtained.
  • the obtained Cu—Cr—Zr alloy material was heat-treated at 1000 ° C. for 1 hour by simulating thermal spraying treatment, and then gradually cooled at a cooling rate of 10 ° C./min or less. Thereafter, a second aging treatment was performed at 480 ( ⁇ 15) ° C. for 3 hours. Thereby, a molding material for casting was obtained.
  • the obtained Cu—Cr—Zr alloy material is subjected to a complete solution treatment (1000 ° C., 1.5 hours) and then held at 800 ° C. until the conductivity reaches 55% IACS (T TT measurement), Vickers hardness (rolled surface), and conductivity were evaluated.
  • the obtained Cu—Cr—Zr alloy material was kept at 1000 ° C. for 1 hour and then cooled at a cooling rate of 1000 ° C. to 600 ° C. with a cooling rate of 10 ° C./min.
  • the conductivity B (% IACS) after being held at 500 ° C. for 3 hours was measured, and the conductivity ratio B / A was evaluated.
  • the Vickers hardness (rolled surface) and conductivity of the casting mold material after the thermal spraying treatment and after the second aging treatment were evaluated. Furthermore, the structure was observed, and the presence or absence of needle-like precipitates or plate-like precipitates containing Cr was evaluated.
  • composition analysis The component composition of the obtained Cu—Cr—Zr alloy material and casting mold material was measured by ICP-MS analysis (inductively coupled plasma mass spectrometry). The measurement results are shown in Table 1.
  • T.T.T. measurement A test piece of Cu—Cr—Zr alloy material that was completely solution-treated was held at 800 ° C., and the conductivity was measured after a predetermined time, and the time for the conductivity to reach 55% IACS was evaluated. The evaluation results are shown in Table 2. In addition, about the example 2 of this invention and the comparative example 4, the same evaluation is performed also at temperatures other than 800 degreeC, and the time which electrical conductivity reaches 55% IACS and 60% IACS in each temperature is evaluated, and it shows in FIG. T.A. T. T. et al. T. T. et al. A curve was created.
  • FIG. 4 shows an enlarged view of the portion, (c) the element mapping result of Zr in (b), and (d) the element mapping result of Cr in (b)).
  • the Cu—Cr—Zr alloy material of the example of the present invention has a holding time until the conductivity becomes 55% IACS when held at 800 ° C. after the complete solution treatment. Was confirmed to be 25 sec or longer.
  • the time required to reach 55% IACS and 60% IACS is shifted to a longer time side compared to Comparative Example 4, and the precipitation of Cr-based and Zr-based precipitates occurs. It was confirmed that it was suppressed.
  • the casting mold material of the present invention example had needle-like precipitates or plate-like precipitates containing Cr. And in the casting mold material of the example of the present invention, it was confirmed that the Vickers hardness and the conductivity were greatly increased by the second aging heat treatment as compared with the comparative example.
  • Example 2 of the present invention As shown in FIG. 3, needle-like precipitates or plate-like precipitates containing Cr were observed in the test pieces that were gradually cooled after the thermal spraying treatment.
  • Cr was detected from the acicular precipitate or the plate-like precipitate, and granular From these precipitates, Cr and Zr were detected.
  • the molding material for casting of the present invention is suitable for casting of steel materials and the like.

Abstract

 This casting mold material has a composition comprising at least 0.3 mass% but less than 0.5 mass% of Cr, and 0.01-0.15 mass%, inclusive, of Zr, with the remainder being Cu and unavoidable impurities, and has needle-shaped precipitates or plate-shaped precipitates containing Cr.

Description

鋳造用モールド材及びCu-Cr-Zr合金素材Mold material for casting and Cu-Cr-Zr alloy material
 本発明は、例えば鉄鋼材料等の金属を鋳造する際に用いられる鋳造用モールド材、及び、上述の鋳造用モールド材に適したCu-Cr-Zr合金素材に関する。
 本願は、2014年9月25日に日本に出願された特願2014-195023号、及び2015年8月28日に日本に出願された特願2015-169825号に基づき優先権を主張し、その内容をここに援用する。
The present invention relates to a casting mold material used when casting a metal such as a steel material, and a Cu—Cr—Zr alloy material suitable for the casting mold material described above.
This application claims priority based on Japanese Patent Application No. 2014-195023 filed in Japan on September 25, 2014 and Japanese Patent Application No. 2015-169825 filed in Japan on August 28, 2015. The contents are incorporated herein.
 従来、鉄鋼材料等を鋳造する際に用いられる鋳造用モールド材には、大きな熱応力に耐える高温強度、過酷な熱疲労環境に耐える高温伸び、高温での耐摩耗性(硬さ)などの特性に優れることが求められている。そのため、これらの特性が良好なCu-Cr-Zr系合金が、連続鋳造用モールド材として使用されている。例えば、特許文献1には、Crを0.3%~1.2%、Zrを0.05%~0.25%含有し、残部がCuと不純物からなる鋳造用モールド材が開示されている。 Conventional molding materials used for casting steel materials, etc. have characteristics such as high-temperature strength that can withstand large thermal stress, high-temperature elongation that can withstand severe thermal fatigue environments, and wear resistance (hardness) at high temperatures. It is required to be excellent. For this reason, Cu—Cr—Zr alloys having these characteristics are used as mold materials for continuous casting. For example, Patent Document 1 discloses a casting mold material containing 0.3% to 1.2% Cr, 0.05% to 0.25% Zr, and the balance being Cu and impurities. .
 また、Cu-Cr-Zr合金は、さらに添加元素を加えることにより前述した特性が上昇することが知られており、例えば特許文献2には、Cr及びZrに加えて、0.005%~0.7%のTi、0.003%~0.1%のSiを含有し、さらにFe,Ni,Coのうち一種又は二種以上を0.005%~1.5%含有し、残部がCu及び不純物からなる鋳造用モールド材が開示されている。 In addition, it is known that Cu—Cr—Zr alloy has the above-mentioned characteristics improved by adding additional elements. For example, Patent Document 2 discloses that 0.005% to 0% in addition to Cr and Zr. .7% Ti, 0.003% to 0.1% Si, 0.005% to 1.5% of Fe, Ni, Co or one or more of Fe, Ni and Co, with the balance being Cu And a casting mold material made of impurities.
 上述の特許文献1,2に記載されたCu-Cr-Zr系合金においては、溶体化処理によって非平衡相となるCr及びZrの過飽和固溶体を形成し、その後の時効処理によってCr及びZrを分散させて析出させることにより、高温強度、高温伸び、耐摩耗性(硬さ)などの機械的特性、導電率及び熱伝導率を向上させている。なお、上述の過飽和固溶体を形成するためには、溶体化処理後に急速冷却を行う必要がある。 In the Cu—Cr—Zr alloys described in Patent Documents 1 and 2 described above, a supersaturated solid solution of Cr and Zr that becomes a non-equilibrium phase is formed by solution treatment, and Cr and Zr are dispersed by subsequent aging treatment. Therefore, mechanical properties such as high-temperature strength, high-temperature elongation, and wear resistance (hardness), electrical conductivity, and thermal conductivity are improved. In addition, in order to form the above-mentioned supersaturated solid solution, it is necessary to perform rapid cooling after the solution treatment.
特開平05-339688号公報JP 05-339688 A 特開平04-028837号公報Japanese Patent Laid-Open No. 04-028837
 ところで、鋳造用モールド材においては、その表面に耐熱性や耐摩耗性に優れるNi-Cr合金等を溶射し、耐久度を向上させて使用されることが一般的である。上述の溶射処理を行う際には、例えば1000℃程度の高温域での熱処理を実施した後に水冷等を行わずに徐冷していることから、溶射処理後に時効処理を行っても、強度(硬さ)や導電率が十分に向上しないといった問題があった。
 詳述すると、1000℃程度の高温域での熱処理を実施した後に、例えば、800℃までの冷却速度が25℃/min以下の徐冷を行った場合には、徐冷時に粒状のCrを有する析出物(Cr系の析出物)及びZrを有する析出物(Zr系の析出物)が析出してしまう。そして、その後の時効処理時には、これらの粒状の析出物を核として固溶していたCr及びZrが析出することで、析出物が成長・粗大化してしまい、析出強化機構に寄与する微細な析出物が十分に確保できなくなり、強度(硬さ)の向上を図ることができなくなる。
By the way, the casting mold material is generally used by spraying a Ni—Cr alloy or the like excellent in heat resistance and wear resistance on the surface thereof to improve durability. When performing the above-mentioned thermal spraying treatment, for example, after performing heat treatment in a high temperature range of about 1000 ° C., it is gradually cooled without performing water cooling or the like. Hardness) and electrical conductivity are not sufficiently improved.
More specifically, after performing heat treatment in a high temperature range of about 1000 ° C., for example, when cooling is performed at a cooling rate of up to 800 ° C. at 25 ° C./min or less, granular Cr is contained during the slow cooling. Precipitates (Cr-based precipitates) and Zr-containing precipitates (Zr-based precipitates) are precipitated. Then, during the subsequent aging treatment, Cr and Zr, which have been solid-solved with these granular precipitates as nuclei, are precipitated, so that the precipitates grow and become coarse, which contributes to the precipitation strengthening mechanism. Goods cannot be secured sufficiently, and strength (hardness) cannot be improved.
 この発明は、前述した事情に鑑みてなされたものであって、溶射処理後に徐冷した場合であっても、その後の時効処理によって強度(硬さ)及び導電率を十分に向上させることができる鋳造用モールド材、及び、この鋳造用モールド材に適したCu-Cr-Zr合金素材を提供することを目的とする。 The present invention has been made in view of the above-described circumstances, and even when it is gradually cooled after thermal spraying, the strength (hardness) and electrical conductivity can be sufficiently improved by subsequent aging treatment. It is an object of the present invention to provide a casting mold material and a Cu—Cr—Zr alloy material suitable for the casting mold material.
 上記の課題を解決するために、本発明の第一の態様に係る鋳造用モールド材は、金属材料を鋳造する際に用いられる鋳造用モールド材であって、Crを0.3mass%以上0.5mass%未満、Zrを0.01mass%以上0.15mass%以下、含み、残部がCu及び不可避不純物からなる組成を有し、Crを含有する針状析出物もしくは板状析出物を有することを特徴としている。 In order to solve the above problems, the casting mold material according to the first aspect of the present invention is a casting mold material used when casting a metal material, and Cr is 0.3 mass% or more and 0.0. Featuring less than 5 mass%, Zr 0.01 mass% or more and 0.15 mass% or less, the balance being composed of Cu and inevitable impurities, and having needle-like precipitates or plate-like precipitates containing Cr It is said.
 この構成の鋳造用モールド材においては、Crを0.3mass%以上0.5mass%未満、Zrを0.01mass%以上0.15mass%以下、含み、残部がCu及び不可避不純物からなる組成とされているので、時効処理によって微細な析出物を析出させることにより、強度(硬さ)及び導電率を向上させることができる。
 そして、Crを含有する針状析出物もしくは板状析出物を有しているので、溶射処理後の徐冷時に粒状の析出物が形成されることが抑制されている。このため、溶射処理後の時効処理時に、粒状の析出物を核としてCr及びZrが析出することが抑制され、微細な析出物を十分に分散させることができ、析出強化機構によって強度(硬さ)及び導電率を十分に向上させることができる。
In the casting mold material having this configuration, Cr is contained in a composition of 0.3 mass% or more and less than 0.5 mass%, Zr is contained in an amount of 0.01 mass% or more and 0.15 mass% or less, and the balance is composed of Cu and inevitable impurities. Therefore, strength (hardness) and electrical conductivity can be improved by depositing fine precipitates by aging treatment.
And since it has the acicular precipitate or plate-shaped precipitate containing Cr, it is suppressed that a granular precipitate is formed at the time of slow cooling after a thermal spraying process. For this reason, during the aging treatment after the thermal spraying treatment, it is possible to suppress the precipitation of Cr and Zr using the granular precipitates as nuclei, and the fine precipitates can be sufficiently dispersed, and the strength (hardness) is increased by the precipitation strengthening mechanism. ) And conductivity can be sufficiently improved.
 ここで、本発明の第一の態様に係る鋳造用モールド材においては、さらに、Fe,Si,Co,Pから選択される1種又は2種以上の元素を合計で0.01mass%以上0.15mass%以下含むことが好ましい。
 この場合、Fe,Si,Co,Pといった元素を上述の範囲内で含有していることから、溶射処理後の徐冷時に粒状の析出物が形成されることが抑制され、Crを含有する針状析出物もしくは板状析出物の生成が促進される。よって、溶射処理後の時効処理によって微細なCr系及びZr系の析出物を十分に析出させることができ、確実に強度(硬さ)及び導電率を向上させることができる。
Here, in the casting mold material according to the first aspect of the present invention, one or more elements selected from Fe, Si, Co, and P are further added in a total amount of 0.01 mass% or more and 0.0. It is preferable to contain 15 mass% or less.
In this case, since elements such as Fe, Si, Co, and P are contained within the above-described range, the formation of granular precipitates during slow cooling after thermal spraying is suppressed, and a needle containing Cr The formation of a plate-like precipitate or a plate-like precipitate is promoted. Therefore, fine Cr-based and Zr-based precipitates can be sufficiently precipitated by the aging treatment after the thermal spraying treatment, and the strength (hardness) and electrical conductivity can be reliably improved.
 本発明の第二の態様に係るCu-Cr-Zr合金素材は、Crを0.3mass%以上0.5mass%未満、Zrを0.01mass%以上0.15mass%以下、含み、残部がCu及び不可避不純物からなる組成を有し、完全溶体化処理を施した後に800℃で保持した場合に、導電率が55%IACSとなるまでの保持時間が25sec以上であることを特徴としている。 The Cu—Cr—Zr alloy material according to the second aspect of the present invention includes Cr of 0.3 mass% to less than 0.5 mass%, Zr of 0.01 mass% to 0.15 mass%, with the balance being Cu and It has a composition composed of inevitable impurities and is characterized in that when it is held at 800 ° C. after being subjected to a complete solution treatment, the holding time until the conductivity becomes 55% IACS is 25 sec or more.
 この構成のCu-Cr-Zr合金素材においては、完全溶体化処理を施した後に800℃で保持した場合に、導電率が55%IACSとなるまでの保持時間が25sec以上とされているので、例えば1000℃程度の高温域に加熱した後に徐冷した場合であっても、Cr及びZrの不要な析出を抑制してCr及びZrの固溶量を確保することができる。
 よって、徐冷後に時効処理した場合でも、微細なCr系及びZr系の析出物を分散させることができ、強度(硬さ)及び導電率を向上させることができる。
In the Cu—Cr—Zr alloy material having this structure, when the holding time is 800 ° C. after the complete solution treatment, the holding time until the conductivity reaches 55% IACS is 25 sec or more. For example, even when it is gradually cooled after heating to a high temperature range of about 1000 ° C., unnecessary precipitation of Cr and Zr can be suppressed to ensure the solid solution amount of Cr and Zr.
Therefore, even when an aging treatment is performed after slow cooling, fine Cr-based and Zr-based precipitates can be dispersed, and strength (hardness) and electrical conductivity can be improved.
 ここで、本発明の第二の態様に係るCu-Cr-Zr合金素材においては、さらに、Fe,Si,Co,Pから選択される1種又は2種以上の元素を合計で0.01mass%以上0.15mass%以下含むことが好ましい。
 この場合、Fe,Si,Co,Pといった元素を上述の範囲内で含有していることから、例えば1000℃程度の高温域に加熱した後に徐冷した場合であっても、Cr及びZrの不要な析出を抑制してCr及びZrの固溶量を確保することができる。よって、徐冷後の時効処理によって微細な析出物を十分に析出させることができ、確実に強度(硬さ)及び導電率を向上させることができる。
Here, in the Cu—Cr—Zr alloy material according to the second aspect of the present invention, one or more elements selected from Fe, Si, Co, and P are further added in a total amount of 0.01 mass%. It is preferable to contain 0.15 mass% or less.
In this case, since elements such as Fe, Si, Co, and P are contained within the above-mentioned range, Cr and Zr are not required even when gradually cooled after being heated to a high temperature range of about 1000 ° C., for example. It is possible to prevent solid precipitation and to secure the solid solution amount of Cr and Zr. Therefore, fine precipitates can be sufficiently precipitated by the aging treatment after slow cooling, and the strength (hardness) and electrical conductivity can be reliably improved.
 また、本発明の第二の態様に係るCu-Cr-Zr合金素材においては、1000℃で1時間保持後に1000℃から600℃までの冷却速度を10℃/minとして冷却した後の導電率(%IACS)をA、その後500℃で3時間保持した後の導電率(%IACS)をBとした場合に、B/A>1.1の関係を有することが好ましい。
 この場合、1000℃から600℃までの冷却速度を10℃/minと徐冷した場合であっても、その後の500℃、3時間の熱処理によって導電率が向上することになり、析出硬化による強度向上を図ることが可能となる。このため、上述の鋳造用モールド材用の素材として特に適している。
In addition, in the Cu—Cr—Zr alloy material according to the second aspect of the present invention, the conductivity after cooling at 1000 ° C. to 600 ° C. after cooling at 1000 ° C. for 1 hour and cooling at 10 ° C./min. % IACS) is A, and when the conductivity (% IACS) after holding at 500 ° C. for 3 hours is B, it is preferable that B / A> 1.1.
In this case, even when the cooling rate from 1000 ° C. to 600 ° C. is gradually cooled to 10 ° C./min, the conductivity is improved by the subsequent heat treatment at 500 ° C. for 3 hours, and the strength due to precipitation hardening. It is possible to improve. For this reason, it is particularly suitable as a material for the above-mentioned casting mold material.
 本発明によれば、溶射処理後に徐冷した場合であっても、その後の時効処理によって強度(硬さ)及び導電率を十分に向上させることができる鋳造用モールド材、及び、この鋳造用モールド材に適したCu-Cr-Zr合金素材を提供することができる。 ADVANTAGE OF THE INVENTION According to this invention, even if it is a case where it anneals after a thermal spraying process, intensity | strength (hardness) and electrical conductivity can fully be improved by subsequent aging treatment, and this casting mold A Cu—Cr—Zr alloy material suitable for the material can be provided.
本発明の一実施形態である鋳造用モールド材の製造方法のフロー図である。It is a flowchart of the manufacturing method of the casting mold material which is one Embodiment of this invention. 実施例におけるCu-Cr-Zr合金素材のT.T.T.曲線を示す説明図である。The T.V. of the Cu—Cr—Zr alloy material in the examples. T.A. T.A. It is explanatory drawing which shows a curve. 本発明例2及び比較例4の組織観察写真である。(a)は第一時効処理後、(b)は溶射処理及び徐冷後、(c)は第二時効処理後の組織観察写真である。It is a structure | tissue observation photograph of this invention example 2 and the comparative example 4. (A) is a structure observation photograph after the first aging treatment, (b) is after thermal spraying treatment and slow cooling, and (c) is a structure observation photograph after the second aging treatment. 本発明例2で観察された針状析出物もしくは板状析出物の組織観察写真及び元素マッピング結果を示す図である。(a)は組織観察写真、(b)は(a)の白線で囲まれた部分の拡大図、(c)は(b)におけるZrの元素マッピング結果、(d)は(b)におけるCrの元素マッピング結果である。It is a figure which shows the structure | tissue observation photograph and element mapping result of the acicular precipitate or plate-like precipitate observed in Example 2 of this invention. (A) is a structure observation photograph, (b) is an enlarged view of a portion surrounded by a white line in (a), (c) is an element mapping result of Zr in (b), and (d) is a result of Cr in (b). It is an element mapping result. 実施例におけるビッカース硬さ測定位置を示す説明図である。It is explanatory drawing which shows the Vickers hardness measurement position in an Example.
 以下に、本発明の一実施形態である鋳造用モールド材及びCu-Cr-Zr合金素材について説明する。
 本実施形態である鋳造用モールド材は、鉄鋼材料等を連続鋳造する際の連続鋳造用鋳型に用いられる。また、本実施形態では、Cu-Cr-Zr合金素材は、上述の鋳造用モールド材の素材として用いられる。
Hereinafter, a casting mold material and a Cu—Cr—Zr alloy material according to an embodiment of the present invention will be described.
The casting mold material according to this embodiment is used as a casting mold for continuous casting of steel materials and the like. In this embodiment, the Cu—Cr—Zr alloy material is used as a material for the above-described casting mold material.
 本実施形態である鋳造用モールド材及びCu-Cr-Zr合金素材は、Crを0.3mass%以上0.5mass%未満、Zrを0.01mass%以上0.15mass%以下、含み、残部がCu及び不可避不純物からなる組成を有し、さらに、Fe,Si,Co,Pから選択される1種又は2種以上の元素を合計で0.01mass%以上0.15mass%以下含んでいる。
 ここで、上述のように、鋳造用モールド材及びCu-Cr-Zr合金素材の成分組成を規定した理由について、以下に説明する。
The mold material for casting and the Cu—Cr—Zr alloy material according to the present embodiment include 0.3 mass% or more and less than 0.5 mass% of Cr, 0.01 mass% or more and 0.15 mass% or less of Zr, and the balance is Cu. And one or more elements selected from Fe, Si, Co, and P are included in a total of 0.01 mass% to 0.15 mass%.
Here, the reason why the component composition of the casting mold material and the Cu—Cr—Zr alloy material is defined as described above will be described below.
(Cr:0.3mass%以上0.5mass%未満)
 Crは、時効処理によって母相の結晶粒内にCr系の析出物を微細に析出させることにより、強度(硬さ)及び導電率を向上させる作用効果を有する元素である。
 ここで、Crの含有量が0.3mass%未満の場合には、時効処理において析出量が不十分となり、強度(硬さ)向上の効果を十分に得られないおそれがある。また、Crの含有量が0.5mass%以上の場合には、例えば1000℃程度の高温域から800℃以下の温度までの冷却速度が25℃/min以下となる徐冷を行った際に、粒状のCr系及びZr系の析出物が析出し、徐冷後の時効処理においてこれらの粒状の析出物がさらに成長することにより、析出強化機構に寄与する微細な析出物を確保することができなくなるおそれがある。
 以上のことから、本実施形態では、Crの含有量を0.3mass%以上0.5mass%未満の範囲内に設定している。なお、上述の作用効果を確実に奏功せしめるためには、Crの含有量の下限を0.35mass%以上とすることが好ましく、Crの含有量の上限を0.45mass%以下とすることが好ましい。
(Cr: 0.3 mass% or more and less than 0.5 mass%)
Cr is an element having an effect of improving strength (hardness) and conductivity by finely depositing Cr-based precipitates in the crystal grains of the parent phase by aging treatment.
Here, when the Cr content is less than 0.3 mass%, the amount of precipitation becomes insufficient in the aging treatment, and the effect of improving the strength (hardness) may not be sufficiently obtained. In addition, when the Cr content is 0.5 mass% or more, for example, when slow cooling is performed at a cooling rate from a high temperature range of about 1000 ° C. to a temperature of 800 ° C. or less of 25 ° C./min or less, Granular Cr-based and Zr-based precipitates are deposited, and these granular precipitates further grow in the aging treatment after slow cooling, thereby ensuring fine precipitates that contribute to the precipitation strengthening mechanism. There is a risk of disappearing.
From the above, in this embodiment, the Cr content is set within a range of 0.3 mass% or more and less than 0.5 mass%. In order to ensure that the above-described effects are achieved, the lower limit of the Cr content is preferably 0.35 mass% or more, and the upper limit of the Cr content is preferably 0.45 mass% or less. .
(Zr:0.01mass%以上0.15mass%以下)
 Zrは、時効処理によって母相の結晶粒界にZr系の析出物を微細に析出することにより、強度(硬さ)及び導電率を向上させる作用効果を有する元素である。
 ここで、Zrの含有量が0.01mass%未満の場合には、時効処理において析出量が不十分となり、強度(硬さ)向上の効果を十分に得られないおそれがある。また、Zrの含有量が0.15mass%を超える場合には、導電率及び熱伝導率が低下してしまうおそれがある。また、Zrを0.15mass%を超えて含有しても、さらなる強度向上の効果が得られないおそれがある。
 以上のことから、本実施形態では、Zrの含有量を0.01mass%以上0.15mass%以下の範囲内に設定している。なお、上述の作用効果を確実に奏功せしめるためには、Zrの含有量の下限を0.05mass%以上とすることが好ましく、Zrの含有量の上限を0.13mass%以下とすることが好ましい。
(Zr: 0.01 mass% or more and 0.15 mass% or less)
Zr is an element having an effect of improving strength (hardness) and electrical conductivity by finely depositing a Zr-based precipitate at a crystal grain boundary of the parent phase by aging treatment.
Here, when the content of Zr is less than 0.01 mass%, the precipitation amount becomes insufficient in the aging treatment, and there is a possibility that the effect of improving the strength (hardness) cannot be obtained sufficiently. Moreover, when content of Zr exceeds 0.15 mass%, there exists a possibility that electrical conductivity and thermal conductivity may fall. Moreover, even if it contains Zr exceeding 0.15 mass%, there exists a possibility that the effect of the further intensity | strength improvement may not be acquired.
From the above, in this embodiment, the content of Zr is set within a range of 0.01 mass% or more and 0.15 mass% or less. In order to ensure that the above-described effects are achieved, the lower limit of the Zr content is preferably 0.05 mass% or more, and the upper limit of the Zr content is preferably 0.13 mass% or less. .
(Fe,Si,Co,Pから選択される1種又は2種以上の元素:合計で0.01mass%以上0.15mass%以下)
 Fe,Si,Co,Pといった元素は、例えば1000℃程度の高温域から800℃以下の温度までの冷却速度が25℃/min以下となる徐冷を行った際に、粒状のCr系及びZr系の析出物が析出することを抑制する作用効果を有している。
 ここで、Fe,Si,Co,Pから選択される1種又は2種以上の元素の合計の含有量が0.01mass%未満の場合には、上述の作用効果を奏することができないおそれがある。一方、Fe,Si,Co,Pから選択される1種又は2種以上の元素の合計の含有量が0.15mass%を超える場合には、導電率及び熱伝導率が低下してしまうおそれがある。
 以上のことから、本実施形態では、Fe,Si,Co,Pから選択される1種又は2種以上の元素の合計含有量を0.01mass%以上0.15mass%以下の範囲内に設定している。なお、上述の作用効果を確実に奏功せしめるためには、Fe,Si,Co,Pから選択される1種又は2種以上の元素の合計含有量の下限を0.02mass%以上とすることが好ましく、Fe,Si,Co,Pから選択される1種又は2種以上の元素の合計含有量の上限を0.1mass%以下とすることが好ましい。
(One or more elements selected from Fe, Si, Co, and P: 0.01 mass% or more and 0.15 mass% or less in total)
Elements such as Fe, Si, Co, and P, when subjected to slow cooling at a cooling rate of 25 ° C./min or less from a high temperature range of about 1000 ° C. to a temperature of 800 ° C. or less, for example, It has the effect of suppressing the precipitation of system precipitates.
Here, when the total content of one or more elements selected from Fe, Si, Co, and P is less than 0.01 mass%, the above-described effects may not be achieved. . On the other hand, when the total content of one or more elements selected from Fe, Si, Co, and P exceeds 0.15 mass%, the conductivity and thermal conductivity may be reduced. is there.
From the above, in this embodiment, the total content of one or more elements selected from Fe, Si, Co, and P is set within a range of 0.01 mass% to 0.15 mass%. ing. In order to ensure that the above-described effects can be achieved, the lower limit of the total content of one or more elements selected from Fe, Si, Co, and P is set to 0.02 mass% or more. Preferably, the upper limit of the total content of one or more elements selected from Fe, Si, Co, and P is preferably 0.1 mass% or less.
(その他の不可避不純物:0.05mass%以下)
 なお、上述したCr,Zr,P,Fe,Co以外のその他の不可避的不純物としては、B、Ag,Sn,Al,Zn,Ti,Ca,Te,Mn,Ni,Sr,Ba,Sc,Y,Ti,Hf,V,Nb,Ta,Mo,W,Re,Ru,Os,Se,Rh,Ir,Pd,Pt,Au,Cd,Ga,In,Li,Ge,As,Sb,Tl,Pb,Be,N,H,Hg,Tc,Na,K,Rb,Cs,Po,Bi,ランタノイド、O,S,C等が挙げられる。これらの不可避不純物は、導電率及び熱伝導率を低下させるおそれがあるため、総量で0.05mass%以下とすることが好ましい。
(Other inevitable impurities: 0.05 mass% or less)
Other inevitable impurities other than the above-described Cr, Zr, P, Fe, and Co include B, Ag, Sn, Al, Zn, Ti, Ca, Te, Mn, Ni, Sr, Ba, Sc, and Y. , Ti, Hf, V, Nb, Ta, Mo, W, Re, Ru, Os, Se, Rh, Ir, Pd, Pt, Au, Cd, Ga, In, Li, Ge, As, Sb, Tl, Pb , Be, N, H, Hg, Tc, Na, K, Rb, Cs, Po, Bi, lanthanoid, O, S, C and the like. Since these inevitable impurities may reduce the electrical conductivity and thermal conductivity, the total amount is preferably 0.05 mass% or less.
 そして、本実施形態である鋳造用モールド材は、Cuの母相中にCrを含有する針状析出物もしくは板状析出物を有している。Crを含有する針状析出物もしくは板状析出物の含有量は特に限定されないが、任意の断面1mm中に200~10000個存在することが好ましく、500~5000個存在することがより好ましい。また、この針状析出物もしくは板状析出物は、Zrを含まないことが好ましい。
 さらに、本実施形態である鋳造用モールド材には、例えば粒径が1μm以下の微細なCr系及びZr系の析出物が分散されている。これらの微細なCr系及びZr系の析出物の含有量は特に限定されないが、任意の断面100μm中に10~50000個存在することが好ましく、1000~30000個存在することがより好ましい。なお、これらの微細なCr系及びZr系の析出物は、徐冷後の時効処理において析出する。
And the molding material for casting which is this embodiment has the acicular precipitate or plate-shaped precipitate containing Cr in the parent phase of Cu. The content of the needle-like precipitates or plate-like precipitates containing Cr is not particularly limited, but is preferably 200 to 10,000, more preferably 500 to 5,000, in an arbitrary cross section of 1 mm 2 . Moreover, it is preferable that this needle-like precipitate or plate-like precipitate does not contain Zr.
Furthermore, fine Cr-based and Zr-based precipitates having a particle size of, for example, 1 μm or less are dispersed in the casting mold material according to this embodiment. The content of these fine Cr-based and Zr-based precipitates is not particularly limited, but is preferably 10 to 50000, more preferably 1000 to 30000, in an arbitrary cross section of 100 μm 2 . These fine Cr-based and Zr-based precipitates are precipitated in the aging treatment after slow cooling.
 上述の針状析出物もしくは板状析出物は、鋳造用モールド材を製造する際に、耐熱性や耐摩耗性に優れるNi-Cr合金を溶射する溶射処理後の徐冷時に形成される。詳述すると、本実施形態では、Crを0.3mass%以上0.5mass%未満、Zrを0.01mass%以上0.15mass%以下、含み、残部がCu及び不可避不純物からなる銅合金に対して、溶射処理時に例えば1000℃以上にまで加熱された後、1000℃程度の高温域から800℃以下の温度までの冷却速度が25℃/min以下となる徐冷を行った際に、Crを含有する針状析出物もしくは板状析出物が析出している。これにより、徐冷時における粒状のCr系及びZr系の析出物(例えば、粒径5μm以上の析出物)が析出することが抑制される。 The needle-like precipitates or plate-like precipitates described above are formed at the time of slow cooling after the thermal spraying process of spraying a Ni—Cr alloy having excellent heat resistance and wear resistance when manufacturing a casting mold material. More specifically, in the present embodiment, for a copper alloy containing 0.3 mass% or more and less than 0.5 mass% of Cr, 0.01 mass% or more and 0.15 mass% or less of Zr, and the balance being Cu and inevitable impurities. In addition, when heated to, for example, 1000 ° C. or higher at the time of thermal spraying, when cooling is performed so that the cooling rate from a high temperature range of about 1000 ° C. to 800 ° C. or lower is 25 ° C./min or less, Cr is contained. Needle-like precipitates or plate-like precipitates are deposited. This suppresses the precipitation of granular Cr-based and Zr-based precipitates (for example, precipitates having a particle size of 5 μm or more) during slow cooling.
 また、本実施形態であるCu-Cr-Zr合金素材は、上述の鋳造用モールド材と同様の組成を有しており、完全溶体化処理を施した後に800℃で保持した場合に、導電率が55%IACSとなるまでの保持時間が25sec以上とされている。
 すなわち、本実施形態であるCu-Cr-Zr合金素材においては、完全溶体化処理を施した後に800℃で保持しても、Cr系及びZr系の析出物の析出が抑制され、Cr及びZrの固溶量が確保される。なお、導電率が55%IACSとなるまでの保持時間の上限値は特に限定されないが、360秒とすることが好ましく、120秒とすることがより好ましい。
Further, the Cu—Cr—Zr alloy material according to the present embodiment has the same composition as the above-mentioned casting mold material, and when it is kept at 800 ° C. after being subjected to the complete solution treatment, the conductivity is increased. Is 55 seconds or more until 55% IACS is reached.
That is, in the Cu—Cr—Zr alloy material according to the present embodiment, even if it is kept at 800 ° C. after the complete solution treatment, the precipitation of Cr-based and Zr-based precipitates is suppressed, and Cr and Zr The amount of solid solution is ensured. The upper limit value of the holding time until the conductivity reaches 55% IACS is not particularly limited, but is preferably 360 seconds and more preferably 120 seconds.
 さらに、本実施形態であるCu-Cr-Zr合金素材は、1000℃で1時間保持後に1000℃から600℃までの冷却速度を10℃/minとして冷却した後の導電率(%IACS)をA、その後500℃で3時間保持した後の導電率(%IACS)をBとした場合に、B/A>1.1の関係を有する。さらに好ましくは、B/A>1.15であり、より好ましくは、B/A>1.2である。B/Aの上限値は特に限定されないが、2.0とすることが好ましく、1.5とすることがより好ましい。
 すなわち、本実施形態であるCu-Cr-Zr合金素材においては、1000℃で1時間保持後に1000℃から600℃までの冷却速度を10℃/minとして徐冷した場合であっても、その後の500℃、3時間保持の熱処理により、導電率が向上する。
Furthermore, the Cu—Cr—Zr alloy material according to the present embodiment has an electric conductivity (% IACS) after cooling at 1000 ° C. to 600 ° C. with a cooling rate of 10 ° C./min after holding at 1000 ° C. for 1 hour. Then, when the conductivity (% IACS) after holding at 500 ° C. for 3 hours is B, the relationship is B / A> 1.1. More preferably, B / A> 1.15, and more preferably B / A> 1.2. The upper limit value of B / A is not particularly limited, but is preferably 2.0, and more preferably 1.5.
That is, in the Cu—Cr—Zr alloy material according to the present embodiment, even when the cooling rate from 1000 ° C. to 600 ° C. is 10 ° C./min after holding at 1000 ° C. for 1 hour, Conductivity is improved by heat treatment at 500 ° C. for 3 hours.
 次に、本発明の一実施形態に係る鋳造用モールド材の製造方法を、図1のフロー図を参照して説明する。 Next, a method for producing a casting mold material according to an embodiment of the present invention will be described with reference to the flowchart of FIG.
(溶解・鋳造工程S01)
 まず、銅の純度が99.99mass%以上の無酸素銅からなる銅原料を、カーボンるつぼに装入し、真空溶解炉を用いて溶解し、銅溶湯を得る。次いで、得られた溶湯に、所定の濃度となるように前述の添加元素を添加して、成分調製を行い、銅合金溶湯を得る。
 ここで、添加元素であるCr、Zrの原料としては、純度の高いものを使用し、例えばCrの原料は純度99.99mass%以上のものを使用し、Zrの原料は純度99.95mass%以上のものを使用する。また、Fe、Si、Co、Pを必要に応じて添加する。なお、Cr、Zr、Fe、Si、Co、Pの原料として、Cuとの母合金を用いてもよい。
 そして、成分調製された銅合金溶湯を鋳型に注湯して鋳塊を得る。
(Melting / Casting Process S01)
First, a copper raw material made of oxygen-free copper having a copper purity of 99.99 mass% or more is charged into a carbon crucible and melted using a vacuum melting furnace to obtain a molten copper. Next, the aforementioned additive elements are added to the obtained molten metal so as to have a predetermined concentration, and the components are prepared to obtain a molten copper alloy.
Here, as the raw material for the additive elements Cr and Zr, a material having a high purity is used. For example, a Cr material having a purity of 99.99 mass% or more is used, and a Zr material is having a purity of 99.95 mass% or more. Use one. Further, Fe, Si, Co, and P are added as necessary. As a raw material for Cr, Zr, Fe, Si, Co, and P, a mother alloy with Cu may be used.
And the ingot is obtained by pouring the prepared copper alloy melt into the mold.
(均質化処理工程S02)
 次に、得られた鋳塊の均質化のために熱処理を行う。
 具体的には、鋳塊を大気雰囲気にて、950℃以上1050℃以下、1時間以上の条件で均質化処理を行う。
(Homogenization step S02)
Next, heat treatment is performed to homogenize the obtained ingot.
Specifically, the ingot is homogenized in an air atmosphere at 950 ° C. or higher and 1050 ° C. or lower for 1 hour or longer.
(熱間加工工程S03)
 次いで、鋳塊に対して900℃以上1000℃以下の温度範囲で、加工率50%以上99%以下の熱間圧延を行い、圧延材を得る。なお、熱間加工の方法は、熱間鍛造であっても良い。この熱間加工後、直ちに水冷によって冷却する。
(Hot processing step S03)
Next, hot rolling with a processing rate of 50% to 99% is performed on the ingot in a temperature range of 900 ° C. to 1000 ° C. to obtain a rolled material. The hot working method may be hot forging. Immediately after this hot working, it is cooled by water cooling.
(溶体化処理工程S04)
 次いで、熱間加工工程S03で得られた圧延材を、920℃以上1050℃以下、0.5時間以上5時間以下の条件で加熱処理を施し、溶体化処理を行う。加熱処理は、例えば大気または不活性ガス雰囲気で行い、加熱後の冷却は、水冷によって行う。
(Solution treatment step S04)
Next, the rolled material obtained in the hot working step S03 is subjected to a heat treatment under conditions of 920 ° C. or higher and 1050 ° C. or lower and 0.5 hours or longer and 5 hours or shorter. The heat treatment is performed in, for example, air or an inert gas atmosphere, and cooling after heating is performed by water cooling.
(第一時効処理工程S05)
 次に、溶体化処理工程S04の後に、第一時効処理を実施し、Cr系析出物及びZr系析出物などの析出物を微細に析出させ、第一時効処理材を得る。
 ここで、第一時効処理は、例えば400℃以上530℃以下、0.5時間以上5時間以下の条件で行う。
 なお、時効処理時の熱処理方法は、特に限定しないが、不活性ガス雰囲気で行うことが好ましい。また、加熱処理後の冷却方法は、特に限定しないが、水冷で行うことが好ましい。
 このような工程により、本実施形態であるCu-Cr-Zr合金素材が製造される。
(First temporary treatment process S05)
Next, after the solution treatment step S04, a first temporary effect treatment is performed, and precipitates such as a Cr-based precipitate and a Zr-based precipitate are finely precipitated to obtain a first temporary effect treatment material.
Here, the first temporary treatment is performed, for example, under conditions of 400 ° C. or more and 530 ° C. or less and 0.5 hours or more and 5 hours or less.
The heat treatment method during the aging treatment is not particularly limited, but it is preferably performed in an inert gas atmosphere. Further, the cooling method after the heat treatment is not particularly limited, but it is preferably performed by water cooling.
Through this process, the Cu—Cr—Zr alloy material according to this embodiment is manufactured.
(溶射工程S06)
 次いで、第一時効処理工程S05後に、Cu-Cr-Zr合金素材の表面の所定の箇所にNi-Cr合金等を溶射し、Cu-Cr-Zr合金素材の表面の所定の箇所にコーティング層を形成する。そして、この溶射の後に、コーティング層が形成されたCu-Cr-Zr合金素材に900℃以上1000℃以下、15分以上180分以下の熱処理を行う。
 この熱処理は、Cu-Cr-Zr合金素材とコーティング層とを拡散接合するために行われている。
 この溶射が行われた後の熱処理後の冷却は、例えば炉冷のような比較的冷却速度が遅い徐冷によって行われる。ここで、徐冷の冷却速度は、例えば熱処理温度から800℃以下での範囲の冷却速度が5℃/min以上70℃/min以下である。
(Spraying process S06)
Next, after the first temporary effect treatment step S05, Ni—Cr alloy or the like is sprayed on a predetermined portion of the surface of the Cu—Cr—Zr alloy material, and a coating layer is formed on the predetermined portion of the surface of the Cu—Cr—Zr alloy material. Form. Then, after this thermal spraying, the Cu—Cr—Zr alloy material on which the coating layer is formed is subjected to a heat treatment at 900 ° C. to 1000 ° C. for 15 minutes to 180 minutes.
This heat treatment is performed for diffusion bonding the Cu—Cr—Zr alloy material and the coating layer.
The cooling after the heat treatment after the thermal spraying is performed by slow cooling with a relatively low cooling rate such as furnace cooling. Here, the cooling rate of the slow cooling is such that the cooling rate in the range from the heat treatment temperature to 800 ° C. or less is 5 ° C./min or more and 70 ° C./min or less.
(第二時効処理工程S07)
 次いで、溶射工程S06の後に、第二時効処理を実施し、Cr系析出物及びZr系析出物などの析出物を微細に析出させる。
 ここで、時効処理は、例えば400℃以上530℃以下、0.5時間以上5時間以下の条件で行う。
 なお、時効処理時の熱処理方法は、特に限定しないが、不活性ガス雰囲気で行うことが好ましい。また、熱処理後の冷却方法は、特に限定しないが、水冷で行うことが好ましい。
 このような工程により、本実施形態である鋳造用モールド材が製造される。
(Second aging treatment step S07)
Next, after the thermal spraying step S06, a second aging treatment is performed to precipitate fine deposits such as Cr-based precipitates and Zr-based precipitates.
Here, the aging treatment is performed under conditions of, for example, 400 ° C. or more and 530 ° C. or less and 0.5 hour or more and 5 hours or less.
The heat treatment method during the aging treatment is not particularly limited, but it is preferably performed in an inert gas atmosphere. Further, the cooling method after the heat treatment is not particularly limited, but it is preferably performed by water cooling.
Through such a process, the casting mold material according to the present embodiment is manufactured.
 以上のような構成とされた本実施形態に係る鋳造用モールド材によれば、Crを0.3mass%以上0.5mass%未満、Zrを0.01mass%以上0.15mass%以下、含み、残部がCu及び不可避不純物からなる組成とされているので、第二時効処理工程S07において、Cr系及びZr系の析出物を微細に析出させることにより、強度(硬さ)及び導電率を向上させることができる。
 そして、本実施形態に係る鋳造用モールド材においては、Crを含有する針状析出物もしくは板状析出物を有しているので、溶射処理工程S06後の徐冷時に粒状の析出物が形成されることが抑制されており、溶射処理工程S06後の第二時効処理工程S07によって微細な析出物を十分に分散させることができ、析出強化機構によって強度(硬さ)を十分に向上させることができる。
According to the casting mold material of the present embodiment configured as described above, Cr is 0.3 mass% or more and less than 0.5 mass%, Zr is 0.01 mass% or more and 0.15 mass% or less, and the remainder In the second aging treatment step S07, Cr (Zr) -based and Zr-based precipitates are finely precipitated to improve strength (hardness) and electrical conductivity. Can do.
And in the molding material for casting which concerns on this embodiment, since it has the acicular precipitate or plate-shaped precipitate containing Cr, a granular precipitate is formed at the time of slow cooling after the thermal spraying process step S06. The second aging treatment step S07 after the spraying treatment step S06 can sufficiently disperse fine precipitates, and the precipitation strengthening mechanism can sufficiently improve the strength (hardness). it can.
 また、本実施形態に係る鋳造用モールド材においては、さらに、Fe,Si,Co,Pから選択される1種又は2種以上の元素を合計で0.01mass%以上0.15mass%以下含んでいるので、溶射処理工程S06後の徐冷時に粒状の析出物が形成されることが抑制される。よって、溶射処理工程S06後の第二時効処理工程S07によって、微細な析出物を十分に析出させることができ、確実に強度(硬さ)及び導電率を向上させることができる。 Further, the casting mold material according to the present embodiment further includes one or more elements selected from Fe, Si, Co, and P in total of 0.01 mass% or more and 0.15 mass% or less. Therefore, the formation of granular precipitates during the slow cooling after the thermal spraying process S06 is suppressed. Therefore, by the second aging treatment step S07 after the thermal spraying treatment step S06, fine precipitates can be sufficiently precipitated, and the strength (hardness) and conductivity can be improved reliably.
 さらに、本実施形態に係るCu-Cr-Zr合金素材においては、完全溶体化処理を施した後に800℃で保持した場合に、導電率が55%IACSとなるまでの保持時間が25sec以上とされているので、溶射処理工程S06において例えば1000℃程度の高温域に加熱した後に徐冷した場合であっても、Cr及びZrの固溶量を確保することができる。よって、徐冷後の第二時効処理工程S07において、Cr系及びZr系の析出物を分散させることができ、強度(硬さ)及び導電率を向上させることができる。なお、「完全溶体化処理」とは、上記合金素材に含まれる合金元素を完全にCu母相中に固溶させるための熱処理である。本実施形態に係るCu-Cr-Zr合金素材の場合、温度950~1050℃で、0.5~3.0時間保持した後に急冷する熱処理が例として挙げられる。 Furthermore, in the Cu—Cr—Zr alloy material according to the present embodiment, when it is held at 800 ° C. after being subjected to the complete solution treatment, the holding time until the conductivity becomes 55% IACS is 25 sec or more. Therefore, even if it is a case where it anneals after heating to the high temperature range of about 1000 degreeC in the thermal spraying process step S06, the solid solution amount of Cr and Zr is securable. Therefore, in the second aging treatment step S07 after slow cooling, Cr-based and Zr-based precipitates can be dispersed, and the strength (hardness) and conductivity can be improved. The “complete solution treatment” is a heat treatment for completely dissolving the alloy elements contained in the alloy material in the Cu matrix. In the case of the Cu—Cr—Zr alloy material according to the present embodiment, a heat treatment in which it is rapidly cooled after being held at a temperature of 950 to 1050 ° C. for 0.5 to 3.0 hours is given as an example.
 また、本実施形態に係るCu-Cr-Zr合金素材においては、1000℃で1時間保持後に1000℃から600℃までの冷却速度を10℃/minとして冷却した後の導電率(%IACS)をA、その後500℃で3時間保持した後の導電率(%IACS)をBとした場合に、B/A>1.1の関係を有しているので、溶射処理工程S06において例えば1000℃程度の高温域に加熱した後に徐冷した場合であっても、徐冷後の第二時効処理工程S07において、導電率が向上することになり、析出硬化によって強度(硬さ)の向上を図ることができる。 In the Cu—Cr—Zr alloy material according to the present embodiment, the conductivity (% IACS) after cooling at 1000 ° C. to 600 ° C. after cooling at 1000 ° C. for 1 hour is 10 ° C./min. A, and when the conductivity (% IACS) after being held at 500 ° C. for 3 hours is B, since B / A> 1.1, there is a relationship of about 1000 ° C. in the thermal spraying process S06, for example. Even in the case of slow cooling after heating to a high temperature region, the electrical conductivity is improved in the second aging treatment step S07 after slow cooling, and the strength (hardness) is improved by precipitation hardening. Can do.
 以上、本発明の実施形態について説明したが、本発明はこれに限定されることはなく、その発明の技術的思想を逸脱しない範囲で適宜変更可能である。
 本実施形態では、Fe,Si,Co,Pから選択される1種又は2種以上の元素を合計で0.01mass%以上0.15mass%以下含むものとして説明したが、これに限定されることはなく、これらの元素を意図的に添加しなくてもよい。
As mentioned above, although embodiment of this invention was described, this invention is not limited to this, It can change suitably in the range which does not deviate from the technical idea of the invention.
In the present embodiment, it has been described that one or more elements selected from Fe, Si, Co, and P are included in total in a range of 0.01 mass% to 0.15 mass%, but the present invention is limited to this. There is no need to intentionally add these elements.
 以下に、本発明の効果を確認すべく行った確認実験の結果について説明する。
 純度99.99mass%以上の無酸素銅からなる銅原料を準備し、これをカーボンるつぼに装入し、真空溶解炉(真空度10-2Pa以下)で溶解し、銅溶湯を得た。得られた銅溶湯内に、各種添加元素を添加して表1に示す成分組成に調製し、5分間保持した後、銅合金溶湯を鋳鉄製の鋳型に注湯して鋳塊を得た。鋳塊の大きさは、幅約80mm、厚さ約50mm、長さ約130mmとした。
 なお、添加元素であるCrの原料は純度99.99mass%以上、Zrの原料は純度99.95mass%以上のものを使用した。
Below, the result of the confirmation experiment performed in order to confirm the effect of this invention is demonstrated.
A copper raw material made of oxygen-free copper having a purity of 99.99 mass% or more was prepared, charged into a carbon crucible, and melted in a vacuum melting furnace (vacuum degree 10 −2 Pa or less) to obtain a molten copper. Various additive elements were added to the obtained molten copper to prepare the component compositions shown in Table 1, and after maintaining for 5 minutes, the molten copper alloy was poured into a cast iron mold to obtain an ingot. The size of the ingot was about 80 mm in width, about 50 mm in thickness, and about 130 mm in length.
In addition, the raw material of Cr, which is an additive element, was used with a purity of 99.99 mass% or more, and the raw material of Zr was a purity of 99.95 mass% or more.
 次に、大気雰囲気において1000℃で1時間の条件で均質化処理を行った後、熱間圧延を実施した。熱間圧延時の圧下率を80%とし、幅約100mm×厚さ約10mm×長さ約520mmの熱間圧延材を得た。
 この熱間圧延材を用いて、1000℃で1.5時間の条件で溶体化処理を行い、その後水冷した。
 次に、480(±15)℃で3時間の条件で第一時効処理を実施した。これにより、Cu-Cr-Zr合金素材を得た。
Next, after performing a homogenization process at 1000 ° C. for 1 hour in an air atmosphere, hot rolling was performed. The rolling reduction during hot rolling was 80%, and a hot rolled material having a width of about 100 mm, a thickness of about 10 mm, and a length of about 520 mm was obtained.
Using this hot-rolled material, a solution treatment was performed at 1000 ° C. for 1.5 hours, followed by water cooling.
Next, a first temporary treatment was performed at 480 (± 15) ° C. for 3 hours. Thus, a Cu—Cr—Zr alloy material was obtained.
 次に、得られたCu-Cr-Zr合金素材に対して、溶射処理を模擬して1000℃で1時間の条件で熱処理を行い、その後、冷却速度10℃/min以下で徐冷した。
 その後、480(±15)℃で3時間の条件で第二時効処理を実施した。これにより、鋳造用モールド材を得た。
Next, the obtained Cu—Cr—Zr alloy material was heat-treated at 1000 ° C. for 1 hour by simulating thermal spraying treatment, and then gradually cooled at a cooling rate of 10 ° C./min or less.
Thereafter, a second aging treatment was performed at 480 (± 15) ° C. for 3 hours. Thereby, a molding material for casting was obtained.
 得られたCu-Cr-Zr合金素材について、完全溶体化処理(1000℃、1.5時間)を施した後に800℃で保持した場合に導電率が55%IACSとなるまでの保持時間(T.T.T.測定)、ビッカース硬さ(圧延面)、導電率を評価した。
 また、得られたCu-Cr-Zr合金素材について、1000℃で1時間保持後に1000℃から600℃までの冷却速度を10℃/minとして冷却した後の導電率A(IACS%)と、その後500℃で3時間保持した後の導電率B(%IACS)を測定し、導電率比B/Aを評価した。
The obtained Cu—Cr—Zr alloy material is subjected to a complete solution treatment (1000 ° C., 1.5 hours) and then held at 800 ° C. until the conductivity reaches 55% IACS (T TT measurement), Vickers hardness (rolled surface), and conductivity were evaluated.
The obtained Cu—Cr—Zr alloy material was kept at 1000 ° C. for 1 hour and then cooled at a cooling rate of 1000 ° C. to 600 ° C. with a cooling rate of 10 ° C./min. The conductivity B (% IACS) after being held at 500 ° C. for 3 hours was measured, and the conductivity ratio B / A was evaluated.
 さらに、溶射処理後及び第二時効処理後の鋳造用モールド材について、ビッカース硬さ(圧延面)、導電率を評価した。さらに、組織観察を行い、Crを含有する針状析出物もしくは板状析出物の有無を評価した。 Furthermore, the Vickers hardness (rolled surface) and conductivity of the casting mold material after the thermal spraying treatment and after the second aging treatment were evaluated. Furthermore, the structure was observed, and the presence or absence of needle-like precipitates or plate-like precipitates containing Cr was evaluated.
(組成分析)
 得られたCu-Cr-Zr合金素材及び鋳造用モールド材の成分組成を、ICP-MS分析(誘導結合プラズマ質量分析)によって測定した。測定結果を表1に示す。
(Composition analysis)
The component composition of the obtained Cu—Cr—Zr alloy material and casting mold material was measured by ICP-MS analysis (inductively coupled plasma mass spectrometry). The measurement results are shown in Table 1.
(T.T.T.測定)
 完全溶体化処理したCu-Cr-Zr合金素材の試験片を800℃で保持し、一定時間経過後に導電率を測定し、導電率が55%IACSに達する時間を評価した。評価結果を表2に示す。
 なお、本発明例2と比較例4については、800℃以外の温度でも同様の評価を行い、各温度において導電率が55%IACS及び60%IACSに達する時間を評価して、図2に示すT.T.T.曲線を作成した。
(T.T.T. measurement)
A test piece of Cu—Cr—Zr alloy material that was completely solution-treated was held at 800 ° C., and the conductivity was measured after a predetermined time, and the time for the conductivity to reach 55% IACS was evaluated. The evaluation results are shown in Table 2.
In addition, about the example 2 of this invention and the comparative example 4, the same evaluation is performed also at temperatures other than 800 degreeC, and the time which electrical conductivity reaches 55% IACS and 60% IACS in each temperature is evaluated, and it shows in FIG. T.A. T. T. et al. T. T. et al. A curve was created.
(組織観察)
 得られた溶射処理後の鋳造用モールド材から観察用サンプルを採取し、研磨処理後に走査型電子顕微鏡にて組織観察を行い、Crを含有する針状析出物もしくは板状析出物の有無を確認した。観察結果を表3に示す。なお、50μm×60μmの観察視野において、アスペクト比(長辺/短辺)が3以上の析出物が5個以上観察された場合、針状析出物もしくは板状析出物が存在すると判断した。また、観察された針状析出物もしくは板状析出物がCrを含有するか否かは、元素マッピングによって判断した。
 また、本発明例2及び比較例4の試料について、(a)第一時効処理後、(b)溶射処理及び徐冷後、(c)第二時効処理後に組織観察を行った結果(組織観察写真)を図3に示す。さらに、第二時効処理後の本発明例2で観察されたCrを含有する針状析出物もしくは板状析出物の観察結果((a)組織観察写真、(b)(a)の白線で囲まれた部分の拡大図、(c)(b)におけるZrの元素マッピング結果、(d)(b)におけるCrの元素マッピング結果)を図4に示す。
(Tissue observation)
A sample for observation is collected from the obtained casting mold material after the thermal spraying treatment, and the structure is observed with a scanning electron microscope after the polishing treatment to confirm the presence or absence of needle-like precipitates or plate-like precipitates containing Cr. did. The observation results are shown in Table 3. In the observation field of 50 μm × 60 μm, when five or more precipitates having an aspect ratio (long side / short side) of 3 or more were observed, it was judged that needle-like precipitates or plate-like precipitates were present. Whether the observed acicular precipitate or plate-like precipitate contains Cr was determined by elemental mapping.
Moreover, about the sample of this invention example 2 and the comparative example 4, after (a) 1st temporary treatment, (b) After thermal spraying and slow cooling, (c) The result of having observed structure | tissue after 2nd aging treatment (structure | tissue observation) The photograph is shown in FIG. Furthermore, the observation results of needle-like precipitates or plate-like precipitates containing Cr observed in Invention Example 2 after the second aging treatment ((a) microstructure observation photograph, (b) surrounded by white lines in (a)) FIG. 4 shows an enlarged view of the portion, (c) the element mapping result of Zr in (b), and (d) the element mapping result of Cr in (b)).
(ビッカース硬さ測定)
 JIS Z 2244に準じて、株式会社アカシ製ビッカース硬度試験機により、図5に示すように試験片の9か所でビッカース硬さを測定し、その最大値及び最小値を除外した7つの測定値の平均値を求めた。Cu-Cr-Zr合金素材の測定結果を表2に、溶射処理後及び第二時効処理後の鋳造用モールド材の測定結果を表3に示す。
(Vickers hardness measurement)
According to JIS Z 2244, the Vickers hardness tester manufactured by Akashi Co., Ltd. was used to measure the Vickers hardness at 9 locations on the test piece as shown in FIG. The average value of was obtained. Table 2 shows the measurement results of the Cu—Cr—Zr alloy material, and Table 3 shows the measurement results of the casting mold material after the thermal spraying treatment and after the second aging treatment.
(導電率測定)
 日本フェルスター社製SIGMA TEST D2.068(プローブ径φ6mm)を用いて、10×15mmのサンプルの断面中心部の導電率を3回測定し、その平均値を求めた。Cu-Cr-Zr合金素材の測定結果を表2に、溶射処理後及び第二時効処理後の鋳造用モールド材の測定結果を表3に示す。
(Conductivity measurement)
Using SIGMA TEST D2.068 (probe diameter φ6 mm) manufactured by Nippon Ferster Co., Ltd., the conductivity at the center of the cross section of the 10 × 15 mm sample was measured three times, and the average value was obtained. Table 2 shows the measurement results of the Cu—Cr—Zr alloy material, and Table 3 shows the measurement results of the casting mold material after the thermal spraying treatment and after the second aging treatment.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 表1、表2に示すように、本発明例のCu-Cr-Zr合金素材は、完全溶体化処理を施した後に800℃で保持した場合に導電率が55%IACSとなるまでの保持時間が25sec以上とされていることが確認された。ここで、図2に示すT.T.T.曲線を確認すると、本発明例2は、比較例4に比べて55%IACS及び60%IACSに達するまでの時間が長時間側に移動しており、Cr系及びZr系の析出物の析出が抑制されていることが確認された。 As shown in Tables 1 and 2, the Cu—Cr—Zr alloy material of the example of the present invention has a holding time until the conductivity becomes 55% IACS when held at 800 ° C. after the complete solution treatment. Was confirmed to be 25 sec or longer. Here, as shown in FIG. T.A. T.A. When the curve is confirmed, in Example 2 of the present invention, the time required to reach 55% IACS and 60% IACS is shifted to a longer time side compared to Comparative Example 4, and the precipitation of Cr-based and Zr-based precipitates occurs. It was confirmed that it was suppressed.
 また、表3に示すように、本発明例の鋳造用モールド材は、Crを含有する針状析出物もしくは板状析出物を有していることが確認された。そして、本発明例の鋳造用モールド材においては、比較例に比べて、第二時効熱処理によってビッカース硬さ及び導電率が大きく上昇していることが確認された。 Further, as shown in Table 3, it was confirmed that the casting mold material of the present invention example had needle-like precipitates or plate-like precipitates containing Cr. And in the casting mold material of the example of the present invention, it was confirmed that the Vickers hardness and the conductivity were greatly increased by the second aging heat treatment as compared with the comparative example.
 また、組織観察の結果、比較例4では、図3に示すように、溶射処理後に徐冷した試験片でCrを含有する針状析出物もしくは板状析出物が認められず、粒状の析出物が観察された。
 これに対して、本発明例2では、図3に示すように、溶射処理後に徐冷した試験片でCrを含有する針状析出物もしくは板状析出物が観察された。
 なお、本発明例2の第二時効熱処理後の試験片の析出物を拡大観察した結果、図4に示すように、針状析出物もしくは板状析出物からはCrが検出されており、粒状の析出物からはCr及びZrが検出された。
Further, as a result of the structure observation, in Comparative Example 4, as shown in FIG. 3, no acicular precipitates or plate-like precipitates containing Cr were observed in the specimen slowly cooled after the thermal spraying treatment, and granular precipitates were observed. Was observed.
On the other hand, in Example 2 of the present invention, as shown in FIG. 3, needle-like precipitates or plate-like precipitates containing Cr were observed in the test pieces that were gradually cooled after the thermal spraying treatment.
In addition, as a result of magnifying the precipitate of the test piece after the second aging heat treatment of Example 2 of the present invention, as shown in FIG. 4, Cr was detected from the acicular precipitate or the plate-like precipitate, and granular From these precipitates, Cr and Zr were detected.
 本発明の鋳造用モールド材によれば、溶射処理後に徐冷した場合であっても、その後の時効処理によって強度(硬さ)及び導電率を十分に向上させることができる。そのため、本発明の鋳造用モールド材は鉄鋼材料等の鋳造に好適である。 According to the casting mold material of the present invention, even if it is gradually cooled after the thermal spraying treatment, the strength (hardness) and electrical conductivity can be sufficiently improved by the subsequent aging treatment. Therefore, the molding material for casting of the present invention is suitable for casting of steel materials and the like.

Claims (5)

  1.  金属材料を鋳造する際に用いられる鋳造用モールド材であって、
     Crを0.3mass%以上0.5mass%未満、Zrを0.01mass%以上0.15mass%以下、含み、残部がCu及び不可避不純物からなる組成を有し、
     Crを含有する針状析出物もしくは板状析出物を有することを特徴とする鋳造用モールド材。
    A casting mold material used when casting a metal material,
    Cr has a composition composed of 0.3 mass% or more and less than 0.5 mass%, Zr 0.01 mass% or more and 0.15 mass% or less, and the balance consisting of Cu and inevitable impurities,
    A casting mold material comprising a needle-like precipitate or a plate-like precipitate containing Cr.
  2.  さらに、Fe,Si,Co,Pから選択される1種又は2種以上の元素を合計で0.01mass%以上0.15mass%以下含むことを特徴とする請求項1に記載の鋳造用モールド材。 The casting mold material according to claim 1, further comprising one or more elements selected from Fe, Si, Co, and P in a total amount of 0.01 mass% to 0.15 mass%. .
  3.  Crを0.3mass%以上0.5mass%未満、Zrを0.01mass%以上0.15mass%以下、含み、残部がCu及び不可避不純物からなる組成を有し、
     完全溶体化処理を施した後に800℃で保持した場合に、導電率が55%IACSとなるまでの保持時間が25sec以上であることを特徴とするCu-Cr-Zr合金素材。
    Cr has a composition composed of 0.3 mass% or more and less than 0.5 mass%, Zr 0.01 mass% or more and 0.15 mass% or less, and the balance consisting of Cu and inevitable impurities,
    A Cu—Cr—Zr alloy material characterized in that when it is held at 800 ° C. after being subjected to a complete solution treatment, the holding time until the electric conductivity becomes 55% IACS is 25 sec or more.
  4.  さらに、Fe,Si,Co,Pから選択される1種又は2種以上の元素を合計で0.01mass%以上0.15mass%以下含むことを特徴とする請求項3に記載のCu-Cr-Zr合金素材。 The Cu—Cr— according to claim 3, further comprising one or more elements selected from Fe, Si, Co, and P in a total amount of 0.01 mass% to 0.15 mass%. Zr alloy material.
  5.  1000℃で1時間保持後に1000℃から600℃までの冷却速度を10℃/minとして冷却した後の導電率(%IACS)をA、その後500℃で3時間保持した後の導電率(%IACS)をBとした場合に、B/A>1.1の関係を有することを特徴とする請求項3又は請求項4に記載のCu-Cr-Zr合金素材。 Conductivity (% IACS) after holding at 1000 ° C for 1 hour and cooling at 1000 ° C to 600 ° C at a cooling rate of 10 ° C / min, and then holding at 500 ° C for 3 hours (% IACS) 5. The Cu—Cr—Zr alloy material according to claim 3 or 4, wherein a relationship of B / A> 1.1 is satisfied when B) is B.
PCT/JP2015/075996 2014-09-25 2015-09-14 CASTING MOLD MATERIAL AND Cu-Cr-Zr ALLOY MATERIAL WO2016047484A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020177000674A KR102385768B1 (en) 2014-09-25 2015-09-14 CASTING MOLD MATERIAL AND Cu-Cr-Zr ALLOY MATERIAL
US15/500,806 US10544495B2 (en) 2014-09-25 2015-09-14 Casting mold material and Cu—Cr—Zr alloy material
CN201580037873.2A CN106536769B (en) 2014-09-25 2015-09-14 Casting molds material and Cu-Cr-Zr alloy raw material
EP15843300.3A EP3199651B1 (en) 2014-09-25 2015-09-14 Casting mold material made of a cu-cr-zr alloy and method for manufacturing it

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2014195023 2014-09-25
JP2014-195023 2014-09-25
JP2015-169825 2015-08-28
JP2015169825A JP6488951B2 (en) 2014-09-25 2015-08-28 Mold material for casting and Cu-Cr-Zr alloy material

Publications (1)

Publication Number Publication Date
WO2016047484A1 true WO2016047484A1 (en) 2016-03-31

Family

ID=55581011

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/075996 WO2016047484A1 (en) 2014-09-25 2015-09-14 CASTING MOLD MATERIAL AND Cu-Cr-Zr ALLOY MATERIAL

Country Status (2)

Country Link
KR (1) KR102385768B1 (en)
WO (1) WO2016047484A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112063941A (en) * 2020-08-28 2020-12-11 陕西斯瑞新材料股份有限公司 Preparation method of reinforced Cu-Cr-Zr alloy
EP3715488A4 (en) * 2017-11-21 2021-03-31 Mitsubishi Materials Corporation Mold material for casting and copper alloy material

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55128350A (en) * 1979-03-27 1980-10-04 Hitachi Zosen Corp Casting mold material of continuous casting equipment
JPS59193233A (en) * 1983-04-15 1984-11-01 Toshiba Corp Copper alloy
JPH0570867A (en) * 1991-06-25 1993-03-23 Mitsubishi Materials Corp Casting method and alloy for metal mold for casting
JPH05339688A (en) * 1992-06-05 1993-12-21 Furukawa Electric Co Ltd:The Production of molding material for casting metal
JPH0987815A (en) * 1995-09-22 1997-03-31 Mitsubishi Materials Corp Production of copper alloy mold stock for continuous casting for steelmaking, and mold produced by using the same

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2738130B2 (en) 1990-05-25 1998-04-08 三菱マテリアル株式会社 High strength Cu alloy continuous casting mold material having high cooling capacity and method for producing the same
JP4158337B2 (en) * 2000-12-20 2008-10-01 三菱マテリアル株式会社 Method for producing chromium-zirconium-based copper alloy for continuous casting mold

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55128350A (en) * 1979-03-27 1980-10-04 Hitachi Zosen Corp Casting mold material of continuous casting equipment
JPS59193233A (en) * 1983-04-15 1984-11-01 Toshiba Corp Copper alloy
JPH0570867A (en) * 1991-06-25 1993-03-23 Mitsubishi Materials Corp Casting method and alloy for metal mold for casting
JPH05339688A (en) * 1992-06-05 1993-12-21 Furukawa Electric Co Ltd:The Production of molding material for casting metal
JPH0987815A (en) * 1995-09-22 1997-03-31 Mitsubishi Materials Corp Production of copper alloy mold stock for continuous casting for steelmaking, and mold produced by using the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3715488A4 (en) * 2017-11-21 2021-03-31 Mitsubishi Materials Corporation Mold material for casting and copper alloy material
CN112063941A (en) * 2020-08-28 2020-12-11 陕西斯瑞新材料股份有限公司 Preparation method of reinforced Cu-Cr-Zr alloy

Also Published As

Publication number Publication date
KR20170059435A (en) 2017-05-30
KR102385768B1 (en) 2022-04-11

Similar Documents

Publication Publication Date Title
JP6488951B2 (en) Mold material for casting and Cu-Cr-Zr alloy material
JP5261500B2 (en) Cu-Ni-Si-Mg alloy with improved conductivity and bendability
JP6693092B2 (en) Copper alloy material
TWI557233B (en) Nilr-based heat-resistant alloy and method of manufacturing the same
JP6736869B2 (en) Copper alloy material
WO2019102716A1 (en) Mold material for casting and copper alloy material
WO2017065071A1 (en) Casting mold material and cu-cr-zr-al alloy starting material
WO2016047484A1 (en) CASTING MOLD MATERIAL AND Cu-Cr-Zr ALLOY MATERIAL
TWI743392B (en) Copper alloy strip having high heat resistance and thermal dissipation properties
Kang et al. Microstructures and shape memory characteristics of a Ti–20Ni–30Cu (at.%) alloy strip fabricated by the melt overflow process
JP6179325B2 (en) Mold material for continuous casting
JP2015067883A (en) Mold material for continuous casting

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15843300

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20177000674

Country of ref document: KR

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2015843300

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015843300

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 15500806

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE